• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkPaint.h"
9 #include "src/core/SkScalerContext.h"
10 
11 #include "include/core/SkDrawable.h"
12 #include "include/core/SkFontMetrics.h"
13 #include "include/core/SkMaskFilter.h"
14 #include "include/core/SkPathEffect.h"
15 #include "include/core/SkStrokeRec.h"
16 #include "include/private/SkColorData.h"
17 #include "include/private/base/SkTo.h"
18 #include "src/base/SkAutoMalloc.h"
19 #include "src/core/SkAutoPixmapStorage.h"
20 #include "src/core/SkDescriptor.h"
21 #include "src/core/SkDraw.h"
22 #include "src/core/SkFontPriv.h"
23 #include "src/core/SkGlyph.h"
24 #include "src/core/SkMaskGamma.h"
25 #include "src/core/SkMatrixProvider.h"
26 #include "src/core/SkPaintPriv.h"
27 #include "src/core/SkPathPriv.h"
28 #include "src/core/SkRasterClip.h"
29 #include "src/core/SkReadBuffer.h"
30 #include "src/core/SkRectPriv.h"
31 #include "src/core/SkStroke.h"
32 #include "src/core/SkSurfacePriv.h"
33 #include "src/core/SkTextFormatParams.h"
34 #include "src/core/SkWriteBuffer.h"
35 #include "src/utils/SkMatrix22.h"
36 #include <new>
37 
38 ///////////////////////////////////////////////////////////////////////////////
39 
40 namespace {
41 static inline const constexpr bool kSkShowTextBlitCoverage = false;
42 static inline const constexpr bool kSkScalerContextDumpRec = false;
43 }
44 
PreprocessRec(const SkTypeface & typeface,const SkScalerContextEffects & effects,const SkDescriptor & desc)45 SkScalerContextRec SkScalerContext::PreprocessRec(const SkTypeface& typeface,
46                                                   const SkScalerContextEffects& effects,
47                                                   const SkDescriptor& desc) {
48     SkScalerContextRec rec =
49             *static_cast<const SkScalerContextRec*>(desc.findEntry(kRec_SkDescriptorTag, nullptr));
50 
51     // Allow the typeface to adjust the rec.
52     typeface.onFilterRec(&rec);
53 
54     if (effects.fMaskFilter) {
55         // Pre-blend is not currently applied to filtered text.
56         // The primary filter is blur, for which contrast makes no sense,
57         // and for which the destination guess error is more visible.
58         // Also, all existing users of blur have calibrated for linear.
59         rec.ignorePreBlend();
60     }
61 
62     SkColor lumColor = rec.getLuminanceColor();
63 
64     if (rec.fMaskFormat == SkMask::kA8_Format) {
65         U8CPU lum = SkComputeLuminance(SkColorGetR(lumColor),
66                                        SkColorGetG(lumColor),
67                                        SkColorGetB(lumColor));
68         lumColor = SkColorSetRGB(lum, lum, lum);
69     }
70 
71     // TODO: remove CanonicalColor when we to fix up Chrome layout tests.
72     rec.setLuminanceColor(lumColor);
73 
74     return rec;
75 }
76 
SkScalerContext(sk_sp<SkTypeface> typeface,const SkScalerContextEffects & effects,const SkDescriptor * desc)77 SkScalerContext::SkScalerContext(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects,
78                                  const SkDescriptor* desc)
79     : fRec(PreprocessRec(*typeface, effects, *desc))
80     , fTypeface(std::move(typeface))
81     , fPathEffect(sk_ref_sp(effects.fPathEffect))
82     , fMaskFilter(sk_ref_sp(effects.fMaskFilter))
83       // Initialize based on our settings. Subclasses can also force this.
84     , fGenerateImageFromPath(fRec.fFrameWidth >= 0 || fPathEffect != nullptr)
85 
86     , fPreBlend(fMaskFilter ? SkMaskGamma::PreBlend() : SkScalerContext::GetMaskPreBlend(fRec))
87 {
88     if constexpr (kSkScalerContextDumpRec) {
89         SkDebugf("SkScalerContext checksum %x count %d length %d\n",
90                  desc->getChecksum(), desc->getCount(), desc->getLength());
91         SkDebugf("%s", fRec.dump().c_str());
92         SkDebugf("  effects %p\n", desc->findEntry(kEffects_SkDescriptorTag, nullptr));
93     }
94 }
95 
~SkScalerContext()96 SkScalerContext::~SkScalerContext() {}
97 
98 /**
99  * In order to call cachedDeviceLuminance, cachedPaintLuminance, or
100  * cachedMaskGamma the caller must hold the mask_gamma_cache_mutex and continue
101  * to hold it until the returned pointer is refed or forgotten.
102  */
mask_gamma_cache_mutex()103 static SkMutex& mask_gamma_cache_mutex() {
104     static SkMutex& mutex = *(new SkMutex);
105     return mutex;
106 }
107 
108 static SkMaskGamma* gLinearMaskGamma = nullptr;
109 static SkMaskGamma* gMaskGamma = nullptr;
110 static SkScalar gContrast = SK_ScalarMin;
111 static SkScalar gPaintGamma = SK_ScalarMin;
112 static SkScalar gDeviceGamma = SK_ScalarMin;
113 
114 /**
115  * The caller must hold the mask_gamma_cache_mutex() and continue to hold it until
116  * the returned SkMaskGamma pointer is refed or forgotten.
117  */
cached_mask_gamma(SkScalar contrast,SkScalar paintGamma,SkScalar deviceGamma)118 static const SkMaskGamma& cached_mask_gamma(SkScalar contrast, SkScalar paintGamma,
119                                             SkScalar deviceGamma) {
120     mask_gamma_cache_mutex().assertHeld();
121     if (0 == contrast && SK_Scalar1 == paintGamma && SK_Scalar1 == deviceGamma) {
122         if (nullptr == gLinearMaskGamma) {
123             gLinearMaskGamma = new SkMaskGamma;
124         }
125         return *gLinearMaskGamma;
126     }
127     if (gContrast != contrast || gPaintGamma != paintGamma || gDeviceGamma != deviceGamma) {
128         SkSafeUnref(gMaskGamma);
129         gMaskGamma = new SkMaskGamma(contrast, paintGamma, deviceGamma);
130         gContrast = contrast;
131         gPaintGamma = paintGamma;
132         gDeviceGamma = deviceGamma;
133     }
134     return *gMaskGamma;
135 }
136 
137 /**
138  * Expands fDeviceGamma, fPaintGamma, fContrast, and fLumBits into a mask pre-blend.
139  */
GetMaskPreBlend(const SkScalerContextRec & rec)140 SkMaskGamma::PreBlend SkScalerContext::GetMaskPreBlend(const SkScalerContextRec& rec) {
141     SkAutoMutexExclusive ama(mask_gamma_cache_mutex());
142 
143     const SkMaskGamma& maskGamma = cached_mask_gamma(rec.getContrast(),
144                                                      rec.getPaintGamma(),
145                                                      rec.getDeviceGamma());
146 
147     // TODO: remove CanonicalColor when we to fix up Chrome layout tests.
148     return maskGamma.preBlend(rec.getLuminanceColor());
149 }
150 
GetGammaLUTSize(SkScalar contrast,SkScalar paintGamma,SkScalar deviceGamma,int * width,int * height)151 size_t SkScalerContext::GetGammaLUTSize(SkScalar contrast, SkScalar paintGamma,
152                                         SkScalar deviceGamma, int* width, int* height) {
153     SkAutoMutexExclusive ama(mask_gamma_cache_mutex());
154     const SkMaskGamma& maskGamma = cached_mask_gamma(contrast,
155                                                      paintGamma,
156                                                      deviceGamma);
157 
158     maskGamma.getGammaTableDimensions(width, height);
159     size_t size = (*width)*(*height)*sizeof(uint8_t);
160 
161     return size;
162 }
163 
GetGammaLUTData(SkScalar contrast,SkScalar paintGamma,SkScalar deviceGamma,uint8_t * data)164 bool SkScalerContext::GetGammaLUTData(SkScalar contrast, SkScalar paintGamma, SkScalar deviceGamma,
165                                       uint8_t* data) {
166     SkAutoMutexExclusive ama(mask_gamma_cache_mutex());
167     const SkMaskGamma& maskGamma = cached_mask_gamma(contrast,
168                                                      paintGamma,
169                                                      deviceGamma);
170     const uint8_t* gammaTables = maskGamma.getGammaTables();
171     if (!gammaTables) {
172         return false;
173     }
174 
175     int width, height;
176     maskGamma.getGammaTableDimensions(&width, &height);
177     size_t size = width*height * sizeof(uint8_t);
178     memcpy(data, gammaTables, size);
179     return true;
180 }
181 
makeGlyph(SkPackedGlyphID packedID,SkArenaAlloc * alloc)182 SkGlyph SkScalerContext::makeGlyph(SkPackedGlyphID packedID, SkArenaAlloc* alloc) {
183     return internalMakeGlyph(packedID, fRec.fMaskFormat, alloc);
184 }
185 
GenerateMetricsFromPath(SkGlyph * glyph,const SkPath & devPath,SkMask::Format format,const bool verticalLCD,const bool a8FromLCD,const bool hairline)186 bool SkScalerContext::GenerateMetricsFromPath(
187     SkGlyph* glyph, const SkPath& devPath, SkMask::Format format,
188     const bool verticalLCD, const bool a8FromLCD, const bool hairline)
189 {
190     // Only BW, A8, and LCD16 can be produced from paths.
191     if (glyph->fMaskFormat != SkMask::kBW_Format &&
192         glyph->fMaskFormat != SkMask::kA8_Format &&
193         glyph->fMaskFormat != SkMask::kLCD16_Format)
194     {
195         glyph->fMaskFormat = SkMask::kA8_Format;
196     }
197 
198     const SkRect bounds = devPath.getBounds();
199     const SkIRect ir = bounds.roundOut();
200     if (!SkRectPriv::Is16Bit(ir)) {
201         return false;
202     }
203     glyph->fLeft    = ir.fLeft;
204     glyph->fTop     = ir.fTop;
205     glyph->fWidth   = SkToU16(ir.width());
206     glyph->fHeight  = SkToU16(ir.height());
207 
208     if (!ir.isEmpty()) {
209         const bool fromLCD = (glyph->fMaskFormat == SkMask::kLCD16_Format) ||
210                              (glyph->fMaskFormat == SkMask::kA8_Format && a8FromLCD);
211         const bool notEmptyAndFromLCD = 0 < glyph->fWidth && fromLCD;
212 
213         const bool needExtraWidth  = (notEmptyAndFromLCD && !verticalLCD) || hairline;
214         const bool needExtraHeight = (notEmptyAndFromLCD &&  verticalLCD) || hairline;
215         if (needExtraWidth) {
216             glyph->fWidth += 2;
217             glyph->fLeft -= 1;
218         }
219         if (needExtraHeight) {
220             glyph->fHeight += 2;
221             glyph->fTop -= 1;
222         }
223     }
224     return true;
225 }
226 
internalMakeGlyph(SkPackedGlyphID packedID,SkMask::Format format,SkArenaAlloc * alloc)227 SkGlyph SkScalerContext::internalMakeGlyph(SkPackedGlyphID packedID, SkMask::Format format, SkArenaAlloc* alloc) {
228     auto zeroBounds = [](SkGlyph& glyph) {
229         glyph.fLeft     = 0;
230         glyph.fTop      = 0;
231         glyph.fWidth    = 0;
232         glyph.fHeight   = 0;
233     };
234     SkGlyph glyph{packedID};
235     glyph.fMaskFormat = format;
236     // Must call to allow the subclass to determine the glyph representation to use.
237     this->generateMetrics(&glyph, alloc);
238     SkDEBUGCODE(glyph.fAdvancesBoundsFormatAndInitialPathDone = true;)
239     if (fGenerateImageFromPath) {
240         this->internalGetPath(glyph, alloc);
241         const SkPath* devPath = glyph.path();
242         if (devPath) {
243             // generateMetrics may have modified the glyph fMaskFormat.
244             glyph.fMaskFormat = format;
245             const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag);
246             const bool a8LCD = SkToBool(fRec.fFlags & SkScalerContext::kGenA8FromLCD_Flag);
247             const bool hairline = glyph.pathIsHairline();
248             if (!GenerateMetricsFromPath(&glyph, *devPath, format, doVert, a8LCD, hairline)) {
249                 zeroBounds(glyph);
250                 return glyph;
251             }
252         }
253     }
254 
255     // if either dimension is empty, zap the image bounds of the glyph
256     if (0 == glyph.fWidth || 0 == glyph.fHeight) {
257         zeroBounds(glyph);
258         return glyph;
259     }
260 
261     if (fMaskFilter) {
262         SkMask      src = glyph.mask(),
263                     dst;
264         SkMatrix    matrix;
265 
266         fRec.getMatrixFrom2x2(&matrix);
267 
268         src.fImage = nullptr;  // only want the bounds from the filter
269         if (as_MFB(fMaskFilter)->filterMask(&dst, src, matrix, nullptr)) {
270             if (dst.fBounds.isEmpty() || !SkRectPriv::Is16Bit(dst.fBounds)) {
271                 zeroBounds(glyph);
272                 return glyph;
273             }
274             SkASSERT(dst.fImage == nullptr);
275             glyph.fLeft    = dst.fBounds.fLeft;
276             glyph.fTop     = dst.fBounds.fTop;
277             glyph.fWidth   = SkToU16(dst.fBounds.width());
278             glyph.fHeight  = SkToU16(dst.fBounds.height());
279             glyph.fMaskFormat = dst.fFormat;
280         }
281     }
282     return glyph;
283 }
284 
applyLUTToA8Mask(const SkMask & mask,const uint8_t * lut)285 static void applyLUTToA8Mask(const SkMask& mask, const uint8_t* lut) {
286     uint8_t* SK_RESTRICT dst = (uint8_t*)mask.fImage;
287     unsigned rowBytes = mask.fRowBytes;
288 
289     for (int y = mask.fBounds.height() - 1; y >= 0; --y) {
290         for (int x = mask.fBounds.width() - 1; x >= 0; --x) {
291             dst[x] = lut[dst[x]];
292         }
293         dst += rowBytes;
294     }
295 }
296 
pack4xHToMask(const SkPixmap & src,const SkMask & dst,const SkMaskGamma::PreBlend & maskPreBlend,const bool doBGR,const bool doVert)297 static void pack4xHToMask(const SkPixmap& src, const SkMask& dst,
298                           const SkMaskGamma::PreBlend& maskPreBlend,
299                           const bool doBGR, const bool doVert) {
300 #define SAMPLES_PER_PIXEL 4
301 #define LCD_PER_PIXEL 3
302     SkASSERT(kAlpha_8_SkColorType == src.colorType());
303 
304     const bool toA8 = SkMask::kA8_Format == dst.fFormat;
305     SkASSERT(SkMask::kLCD16_Format == dst.fFormat || toA8);
306 
307     // doVert in this function means swap x and y when writing to dst.
308     if (doVert) {
309         SkASSERT(src.width() == (dst.fBounds.height() - 2) * 4);
310         SkASSERT(src.height() == dst.fBounds.width());
311     } else {
312         SkASSERT(src.width() == (dst.fBounds.width() - 2) * 4);
313         SkASSERT(src.height() == dst.fBounds.height());
314     }
315 
316     const int sample_width = src.width();
317     const int height = src.height();
318 
319     uint8_t* dstImage = dst.fImage;
320     size_t dstRB = dst.fRowBytes;
321     // An N tap FIR is defined by
322     // out[n] = coeff[0]*x[n] + coeff[1]*x[n-1] + ... + coeff[N]*x[n-N]
323     // or
324     // out[n] = sum(i, 0, N, coeff[i]*x[n-i])
325 
326     // The strategy is to use one FIR (different coefficients) for each of r, g, and b.
327     // This means using every 4th FIR output value of each FIR and discarding the rest.
328     // The FIRs are aligned, and the coefficients reach 5 samples to each side of their 'center'.
329     // (For r and b this is technically incorrect, but the coeffs outside round to zero anyway.)
330 
331     // These are in some fixed point repesentation.
332     // Adding up to more than one simulates ink spread.
333     // For implementation reasons, these should never add up to more than two.
334 
335     // Coefficients determined by a gausian where 5 samples = 3 std deviations (0x110 'contrast').
336     // Calculated using tools/generate_fir_coeff.py
337     // With this one almost no fringing is ever seen, but it is imperceptibly blurry.
338     // The lcd smoothed text is almost imperceptibly different from gray,
339     // but is still sharper on small stems and small rounded corners than gray.
340     // This also seems to be about as wide as one can get and only have a three pixel kernel.
341     // TODO: calculate these at runtime so parameters can be adjusted (esp contrast).
342     static const unsigned int coefficients[LCD_PER_PIXEL][SAMPLES_PER_PIXEL*3] = {
343         //The red subpixel is centered inside the first sample (at 1/6 pixel), and is shifted.
344         { 0x03, 0x0b, 0x1c, 0x33,  0x40, 0x39, 0x24, 0x10,  0x05, 0x01, 0x00, 0x00, },
345         //The green subpixel is centered between two samples (at 1/2 pixel), so is symetric
346         { 0x00, 0x02, 0x08, 0x16,  0x2b, 0x3d, 0x3d, 0x2b,  0x16, 0x08, 0x02, 0x00, },
347         //The blue subpixel is centered inside the last sample (at 5/6 pixel), and is shifted.
348         { 0x00, 0x00, 0x01, 0x05,  0x10, 0x24, 0x39, 0x40,  0x33, 0x1c, 0x0b, 0x03, },
349     };
350 
351     size_t dstPB = toA8 ? sizeof(uint8_t) : sizeof(uint16_t);
352     for (int y = 0; y < height; ++y) {
353         uint8_t* dstP;
354         size_t dstPDelta;
355         if (doVert) {
356             dstP = SkTAddOffset<uint8_t>(dstImage, y * dstPB);
357             dstPDelta = dstRB;
358         } else {
359             dstP = SkTAddOffset<uint8_t>(dstImage, y * dstRB);
360             dstPDelta = dstPB;
361         }
362 
363         const uint8_t* srcP = src.addr8(0, y);
364 
365         // TODO: this fir filter implementation is straight forward, but slow.
366         // It should be possible to make it much faster.
367         for (int sample_x = -4; sample_x < sample_width + 4; sample_x += 4) {
368             int fir[LCD_PER_PIXEL] = { 0 };
369             for (int sample_index = std::max(0, sample_x - 4), coeff_index = sample_index - (sample_x - 4)
370                 ; sample_index < std::min(sample_x + 8, sample_width)
371                 ; ++sample_index, ++coeff_index)
372             {
373                 int sample_value = srcP[sample_index];
374                 for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
375                     fir[subpxl_index] += coefficients[subpxl_index][coeff_index] * sample_value;
376                 }
377             }
378             for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
379                 fir[subpxl_index] /= 0x100;
380                 fir[subpxl_index] = std::min(fir[subpxl_index], 255);
381             }
382 
383             U8CPU r, g, b;
384             if (doBGR) {
385                 r = fir[2];
386                 g = fir[1];
387                 b = fir[0];
388             } else {
389                 r = fir[0];
390                 g = fir[1];
391                 b = fir[2];
392             }
393             if constexpr (kSkShowTextBlitCoverage) {
394                 r = std::max(r, 10u);
395                 g = std::max(g, 10u);
396                 b = std::max(b, 10u);
397             }
398             if (toA8) {
399                 U8CPU a = (r + g + b) / 3;
400                 if (maskPreBlend.isApplicable()) {
401                     a = maskPreBlend.fG[a];
402                 }
403                 *dstP = a;
404             } else {
405                 if (maskPreBlend.isApplicable()) {
406                     r = maskPreBlend.fR[r];
407                     g = maskPreBlend.fG[g];
408                     b = maskPreBlend.fB[b];
409                 }
410                 *(uint16_t*)dstP = SkPack888ToRGB16(r, g, b);
411             }
412             dstP = SkTAddOffset<uint8_t>(dstP, dstPDelta);
413         }
414     }
415 }
416 
convert_8_to_1(unsigned byte)417 static inline int convert_8_to_1(unsigned byte) {
418     SkASSERT(byte <= 0xFF);
419     return byte >> 7;
420 }
421 
pack_8_to_1(const uint8_t alpha[8])422 static uint8_t pack_8_to_1(const uint8_t alpha[8]) {
423     unsigned bits = 0;
424     for (int i = 0; i < 8; ++i) {
425         bits <<= 1;
426         bits |= convert_8_to_1(alpha[i]);
427     }
428     return SkToU8(bits);
429 }
430 
packA8ToA1(const SkMask & mask,const uint8_t * src,size_t srcRB)431 static void packA8ToA1(const SkMask& mask, const uint8_t* src, size_t srcRB) {
432     const int height = mask.fBounds.height();
433     const int width = mask.fBounds.width();
434     const int octs = width >> 3;
435     const int leftOverBits = width & 7;
436 
437     uint8_t* dst = mask.fImage;
438     const int dstPad = mask.fRowBytes - SkAlign8(width)/8;
439     SkASSERT(dstPad >= 0);
440 
441     SkASSERT(width >= 0);
442     SkASSERT(srcRB >= (size_t)width);
443     const size_t srcPad = srcRB - width;
444 
445     for (int y = 0; y < height; ++y) {
446         for (int i = 0; i < octs; ++i) {
447             *dst++ = pack_8_to_1(src);
448             src += 8;
449         }
450         if (leftOverBits > 0) {
451             unsigned bits = 0;
452             int shift = 7;
453             for (int i = 0; i < leftOverBits; ++i, --shift) {
454                 bits |= convert_8_to_1(*src++) << shift;
455             }
456             *dst++ = bits;
457         }
458         src += srcPad;
459         dst += dstPad;
460     }
461 }
462 
GenerateImageFromPath(const SkMask & mask,const SkPath & path,const SkMaskGamma::PreBlend & maskPreBlend,const bool doBGR,const bool verticalLCD,const bool a8FromLCD,const bool hairline)463 void SkScalerContext::GenerateImageFromPath(
464     const SkMask& mask, const SkPath& path, const SkMaskGamma::PreBlend& maskPreBlend,
465     const bool doBGR, const bool verticalLCD, const bool a8FromLCD, const bool hairline)
466 {
467     SkASSERT(mask.fFormat == SkMask::kBW_Format ||
468              mask.fFormat == SkMask::kA8_Format ||
469              mask.fFormat == SkMask::kLCD16_Format);
470 
471     SkPaint paint;
472     SkPath strokePath;
473     const SkPath* pathToUse = &path;
474 
475     int srcW = mask.fBounds.width();
476     int srcH = mask.fBounds.height();
477     int dstW = srcW;
478     int dstH = srcH;
479 
480     SkMatrix matrix;
481     matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft),
482                         -SkIntToScalar(mask.fBounds.fTop));
483 
484     paint.setStroke(hairline);
485     paint.setAntiAlias(SkMask::kBW_Format != mask.fFormat);
486 
487     const bool fromLCD = (mask.fFormat == SkMask::kLCD16_Format) ||
488                          (mask.fFormat == SkMask::kA8_Format && a8FromLCD);
489     const bool intermediateDst = fromLCD || mask.fFormat == SkMask::kBW_Format;
490     if (fromLCD) {
491         if (verticalLCD) {
492             dstW = 4*dstH - 8;
493             dstH = srcW;
494             matrix.setAll(0, 4, -SkIntToScalar(mask.fBounds.fTop + 1) * 4,
495                           1, 0, -SkIntToScalar(mask.fBounds.fLeft),
496                           0, 0, 1);
497         } else {
498             dstW = 4*dstW - 8;
499             matrix.setAll(4, 0, -SkIntToScalar(mask.fBounds.fLeft + 1) * 4,
500                           0, 1, -SkIntToScalar(mask.fBounds.fTop),
501                           0, 0, 1);
502         }
503 
504         // LCD hairline doesn't line up with the pixels, so do it the expensive way.
505         SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
506         if (hairline) {
507             rec.setStrokeStyle(1.0f, false);
508             rec.setStrokeParams(SkPaint::kButt_Cap, SkPaint::kRound_Join, 0.0f);
509         }
510         if (rec.needToApply() && rec.applyToPath(&strokePath, path)) {
511             pathToUse = &strokePath;
512             paint.setStyle(SkPaint::kFill_Style);
513         }
514     }
515 
516     SkRasterClip clip;
517     clip.setRect(SkIRect::MakeWH(dstW, dstH));
518 
519     const SkImageInfo info = SkImageInfo::MakeA8(dstW, dstH);
520     SkAutoPixmapStorage dst;
521 
522     if (intermediateDst) {
523         if (!dst.tryAlloc(info)) {
524             // can't allocate offscreen, so empty the mask and return
525             sk_bzero(mask.fImage, mask.computeImageSize());
526             return;
527         }
528     } else {
529         dst.reset(info, mask.fImage, mask.fRowBytes);
530     }
531     sk_bzero(dst.writable_addr(), dst.computeByteSize());
532 
533     SkDraw  draw;
534     SkMatrixProvider matrixProvider(matrix);
535     draw.fDst            = dst;
536     draw.fRC             = &clip;
537     draw.fMatrixProvider = &matrixProvider;
538     draw.drawPath(*pathToUse, paint);
539 
540     switch (mask.fFormat) {
541         case SkMask::kBW_Format:
542             packA8ToA1(mask, dst.addr8(0, 0), dst.rowBytes());
543             break;
544         case SkMask::kA8_Format:
545             if (fromLCD) {
546                 pack4xHToMask(dst, mask, maskPreBlend, doBGR, verticalLCD);
547             } else if (maskPreBlend.isApplicable()) {
548                 applyLUTToA8Mask(mask, maskPreBlend.fG);
549             }
550             break;
551         case SkMask::kLCD16_Format:
552             pack4xHToMask(dst, mask, maskPreBlend, doBGR, verticalLCD);
553             break;
554         default:
555             break;
556     }
557 }
558 
getImage(const SkGlyph & origGlyph)559 void SkScalerContext::getImage(const SkGlyph& origGlyph) {
560     SkASSERT(origGlyph.fAdvancesBoundsFormatAndInitialPathDone);
561 
562     const SkGlyph* unfilteredGlyph = &origGlyph;
563     // in case we need to call generateImage on a mask-format that is different
564     // (i.e. larger) than what our caller allocated by looking at origGlyph.
565     SkAutoMalloc tmpGlyphImageStorage;
566     SkGlyph tmpGlyph;
567     SkSTArenaAlloc<sizeof(SkGlyph::PathData)> tmpGlyphPathDataStorage;
568     if (fMaskFilter) {
569         // need the original bounds, sans our maskfilter
570         sk_sp<SkMaskFilter> mf = std::move(fMaskFilter);
571         tmpGlyph = this->makeGlyph(origGlyph.getPackedID(), &tmpGlyphPathDataStorage);
572         fMaskFilter = std::move(mf);
573 
574         // Use the origGlyph storage for the temporary unfiltered mask if it will fit.
575         if (tmpGlyph.fMaskFormat == origGlyph.fMaskFormat &&
576             tmpGlyph.imageSize() <= origGlyph.imageSize())
577         {
578             tmpGlyph.fImage = origGlyph.fImage;
579         } else {
580             tmpGlyphImageStorage.reset(tmpGlyph.imageSize());
581             tmpGlyph.fImage = tmpGlyphImageStorage.get();
582         }
583         unfilteredGlyph = &tmpGlyph;
584     }
585 
586     if (!fGenerateImageFromPath) {
587         generateImage(*unfilteredGlyph);
588     } else {
589         SkASSERT(origGlyph.setPathHasBeenCalled());
590         const SkPath* devPath = origGlyph.path();
591 
592         if (!devPath) {
593             generateImage(*unfilteredGlyph);
594         } else {
595             SkMask mask = unfilteredGlyph->mask();
596             SkASSERT(SkMask::kARGB32_Format != origGlyph.fMaskFormat);
597             SkASSERT(SkMask::kARGB32_Format != mask.fFormat);
598             const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag);
599             const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag);
600             const bool a8LCD = SkToBool(fRec.fFlags & SkScalerContext::kGenA8FromLCD_Flag);
601             const bool hairline = origGlyph.pathIsHairline();
602             GenerateImageFromPath(mask, *devPath, fPreBlend, doBGR, doVert, a8LCD, hairline);
603         }
604     }
605 
606     if (fMaskFilter) {
607         // k3D_Format should not be mask filtered.
608         SkASSERT(SkMask::k3D_Format != unfilteredGlyph->fMaskFormat);
609 
610         SkMask filteredMask;
611         SkMask srcMask;
612         SkMatrix m;
613         fRec.getMatrixFrom2x2(&m);
614 
615         if (as_MFB(fMaskFilter)->filterMask(&filteredMask, unfilteredGlyph->mask(), m, nullptr)) {
616             // Filter succeeded; filteredMask.fImage was allocated.
617             srcMask = filteredMask;
618         } else if (unfilteredGlyph->fImage == tmpGlyphImageStorage.get()) {
619             // Filter did nothing; unfiltered mask is independent of origGlyph.fImage.
620             srcMask = unfilteredGlyph->mask();
621         } else if (origGlyph.iRect() == unfilteredGlyph->iRect()) {
622             // Filter did nothing; the unfiltered mask is in origGlyph.fImage and matches.
623             return;
624         } else {
625             // Filter did nothing; the unfiltered mask is in origGlyph.fImage and conflicts.
626             srcMask = unfilteredGlyph->mask();
627             size_t imageSize = unfilteredGlyph->imageSize();
628             tmpGlyphImageStorage.reset(imageSize);
629             srcMask.fImage = static_cast<uint8_t*>(tmpGlyphImageStorage.get());
630             memcpy(srcMask.fImage, unfilteredGlyph->fImage, imageSize);
631         }
632 
633         SkASSERT_RELEASE(srcMask.fFormat == origGlyph.fMaskFormat);
634         SkMask dstMask = origGlyph.mask();
635         SkIRect origBounds = dstMask.fBounds;
636 
637         // Find the intersection of src and dst while updating the fImages.
638         if (srcMask.fBounds.fTop < dstMask.fBounds.fTop) {
639             int32_t topDiff = dstMask.fBounds.fTop - srcMask.fBounds.fTop;
640             srcMask.fImage += srcMask.fRowBytes * topDiff;
641             srcMask.fBounds.fTop = dstMask.fBounds.fTop;
642         }
643         if (dstMask.fBounds.fTop < srcMask.fBounds.fTop) {
644             int32_t topDiff = srcMask.fBounds.fTop - dstMask.fBounds.fTop;
645             dstMask.fImage += dstMask.fRowBytes * topDiff;
646             dstMask.fBounds.fTop = srcMask.fBounds.fTop;
647         }
648 
649         if (srcMask.fBounds.fLeft < dstMask.fBounds.fLeft) {
650             int32_t leftDiff = dstMask.fBounds.fLeft - srcMask.fBounds.fLeft;
651             srcMask.fImage += leftDiff;
652             srcMask.fBounds.fLeft = dstMask.fBounds.fLeft;
653         }
654         if (dstMask.fBounds.fLeft < srcMask.fBounds.fLeft) {
655             int32_t leftDiff = srcMask.fBounds.fLeft - dstMask.fBounds.fLeft;
656             dstMask.fImage += leftDiff;
657             dstMask.fBounds.fLeft = srcMask.fBounds.fLeft;
658         }
659 
660         if (srcMask.fBounds.fBottom < dstMask.fBounds.fBottom) {
661             dstMask.fBounds.fBottom = srcMask.fBounds.fBottom;
662         }
663         if (dstMask.fBounds.fBottom < srcMask.fBounds.fBottom) {
664             srcMask.fBounds.fBottom = dstMask.fBounds.fBottom;
665         }
666 
667         if (srcMask.fBounds.fRight < dstMask.fBounds.fRight) {
668             dstMask.fBounds.fRight = srcMask.fBounds.fRight;
669         }
670         if (dstMask.fBounds.fRight < srcMask.fBounds.fRight) {
671             srcMask.fBounds.fRight = dstMask.fBounds.fRight;
672         }
673 
674         SkASSERT(srcMask.fBounds == dstMask.fBounds);
675         int width = srcMask.fBounds.width();
676         int height = srcMask.fBounds.height();
677         int dstRB = dstMask.fRowBytes;
678         int srcRB = srcMask.fRowBytes;
679 
680         const uint8_t* src = srcMask.fImage;
681         uint8_t* dst = dstMask.fImage;
682 
683         if (SkMask::k3D_Format == filteredMask.fFormat) {
684             // we have to copy 3 times as much
685             height *= 3;
686         }
687 
688         // If not filling the full original glyph, clear it out first.
689         if (dstMask.fBounds != origBounds) {
690             sk_bzero(origGlyph.fImage, origGlyph.fHeight * origGlyph.rowBytes());
691         }
692 
693         while (--height >= 0) {
694             memcpy(dst, src, width);
695             src += srcRB;
696             dst += dstRB;
697         }
698         SkMask::FreeImage(filteredMask.fImage);
699     }
700 }
701 
getPath(SkGlyph & glyph,SkArenaAlloc * alloc)702 void SkScalerContext::getPath(SkGlyph& glyph, SkArenaAlloc* alloc) {
703     this->internalGetPath(glyph, alloc);
704 }
705 
getDrawable(SkGlyph & glyph)706 sk_sp<SkDrawable> SkScalerContext::getDrawable(SkGlyph& glyph) {
707     return this->generateDrawable(glyph);
708 }
709 //TODO: make pure virtual
generateDrawable(const SkGlyph &)710 sk_sp<SkDrawable> SkScalerContext::generateDrawable(const SkGlyph&) {
711     return nullptr;
712 }
713 
getFontMetrics(SkFontMetrics * fm)714 void SkScalerContext::getFontMetrics(SkFontMetrics* fm) {
715     SkASSERT(fm);
716     this->generateFontMetrics(fm);
717 }
718 
719 ///////////////////////////////////////////////////////////////////////////////
720 
internalGetPath(SkGlyph & glyph,SkArenaAlloc * alloc)721 void SkScalerContext::internalGetPath(SkGlyph& glyph, SkArenaAlloc* alloc) {
722     SkASSERT(glyph.fAdvancesBoundsFormatAndInitialPathDone);
723 
724     if (glyph.setPathHasBeenCalled()) {
725         return;
726     }
727 
728     SkPath path;
729     SkPath devPath;
730     bool hairline = false;
731 
732     SkPackedGlyphID glyphID = glyph.getPackedID();
733     if (!generatePath(glyph, &path)) {
734         glyph.setPath(alloc, (SkPath*)nullptr, hairline);
735         return;
736     }
737 
738     if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) {
739         SkFixed dx = glyphID.getSubXFixed();
740         SkFixed dy = glyphID.getSubYFixed();
741         if (dx | dy) {
742             path.offset(SkFixedToScalar(dx), SkFixedToScalar(dy));
743         }
744     }
745 
746     if (fRec.fFrameWidth < 0 && fPathEffect == nullptr) {
747         devPath.swap(path);
748     } else {
749         // need the path in user-space, with only the point-size applied
750         // so that our stroking and effects will operate the same way they
751         // would if the user had extracted the path themself, and then
752         // called drawPath
753         SkPath localPath;
754         SkMatrix matrix;
755         SkMatrix inverse;
756 
757         fRec.getMatrixFrom2x2(&matrix);
758         if (!matrix.invert(&inverse)) {
759             glyph.setPath(alloc, &devPath, hairline);
760         }
761         path.transform(inverse, &localPath);
762         // now localPath is only affected by the paint settings, and not the canvas matrix
763 
764         SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
765 
766         if (fRec.fFrameWidth >= 0) {
767             rec.setStrokeStyle(fRec.fFrameWidth,
768                                SkToBool(fRec.fFlags & kFrameAndFill_Flag));
769             // glyphs are always closed contours, so cap type is ignored,
770             // so we just pass something.
771             rec.setStrokeParams((SkPaint::Cap)fRec.fStrokeCap,
772                                 (SkPaint::Join)fRec.fStrokeJoin,
773                                 fRec.fMiterLimit);
774         }
775 
776         if (fPathEffect) {
777             SkPath effectPath;
778             if (fPathEffect->filterPath(&effectPath, localPath, &rec, nullptr, matrix)) {
779                 localPath.swap(effectPath);
780             }
781         }
782 
783         if (rec.needToApply()) {
784             SkPath strokePath;
785             if (rec.applyToPath(&strokePath, localPath)) {
786                 localPath.swap(strokePath);
787             }
788         }
789 
790         // The path effect may have modified 'rec', so wait to here to check hairline status.
791         if (rec.isHairlineStyle()) {
792             hairline = true;
793         }
794 
795         localPath.transform(matrix, &devPath);
796     }
797     glyph.setPath(alloc, &devPath, hairline);
798 }
799 
800 
getMatrixFrom2x2(SkMatrix * dst) const801 void SkScalerContextRec::getMatrixFrom2x2(SkMatrix* dst) const {
802     dst->setAll(fPost2x2[0][0], fPost2x2[0][1], 0,
803                 fPost2x2[1][0], fPost2x2[1][1], 0,
804                 0,              0,              1);
805 }
806 
getLocalMatrix(SkMatrix * m) const807 void SkScalerContextRec::getLocalMatrix(SkMatrix* m) const {
808     *m = SkFontPriv::MakeTextMatrix(fTextSize, fPreScaleX, fPreSkewX);
809 }
810 
getSingleMatrix(SkMatrix * m) const811 void SkScalerContextRec::getSingleMatrix(SkMatrix* m) const {
812     this->getLocalMatrix(m);
813 
814     //  now concat the device matrix
815     SkMatrix    deviceMatrix;
816     this->getMatrixFrom2x2(&deviceMatrix);
817     m->postConcat(deviceMatrix);
818 }
819 
computeMatrices(PreMatrixScale preMatrixScale,SkVector * s,SkMatrix * sA,SkMatrix * GsA,SkMatrix * G_inv,SkMatrix * A_out)820 bool SkScalerContextRec::computeMatrices(PreMatrixScale preMatrixScale, SkVector* s, SkMatrix* sA,
821                                          SkMatrix* GsA, SkMatrix* G_inv, SkMatrix* A_out)
822 {
823     // A is the 'total' matrix.
824     SkMatrix A;
825     this->getSingleMatrix(&A);
826 
827     // The caller may find the 'total' matrix useful when dealing directly with EM sizes.
828     if (A_out) {
829         *A_out = A;
830     }
831 
832     // GA is the matrix A with rotation removed.
833     SkMatrix GA;
834     bool skewedOrFlipped = A.getSkewX() || A.getSkewY() || A.getScaleX() < 0 || A.getScaleY() < 0;
835     if (skewedOrFlipped) {
836         // QR by Givens rotations. G is Q^T and GA is R. G is rotational (no reflections).
837         // h is where A maps the horizontal baseline.
838         SkPoint h = SkPoint::Make(SK_Scalar1, 0);
839         A.mapPoints(&h, 1);
840 
841         // G is the Givens Matrix for A (rotational matrix where GA[0][1] == 0).
842         SkMatrix G;
843         SkComputeGivensRotation(h, &G);
844 
845         GA = G;
846         GA.preConcat(A);
847 
848         // The 'remainingRotation' is G inverse, which is fairly simple since G is 2x2 rotational.
849         if (G_inv) {
850             G_inv->setAll(
851                 G.get(SkMatrix::kMScaleX), -G.get(SkMatrix::kMSkewX), G.get(SkMatrix::kMTransX),
852                 -G.get(SkMatrix::kMSkewY), G.get(SkMatrix::kMScaleY), G.get(SkMatrix::kMTransY),
853                 G.get(SkMatrix::kMPersp0), G.get(SkMatrix::kMPersp1), G.get(SkMatrix::kMPersp2));
854         }
855     } else {
856         GA = A;
857         if (G_inv) {
858             G_inv->reset();
859         }
860     }
861 
862     // If the 'total' matrix is singular, set the 'scale' to something finite and zero the matrices.
863     // All underlying ports have issues with zero text size, so use the matricies to zero.
864     // If one of the scale factors is less than 1/256 then an EM filling square will
865     // never affect any pixels.
866     // If there are any nonfinite numbers in the matrix, bail out and set the matrices to zero.
867     if (SkScalarAbs(GA.get(SkMatrix::kMScaleX)) <= SK_ScalarNearlyZero ||
868         SkScalarAbs(GA.get(SkMatrix::kMScaleY)) <= SK_ScalarNearlyZero ||
869         !GA.isFinite())
870     {
871         s->fX = SK_Scalar1;
872         s->fY = SK_Scalar1;
873         sA->setScale(0, 0);
874         if (GsA) {
875             GsA->setScale(0, 0);
876         }
877         if (G_inv) {
878             G_inv->reset();
879         }
880         return false;
881     }
882 
883     // At this point, given GA, create s.
884     switch (preMatrixScale) {
885         case PreMatrixScale::kFull:
886             s->fX = SkScalarAbs(GA.get(SkMatrix::kMScaleX));
887             s->fY = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
888             break;
889         case PreMatrixScale::kVertical: {
890             SkScalar yScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
891             s->fX = yScale;
892             s->fY = yScale;
893             break;
894         }
895         case PreMatrixScale::kVerticalInteger: {
896             SkScalar realYScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
897             SkScalar intYScale = SkScalarRoundToScalar(realYScale);
898             if (intYScale == 0) {
899                 intYScale = SK_Scalar1;
900             }
901             s->fX = intYScale;
902             s->fY = intYScale;
903             break;
904         }
905     }
906 
907     // The 'remaining' matrix sA is the total matrix A without the scale.
908     if (!skewedOrFlipped && (
909             (PreMatrixScale::kFull == preMatrixScale) ||
910             (PreMatrixScale::kVertical == preMatrixScale && A.getScaleX() == A.getScaleY())))
911     {
912         // If GA == A and kFull, sA is identity.
913         // If GA == A and kVertical and A.scaleX == A.scaleY, sA is identity.
914         sA->reset();
915     } else if (!skewedOrFlipped && PreMatrixScale::kVertical == preMatrixScale) {
916         // If GA == A and kVertical, sA.scaleY is SK_Scalar1.
917         sA->reset();
918         sA->setScaleX(A.getScaleX() / s->fY);
919     } else {
920         // TODO: like kVertical, kVerticalInteger with int scales.
921         *sA = A;
922         sA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY));
923     }
924 
925     // The 'remainingWithoutRotation' matrix GsA is the non-rotational part of A without the scale.
926     if (GsA) {
927         *GsA = GA;
928          // G is rotational so reorders with the scale.
929         GsA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY));
930     }
931 
932     return true;
933 }
934 
computeAxisAlignmentForHText() const935 SkAxisAlignment SkScalerContext::computeAxisAlignmentForHText() const {
936     return fRec.computeAxisAlignmentForHText();
937 }
938 
computeAxisAlignmentForHText() const939 SkAxisAlignment SkScalerContextRec::computeAxisAlignmentForHText() const {
940     // Why fPost2x2 can be used here.
941     // getSingleMatrix multiplies in getLocalMatrix, which consists of
942     // * fTextSize (a scale, which has no effect)
943     // * fPreScaleX (a scale in x, which has no effect)
944     // * fPreSkewX (has no effect, but would on vertical text alignment).
945     // In other words, making the text bigger, stretching it along the
946     // horizontal axis, or fake italicizing it does not move the baseline.
947     if (!SkToBool(fFlags & SkScalerContext::kBaselineSnap_Flag)) {
948         return SkAxisAlignment::kNone;
949     }
950 
951     if (0 == fPost2x2[1][0]) {
952         // The x axis is mapped onto the x axis.
953         return SkAxisAlignment::kX;
954     }
955     if (0 == fPost2x2[0][0]) {
956         // The x axis is mapped onto the y axis.
957         return SkAxisAlignment::kY;
958     }
959     return SkAxisAlignment::kNone;
960 }
961 
setLuminanceColor(SkColor c)962 void SkScalerContextRec::setLuminanceColor(SkColor c) {
963     fLumBits = SkMaskGamma::CanonicalColor(
964             SkColorSetRGB(SkColorGetR(c), SkColorGetG(c), SkColorGetB(c)));
965 }
966 
967 /*
968  *  Return the scalar with only limited fractional precision. Used to consolidate matrices
969  *  that vary only slightly when we create our key into the font cache, since the font scaler
970  *  typically returns the same looking resuts for tiny changes in the matrix.
971  */
sk_relax(SkScalar x)972 static SkScalar sk_relax(SkScalar x) {
973     SkScalar n = SkScalarRoundToScalar(x * 1024);
974     return n / 1024.0f;
975 }
976 
compute_mask_format(const SkFont & font)977 static SkMask::Format compute_mask_format(const SkFont& font) {
978     switch (font.getEdging()) {
979         case SkFont::Edging::kAlias:
980             return SkMask::kBW_Format;
981         case SkFont::Edging::kAntiAlias:
982             return SkMask::kA8_Format;
983         case SkFont::Edging::kSubpixelAntiAlias:
984             return SkMask::kLCD16_Format;
985     }
986     SkASSERT(false);
987     return SkMask::kA8_Format;
988 }
989 
990 // Beyond this size, LCD doesn't appreciably improve quality, but it always
991 // cost more RAM and draws slower, so we set a cap.
992 #ifndef SK_MAX_SIZE_FOR_LCDTEXT
993     #define SK_MAX_SIZE_FOR_LCDTEXT    48
994 #endif
995 
996 const SkScalar gMaxSize2ForLCDText = SK_MAX_SIZE_FOR_LCDTEXT * SK_MAX_SIZE_FOR_LCDTEXT;
997 
too_big_for_lcd(const SkScalerContextRec & rec,bool checkPost2x2)998 static bool too_big_for_lcd(const SkScalerContextRec& rec, bool checkPost2x2) {
999     if (checkPost2x2) {
1000         SkScalar area = rec.fPost2x2[0][0] * rec.fPost2x2[1][1] -
1001                         rec.fPost2x2[1][0] * rec.fPost2x2[0][1];
1002         area *= rec.fTextSize * rec.fTextSize;
1003         return area > gMaxSize2ForLCDText;
1004     } else {
1005         return rec.fTextSize > SK_MAX_SIZE_FOR_LCDTEXT;
1006     }
1007 }
1008 
1009 // The only reason this is not file static is because it needs the context of SkScalerContext to
1010 // access SkPaint::computeLuminanceColor.
MakeRecAndEffects(const SkFont & font,const SkPaint & paint,const SkSurfaceProps & surfaceProps,SkScalerContextFlags scalerContextFlags,const SkMatrix & deviceMatrix,SkScalerContextRec * rec,SkScalerContextEffects * effects)1011 void SkScalerContext::MakeRecAndEffects(const SkFont& font, const SkPaint& paint,
1012                                         const SkSurfaceProps& surfaceProps,
1013                                         SkScalerContextFlags scalerContextFlags,
1014                                         const SkMatrix& deviceMatrix,
1015                                         SkScalerContextRec* rec,
1016                                         SkScalerContextEffects* effects) {
1017     SkASSERT(!deviceMatrix.hasPerspective());
1018 
1019     sk_bzero(rec, sizeof(SkScalerContextRec));
1020 
1021     SkTypeface* typeface = font.getTypefaceOrDefault();
1022 
1023     rec->fTypefaceID = typeface->uniqueID();
1024     rec->fTextSize = font.getSize();
1025     rec->fPreScaleX = font.getScaleX();
1026     rec->fPreSkewX  = font.getSkewX();
1027 
1028     bool checkPost2x2 = false;
1029 
1030     const SkMatrix::TypeMask mask = deviceMatrix.getType();
1031     if (mask & SkMatrix::kScale_Mask) {
1032         rec->fPost2x2[0][0] = sk_relax(deviceMatrix.getScaleX());
1033         rec->fPost2x2[1][1] = sk_relax(deviceMatrix.getScaleY());
1034         checkPost2x2 = true;
1035     } else {
1036         rec->fPost2x2[0][0] = rec->fPost2x2[1][1] = SK_Scalar1;
1037     }
1038     if (mask & SkMatrix::kAffine_Mask) {
1039         rec->fPost2x2[0][1] = sk_relax(deviceMatrix.getSkewX());
1040         rec->fPost2x2[1][0] = sk_relax(deviceMatrix.getSkewY());
1041         checkPost2x2 = true;
1042     } else {
1043         rec->fPost2x2[0][1] = rec->fPost2x2[1][0] = 0;
1044     }
1045 
1046     SkPaint::Style  style = paint.getStyle();
1047     SkScalar        strokeWidth = paint.getStrokeWidth();
1048 
1049     unsigned flags = 0;
1050 
1051     if (font.isEmbolden()) {
1052 #ifdef SK_USE_FREETYPE_EMBOLDEN
1053         flags |= SkScalerContext::kEmbolden_Flag;
1054 #else
1055         SkScalar fakeBoldScale = SkScalarInterpFunc(font.getSize(),
1056                                                     kStdFakeBoldInterpKeys,
1057                                                     kStdFakeBoldInterpValues,
1058                                                     kStdFakeBoldInterpLength);
1059         SkScalar extra = font.getSize() * fakeBoldScale;
1060 
1061         if (style == SkPaint::kFill_Style) {
1062             style = SkPaint::kStrokeAndFill_Style;
1063             strokeWidth = extra;    // ignore paint's strokeWidth if it was "fill"
1064         } else {
1065             strokeWidth += extra;
1066         }
1067 #endif
1068     }
1069 
1070     if (style != SkPaint::kFill_Style && strokeWidth >= 0) {
1071         rec->fFrameWidth = strokeWidth;
1072         rec->fMiterLimit = paint.getStrokeMiter();
1073         rec->fStrokeJoin = SkToU8(paint.getStrokeJoin());
1074         rec->fStrokeCap = SkToU8(paint.getStrokeCap());
1075 
1076         if (style == SkPaint::kStrokeAndFill_Style) {
1077             flags |= SkScalerContext::kFrameAndFill_Flag;
1078         }
1079     } else {
1080         rec->fFrameWidth = -1;
1081         rec->fMiterLimit = 0;
1082         rec->fStrokeJoin = 0;
1083         rec->fStrokeCap = 0;
1084     }
1085 
1086     rec->fMaskFormat = compute_mask_format(font);
1087 
1088     if (SkMask::kLCD16_Format == rec->fMaskFormat) {
1089         if (too_big_for_lcd(*rec, checkPost2x2)) {
1090             rec->fMaskFormat = SkMask::kA8_Format;
1091             flags |= SkScalerContext::kGenA8FromLCD_Flag;
1092         } else {
1093             SkPixelGeometry geometry = surfaceProps.pixelGeometry();
1094 
1095             switch (geometry) {
1096                 case kUnknown_SkPixelGeometry:
1097                     // eeek, can't support LCD
1098                     rec->fMaskFormat = SkMask::kA8_Format;
1099                     flags |= SkScalerContext::kGenA8FromLCD_Flag;
1100                     break;
1101                 case kRGB_H_SkPixelGeometry:
1102                     // our default, do nothing.
1103                     break;
1104                 case kBGR_H_SkPixelGeometry:
1105                     flags |= SkScalerContext::kLCD_BGROrder_Flag;
1106                     break;
1107                 case kRGB_V_SkPixelGeometry:
1108                     flags |= SkScalerContext::kLCD_Vertical_Flag;
1109                     break;
1110                 case kBGR_V_SkPixelGeometry:
1111                     flags |= SkScalerContext::kLCD_Vertical_Flag;
1112                     flags |= SkScalerContext::kLCD_BGROrder_Flag;
1113                     break;
1114             }
1115         }
1116     }
1117 
1118     if (font.isEmbeddedBitmaps()) {
1119         flags |= SkScalerContext::kEmbeddedBitmapText_Flag;
1120     }
1121     if (font.isSubpixel()) {
1122         flags |= SkScalerContext::kSubpixelPositioning_Flag;
1123     }
1124     if (font.isForceAutoHinting()) {
1125         flags |= SkScalerContext::kForceAutohinting_Flag;
1126     }
1127     if (font.isLinearMetrics()) {
1128         flags |= SkScalerContext::kLinearMetrics_Flag;
1129     }
1130     if (font.isBaselineSnap()) {
1131         flags |= SkScalerContext::kBaselineSnap_Flag;
1132     }
1133     if (typeface->glyphMaskNeedsCurrentColor()) {
1134         flags |= SkScalerContext::kNeedsForegroundColor_Flag;
1135         rec->fForegroundColor = paint.getColor();
1136     }
1137     rec->fFlags = SkToU16(flags);
1138 
1139     // these modify fFlags, so do them after assigning fFlags
1140     rec->setHinting(font.getHinting());
1141     rec->setLuminanceColor(SkPaintPriv::ComputeLuminanceColor(paint));
1142 
1143     // For now always set the paint gamma equal to the device gamma.
1144     // The math in SkMaskGamma can handle them being different,
1145     // but it requires superluminous masks when
1146     // Ex : deviceGamma(x) < paintGamma(x) and x is sufficiently large.
1147     rec->setDeviceGamma(SK_GAMMA_EXPONENT);
1148     rec->setPaintGamma(SK_GAMMA_EXPONENT);
1149 
1150 #ifdef SK_GAMMA_CONTRAST
1151     rec->setContrast(SK_GAMMA_CONTRAST);
1152 #else
1153     // A value of 0.5 for SK_GAMMA_CONTRAST appears to be a good compromise.
1154     // With lower values small text appears washed out (though correctly so).
1155     // With higher values lcd fringing is worse and the smoothing effect of
1156     // partial coverage is diminished.
1157     rec->setContrast(0.5f);
1158 #endif
1159 
1160     if (!SkToBool(scalerContextFlags & SkScalerContextFlags::kFakeGamma)) {
1161         rec->ignoreGamma();
1162     }
1163     if (!SkToBool(scalerContextFlags & SkScalerContextFlags::kBoostContrast)) {
1164         rec->setContrast(0);
1165     }
1166 
1167     new (effects) SkScalerContextEffects{paint};
1168 }
1169 
CreateDescriptorAndEffectsUsingPaint(const SkFont & font,const SkPaint & paint,const SkSurfaceProps & surfaceProps,SkScalerContextFlags scalerContextFlags,const SkMatrix & deviceMatrix,SkAutoDescriptor * ad,SkScalerContextEffects * effects)1170 SkDescriptor* SkScalerContext::CreateDescriptorAndEffectsUsingPaint(
1171     const SkFont& font, const SkPaint& paint, const SkSurfaceProps& surfaceProps,
1172     SkScalerContextFlags scalerContextFlags, const SkMatrix& deviceMatrix, SkAutoDescriptor* ad,
1173     SkScalerContextEffects* effects)
1174 {
1175     SkScalerContextRec rec;
1176     MakeRecAndEffects(font, paint, surfaceProps, scalerContextFlags, deviceMatrix, &rec, effects);
1177     return AutoDescriptorGivenRecAndEffects(rec, *effects, ad);
1178 }
1179 
calculate_size_and_flatten(const SkScalerContextRec & rec,const SkScalerContextEffects & effects,SkBinaryWriteBuffer * effectBuffer)1180 static size_t calculate_size_and_flatten(const SkScalerContextRec& rec,
1181                                          const SkScalerContextEffects& effects,
1182                                          SkBinaryWriteBuffer* effectBuffer) {
1183     size_t descSize = sizeof(rec);
1184     int entryCount = 1;
1185 
1186     if (effects.fPathEffect || effects.fMaskFilter) {
1187         if (effects.fPathEffect) { effectBuffer->writeFlattenable(effects.fPathEffect); }
1188         if (effects.fMaskFilter) { effectBuffer->writeFlattenable(effects.fMaskFilter); }
1189         entryCount += 1;
1190         descSize += effectBuffer->bytesWritten();
1191     }
1192 
1193     descSize += SkDescriptor::ComputeOverhead(entryCount);
1194     return descSize;
1195 }
1196 
generate_descriptor(const SkScalerContextRec & rec,const SkBinaryWriteBuffer & effectBuffer,SkDescriptor * desc)1197 static void generate_descriptor(const SkScalerContextRec& rec,
1198                                 const SkBinaryWriteBuffer& effectBuffer,
1199                                 SkDescriptor* desc) {
1200     desc->addEntry(kRec_SkDescriptorTag, sizeof(rec), &rec);
1201 
1202     if (effectBuffer.bytesWritten() > 0) {
1203         effectBuffer.writeToMemory(desc->addEntry(kEffects_SkDescriptorTag,
1204                                                   effectBuffer.bytesWritten(),
1205                                                   nullptr));
1206     }
1207 
1208     desc->computeChecksum();
1209 }
1210 
AutoDescriptorGivenRecAndEffects(const SkScalerContextRec & rec,const SkScalerContextEffects & effects,SkAutoDescriptor * ad)1211 SkDescriptor* SkScalerContext::AutoDescriptorGivenRecAndEffects(
1212     const SkScalerContextRec& rec,
1213     const SkScalerContextEffects& effects,
1214     SkAutoDescriptor* ad)
1215 {
1216     SkBinaryWriteBuffer buf;
1217 
1218     ad->reset(calculate_size_and_flatten(rec, effects, &buf));
1219     generate_descriptor(rec, buf, ad->getDesc());
1220 
1221     return ad->getDesc();
1222 }
1223 
DescriptorGivenRecAndEffects(const SkScalerContextRec & rec,const SkScalerContextEffects & effects)1224 std::unique_ptr<SkDescriptor> SkScalerContext::DescriptorGivenRecAndEffects(
1225     const SkScalerContextRec& rec,
1226     const SkScalerContextEffects& effects)
1227 {
1228     SkBinaryWriteBuffer buf;
1229 
1230     auto desc = SkDescriptor::Alloc(calculate_size_and_flatten(rec, effects, &buf));
1231     generate_descriptor(rec, buf, desc.get());
1232 
1233     return desc;
1234 }
1235 
DescriptorBufferGiveRec(const SkScalerContextRec & rec,void * buffer)1236 void SkScalerContext::DescriptorBufferGiveRec(const SkScalerContextRec& rec, void* buffer) {
1237     generate_descriptor(rec, SkBinaryWriteBuffer{}, (SkDescriptor*)buffer);
1238 }
1239 
CheckBufferSizeForRec(const SkScalerContextRec & rec,const SkScalerContextEffects & effects,size_t size)1240 bool SkScalerContext::CheckBufferSizeForRec(const SkScalerContextRec& rec,
1241                                             const SkScalerContextEffects& effects,
1242                                             size_t size) {
1243     SkBinaryWriteBuffer buf;
1244     return size >= calculate_size_and_flatten(rec, effects, &buf);
1245 }
1246 
MakeEmpty(sk_sp<SkTypeface> typeface,const SkScalerContextEffects & effects,const SkDescriptor * desc)1247 std::unique_ptr<SkScalerContext> SkScalerContext::MakeEmpty(
1248         sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects,
1249         const SkDescriptor* desc) {
1250     class SkScalerContext_Empty : public SkScalerContext {
1251     public:
1252         SkScalerContext_Empty(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects,
1253                               const SkDescriptor* desc)
1254                 : SkScalerContext(std::move(typeface), effects, desc) {}
1255 
1256     protected:
1257         bool generateAdvance(SkGlyph* glyph) override {
1258             glyph->zeroMetrics();
1259             return true;
1260         }
1261         void generateMetrics(SkGlyph* glyph, SkArenaAlloc*) override {
1262             glyph->fMaskFormat = fRec.fMaskFormat;
1263             glyph->zeroMetrics();
1264         }
1265         void generateImage(const SkGlyph& glyph) override {}
1266         bool generatePath(const SkGlyph& glyph, SkPath* path) override {
1267             path->reset();
1268             return false;
1269         }
1270         void generateFontMetrics(SkFontMetrics* metrics) override {
1271             if (metrics) {
1272                 sk_bzero(metrics, sizeof(*metrics));
1273             }
1274         }
1275     };
1276 
1277     return std::make_unique<SkScalerContext_Empty>(std::move(typeface), effects, desc);
1278 }
1279 
1280 
1281 
1282 
1283