• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1"""An object-local variable management scheme."""
2# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
3#
4# Licensed under the Apache License, Version 2.0 (the "License");
5# you may not use this file except in compliance with the License.
6# You may obtain a copy of the License at
7#
8#     http://www.apache.org/licenses/LICENSE-2.0
9#
10# Unless required by applicable law or agreed to in writing, software
11# distributed under the License is distributed on an "AS IS" BASIS,
12# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13# See the License for the specific language governing permissions and
14# limitations under the License.
15# ==============================================================================
16import collections
17import weakref
18
19from tensorflow.python.eager import context
20from tensorflow.python.framework import dtypes
21from tensorflow.python.framework import ops
22from tensorflow.python.ops import control_flow_ops
23from tensorflow.python.trackable import constants
24from tensorflow.python.training.saving import saveable_object
25from tensorflow.python.util import tf_contextlib
26from tensorflow.python.util import tf_decorator
27from tensorflow.python.util.tf_export import tf_export
28
29OBJECT_GRAPH_PROTO_KEY = constants.OBJECT_GRAPH_PROTO_KEY
30VARIABLE_VALUE_KEY = constants.VARIABLE_VALUE_KEY
31OBJECT_CONFIG_JSON_KEY = constants.OBJECT_CONFIG_JSON_KEY
32SaveType = constants.SaveType
33
34
35@tf_export("__internal__.tracking.TrackableReference", v1=[])
36class TrackableReference(object):
37  """A named reference to a trackable object for use with the `Trackable` class.
38
39  These references mark named `Trackable` dependencies of a `Trackable` object
40  and should be created when overriding `Trackable._checkpoint_dependencies`.
41
42  Attributes:
43    name: The local name for this dependency.
44    ref: The `Trackable` object being referenced.
45  """
46
47  __slots__ = ("_name", "_ref")
48
49  def __init__(self, name, ref):
50    self._name = name
51    self._ref = ref
52
53  @property
54  def name(self):
55    return self._name
56
57  @property
58  def ref(self):
59    return self._ref
60
61  def __iter__(self):
62    yield self.name
63    yield self.ref
64
65  def __repr__(self):
66    return f"{self.__class__.__name__}(name={self.name}, ref={self.ref})"
67
68  def __eq__(self, o):
69    if isinstance(o, tuple):
70      return (self.name, self.ref) == o
71    elif isinstance(o, TrackableReference):
72      return self.name == o.name and self.ref == o.ref
73    else:
74      return False
75
76
77class WeakTrackableReference(TrackableReference):
78  """TrackableReference that stores weak references."""
79  __slots__ = ()
80
81  def __init__(self, name, ref):
82    if not isinstance(self, weakref.ref):
83      ref = weakref.ref(ref)
84    super(WeakTrackableReference, self).__init__(name=name, ref=ref)
85
86  @property
87  def ref(self):
88    return self._ref()
89
90
91# TODO(bfontain):  Update once sharded initialization interface is finalized.
92ShardInfo = collections.namedtuple("CheckpointInitialValueShardInfo",
93                                   ["shape", "offset"])
94
95
96@tf_export("__internal__.tracking.CheckpointInitialValueCallable", v1=[])
97class CheckpointInitialValueCallable(object):
98  """A callable object that returns a CheckpointInitialValue.
99
100  See CheckpointInitialValue for more information.
101  """
102
103  def __init__(self, checkpoint_position):
104    self._checkpoint_position = checkpoint_position
105
106  @property
107  def checkpoint_position(self):
108    return self._checkpoint_position
109
110  def __call__(self, shape=None, dtype=None, shard_info=None):
111    # Note that the signature here is for compatibility with normal callable
112    # initializers which take shape and dtype. Although dtype isn't used, it
113    # will get passed in by a functool.partial_wrapper in places like
114    # base_layer_utils.py's make_variable.
115    return CheckpointInitialValue(
116        self._checkpoint_position, shape, shard_info=shard_info)
117
118  @property
119  def restore_uid(self):
120    return self._checkpoint_position.restore_uid
121
122
123@tf_export("__internal__.tracking.CheckpointInitialValue", v1=[])
124class CheckpointInitialValue(ops.Tensor):
125  """Tensor wrapper for managing update UIDs in `Variables`.
126
127  When supplied as an initial value, objects of this type let a `Variable`
128  (`Variable`, `ResourceVariable`, etc.) know the UID of the restore the initial
129  value came from. This allows deferred restorations to be sequenced in the
130  order the user specified them, and lets us fall back on assignment if an
131  initial value is not set (e.g. due to a custom getter interfering).
132
133  See comments in _add_variable_with_custom_getter for more information about
134  how `CheckpointInitialValue` is used.
135  """
136
137  def __init__(self, checkpoint_position, shape=None, shard_info=None):
138    if shard_info:
139      full_shape_str = " ".join("%d" % d for d in shape) + " "
140      slice_spec = ":".join(
141          "%d,%d" % (o, s) for o, s in zip(shard_info.offset, shard_info.shape))
142      shape_and_slice = full_shape_str + slice_spec
143    else:
144      shape_and_slice = ""
145    self.wrapped_value = checkpoint_position.value_tensors(
146        {VARIABLE_VALUE_KEY: shape_and_slice})[VARIABLE_VALUE_KEY]
147    self._checkpoint_position = checkpoint_position
148
149  def __getattr__(self, attr):
150    try:
151      return getattr(self.wrapped_value, attr)
152    except AttributeError:
153      return self.__getattribute__(attr)
154
155  @property
156  def checkpoint_position(self):
157    return self._checkpoint_position
158
159
160class NoRestoreSaveable(saveable_object.SaveableObject):
161  """Embeds a tensor in a checkpoint with no restore ops."""
162
163  def __init__(self, tensor, name, dtype=None, device=None):
164    spec = saveable_object.SaveSpec(
165        tensor, "", name, dtype=dtype, device=device)
166    super(NoRestoreSaveable, self).__init__(tensor, [spec], name)
167
168  def restore(self, restored_tensors, restored_shapes):
169    return control_flow_ops.no_op()
170
171
172_SlotVariableRestoration = collections.namedtuple(
173    "_SlotVariableRestoration",
174    [
175        # The checkpoint proto id of the optimizer object.
176        "optimizer_id",
177        # The checkpoint proto id of the slot variable.
178        "slot_variable_id",
179        "slot_name",
180    ])
181
182
183@tf_export("__internal__.tracking.no_automatic_dependency_tracking", v1=[])
184def no_automatic_dependency_tracking(method):
185  """Disables automatic dependency tracking on attribute assignment.
186
187  Use to decorate any method of a Trackable object. Attribute assignment in
188  that method will not add dependencies (also respected in Model). Harmless if
189  used in a class which does not do automatic dependency tracking (which means
190  it's safe to use in base classes which may have subclasses which also inherit
191  from Trackable).
192
193  Args:
194    method: The method to decorate.
195
196  Returns:
197    A decorated method which sets and un-sets automatic dependency tracking for
198    the object the method is called on (not thread safe).
199  """
200
201  def _method_wrapper(self, *args, **kwargs):
202    previous_value = getattr(self, "_self_setattr_tracking", True)
203    self._self_setattr_tracking = False  # pylint: disable=protected-access
204    try:
205      result = method(self, *args, **kwargs)
206    finally:
207      self._self_setattr_tracking = previous_value  # pylint: disable=protected-access
208    return result
209
210  return tf_decorator.make_decorator(
211      target=method, decorator_func=_method_wrapper)
212
213
214@tf_contextlib.contextmanager
215def no_manual_dependency_tracking_scope(obj):
216  """A context that disables manual dependency tracking for the given `obj`.
217
218  Sometimes library methods might track objects on their own and we might want
219  to disable that and do the tracking on our own. One can then use this context
220  manager to disable the tracking the library method does and do your own
221  tracking.
222
223  For example:
224
225  class TestLayer(tf.keras.Layer):
226    def build():
227      with no_manual_dependency_tracking_scope(self):
228        var = self.add_variable("name1")  # Creates a var and doesn't track it
229      self._track_trackable("name2", var)  # We track variable with name `name2`
230
231  Args:
232    obj: A trackable object.
233
234  Yields:
235    a scope in which the object doesn't track dependencies manually.
236  """
237  # pylint: disable=protected-access
238  previous_value = getattr(obj, "_manual_tracking", True)
239  obj._manual_tracking = False
240  try:
241    yield
242  finally:
243    obj._manual_tracking = previous_value
244
245
246@tf_contextlib.contextmanager
247def no_automatic_dependency_tracking_scope(obj):
248  """A context that disables automatic dependency tracking when assigning attrs.
249
250  Objects that inherit from Autotrackable automatically creates dependencies
251  to trackable objects through attribute assignments, and wraps data structures
252  (lists or dicts) with trackable classes. This scope may be used to temporarily
253  disable this behavior. This works similar to the decorator
254  `no_automatic_dependency_tracking`.
255
256  Example usage:
257  ```
258  model = tf.keras.Model()
259  model.arr1 = []  # Creates a ListWrapper object
260  with no_automatic_dependency_tracking_scope(model):
261    model.arr2 = []  # Creates a regular, untracked python list
262  ```
263
264  Args:
265    obj: A trackable object.
266
267  Yields:
268    a scope in which the object doesn't track dependencies.
269  """
270  previous_value = getattr(obj, "_setattr_tracking", True)
271  obj._setattr_tracking = False  # pylint: disable=protected-access
272  try:
273    yield
274  finally:
275    obj._setattr_tracking = previous_value  # pylint: disable=protected-access
276
277
278@tf_export("__internal__.tracking.Trackable", v1=[])
279class Trackable(object):
280  """Base class for `Trackable` objects without automatic dependencies.
281
282  This class has no __setattr__ override for performance reasons. Dependencies
283  must be added explicitly. Unless attribute assignment is performance-critical,
284  use `AutoTrackable` instead. Use `Trackable` for `isinstance`
285  checks.
286  """
287
288  # For compatibility with wrapt.ObjectProxy, attributes are all prefixed with
289  # _self_. We have some properties to forward semi-public attributes to their
290  # _self_ equivalents.
291
292  @property
293  def _setattr_tracking(self):
294    if not hasattr(self, "_self_setattr_tracking"):
295      self._self_setattr_tracking = True
296    return self._self_setattr_tracking
297
298  @_setattr_tracking.setter
299  def _setattr_tracking(self, value):
300    self._self_setattr_tracking = value
301
302  @property
303  def _update_uid(self):
304    return self._self_update_uid
305
306  @_update_uid.setter
307  def _update_uid(self, value):
308    self._self_update_uid = value
309
310  @property
311  def _unconditional_checkpoint_dependencies(self):
312    return self._self_unconditional_checkpoint_dependencies
313
314  @property
315  def _unconditional_dependency_names(self):
316    return self._self_unconditional_dependency_names
317
318  @property
319  def _name_based_restores(self):
320    return self._self_name_based_restores
321
322  # Trackable does not do automatic dependency tracking, but uses the
323  # no_automatic_dependency_tracking decorator so it can avoid adding
324  # dependencies if a subclass is Trackable / inherits from Model (both of
325  # which have __setattr__ overrides).
326  @no_automatic_dependency_tracking
327  def _maybe_initialize_trackable(self):
328    """Initialize dependency management.
329
330    Not __init__, since most objects will forget to call it.
331    """
332    if hasattr(self, "_self_unconditional_checkpoint_dependencies"):
333      # __init__ already called. This check means that we don't need
334      # Trackable.__init__() in the constructor of every TensorFlow object.
335      return
336    # A list of TrackableReference objects. Some classes implementing
337    # `Trackable`, notably `Optimizer`s, may override the
338    # _checkpoint_dependencies property with conditional dependencies
339    # (e.g. based on the current graph when saving).
340    self._self_unconditional_checkpoint_dependencies = []
341    # Maps names -> Trackable objects
342    self._self_unconditional_dependency_names = {}
343    # Restorations for other Trackable objects on which this object may
344    # eventually depend. Maps local name -> CheckpointPosition list. Optimizers
345    # tack on conditional dependencies, and so need separate management of
346    # deferred dependencies too.
347    self._self_unconditional_deferred_dependencies = {}
348    # The UID of the highest assignment to this object. Used to ensure that the
349    # last requested assignment determines the final value of an object.
350    if hasattr(self, "_self_update_uid"):
351      raise AssertionError(
352          "Internal error: the object had an update UID set before its "
353          "initialization code was run.")
354    self._self_update_uid = -1
355    # When executing eagerly, holds a collection of _NameBasedRestoreCoordinator
356    # instances, which should be checked when creating variables or other
357    # saveables. These are passed on recursively to all dependencies, since
358    # unlike object-based checkpoint restores we don't know which subgraph is
359    # being restored in advance. This mechanism is only necessary for
360    # restore-on-create when executing eagerly, and so is unused when graph
361    # building.
362    self._self_name_based_restores = set()
363
364    # Dictionary of SaveableObjects factories. This dictionary is defined when
365    # the object is loaded from the SavedModel. When writing a custom class,
366    # prefer overriding "_gather_saveables_from_checkpoint" to using this
367    # attribute.
368    self._self_saveable_object_factories = {}
369
370  @property
371  def _object_identifier(self):
372    """String used to identify this object in a SavedModel.
373
374    THIS FIELD HAS BEEN DEPRECATED IN FAVOR OF THE NAME REGISTERED WITH
375    `register_serializable`.
376
377    Generally, the object identifier is constant across objects of the same
378    class, while the metadata field is used for instance-specific data.
379
380    Returns:
381      String object identifier.
382    """
383    return "_generic_user_object"
384
385  def _no_dependency(self, value):
386    """If automatic dependency tracking is enabled, ignores `value`."""
387    return value
388
389  def _name_based_attribute_restore(self, checkpoint):
390    """Restore the object's attributes from a name-based checkpoint."""
391    self._self_name_based_restores.add(checkpoint)
392    if self._self_update_uid < checkpoint.restore_uid:
393      checkpoint.eager_restore(self)
394      self._self_update_uid = checkpoint.restore_uid
395
396  @property
397  def _checkpoint_dependencies(self):
398    """All dependencies of this object.
399
400    May be overridden to include conditional dependencies.
401
402    Returns:
403      A list of `TrackableReference` objects indicating named
404      `Trackable` dependencies which should be saved along with this
405      object.
406    """
407    return self._self_unconditional_checkpoint_dependencies
408
409  @property
410  def _deferred_dependencies(self):
411    """A dictionary with deferred dependencies.
412
413    Stores restorations for other Trackable objects on which this object
414    may eventually depend. May be overridden by sub-classes (e.g. Optimizers use
415    conditional dependencies based the current graph, and so need separate
416    management of deferred dependencies too).
417
418    Returns:
419      A dictionary mapping from local name to a list of CheckpointPosition
420      objects.
421    """
422    return self._self_unconditional_deferred_dependencies
423
424  def _lookup_dependency(self, name):
425    """Look up a dependency by name.
426
427    May be overridden to include conditional dependencies.
428
429    Args:
430      name: The local name of the dependency.
431
432    Returns:
433      A `Trackable` object, or `None` if no dependency by this name was
434      found.
435    """
436    return self._self_unconditional_dependency_names.get(name, None)
437
438  def _add_variable_with_custom_getter(self,
439                                       name,
440                                       shape=None,
441                                       dtype=dtypes.float32,
442                                       initializer=None,
443                                       getter=None,
444                                       overwrite=False,
445                                       **kwargs_for_getter):
446    """Restore-on-create for a variable be saved with this `Trackable`.
447
448    If the user has requested that this object or another `Trackable` which
449    depends on this object be restored from a checkpoint (deferred loading
450    before variable object creation), `initializer` may be ignored and the value
451    from the checkpoint used instead.
452
453    Args:
454      name: A name for the variable. Must be unique within this object.
455      shape: The shape of the variable.
456      dtype: The data type of the variable.
457      initializer: The initializer to use. Ignored if there is a deferred
458        restoration stored in the Trackable.
459      getter: The getter to wrap which actually fetches the variable.
460      overwrite: If True, disables unique name and type checks.
461      **kwargs_for_getter: Passed to the getter.
462
463    Returns:
464      The new variable object.
465
466    Raises:
467      ValueError: If the variable name is not unique.
468    """
469    self._maybe_initialize_trackable()
470    with ops.init_scope():
471      if context.executing_eagerly():
472        # If this is a variable with a single Tensor stored in the checkpoint,
473        # we can set that value as an initializer rather than initializing and
474        # then assigning (when executing eagerly). This call returns None if
475        # there is nothing to restore.
476        checkpoint_initializer = self._preload_simple_restoration(name=name)
477      else:
478        checkpoint_initializer = None
479      if (checkpoint_initializer is not None and
480          not (isinstance(initializer, CheckpointInitialValueCallable) and
481               (initializer.restore_uid > checkpoint_initializer.restore_uid))):
482        # If multiple Trackable objects are "creating" the same variable
483        # via the magic of custom getters, the one with the highest restore UID
484        # (the one called last) has to make the final initializer. If another
485        # custom getter interrupts this process by overwriting the initializer,
486        # then we'll catch that when we call _track_trackable. So this is
487        # "best effort" to set the initializer with the highest restore UID.
488        initializer = checkpoint_initializer
489    new_variable = getter(
490        name=name,
491        shape=shape,
492        dtype=dtype,
493        initializer=initializer,
494        **kwargs_for_getter)
495
496    # If we set an initializer and the variable processed it, tracking will not
497    # assign again. It will add this variable to our dependencies, and if there
498    # is a non-trivial restoration queued, it will handle that. This also
499    # handles slot variables.
500    if not overwrite or isinstance(new_variable, Trackable):
501      return self._track_trackable(new_variable, name=name, overwrite=overwrite)
502    else:
503      # TODO(allenl): Some variable types are not yet supported. Remove this
504      # fallback once all get_variable() return types are Trackable.
505      return new_variable
506
507  def _preload_simple_restoration(self, name):
508    """Return a dependency's value for restore-on-create.
509
510    Note the restoration is not deleted; if for some reason preload is called
511    and then not assigned to the variable (for example because a custom getter
512    overrides the initializer), the assignment will still happen once the
513    variable is tracked (determined based on checkpoint.restore_uid).
514
515    Args:
516      name: The object-local name of the dependency holding the variable's
517        value.
518
519    Returns:
520      An callable for use as a variable's initializer/initial_value, or None if
521      one should not be set (either because there was no variable with this name
522      in the checkpoint or because it needs more complex deserialization). Any
523      non-trivial deserialization will happen when the variable object is
524      tracked.
525    """
526    deferred_dependencies_list = self._deferred_dependencies.get(name, ())
527    if not deferred_dependencies_list:
528      # Nothing to do; we don't have a restore for this dependency queued up.
529      return
530    for checkpoint_position in deferred_dependencies_list:
531      if not checkpoint_position.is_simple_variable():
532        # If _any_ pending restoration is too complicated to fit in an
533        # initializer (because it has dependencies, or because there are
534        # multiple Tensors to restore), bail and let the general tracking code
535        # handle it.
536        return None
537    checkpoint_position = max(
538        deferred_dependencies_list,
539        key=lambda restore: restore.checkpoint.restore_uid)
540    return CheckpointInitialValueCallable(
541        checkpoint_position=checkpoint_position)
542
543  def _track_trackable(self, trackable, name, overwrite=False):
544    """Declare a dependency on another `Trackable` object.
545
546    Indicates that checkpoints for this object should include variables from
547    `trackable`.
548
549    Variables in a checkpoint are mapped to `Trackable`s based on the names
550    provided when the checkpoint was written. To avoid breaking existing
551    checkpoints when modifying a class, neither variable names nor dependency
552    names (the names passed to `_track_trackable`) may change.
553
554    Args:
555      trackable: A `Trackable` which this object depends on.
556      name: A local name for `trackable`, used for loading checkpoints into the
557        correct objects.
558      overwrite: Boolean, whether silently replacing dependencies is OK. Used
559        for __setattr__, where throwing an error on attribute reassignment would
560        be inappropriate.
561
562    Returns:
563      `trackable`, for convenience when declaring a dependency and
564      assigning to a member variable in one statement.
565
566    Raises:
567      TypeError: If `trackable` does not inherit from `Trackable`.
568      ValueError: If another object is already tracked by this name.
569    """
570    self._maybe_initialize_trackable()
571    if not isinstance(trackable, Trackable):
572      raise TypeError(
573          "Trackable._track_trackable() can only be used to track objects of "
574          f"type Trackable. Got type {type(trackable)}.")
575    if not getattr(self, "_manual_tracking", True):
576      return trackable
577    new_reference = TrackableReference(name=name, ref=trackable)
578    current_object = self._lookup_dependency(name)
579    if (current_object is not None and current_object is not trackable):
580      if not overwrite:
581        raise ValueError(
582            f"Called Trackable._track_trackable() with name='{name}', "
583            "but a Trackable with this name is already declared as a "
584            "dependency. Names must be unique (or overwrite=True).")
585      # This is a weird thing to do, but we're not going to stop people from
586      # using __setattr__.
587      for index, (old_name, _) in enumerate(
588          self._self_unconditional_checkpoint_dependencies):
589        if name == old_name:
590          self._self_unconditional_checkpoint_dependencies[
591              index] = new_reference
592    elif current_object is None:
593      self._self_unconditional_checkpoint_dependencies.append(new_reference)
594      self._handle_deferred_dependencies(name=name, trackable=trackable)
595    self._self_unconditional_dependency_names[name] = trackable
596    return trackable
597
598  def _handle_deferred_dependencies(self, name, trackable):
599    """Pop and load any deferred checkpoint restores into `trackable`.
600
601    This method does not add a new dependency on `trackable`, but it does
602    check if any outstanding/deferred dependencies have been queued waiting for
603    this dependency to be added (matched based on `name`). If so,
604    `trackable` and its dependencies are restored. The restorations are
605    considered fulfilled and so are deleted.
606
607    `_track_trackable` is more appropriate for adding a
608    normal/unconditional dependency, and includes handling for deferred
609    restorations. This method allows objects such as `Optimizer` to use the same
610    restoration logic while managing conditional dependencies themselves, by
611    overriding `_checkpoint_dependencies` and `_lookup_dependency` to change the
612    object's dependencies based on the context it is saved/restored in (a single
613    optimizer instance can have state associated with multiple graphs).
614
615    Args:
616      name: The name of the dependency within this object (`self`), used to
617        match `trackable` with values saved in a checkpoint.
618      trackable: The Trackable object to restore (inheriting from `Trackable`).
619    """
620    self._maybe_initialize_trackable()
621    trackable._maybe_initialize_trackable()  # pylint: disable=protected-access
622    deferred_dependencies_list = self._deferred_dependencies.pop(name, ())
623    for checkpoint_position in sorted(
624        deferred_dependencies_list,
625        key=lambda restore: restore.checkpoint.restore_uid,
626        reverse=True):
627      checkpoint_position.restore(trackable)
628
629    # Pass on any name-based restores queued in this object.
630    for name_based_restore in sorted(
631        self._self_name_based_restores,
632        key=lambda checkpoint: checkpoint.restore_uid,
633        reverse=True):
634      trackable._name_based_attribute_restore(name_based_restore)  # pylint: disable=protected-access
635
636  def _gather_saveables_for_checkpoint(self):
637    """Returns a dictionary of values to checkpoint with this object.
638
639    NOTE: This method is deprecated, please use `_serialize_to_tensors` and
640    `_restore_from_tensors` instead.
641
642    Keys in the returned dictionary are local to this object and in a separate
643    namespace from dependencies. Values may either be `SaveableObject` factories
644    or variables easily converted to `SaveableObject`s (as in
645    `tf.compat.v1.train.Saver`'s
646    `var_list` constructor argument).
647
648    `SaveableObjects` have a name set, which Trackable needs to generate
649    itself. So rather than returning `SaveableObjects` directly, this method
650    should return a dictionary of callables which take `name` arguments and
651    return `SaveableObjects` with that name.
652
653    If this object may also be passed to the global-name-based
654    `tf.compat.v1.train.Saver`,
655    the returned callables should have a default value for their name argument
656    (i.e. be callable with no arguments).
657
658    Returned values must be saved only by this object; if any value may be
659    shared, it should instead be a dependency. For example, variable objects
660    save their own values with the key `VARIABLE_VALUE_KEY`, but objects which
661    reference variables simply add a dependency.
662
663    Returns:
664      The dictionary mapping attribute names to `SaveableObject` factories
665      described above. For example:
666      {VARIABLE_VALUE_KEY:
667       lambda name="global_name_for_this_object":
668       SaveableObject(name=name, ...)}
669    """
670    # TODO(kathywu): In order to remove this circular dependency, remove all
671    # external calls to _gather_saveables_for_checkpoint.
672    # pylint: disable=g-import-not-at-top
673    from tensorflow.python.training.saving import saveable_object_util
674    # pylint: enable=g-import-not-at-top
675    if saveable_object_util.trackable_has_serialize_to_tensor(self):
676
677      def create_saveable(name=""):
678        return saveable_object_util.TrackableSaveable(self, name)
679
680      return {"": create_saveable}
681    else:
682      return getattr(self, "_self_saveable_object_factories", {})
683
684  def _serialize_to_tensors(self):
685    """Gathers tensors to save to the checkpoint.
686
687    You should only override `_serialize_to_tensors` and `_restore_from_tensors`
688    if you are defining a custom resource or variable with custom ops.
689
690    Otherwise, please store the state of your trackable in `tf.Variable` objects
691    and add them to Trackable object hierarchy using `setattr` (for subclasses
692    of `AutoTrackable`) or overriding the `_trackable_children` method.
693
694    For an example of a valid implementation of these two methods, please see
695    `DenseHashTable`.
696
697    **Invalid implementation**
698
699    ````
700    class NamedTrackable(Trackable):
701      def __init__(self, name: str):
702        self.name = name
703      def _serialize_to_tensors(self):
704        return {"name": self.name}
705      def _restore_from_tensors(self, restored_tensors):
706        self.name = restored_tensors["name"]
707    ```
708
709    In this example, `NamedTrackable` can be saved and restored from
710    checkpoints, but is incompatible with SavedModel, which tries to convert
711    the serialize/restore functions into tf.functions. This fails because
712    attribute assignment (`self.attr = new_value`) is not graph-friendly.
713
714    **Suggested fix**
715
716    ```
717    class NamedTrackable(Trackable):
718      def __init__(self, name: str):
719        self.name = tf.Variable(name)
720
721      def _trackable_children(self):
722        return {"name": self.name}
723    ```
724
725    If the `name` attribute should be saved to the checkpoint, then convert it
726    a `tf.Variable`.
727
728    Returns:
729      A dictionary mapping names to tensors.
730    """
731    raise NotImplementedError
732
733  def _restore_from_tensors(self, restored_tensors):
734    """Restores checkpointed values to this `Trackable`.
735
736    Please see the documentation for `Trackable._serialize_to_tensors`.
737
738    Args:
739      restored_tensors: A dictionary mapping names to tensors. The keys to this
740        dictionary matches the names passed to _serialize_to_tensors.
741
742    Returns:
743      An op that runs the restoration.
744    """
745    raise NotImplementedError
746
747  def _map_resources(self, save_options):  # pylint: disable=unused-argument
748    """Makes new resource handle ops corresponding to existing resource tensors.
749
750    Internal sub-classes can override this to inform model saving how to add new
751    resource handle ops to the main GraphDef of a SavedModel (TF 1.x style
752    graph), which allows session based APIs (e.g, C++ loader API) to interact
753    with resources owned by this object.
754
755    Args:
756      save_options: A tf.saved_model.SaveOptions instance.
757
758    Returns:
759      A tuple of (object_map, resource_map):
760        object_map: A dictionary mapping from objects that hold existing
761          resource tensors to replacement objects created to hold the new
762          resource tensors.
763        resource_map: A dictionary mapping from existing resource tensors to
764          newly created resource tensors.
765    """
766    return {}, {}
767
768  def _serialize_to_proto(self, object_proto=None, **kwargs):
769    """Returns a proto of any type to be saved into the SavedModel.
770
771    Trackable classes decorated with `register_serializable` should overwrite
772    this method to save metadata for this object to the SavedModel. The proto
773    returned by this function will be passed to `_deserialize_from_proto` in the
774    form of a `google.protobuf.Any` proto.
775
776    This data is only saved and used by the Python API. Existing C++ loading
777    APIs such as `tensorflow::LoadSavedModel` will not read this field at all.
778
779    Args:
780      object_proto: A `SavedObject` proto that may be filled by this function.
781        Only the core serializable types (Variable, Function, Constant, Asset)
782        should modify this argument.
783      **kwargs: Future keyword arguments passed to the object during saving.
784
785    Returns:
786      A proto that serializes this class's type.
787    """
788    del object_proto, kwargs  # Unused.
789
790    return None
791
792  @classmethod
793  def _deserialize_from_proto(cls,
794                              proto=None,
795                              dependencies=None,
796                              object_proto=None,
797                              export_dir=None,
798                              asset_file_def=None,
799                              operation_attributes=None,
800                              **kwargs):
801    """Returns a new object restored by the SavedModel.
802
803    Trackable classes decorated with `register_serializable` should overwrite
804    this method to change how the object is loaded from SavedModel. By default,
805    the object is initialized with no arguments.
806
807    Example:
808
809    ```
810    def _serialize_to_proto(self, **unused_kwargs):
811      return Message(name="a")
812
813    @classmethod
814    def _deserialize_from_proto(cls, proto, **unused_kwargs):
815      if proto.Is(Message.DESCRIPTOR):
816        unpacked = Message()
817        proto.Unpack(unpacked)
818        return cls(unpacked.name)
819      else:
820        return cls()
821    ```
822
823    This function is only used by the Python API. C++ and TensorFlow Serving do
824    not have access to your registered class and cannot execute any of the
825    non-tf.functions attached to the Python class. However, all signatures and
826    tf.functions are still accessible.
827
828    **Avoid creating duplicate trackables**
829
830    SavedModel is saved by recursively gathering all of the trackables and their
831    children. SavedModel loading reverses those steps by creating all
832    trackables, then reconnecting the children trackables to their parents using
833    `Trackable._add_trackable_child`.
834
835    That means that if `_deserialize_from_proto` calls the `__init__` function,
836    which creates all of the children trackables, then those children end up
837    being created *twice*.
838
839    To avoid this, structure your code so that Trackables are not created
840    when deserialized from SavedModel:
841
842    ```
843    @register_serializable()
844    class Serializable(trackable):
845      def __init __(self, from_proto=False):
846        create_non_trackable_objects()
847        if not from_proto:
848          create_variables_and_other_trackables()
849
850      def _deserialize_from_proto(cls, **kwargs):
851        return cls(from_proto=True)
852
853      def _add_trackable_child(self, name, value):
854        self.__setattr__(name, value)
855    ```
856
857    Args:
858      proto: A `google.protobuf.Any` proto read from the `SavedModel`.
859      dependencies: A dictionary mapping names to dependencies (see
860        `_deserialization_dependencies`)
861      object_proto: The `SavedObject` proto for this object.
862      export_dir: The `SavedModel` directory
863      asset_file_def: The `MetaGraphDef`'s `asset_file_def` field.
864      operation_attributes: Dictionary mapping nodes to attribute from the
865        imported `GraphDef`.
866      **kwargs: Future keyword arguments passed to the object when loading.
867
868    Returns:
869      A new object.
870    """
871    del (proto, dependencies, object_proto, export_dir, asset_file_def,
872         operation_attributes, kwargs)
873
874    return cls()
875
876  def _add_trackable_child(self, name, value):
877    """Restores a connection between trackables when loading from SavedModel.
878
879    SavedModel stores both the object metadata and its list of children. When
880    loading, this function is used along with `_deserialize_from_proto` to load
881    objects from the SavedModel: First, all saved objects are created with
882    `_deserialize_from_proto`. After that is complete, the children are
883    connected using `_add_trackable_child`.
884
885    **Example**
886
887    `tf.Module`, `tf.keras.Model` and Keras layers use `__setattr__` to track
888    children. This is why users can call `model.v = tf.Variable(...)`, and the
889    variable will be automatically saved to the checkpoint. The implementation
890    of this method for the listed objects is:
891
892    ```
893    def _add_trackable_child(self, name, value):
894      self.__setattr__(name, value)
895    ```
896
897    Args:
898      name: The name of the connection between the parent and child `Trackable`.
899      value: The child `Trackable` object.
900    """
901    self._track_trackable(value, name, overwrite=True)
902
903  def _deserialization_dependencies(self, children):
904    """Returns a dictionary containing `Trackables` that this object depends on.
905
906    Dependencies define the order to serialize and deserialize objects in the
907    SavedModel. For example:
908
909    class A(Trackable):
910      b = B()
911      def _deserialization_dependencies(self, children):
912        return {'b': self.b}
913
914    class B(Trackable):
915      pass
916
917    We say that object `a=A()` depends on `a.b`.
918
919    Dependencies are guaranteed to be serialized and deserialized before the
920    object depending on them. The following methods use dependencies:
921      - `_deserialize_from_proto` [loading]
922
923    SavedModel loads with the bottom-up approach, by first creating all objects
924    in the order defined by the dependencies, then connecting the children.
925
926    Unlike `_trackable_children`, this function does not define the
927    `SavedObjectGraph`. It only changes the order in which things are
928    saved/loaded. Therefore, if there are dependencies that are not in the
929    `SavedObjectGraph`, saving will fail.
930
931    Args:
932      children: Dict returned from `_trackable_children`.
933
934    Returns:
935      A dictionary mapping names to `Trackable`.
936    """
937    del children  # Unused.
938    return {}
939
940  def _trackable_children(self,
941                          save_type=SaveType.CHECKPOINT,
942                          cache=None,
943                          **kwargs):
944    """Returns this object's `Trackable` attributes.
945
946    This method is used to build the object graph (or the object hierarchy,
947    in pickling terms) for checkpoint save/restore, and `SavedModel` export.
948
949    Override this method to define the children of this instance. Please read
950    the implementation restrictions:
951
952    **Rule 1: All children must be convertable to `Trackable`.**
953
954    Must pass `isinstance` check or `converter.convert_to_trackable`.
955
956    **Rule 2: [Checkpoint-only] Do not create new objects.**
957
958    When saving to a `SavedModel`, this method is called *exactly once* for each
959    `Trackable` in the object graph. When saving or restoring from a checkpoint,
960    this method may be called *multiple times*. Thus, this method may create
961    new Trackables when `save_type == SaveType.SAVEDMODEL` but not when
962    `save_type == SaveType.CHECKPOINT`.
963
964    When saving to `SavedModel`, new `Trackable` children can be created to save
965    non-Trackable attributes to the `SavedModel`. In the example below, `hyper`
966    is a regular python float hyperparameter. To save this value, a new Variable
967    is created to store the value of `hyper`:
968
969    ```
970    def __init__(self):
971      self.hyper = 1e-5
972
973    def _trackable_children(self, save_type, **unused_kwargs):
974      # Correct implementation
975      children = {}
976      if format == 'saved_model':
977        children['hyper'] = tf.Variable(self.hyper)
978      return children
979    ```
980
981    An incorrect implementation of `_trackable_children` is shown below. This
982    function would cause failures when loading the checkpoint, and calling
983    `load_status.assert_consumed()` or
984    `load_status.assert_existing_objects_matched`. If you want a value to be
985    saved in the checkpoint, hyper must be defined as a `tf.Variable` from the
986    start.
987
988    ```
989    def _trackable_children(self, save_type, **unused_kwargs):
990      # Incorrect implementation
991      return {'hyper': tf.Variable(self.hyper)}
992    ```
993
994    **Rule 3: [`SavedModel`-only] Watch out for un-traced tf.functions.**
995
996    At the begining of `_trackable_children`, always call
997    `get_concrete_function()` for any `tf.function` that has an input signature.
998
999    When `tf.functions` are saved to `SavedModel`, any `tf.functions` that have
1000    an input signature and has never been called is traced at export time in
1001    order to copy the op graph into the `SavedModel`. `tf.functions` that are
1002    traced for the first time are allowed to create new state:
1003
1004
1005    ```
1006    @tf.function(input_signature=[]):
1007    def fn(self);
1008      if self.v is None:
1009        self.v = tf.Variable(1.)
1010      return self.v
1011    ```
1012
1013    A problem occurs when there is a `Trackable` that returns `fn` as one of its
1014    children and `self.v` has not been created yet. When `fn` is traced,
1015    `self.v` is added to the `Trackable`, but `SavedModel` does not see this
1016    modification since the `Trackable`'s children have already been gathered.
1017
1018    Therefore, as a precaution, call `get_concrete_function()` at the very
1019    start of `_trackable_children` to ensure that the function is traced:
1020
1021
1022    ```
1023    def _trackable_children(self):
1024      self.fn.get_concrete_function()
1025      return {"v": self.v, "fn": self.fn}
1026    ```
1027
1028    Args:
1029      save_type: A string, can be 'savedmodel' or 'checkpoint'. Defaults to
1030        SaveType.CHECKPOINT.
1031      cache: May be `None`, or a dictionary. When `save_type == savedmodel`, a
1032        new cache is created at the start of the SavedModel export, and shared
1033        between all `Trackables` in the same object graph. This cache may be
1034        used for advanced saving functionality.
1035      **kwargs: Additional kwargs that may be added at a later time.
1036
1037    Returns:
1038      Dictionary mapping names to child trackables.
1039    """
1040    del save_type, cache, kwargs  # Unused.
1041
1042    self._maybe_initialize_trackable()
1043    return {name: ref for name, ref in self._checkpoint_dependencies}
1044
1045  def _export_to_saved_model_graph(self,
1046                                   object_map=None,
1047                                   tensor_map=None,
1048                                   options=None,
1049                                   **kwargs):
1050    """Creates a copy of this object's tensors onto SavedModel graph.
1051
1052    Needs to be overridden if the class contains tensors that must be saved
1053    into the graph. This method should update the `object_map` and `tensor_map`
1054    dictionaries.
1055
1056    This method is called on all nodes in the Trackable Graph (generated by
1057    `_trackable_children`). The nodes are traversed in the order defined by
1058    `_deserialization_dependencies`
1059
1060    All usages of _map_resources should be migrated to this method.
1061
1062    Args:
1063      object_map: A dictionary that maps original Trackables to the copied
1064        Trackables. This only needs to be updated if the object is a
1065        tf.function, or if the copied tensors are necessary for checkpointing
1066        this object.
1067      tensor_map: Dictionary mapping original tensors to copied tensors.
1068      options: A `tf.saved_model.SaveOptions` object.
1069      **kwargs: Additional kwargs that may be added at a later time.
1070
1071    Returns:
1072      Flat list of original tensors that have been copied.
1073    """
1074    del kwargs  # Unused.
1075    self_object_map, self_tensor_map = self._map_resources(options)
1076    object_map.update(self_object_map)
1077    tensor_map.update(self_tensor_map)
1078    return list(self_tensor_map.keys())
1079