1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "concurrent_copying.h"
18
19 #include "art_field-inl.h"
20 #include "barrier.h"
21 #include "base/enums.h"
22 #include "base/file_utils.h"
23 #include "base/histogram-inl.h"
24 #include "base/quasi_atomic.h"
25 #include "base/stl_util.h"
26 #include "base/systrace.h"
27 #include "class_root-inl.h"
28 #include "debugger.h"
29 #include "gc/accounting/atomic_stack.h"
30 #include "gc/accounting/heap_bitmap-inl.h"
31 #include "gc/accounting/mod_union_table-inl.h"
32 #include "gc/accounting/read_barrier_table.h"
33 #include "gc/accounting/space_bitmap-inl.h"
34 #include "gc/gc_pause_listener.h"
35 #include "gc/reference_processor.h"
36 #include "gc/space/image_space.h"
37 #include "gc/space/space-inl.h"
38 #include "gc/verification.h"
39 #include "image-inl.h"
40 #include "intern_table.h"
41 #include "mirror/class-inl.h"
42 #include "mirror/object-inl.h"
43 #include "mirror/object-refvisitor-inl.h"
44 #include "mirror/object_reference.h"
45 #include "scoped_thread_state_change-inl.h"
46 #include "thread-inl.h"
47 #include "thread_list.h"
48 #include "well_known_classes.h"
49
50 namespace art {
51 namespace gc {
52 namespace collector {
53
54 static constexpr size_t kDefaultGcMarkStackSize = 2 * MB;
55 // If kFilterModUnionCards then we attempt to filter cards that don't need to be dirty in the mod
56 // union table. Disabled since it does not seem to help the pause much.
57 static constexpr bool kFilterModUnionCards = kIsDebugBuild;
58 // If kDisallowReadBarrierDuringScan is true then the GC aborts if there are any read barrier that
59 // occur during ConcurrentCopying::Scan in GC thread. May be used to diagnose possibly unnecessary
60 // read barriers. Only enabled for kIsDebugBuild to avoid performance hit.
61 static constexpr bool kDisallowReadBarrierDuringScan = kIsDebugBuild;
62 // Slow path mark stack size, increase this if the stack is getting full and it is causing
63 // performance problems.
64 static constexpr size_t kReadBarrierMarkStackSize = 512 * KB;
65 // Size (in the number of objects) of the sweep array free buffer.
66 static constexpr size_t kSweepArrayChunkFreeSize = 1024;
67 // Verify that there are no missing card marks.
68 static constexpr bool kVerifyNoMissingCardMarks = kIsDebugBuild;
69
ConcurrentCopying(Heap * heap,bool young_gen,bool use_generational_cc,const std::string & name_prefix,bool measure_read_barrier_slow_path)70 ConcurrentCopying::ConcurrentCopying(Heap* heap,
71 bool young_gen,
72 bool use_generational_cc,
73 const std::string& name_prefix,
74 bool measure_read_barrier_slow_path)
75 : GarbageCollector(heap,
76 name_prefix + (name_prefix.empty() ? "" : " ") +
77 "concurrent copying"),
78 region_space_(nullptr),
79 gc_barrier_(new Barrier(0)),
80 gc_mark_stack_(accounting::ObjectStack::Create("concurrent copying gc mark stack",
81 kDefaultGcMarkStackSize,
82 kDefaultGcMarkStackSize)),
83 use_generational_cc_(use_generational_cc),
84 young_gen_(young_gen),
85 rb_mark_bit_stack_(accounting::ObjectStack::Create("rb copying gc mark stack",
86 kReadBarrierMarkStackSize,
87 kReadBarrierMarkStackSize)),
88 rb_mark_bit_stack_full_(false),
89 mark_stack_lock_("concurrent copying mark stack lock", kMarkSweepMarkStackLock),
90 thread_running_gc_(nullptr),
91 is_marking_(false),
92 is_using_read_barrier_entrypoints_(false),
93 is_active_(false),
94 is_asserting_to_space_invariant_(false),
95 region_space_bitmap_(nullptr),
96 heap_mark_bitmap_(nullptr),
97 live_stack_freeze_size_(0),
98 from_space_num_objects_at_first_pause_(0),
99 from_space_num_bytes_at_first_pause_(0),
100 mark_stack_mode_(kMarkStackModeOff),
101 weak_ref_access_enabled_(true),
102 copied_live_bytes_ratio_sum_(0.f),
103 gc_count_(0),
104 reclaimed_bytes_ratio_sum_(0.f),
105 cumulative_bytes_moved_(0),
106 cumulative_objects_moved_(0),
107 skipped_blocks_lock_("concurrent copying bytes blocks lock", kMarkSweepMarkStackLock),
108 measure_read_barrier_slow_path_(measure_read_barrier_slow_path),
109 mark_from_read_barrier_measurements_(false),
110 rb_slow_path_ns_(0),
111 rb_slow_path_count_(0),
112 rb_slow_path_count_gc_(0),
113 rb_slow_path_histogram_lock_("Read barrier histogram lock"),
114 rb_slow_path_time_histogram_("Mutator time in read barrier slow path", 500, 32),
115 rb_slow_path_count_total_(0),
116 rb_slow_path_count_gc_total_(0),
117 rb_table_(heap_->GetReadBarrierTable()),
118 force_evacuate_all_(false),
119 gc_grays_immune_objects_(false),
120 immune_gray_stack_lock_("concurrent copying immune gray stack lock",
121 kMarkSweepMarkStackLock),
122 num_bytes_allocated_before_gc_(0) {
123 static_assert(space::RegionSpace::kRegionSize == accounting::ReadBarrierTable::kRegionSize,
124 "The region space size and the read barrier table region size must match");
125 CHECK(use_generational_cc_ || !young_gen_);
126 Thread* self = Thread::Current();
127 {
128 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
129 // Cache this so that we won't have to lock heap_bitmap_lock_ in
130 // Mark() which could cause a nested lock on heap_bitmap_lock_
131 // when GC causes a RB while doing GC or a lock order violation
132 // (class_linker_lock_ and heap_bitmap_lock_).
133 heap_mark_bitmap_ = heap->GetMarkBitmap();
134 }
135 {
136 MutexLock mu(self, mark_stack_lock_);
137 for (size_t i = 0; i < kMarkStackPoolSize; ++i) {
138 accounting::AtomicStack<mirror::Object>* mark_stack =
139 accounting::AtomicStack<mirror::Object>::Create(
140 "thread local mark stack", kMarkStackSize, kMarkStackSize);
141 pooled_mark_stacks_.push_back(mark_stack);
142 }
143 }
144 if (use_generational_cc_) {
145 // Allocate sweep array free buffer.
146 std::string error_msg;
147 sweep_array_free_buffer_mem_map_ = MemMap::MapAnonymous(
148 "concurrent copying sweep array free buffer",
149 RoundUp(kSweepArrayChunkFreeSize * sizeof(mirror::Object*), kPageSize),
150 PROT_READ | PROT_WRITE,
151 /*low_4gb=*/ false,
152 &error_msg);
153 CHECK(sweep_array_free_buffer_mem_map_.IsValid())
154 << "Couldn't allocate sweep array free buffer: " << error_msg;
155 }
156 // Return type of these functions are different. And even though the base class
157 // is same, using ternary operator complains.
158 metrics::ArtMetrics* metrics = GetMetrics();
159 are_metrics_initialized_ = true;
160 if (young_gen_) {
161 gc_time_histogram_ = metrics->YoungGcCollectionTime();
162 metrics_gc_count_ = metrics->YoungGcCount();
163 metrics_gc_count_delta_ = metrics->YoungGcCountDelta();
164 gc_throughput_histogram_ = metrics->YoungGcThroughput();
165 gc_tracing_throughput_hist_ = metrics->YoungGcTracingThroughput();
166 gc_throughput_avg_ = metrics->YoungGcThroughputAvg();
167 gc_tracing_throughput_avg_ = metrics->YoungGcTracingThroughputAvg();
168 gc_scanned_bytes_ = metrics->YoungGcScannedBytes();
169 gc_scanned_bytes_delta_ = metrics->YoungGcScannedBytesDelta();
170 gc_freed_bytes_ = metrics->YoungGcFreedBytes();
171 gc_freed_bytes_delta_ = metrics->YoungGcFreedBytesDelta();
172 gc_duration_ = metrics->YoungGcDuration();
173 gc_duration_delta_ = metrics->YoungGcDurationDelta();
174 } else {
175 gc_time_histogram_ = metrics->FullGcCollectionTime();
176 metrics_gc_count_ = metrics->FullGcCount();
177 metrics_gc_count_delta_ = metrics->FullGcCountDelta();
178 gc_throughput_histogram_ = metrics->FullGcThroughput();
179 gc_tracing_throughput_hist_ = metrics->FullGcTracingThroughput();
180 gc_throughput_avg_ = metrics->FullGcThroughputAvg();
181 gc_tracing_throughput_avg_ = metrics->FullGcTracingThroughputAvg();
182 gc_scanned_bytes_ = metrics->FullGcScannedBytes();
183 gc_scanned_bytes_delta_ = metrics->FullGcScannedBytesDelta();
184 gc_freed_bytes_ = metrics->FullGcFreedBytes();
185 gc_freed_bytes_delta_ = metrics->FullGcFreedBytesDelta();
186 gc_duration_ = metrics->FullGcDuration();
187 gc_duration_delta_ = metrics->FullGcDurationDelta();
188 }
189 }
190
MarkHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)191 void ConcurrentCopying::MarkHeapReference(mirror::HeapReference<mirror::Object>* field,
192 bool do_atomic_update) {
193 Thread* const self = Thread::Current();
194 if (UNLIKELY(do_atomic_update)) {
195 // Used to mark the referent in DelayReferenceReferent in transaction mode.
196 mirror::Object* from_ref = field->AsMirrorPtr();
197 if (from_ref == nullptr) {
198 return;
199 }
200 mirror::Object* to_ref = Mark(self, from_ref);
201 if (from_ref != to_ref) {
202 do {
203 if (field->AsMirrorPtr() != from_ref) {
204 // Concurrently overwritten by a mutator.
205 break;
206 }
207 } while (!field->CasWeakRelaxed(from_ref, to_ref));
208 }
209 } else {
210 // Used for preserving soft references, should be OK to not have a CAS here since there should be
211 // no other threads which can trigger read barriers on the same referent during reference
212 // processing.
213 field->Assign(Mark(self, field->AsMirrorPtr()));
214 }
215 }
216
~ConcurrentCopying()217 ConcurrentCopying::~ConcurrentCopying() {
218 STLDeleteElements(&pooled_mark_stacks_);
219 }
220
RunPhases()221 void ConcurrentCopying::RunPhases() {
222 CHECK(kUseBakerReadBarrier || kUseTableLookupReadBarrier);
223 CHECK(!is_active_);
224 is_active_ = true;
225 Thread* self = Thread::Current();
226 thread_running_gc_ = self;
227 Locks::mutator_lock_->AssertNotHeld(self);
228 {
229 ReaderMutexLock mu(self, *Locks::mutator_lock_);
230 InitializePhase();
231 // In case of forced evacuation, all regions are evacuated and hence no
232 // need to compute live_bytes.
233 if (use_generational_cc_ && !young_gen_ && !force_evacuate_all_) {
234 MarkingPhase();
235 }
236 }
237 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
238 // Switch to read barrier mark entrypoints before we gray the objects. This is required in case
239 // a mutator sees a gray bit and dispatches on the entrypoint. (b/37876887).
240 ActivateReadBarrierEntrypoints();
241 // Gray dirty immune objects concurrently to reduce GC pause times. We re-process gray cards in
242 // the pause.
243 ReaderMutexLock mu(self, *Locks::mutator_lock_);
244 GrayAllDirtyImmuneObjects();
245 }
246 FlipThreadRoots();
247 {
248 ReaderMutexLock mu(self, *Locks::mutator_lock_);
249 CopyingPhase();
250 }
251 // Verify no from space refs. This causes a pause.
252 if (kEnableNoFromSpaceRefsVerification) {
253 TimingLogger::ScopedTiming split("(Paused)VerifyNoFromSpaceReferences", GetTimings());
254 ScopedPause pause(this, false);
255 CheckEmptyMarkStack();
256 if (kVerboseMode) {
257 LOG(INFO) << "Verifying no from-space refs";
258 }
259 VerifyNoFromSpaceReferences();
260 if (kVerboseMode) {
261 LOG(INFO) << "Done verifying no from-space refs";
262 }
263 CheckEmptyMarkStack();
264 }
265 {
266 ReaderMutexLock mu(self, *Locks::mutator_lock_);
267 ReclaimPhase();
268 }
269 FinishPhase();
270 CHECK(is_active_);
271 is_active_ = false;
272 thread_running_gc_ = nullptr;
273 }
274
275 class ConcurrentCopying::ActivateReadBarrierEntrypointsCheckpoint : public Closure {
276 public:
ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying * concurrent_copying)277 explicit ActivateReadBarrierEntrypointsCheckpoint(ConcurrentCopying* concurrent_copying)
278 : concurrent_copying_(concurrent_copying) {}
279
Run(Thread * thread)280 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
281 // Note: self is not necessarily equal to thread since thread may be suspended.
282 Thread* self = Thread::Current();
283 DCHECK(thread == self ||
284 thread->IsSuspended() ||
285 thread->GetState() == ThreadState::kWaitingPerformingGc)
286 << thread->GetState() << " thread " << thread << " self " << self;
287 // Switch to the read barrier entrypoints.
288 thread->SetReadBarrierEntrypoints();
289 // If thread is a running mutator, then act on behalf of the garbage collector.
290 // See the code in ThreadList::RunCheckpoint.
291 concurrent_copying_->GetBarrier().Pass(self);
292 }
293
294 private:
295 ConcurrentCopying* const concurrent_copying_;
296 };
297
298 class ConcurrentCopying::ActivateReadBarrierEntrypointsCallback : public Closure {
299 public:
ActivateReadBarrierEntrypointsCallback(ConcurrentCopying * concurrent_copying)300 explicit ActivateReadBarrierEntrypointsCallback(ConcurrentCopying* concurrent_copying)
301 : concurrent_copying_(concurrent_copying) {}
302
Run(Thread * self ATTRIBUTE_UNUSED)303 void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
304 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
305 // to avoid a race with ThreadList::Register().
306 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
307 concurrent_copying_->is_using_read_barrier_entrypoints_ = true;
308 }
309
310 private:
311 ConcurrentCopying* const concurrent_copying_;
312 };
313
ActivateReadBarrierEntrypoints()314 void ConcurrentCopying::ActivateReadBarrierEntrypoints() {
315 Thread* const self = Thread::Current();
316 ActivateReadBarrierEntrypointsCheckpoint checkpoint(this);
317 ThreadList* thread_list = Runtime::Current()->GetThreadList();
318 gc_barrier_->Init(self, 0);
319 ActivateReadBarrierEntrypointsCallback callback(this);
320 const size_t barrier_count = thread_list->RunCheckpoint(&checkpoint, &callback);
321 // If there are no threads to wait which implies that all the checkpoint functions are finished,
322 // then no need to release the mutator lock.
323 if (barrier_count == 0) {
324 return;
325 }
326 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
327 gc_barrier_->Increment(self, barrier_count);
328 }
329
CreateInterRegionRefBitmaps()330 void ConcurrentCopying::CreateInterRegionRefBitmaps() {
331 DCHECK(use_generational_cc_);
332 DCHECK(!region_space_inter_region_bitmap_.IsValid());
333 DCHECK(!non_moving_space_inter_region_bitmap_.IsValid());
334 DCHECK(region_space_ != nullptr);
335 DCHECK(heap_->non_moving_space_ != nullptr);
336 // Region-space
337 region_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
338 "region-space inter region ref bitmap",
339 reinterpret_cast<uint8_t*>(region_space_->Begin()),
340 region_space_->Limit() - region_space_->Begin());
341 CHECK(region_space_inter_region_bitmap_.IsValid())
342 << "Couldn't allocate region-space inter region ref bitmap";
343
344 // non-moving-space
345 non_moving_space_inter_region_bitmap_ = accounting::ContinuousSpaceBitmap::Create(
346 "non-moving-space inter region ref bitmap",
347 reinterpret_cast<uint8_t*>(heap_->non_moving_space_->Begin()),
348 heap_->non_moving_space_->Limit() - heap_->non_moving_space_->Begin());
349 CHECK(non_moving_space_inter_region_bitmap_.IsValid())
350 << "Couldn't allocate non-moving-space inter region ref bitmap";
351 }
352
BindBitmaps()353 void ConcurrentCopying::BindBitmaps() {
354 Thread* self = Thread::Current();
355 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
356 // Mark all of the spaces we never collect as immune.
357 for (const auto& space : heap_->GetContinuousSpaces()) {
358 if (space->GetGcRetentionPolicy() == space::kGcRetentionPolicyNeverCollect ||
359 space->GetGcRetentionPolicy() == space::kGcRetentionPolicyFullCollect) {
360 CHECK(space->IsZygoteSpace() || space->IsImageSpace());
361 immune_spaces_.AddSpace(space);
362 } else {
363 CHECK(!space->IsZygoteSpace());
364 CHECK(!space->IsImageSpace());
365 CHECK(space == region_space_ || space == heap_->non_moving_space_);
366 if (use_generational_cc_) {
367 if (space == region_space_) {
368 region_space_bitmap_ = region_space_->GetMarkBitmap();
369 } else if (young_gen_ && space->IsContinuousMemMapAllocSpace()) {
370 DCHECK_EQ(space->GetGcRetentionPolicy(), space::kGcRetentionPolicyAlwaysCollect);
371 space->AsContinuousMemMapAllocSpace()->BindLiveToMarkBitmap();
372 }
373 if (young_gen_) {
374 // Age all of the cards for the region space so that we know which evac regions to scan.
375 heap_->GetCardTable()->ModifyCardsAtomic(space->Begin(),
376 space->End(),
377 AgeCardVisitor(),
378 VoidFunctor());
379 } else {
380 // In a full-heap GC cycle, the card-table corresponding to region-space and
381 // non-moving space can be cleared, because this cycle only needs to
382 // capture writes during the marking phase of this cycle to catch
383 // objects that skipped marking due to heap mutation. Furthermore,
384 // if the next GC is a young-gen cycle, then it only needs writes to
385 // be captured after the thread-flip of this GC cycle, as that is when
386 // the young-gen for the next GC cycle starts getting populated.
387 heap_->GetCardTable()->ClearCardRange(space->Begin(), space->Limit());
388 }
389 } else {
390 if (space == region_space_) {
391 // It is OK to clear the bitmap with mutators running since the only place it is read is
392 // VisitObjects which has exclusion with CC.
393 region_space_bitmap_ = region_space_->GetMarkBitmap();
394 region_space_bitmap_->Clear();
395 }
396 }
397 }
398 }
399 if (use_generational_cc_ && young_gen_) {
400 for (const auto& space : GetHeap()->GetDiscontinuousSpaces()) {
401 CHECK(space->IsLargeObjectSpace());
402 space->AsLargeObjectSpace()->CopyLiveToMarked();
403 }
404 }
405 }
406
InitializePhase()407 void ConcurrentCopying::InitializePhase() {
408 TimingLogger::ScopedTiming split("InitializePhase", GetTimings());
409 num_bytes_allocated_before_gc_ = static_cast<int64_t>(heap_->GetBytesAllocated());
410 if (kVerboseMode) {
411 LOG(INFO) << "GC InitializePhase";
412 LOG(INFO) << "Region-space : " << reinterpret_cast<void*>(region_space_->Begin()) << "-"
413 << reinterpret_cast<void*>(region_space_->Limit());
414 }
415 CheckEmptyMarkStack();
416 rb_mark_bit_stack_full_ = false;
417 mark_from_read_barrier_measurements_ = measure_read_barrier_slow_path_;
418 if (measure_read_barrier_slow_path_) {
419 rb_slow_path_ns_.store(0, std::memory_order_relaxed);
420 rb_slow_path_count_.store(0, std::memory_order_relaxed);
421 rb_slow_path_count_gc_.store(0, std::memory_order_relaxed);
422 }
423
424 immune_spaces_.Reset();
425 bytes_moved_.store(0, std::memory_order_relaxed);
426 objects_moved_.store(0, std::memory_order_relaxed);
427 bytes_moved_gc_thread_ = 0;
428 objects_moved_gc_thread_ = 0;
429 bytes_scanned_ = 0;
430 GcCause gc_cause = GetCurrentIteration()->GetGcCause();
431
432 force_evacuate_all_ = false;
433 if (!use_generational_cc_ || !young_gen_) {
434 if (gc_cause == kGcCauseExplicit ||
435 gc_cause == kGcCauseCollectorTransition ||
436 GetCurrentIteration()->GetClearSoftReferences()) {
437 force_evacuate_all_ = true;
438 }
439 }
440 if (kUseBakerReadBarrier) {
441 updated_all_immune_objects_.store(false, std::memory_order_relaxed);
442 // GC may gray immune objects in the thread flip.
443 gc_grays_immune_objects_ = true;
444 if (kIsDebugBuild) {
445 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
446 DCHECK(immune_gray_stack_.empty());
447 }
448 }
449 if (use_generational_cc_) {
450 done_scanning_.store(false, std::memory_order_release);
451 }
452 BindBitmaps();
453 if (kVerboseMode) {
454 LOG(INFO) << "young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha;
455 LOG(INFO) << "force_evacuate_all=" << std::boolalpha << force_evacuate_all_ << std::noboolalpha;
456 LOG(INFO) << "Largest immune region: " << immune_spaces_.GetLargestImmuneRegion().Begin()
457 << "-" << immune_spaces_.GetLargestImmuneRegion().End();
458 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
459 LOG(INFO) << "Immune space: " << *space;
460 }
461 LOG(INFO) << "GC end of InitializePhase";
462 }
463 if (use_generational_cc_ && !young_gen_) {
464 region_space_bitmap_->Clear();
465 }
466 mark_stack_mode_.store(ConcurrentCopying::kMarkStackModeThreadLocal, std::memory_order_relaxed);
467 // Mark all of the zygote large objects without graying them.
468 MarkZygoteLargeObjects();
469 }
470
471 // Used to switch the thread roots of a thread from from-space refs to to-space refs.
472 class ConcurrentCopying::ThreadFlipVisitor : public Closure, public RootVisitor {
473 public:
ThreadFlipVisitor(ConcurrentCopying * concurrent_copying,bool use_tlab)474 ThreadFlipVisitor(ConcurrentCopying* concurrent_copying, bool use_tlab)
475 : concurrent_copying_(concurrent_copying), use_tlab_(use_tlab) {
476 }
477
Run(Thread * thread)478 void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) {
479 // Note: self is not necessarily equal to thread since thread may be suspended.
480 Thread* self = Thread::Current();
481 CHECK(thread == self ||
482 thread->IsSuspended() ||
483 thread->GetState() == ThreadState::kWaitingPerformingGc)
484 << thread->GetState() << " thread " << thread << " self " << self;
485 thread->SetIsGcMarkingAndUpdateEntrypoints(true);
486 if (use_tlab_ && thread->HasTlab()) {
487 // We should not reuse the partially utilized TLABs revoked here as they
488 // are going to be part of from-space.
489 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
490 // This must come before the revoke.
491 size_t thread_local_objects = thread->GetThreadLocalObjectsAllocated();
492 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false);
493 reinterpret_cast<Atomic<size_t>*>(
494 &concurrent_copying_->from_space_num_objects_at_first_pause_)->
495 fetch_add(thread_local_objects, std::memory_order_relaxed);
496 } else {
497 concurrent_copying_->region_space_->RevokeThreadLocalBuffers(thread, /*reuse=*/ false);
498 }
499 }
500 if (kUseThreadLocalAllocationStack) {
501 thread->RevokeThreadLocalAllocationStack();
502 }
503 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
504 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
505 // only.
506 thread->VisitRoots(this, kVisitRootFlagAllRoots);
507 concurrent_copying_->GetBarrier().Pass(self);
508 }
509
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)510 void VisitRoots(mirror::Object*** roots,
511 size_t count,
512 const RootInfo& info ATTRIBUTE_UNUSED) override
513 REQUIRES_SHARED(Locks::mutator_lock_) {
514 Thread* self = Thread::Current();
515 for (size_t i = 0; i < count; ++i) {
516 mirror::Object** root = roots[i];
517 mirror::Object* ref = *root;
518 if (ref != nullptr) {
519 mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
520 if (to_ref != ref) {
521 *root = to_ref;
522 }
523 }
524 }
525 }
526
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)527 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
528 size_t count,
529 const RootInfo& info ATTRIBUTE_UNUSED) override
530 REQUIRES_SHARED(Locks::mutator_lock_) {
531 Thread* self = Thread::Current();
532 for (size_t i = 0; i < count; ++i) {
533 mirror::CompressedReference<mirror::Object>* const root = roots[i];
534 if (!root->IsNull()) {
535 mirror::Object* ref = root->AsMirrorPtr();
536 mirror::Object* to_ref = concurrent_copying_->Mark(self, ref);
537 if (to_ref != ref) {
538 root->Assign(to_ref);
539 }
540 }
541 }
542 }
543
544 private:
545 ConcurrentCopying* const concurrent_copying_;
546 const bool use_tlab_;
547 };
548
549 // Called back from Runtime::FlipThreadRoots() during a pause.
550 class ConcurrentCopying::FlipCallback : public Closure {
551 public:
FlipCallback(ConcurrentCopying * concurrent_copying)552 explicit FlipCallback(ConcurrentCopying* concurrent_copying)
553 : concurrent_copying_(concurrent_copying) {
554 }
555
Run(Thread * thread)556 void Run(Thread* thread) override REQUIRES(Locks::mutator_lock_) {
557 ConcurrentCopying* cc = concurrent_copying_;
558 TimingLogger::ScopedTiming split("(Paused)FlipCallback", cc->GetTimings());
559 // Note: self is not necessarily equal to thread since thread may be suspended.
560 Thread* self = Thread::Current();
561 if (kVerifyNoMissingCardMarks && cc->young_gen_) {
562 cc->VerifyNoMissingCardMarks();
563 }
564 CHECK_EQ(thread, self);
565 Locks::mutator_lock_->AssertExclusiveHeld(self);
566 space::RegionSpace::EvacMode evac_mode = space::RegionSpace::kEvacModeLivePercentNewlyAllocated;
567 if (cc->young_gen_) {
568 CHECK(!cc->force_evacuate_all_);
569 evac_mode = space::RegionSpace::kEvacModeNewlyAllocated;
570 } else if (cc->force_evacuate_all_) {
571 evac_mode = space::RegionSpace::kEvacModeForceAll;
572 }
573 {
574 TimingLogger::ScopedTiming split2("(Paused)SetFromSpace", cc->GetTimings());
575 // Only change live bytes for 1-phase full heap CC, that is if we are either not running in
576 // generational-mode, or it's an 'evacuate-all' mode GC.
577 cc->region_space_->SetFromSpace(
578 cc->rb_table_,
579 evac_mode,
580 /*clear_live_bytes=*/ !cc->use_generational_cc_ || cc->force_evacuate_all_);
581 }
582 cc->SwapStacks();
583 if (ConcurrentCopying::kEnableFromSpaceAccountingCheck) {
584 cc->RecordLiveStackFreezeSize(self);
585 cc->from_space_num_objects_at_first_pause_ = cc->region_space_->GetObjectsAllocated();
586 cc->from_space_num_bytes_at_first_pause_ = cc->region_space_->GetBytesAllocated();
587 }
588 cc->is_marking_ = true;
589 if (kIsDebugBuild && !cc->use_generational_cc_) {
590 cc->region_space_->AssertAllRegionLiveBytesZeroOrCleared();
591 }
592 Runtime* runtime = Runtime::Current();
593 if (UNLIKELY(runtime->IsActiveTransaction())) {
594 CHECK(runtime->IsAotCompiler());
595 TimingLogger::ScopedTiming split3("(Paused)VisitTransactionRoots", cc->GetTimings());
596 runtime->VisitTransactionRoots(cc);
597 }
598 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
599 cc->GrayAllNewlyDirtyImmuneObjects();
600 if (kIsDebugBuild) {
601 // Check that all non-gray immune objects only reference immune objects.
602 cc->VerifyGrayImmuneObjects();
603 }
604 }
605 ObjPtr<mirror::Class> java_lang_Object =
606 GetClassRoot<mirror::Object, kWithoutReadBarrier>(runtime->GetClassLinker());
607 DCHECK(java_lang_Object != nullptr);
608 cc->java_lang_Object_ = down_cast<mirror::Class*>(cc->Mark(thread, java_lang_Object.Ptr()));
609 }
610
611 private:
612 ConcurrentCopying* const concurrent_copying_;
613 };
614
615 class ConcurrentCopying::VerifyGrayImmuneObjectsVisitor {
616 public:
VerifyGrayImmuneObjectsVisitor(ConcurrentCopying * collector)617 explicit VerifyGrayImmuneObjectsVisitor(ConcurrentCopying* collector)
618 : collector_(collector) {}
619
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool) const620 void operator()(ObjPtr<mirror::Object> obj, MemberOffset offset, bool /* is_static */)
621 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
622 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
623 CheckReference(obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset),
624 obj, offset);
625 }
626
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const627 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
628 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
629 CHECK(klass->IsTypeOfReferenceClass());
630 CheckReference(ref->GetReferent<kWithoutReadBarrier>(),
631 ref,
632 mirror::Reference::ReferentOffset());
633 }
634
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const635 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
636 ALWAYS_INLINE
637 REQUIRES_SHARED(Locks::mutator_lock_) {
638 if (!root->IsNull()) {
639 VisitRoot(root);
640 }
641 }
642
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const643 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
644 ALWAYS_INLINE
645 REQUIRES_SHARED(Locks::mutator_lock_) {
646 CheckReference(root->AsMirrorPtr(), nullptr, MemberOffset(0));
647 }
648
649 private:
650 ConcurrentCopying* const collector_;
651
CheckReference(ObjPtr<mirror::Object> ref,ObjPtr<mirror::Object> holder,MemberOffset offset) const652 void CheckReference(ObjPtr<mirror::Object> ref,
653 ObjPtr<mirror::Object> holder,
654 MemberOffset offset) const
655 REQUIRES_SHARED(Locks::mutator_lock_) {
656 if (ref != nullptr) {
657 if (!collector_->immune_spaces_.ContainsObject(ref.Ptr())) {
658 // Not immune, must be a zygote large object.
659 space::LargeObjectSpace* large_object_space =
660 Runtime::Current()->GetHeap()->GetLargeObjectsSpace();
661 CHECK(large_object_space->Contains(ref.Ptr()) &&
662 large_object_space->IsZygoteLargeObject(Thread::Current(), ref.Ptr()))
663 << "Non gray object references non immune, non zygote large object "<< ref << " "
664 << mirror::Object::PrettyTypeOf(ref) << " in holder " << holder << " "
665 << mirror::Object::PrettyTypeOf(holder) << " offset=" << offset.Uint32Value();
666 } else {
667 // Make sure the large object class is immune since we will never scan the large object.
668 CHECK(collector_->immune_spaces_.ContainsObject(
669 ref->GetClass<kVerifyNone, kWithoutReadBarrier>()));
670 }
671 }
672 }
673 };
674
VerifyGrayImmuneObjects()675 void ConcurrentCopying::VerifyGrayImmuneObjects() {
676 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
677 for (auto& space : immune_spaces_.GetSpaces()) {
678 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
679 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
680 VerifyGrayImmuneObjectsVisitor visitor(this);
681 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(space->Begin()),
682 reinterpret_cast<uintptr_t>(space->Limit()),
683 [&visitor](mirror::Object* obj)
684 REQUIRES_SHARED(Locks::mutator_lock_) {
685 // If an object is not gray, it should only have references to things in the immune spaces.
686 if (obj->GetReadBarrierState() != ReadBarrier::GrayState()) {
687 obj->VisitReferences</*kVisitNativeRoots=*/true,
688 kDefaultVerifyFlags,
689 kWithoutReadBarrier>(visitor, visitor);
690 }
691 });
692 }
693 }
694
695 class ConcurrentCopying::VerifyNoMissingCardMarkVisitor {
696 public:
VerifyNoMissingCardMarkVisitor(ConcurrentCopying * cc,ObjPtr<mirror::Object> holder)697 VerifyNoMissingCardMarkVisitor(ConcurrentCopying* cc, ObjPtr<mirror::Object> holder)
698 : cc_(cc),
699 holder_(holder) {}
700
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const701 void operator()(ObjPtr<mirror::Object> obj,
702 MemberOffset offset,
703 bool is_static ATTRIBUTE_UNUSED) const
704 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
705 if (offset.Uint32Value() != mirror::Object::ClassOffset().Uint32Value()) {
706 CheckReference(obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(
707 offset), offset.Uint32Value());
708 }
709 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const710 void operator()(ObjPtr<mirror::Class> klass,
711 ObjPtr<mirror::Reference> ref) const
712 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
713 CHECK(klass->IsTypeOfReferenceClass());
714 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
715 }
716
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const717 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
718 REQUIRES_SHARED(Locks::mutator_lock_) {
719 if (!root->IsNull()) {
720 VisitRoot(root);
721 }
722 }
723
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const724 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
725 REQUIRES_SHARED(Locks::mutator_lock_) {
726 CheckReference(root->AsMirrorPtr());
727 }
728
CheckReference(mirror::Object * ref,int32_t offset=-1) const729 void CheckReference(mirror::Object* ref, int32_t offset = -1) const
730 REQUIRES_SHARED(Locks::mutator_lock_) {
731 if (ref != nullptr && cc_->region_space_->IsInNewlyAllocatedRegion(ref)) {
732 LOG(FATAL_WITHOUT_ABORT)
733 << holder_->PrettyTypeOf() << "(" << holder_.Ptr() << ") references object "
734 << ref->PrettyTypeOf() << "(" << ref << ") in newly allocated region at offset=" << offset;
735 LOG(FATAL_WITHOUT_ABORT) << "time=" << cc_->region_space_->Time();
736 constexpr const char* kIndent = " ";
737 LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(holder_.Ptr(), "holder_", kIndent);
738 LOG(FATAL_WITHOUT_ABORT) << cc_->DumpReferenceInfo(ref, "ref", kIndent);
739 LOG(FATAL) << "Unexpected reference to newly allocated region.";
740 }
741 }
742
743 private:
744 ConcurrentCopying* const cc_;
745 const ObjPtr<mirror::Object> holder_;
746 };
747
VerifyNoMissingCardMarks()748 void ConcurrentCopying::VerifyNoMissingCardMarks() {
749 auto visitor = [&](mirror::Object* obj)
750 REQUIRES(Locks::mutator_lock_)
751 REQUIRES(!mark_stack_lock_) {
752 // Objects on clean cards should never have references to newly allocated regions. Note
753 // that aged cards are also not clean.
754 if (heap_->GetCardTable()->GetCard(obj) == gc::accounting::CardTable::kCardClean) {
755 VerifyNoMissingCardMarkVisitor internal_visitor(this, /*holder=*/ obj);
756 obj->VisitReferences</*kVisitNativeRoots=*/true, kVerifyNone, kWithoutReadBarrier>(
757 internal_visitor, internal_visitor);
758 }
759 };
760 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
761 region_space_->Walk(visitor);
762 {
763 ReaderMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
764 heap_->GetLiveBitmap()->Visit(visitor);
765 }
766 }
767
768 // Switch threads that from from-space to to-space refs. Forward/mark the thread roots.
FlipThreadRoots()769 void ConcurrentCopying::FlipThreadRoots() {
770 TimingLogger::ScopedTiming split("FlipThreadRoots", GetTimings());
771 if (kVerboseMode || heap_->dump_region_info_before_gc_) {
772 LOG(INFO) << "time=" << region_space_->Time();
773 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
774 }
775 Thread* self = Thread::Current();
776 Locks::mutator_lock_->AssertNotHeld(self);
777 gc_barrier_->Init(self, 0);
778 ThreadFlipVisitor thread_flip_visitor(this, heap_->use_tlab_);
779 FlipCallback flip_callback(this);
780
781 size_t barrier_count = Runtime::Current()->GetThreadList()->FlipThreadRoots(
782 &thread_flip_visitor, &flip_callback, this, GetHeap()->GetGcPauseListener());
783
784 {
785 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
786 gc_barrier_->Increment(self, barrier_count);
787 }
788 is_asserting_to_space_invariant_ = true;
789 QuasiAtomic::ThreadFenceForConstructor();
790 if (kVerboseMode) {
791 LOG(INFO) << "time=" << region_space_->Time();
792 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
793 LOG(INFO) << "GC end of FlipThreadRoots";
794 }
795 }
796
797 template <bool kConcurrent>
798 class ConcurrentCopying::GrayImmuneObjectVisitor {
799 public:
GrayImmuneObjectVisitor(Thread * self)800 explicit GrayImmuneObjectVisitor(Thread* self) : self_(self) {}
801
operator ()(mirror::Object * obj) const802 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
803 if (kUseBakerReadBarrier && obj->GetReadBarrierState() == ReadBarrier::NonGrayState()) {
804 if (kConcurrent) {
805 Locks::mutator_lock_->AssertSharedHeld(self_);
806 obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
807 // Mod union table VisitObjects may visit the same object multiple times so we can't check
808 // the result of the atomic set.
809 } else {
810 Locks::mutator_lock_->AssertExclusiveHeld(self_);
811 obj->SetReadBarrierState(ReadBarrier::GrayState());
812 }
813 }
814 }
815
Callback(mirror::Object * obj,void * arg)816 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
817 reinterpret_cast<GrayImmuneObjectVisitor<kConcurrent>*>(arg)->operator()(obj);
818 }
819
820 private:
821 Thread* const self_;
822 };
823
GrayAllDirtyImmuneObjects()824 void ConcurrentCopying::GrayAllDirtyImmuneObjects() {
825 TimingLogger::ScopedTiming split("GrayAllDirtyImmuneObjects", GetTimings());
826 accounting::CardTable* const card_table = heap_->GetCardTable();
827 Thread* const self = Thread::Current();
828 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ true>;
829 VisitorType visitor(self);
830 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
831 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
832 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
833 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
834 // Mark all the objects on dirty cards since these may point to objects in other space.
835 // Once these are marked, the GC will eventually clear them later.
836 // Table is non null for boot image and zygote spaces. It is only null for application image
837 // spaces.
838 if (table != nullptr) {
839 table->ProcessCards();
840 table->VisitObjects(&VisitorType::Callback, &visitor);
841 // Don't clear cards here since we need to rescan in the pause. If we cleared the cards here,
842 // there would be races with the mutator marking new cards.
843 } else {
844 // Keep cards aged if we don't have a mod-union table since we may need to scan them in future
845 // GCs. This case is for app images.
846 card_table->ModifyCardsAtomic(
847 space->Begin(),
848 space->End(),
849 [](uint8_t card) {
850 return (card != gc::accounting::CardTable::kCardClean)
851 ? gc::accounting::CardTable::kCardAged
852 : card;
853 },
854 /* card modified visitor */ VoidFunctor());
855 card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
856 space->Begin(),
857 space->End(),
858 visitor,
859 gc::accounting::CardTable::kCardAged);
860 }
861 }
862 }
863
GrayAllNewlyDirtyImmuneObjects()864 void ConcurrentCopying::GrayAllNewlyDirtyImmuneObjects() {
865 TimingLogger::ScopedTiming split("(Paused)GrayAllNewlyDirtyImmuneObjects", GetTimings());
866 accounting::CardTable* const card_table = heap_->GetCardTable();
867 using VisitorType = GrayImmuneObjectVisitor</* kIsConcurrent= */ false>;
868 Thread* const self = Thread::Current();
869 VisitorType visitor(self);
870 WriterMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
871 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
872 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
873 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
874
875 // Don't need to scan aged cards since we did these before the pause. Note that scanning cards
876 // also handles the mod-union table cards.
877 card_table->Scan</*kClearCard=*/ false>(space->GetMarkBitmap(),
878 space->Begin(),
879 space->End(),
880 visitor,
881 gc::accounting::CardTable::kCardDirty);
882 if (table != nullptr) {
883 // Add the cards to the mod-union table so that we can clear cards to save RAM.
884 table->ProcessCards();
885 TimingLogger::ScopedTiming split2("(Paused)ClearCards", GetTimings());
886 card_table->ClearCardRange(space->Begin(),
887 AlignDown(space->End(), accounting::CardTable::kCardSize));
888 }
889 }
890 // Since all of the objects that may point to other spaces are gray, we can avoid all the read
891 // barriers in the immune spaces.
892 updated_all_immune_objects_.store(true, std::memory_order_relaxed);
893 }
894
SwapStacks()895 void ConcurrentCopying::SwapStacks() {
896 heap_->SwapStacks();
897 }
898
RecordLiveStackFreezeSize(Thread * self)899 void ConcurrentCopying::RecordLiveStackFreezeSize(Thread* self) {
900 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
901 live_stack_freeze_size_ = heap_->GetLiveStack()->Size();
902 }
903
904 // Used to visit objects in the immune spaces.
ScanImmuneObject(mirror::Object * obj)905 inline void ConcurrentCopying::ScanImmuneObject(mirror::Object* obj) {
906 DCHECK(obj != nullptr);
907 DCHECK(immune_spaces_.ContainsObject(obj));
908 // Update the fields without graying it or pushing it onto the mark stack.
909 if (use_generational_cc_ && young_gen_) {
910 // Young GC does not care about references to unevac space. It is safe to not gray these as
911 // long as scan immune objects happens after scanning the dirty cards.
912 Scan<true>(obj);
913 } else {
914 Scan<false>(obj);
915 }
916 }
917
918 class ConcurrentCopying::ImmuneSpaceScanObjVisitor {
919 public:
ImmuneSpaceScanObjVisitor(ConcurrentCopying * cc)920 explicit ImmuneSpaceScanObjVisitor(ConcurrentCopying* cc)
921 : collector_(cc) {}
922
operator ()(mirror::Object * obj) const923 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
924 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
925 // Only need to scan gray objects.
926 if (obj->GetReadBarrierState() == ReadBarrier::GrayState()) {
927 collector_->ScanImmuneObject(obj);
928 // Done scanning the object, go back to black (non-gray).
929 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
930 ReadBarrier::NonGrayState());
931 CHECK(success)
932 << Runtime::Current()->GetHeap()->GetVerification()->DumpObjectInfo(obj, "failed CAS");
933 }
934 } else {
935 collector_->ScanImmuneObject(obj);
936 }
937 }
938
Callback(mirror::Object * obj,void * arg)939 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
940 reinterpret_cast<ImmuneSpaceScanObjVisitor*>(arg)->operator()(obj);
941 }
942
943 private:
944 ConcurrentCopying* const collector_;
945 };
946
947 template <bool kAtomicTestAndSet>
948 class ConcurrentCopying::CaptureRootsForMarkingVisitor : public RootVisitor {
949 public:
CaptureRootsForMarkingVisitor(ConcurrentCopying * cc,Thread * self)950 explicit CaptureRootsForMarkingVisitor(ConcurrentCopying* cc, Thread* self)
951 : collector_(cc), self_(self) {}
952
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)953 void VisitRoots(mirror::Object*** roots,
954 size_t count,
955 const RootInfo& info ATTRIBUTE_UNUSED) override
956 REQUIRES_SHARED(Locks::mutator_lock_) {
957 for (size_t i = 0; i < count; ++i) {
958 mirror::Object** root = roots[i];
959 mirror::Object* ref = *root;
960 if (ref != nullptr && !collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
961 collector_->PushOntoMarkStack(self_, ref);
962 }
963 }
964 }
965
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)966 void VisitRoots(mirror::CompressedReference<mirror::Object>** roots,
967 size_t count,
968 const RootInfo& info ATTRIBUTE_UNUSED) override
969 REQUIRES_SHARED(Locks::mutator_lock_) {
970 for (size_t i = 0; i < count; ++i) {
971 mirror::CompressedReference<mirror::Object>* const root = roots[i];
972 if (!root->IsNull()) {
973 mirror::Object* ref = root->AsMirrorPtr();
974 if (!collector_->TestAndSetMarkBitForRef<kAtomicTestAndSet>(ref)) {
975 collector_->PushOntoMarkStack(self_, ref);
976 }
977 }
978 }
979 }
980
981 private:
982 ConcurrentCopying* const collector_;
983 Thread* const self_;
984 };
985
986 class ConcurrentCopying::RevokeThreadLocalMarkStackCheckpoint : public Closure {
987 public:
RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying * concurrent_copying,bool disable_weak_ref_access)988 RevokeThreadLocalMarkStackCheckpoint(ConcurrentCopying* concurrent_copying,
989 bool disable_weak_ref_access)
990 : concurrent_copying_(concurrent_copying),
991 disable_weak_ref_access_(disable_weak_ref_access) {
992 }
993
Run(Thread * thread)994 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
995 // Note: self is not necessarily equal to thread since thread may be suspended.
996 Thread* const self = Thread::Current();
997 CHECK(thread == self ||
998 thread->IsSuspended() ||
999 thread->GetState() == ThreadState::kWaitingPerformingGc)
1000 << thread->GetState() << " thread " << thread << " self " << self;
1001 // Revoke thread local mark stacks.
1002 {
1003 MutexLock mu(self, concurrent_copying_->mark_stack_lock_);
1004 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
1005 if (tl_mark_stack != nullptr) {
1006 concurrent_copying_->revoked_mark_stacks_.push_back(tl_mark_stack);
1007 thread->SetThreadLocalMarkStack(nullptr);
1008 }
1009 }
1010 // Disable weak ref access.
1011 if (disable_weak_ref_access_) {
1012 thread->SetWeakRefAccessEnabled(false);
1013 }
1014 // If thread is a running mutator, then act on behalf of the garbage collector.
1015 // See the code in ThreadList::RunCheckpoint.
1016 concurrent_copying_->GetBarrier().Pass(self);
1017 }
1018
1019 protected:
1020 ConcurrentCopying* const concurrent_copying_;
1021
1022 private:
1023 const bool disable_weak_ref_access_;
1024 };
1025
1026 class ConcurrentCopying::CaptureThreadRootsForMarkingAndCheckpoint :
1027 public RevokeThreadLocalMarkStackCheckpoint {
1028 public:
CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying * cc)1029 explicit CaptureThreadRootsForMarkingAndCheckpoint(ConcurrentCopying* cc) :
1030 RevokeThreadLocalMarkStackCheckpoint(cc, /* disable_weak_ref_access */ false) {}
1031
Run(Thread * thread)1032 void Run(Thread* thread) override
1033 REQUIRES_SHARED(Locks::mutator_lock_) {
1034 Thread* const self = Thread::Current();
1035 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
1036 // We can use the non-CAS VisitRoots functions below because we update thread-local GC roots
1037 // only.
1038 CaptureRootsForMarkingVisitor</*kAtomicTestAndSet*/ true> visitor(concurrent_copying_, self);
1039 thread->VisitRoots(&visitor, kVisitRootFlagAllRoots);
1040 // If thread_running_gc_ performed the root visit then its thread-local
1041 // mark-stack should be null as we directly push to gc_mark_stack_.
1042 CHECK(self == thread || self->GetThreadLocalMarkStack() == nullptr);
1043 // Barrier handling is done in the base class' Run() below.
1044 RevokeThreadLocalMarkStackCheckpoint::Run(thread);
1045 }
1046 };
1047
CaptureThreadRootsForMarking()1048 void ConcurrentCopying::CaptureThreadRootsForMarking() {
1049 TimingLogger::ScopedTiming split("CaptureThreadRootsForMarking", GetTimings());
1050 if (kVerboseMode) {
1051 LOG(INFO) << "time=" << region_space_->Time();
1052 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1053 }
1054 Thread* const self = Thread::Current();
1055 CaptureThreadRootsForMarkingAndCheckpoint check_point(this);
1056 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1057 gc_barrier_->Init(self, 0);
1058 size_t barrier_count = thread_list->RunCheckpoint(&check_point, /* callback */ nullptr);
1059 // If there are no threads to wait which implys that all the checkpoint functions are finished,
1060 // then no need to release the mutator lock.
1061 if (barrier_count == 0) {
1062 return;
1063 }
1064 Locks::mutator_lock_->SharedUnlock(self);
1065 {
1066 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
1067 gc_barrier_->Increment(self, barrier_count);
1068 }
1069 Locks::mutator_lock_->SharedLock(self);
1070 if (kVerboseMode) {
1071 LOG(INFO) << "time=" << region_space_->Time();
1072 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
1073 LOG(INFO) << "GC end of CaptureThreadRootsForMarking";
1074 }
1075 }
1076
1077 // Used to scan ref fields of an object.
1078 template <bool kHandleInterRegionRefs>
1079 class ConcurrentCopying::ComputeLiveBytesAndMarkRefFieldsVisitor {
1080 public:
ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying * collector,size_t obj_region_idx)1081 explicit ComputeLiveBytesAndMarkRefFieldsVisitor(ConcurrentCopying* collector,
1082 size_t obj_region_idx)
1083 : collector_(collector),
1084 obj_region_idx_(obj_region_idx),
1085 contains_inter_region_idx_(false) {}
1086
operator ()(mirror::Object * obj,MemberOffset offset,bool) const1087 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */) const
1088 ALWAYS_INLINE
1089 REQUIRES_SHARED(Locks::mutator_lock_)
1090 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
1091 DCHECK_EQ(collector_->RegionSpace()->RegionIdxForRef(obj), obj_region_idx_);
1092 DCHECK(kHandleInterRegionRefs || collector_->immune_spaces_.ContainsObject(obj));
1093 mirror::Object* ref =
1094 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
1095 // TODO(lokeshgidra): Remove the following condition once b/173676071 is fixed.
1096 if (UNLIKELY(ref == nullptr && offset == mirror::Object::ClassOffset())) {
1097 // It has been verified as a race condition (see b/173676071)! After a small
1098 // wait when we reload the class pointer, it turns out to be a valid class
1099 // object. So as a workaround, we can continue execution and log an error
1100 // that this happened.
1101 for (size_t i = 0; i < 1000; i++) {
1102 // Wait for 1ms at a time. Don't wait for more than 1 second in total.
1103 usleep(1000);
1104 ref = obj->GetClass<kVerifyNone, kWithoutReadBarrier>();
1105 if (ref != nullptr) {
1106 LOG(ERROR) << "klass pointer for obj: "
1107 << obj << " (" << mirror::Object::PrettyTypeOf(obj)
1108 << ") found to be null first. Reloading after a small wait fetched klass: "
1109 << ref << " (" << mirror::Object::PrettyTypeOf(ref) << ")";
1110 break;
1111 }
1112 }
1113
1114 if (UNLIKELY(ref == nullptr)) {
1115 // It must be heap corruption. Remove memory protection and dump data.
1116 collector_->region_space_->Unprotect();
1117 LOG(FATAL_WITHOUT_ABORT) << "klass pointer for ref: " << obj << " found to be null.";
1118 collector_->heap_->GetVerification()->LogHeapCorruption(obj, offset, ref, /* fatal */ true);
1119 }
1120 }
1121 CheckReference(ref);
1122 }
1123
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1124 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1125 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1126 DCHECK(klass->IsTypeOfReferenceClass());
1127 // If the referent is not null, then we must re-visit the object during
1128 // copying phase to enqueue it for delayed processing and setting
1129 // read-barrier state to gray to ensure that call to GetReferent() triggers
1130 // the read-barrier. We use same data structure that is used to remember
1131 // objects with inter-region refs for this purpose too.
1132 if (kHandleInterRegionRefs
1133 && !contains_inter_region_idx_
1134 && ref->AsReference()->GetReferent<kWithoutReadBarrier>() != nullptr) {
1135 contains_inter_region_idx_ = true;
1136 }
1137 }
1138
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1139 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1140 ALWAYS_INLINE
1141 REQUIRES_SHARED(Locks::mutator_lock_) {
1142 if (!root->IsNull()) {
1143 VisitRoot(root);
1144 }
1145 }
1146
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1147 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1148 ALWAYS_INLINE
1149 REQUIRES_SHARED(Locks::mutator_lock_) {
1150 CheckReference(root->AsMirrorPtr());
1151 }
1152
ContainsInterRegionRefs() const1153 bool ContainsInterRegionRefs() const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_) {
1154 return contains_inter_region_idx_;
1155 }
1156
1157 private:
CheckReference(mirror::Object * ref) const1158 void CheckReference(mirror::Object* ref) const
1159 REQUIRES_SHARED(Locks::mutator_lock_) {
1160 if (ref == nullptr) {
1161 // Nothing to do.
1162 return;
1163 }
1164 if (!collector_->TestAndSetMarkBitForRef(ref)) {
1165 collector_->PushOntoLocalMarkStack(ref);
1166 }
1167 if (kHandleInterRegionRefs && !contains_inter_region_idx_) {
1168 size_t ref_region_idx = collector_->RegionSpace()->RegionIdxForRef(ref);
1169 // If a region-space object refers to an outside object, we will have a
1170 // mismatch of region idx, but the object need not be re-visited in
1171 // copying phase.
1172 if (ref_region_idx != static_cast<size_t>(-1) && obj_region_idx_ != ref_region_idx) {
1173 contains_inter_region_idx_ = true;
1174 }
1175 }
1176 }
1177
1178 ConcurrentCopying* const collector_;
1179 const size_t obj_region_idx_;
1180 mutable bool contains_inter_region_idx_;
1181 };
1182
AddLiveBytesAndScanRef(mirror::Object * ref)1183 void ConcurrentCopying::AddLiveBytesAndScanRef(mirror::Object* ref) {
1184 DCHECK(ref != nullptr);
1185 DCHECK(!immune_spaces_.ContainsObject(ref));
1186 DCHECK(TestMarkBitmapForRef(ref));
1187 size_t obj_region_idx = static_cast<size_t>(-1);
1188 if (LIKELY(region_space_->HasAddress(ref))) {
1189 obj_region_idx = region_space_->RegionIdxForRefUnchecked(ref);
1190 // Add live bytes to the corresponding region
1191 if (!region_space_->IsRegionNewlyAllocated(obj_region_idx)) {
1192 // Newly Allocated regions are always chosen for evacuation. So no need
1193 // to update live_bytes_.
1194 size_t obj_size = ref->SizeOf<kDefaultVerifyFlags>();
1195 size_t alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
1196 region_space_->AddLiveBytes(ref, alloc_size);
1197 }
1198 }
1199 ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ true>
1200 visitor(this, obj_region_idx);
1201 ref->VisitReferences</*kVisitNativeRoots=*/ true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1202 visitor, visitor);
1203 // Mark the corresponding card dirty if the object contains any
1204 // inter-region reference.
1205 if (visitor.ContainsInterRegionRefs()) {
1206 if (obj_region_idx == static_cast<size_t>(-1)) {
1207 // If an inter-region ref has been found in a non-region-space, then it
1208 // must be non-moving-space. This is because this function cannot be
1209 // called on a immune-space object, and a large-object-space object has
1210 // only class object reference, which is either in some immune-space, or
1211 // in non-moving-space.
1212 DCHECK(heap_->non_moving_space_->HasAddress(ref));
1213 non_moving_space_inter_region_bitmap_.Set(ref);
1214 } else {
1215 region_space_inter_region_bitmap_.Set(ref);
1216 }
1217 }
1218 }
1219
1220 template <bool kAtomic>
TestAndSetMarkBitForRef(mirror::Object * ref)1221 bool ConcurrentCopying::TestAndSetMarkBitForRef(mirror::Object* ref) {
1222 accounting::ContinuousSpaceBitmap* bitmap = nullptr;
1223 accounting::LargeObjectBitmap* los_bitmap = nullptr;
1224 if (LIKELY(region_space_->HasAddress(ref))) {
1225 bitmap = region_space_bitmap_;
1226 } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1227 bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
1228 } else if (immune_spaces_.ContainsObject(ref)) {
1229 // References to immune space objects are always live.
1230 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1231 return true;
1232 } else {
1233 // Should be a large object. Must be page aligned and the LOS must exist.
1234 if (kIsDebugBuild
1235 && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
1236 // It must be heap corruption. Remove memory protection and dump data.
1237 region_space_->Unprotect();
1238 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1239 MemberOffset(0),
1240 ref,
1241 /* fatal */ true);
1242 }
1243 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
1244 }
1245 if (kAtomic) {
1246 return (bitmap != nullptr) ? bitmap->AtomicTestAndSet(ref) : los_bitmap->AtomicTestAndSet(ref);
1247 } else {
1248 return (bitmap != nullptr) ? bitmap->Set(ref) : los_bitmap->Set(ref);
1249 }
1250 }
1251
TestMarkBitmapForRef(mirror::Object * ref)1252 bool ConcurrentCopying::TestMarkBitmapForRef(mirror::Object* ref) {
1253 if (LIKELY(region_space_->HasAddress(ref))) {
1254 return region_space_bitmap_->Test(ref);
1255 } else if (heap_->GetNonMovingSpace()->HasAddress(ref)) {
1256 return heap_->GetNonMovingSpace()->GetMarkBitmap()->Test(ref);
1257 } else if (immune_spaces_.ContainsObject(ref)) {
1258 // References to immune space objects are always live.
1259 DCHECK(heap_mark_bitmap_->GetContinuousSpaceBitmap(ref)->Test(ref));
1260 return true;
1261 } else {
1262 // Should be a large object. Must be page aligned and the LOS must exist.
1263 if (kIsDebugBuild
1264 && (!IsAligned<kPageSize>(ref) || heap_->GetLargeObjectsSpace() == nullptr)) {
1265 // It must be heap corruption. Remove memory protection and dump data.
1266 region_space_->Unprotect();
1267 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
1268 MemberOffset(0),
1269 ref,
1270 /* fatal */ true);
1271 }
1272 return heap_->GetLargeObjectsSpace()->GetMarkBitmap()->Test(ref);
1273 }
1274 }
1275
PushOntoLocalMarkStack(mirror::Object * ref)1276 void ConcurrentCopying::PushOntoLocalMarkStack(mirror::Object* ref) {
1277 if (kIsDebugBuild) {
1278 Thread *self = Thread::Current();
1279 DCHECK_EQ(thread_running_gc_, self);
1280 DCHECK(self->GetThreadLocalMarkStack() == nullptr);
1281 }
1282 DCHECK_EQ(mark_stack_mode_.load(std::memory_order_relaxed), kMarkStackModeThreadLocal);
1283 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1284 ExpandGcMarkStack();
1285 }
1286 gc_mark_stack_->PushBack(ref);
1287 }
1288
ProcessMarkStackForMarkingAndComputeLiveBytes()1289 void ConcurrentCopying::ProcessMarkStackForMarkingAndComputeLiveBytes() {
1290 // Process thread-local mark stack containing thread roots
1291 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access */ false,
1292 /* checkpoint_callback */ nullptr,
1293 [this] (mirror::Object* ref)
1294 REQUIRES_SHARED(Locks::mutator_lock_) {
1295 AddLiveBytesAndScanRef(ref);
1296 });
1297 {
1298 MutexLock mu(thread_running_gc_, mark_stack_lock_);
1299 CHECK(revoked_mark_stacks_.empty());
1300 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
1301 }
1302
1303 while (!gc_mark_stack_->IsEmpty()) {
1304 mirror::Object* ref = gc_mark_stack_->PopBack();
1305 AddLiveBytesAndScanRef(ref);
1306 }
1307 }
1308
1309 class ConcurrentCopying::ImmuneSpaceCaptureRefsVisitor {
1310 public:
ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying * cc)1311 explicit ImmuneSpaceCaptureRefsVisitor(ConcurrentCopying* cc) : collector_(cc) {}
1312
operator ()(mirror::Object * obj) const1313 ALWAYS_INLINE void operator()(mirror::Object* obj) const REQUIRES_SHARED(Locks::mutator_lock_) {
1314 ComputeLiveBytesAndMarkRefFieldsVisitor</*kHandleInterRegionRefs*/ false>
1315 visitor(collector_, /*obj_region_idx*/ static_cast<size_t>(-1));
1316 obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
1317 visitor, visitor);
1318 }
1319
Callback(mirror::Object * obj,void * arg)1320 static void Callback(mirror::Object* obj, void* arg) REQUIRES_SHARED(Locks::mutator_lock_) {
1321 reinterpret_cast<ImmuneSpaceCaptureRefsVisitor*>(arg)->operator()(obj);
1322 }
1323
1324 private:
1325 ConcurrentCopying* const collector_;
1326 };
1327
1328 /* Invariants for two-phase CC
1329 * ===========================
1330 * A) Definitions
1331 * ---------------
1332 * 1) Black: marked in bitmap, rb_state is non-gray, and not in mark stack
1333 * 2) Black-clean: marked in bitmap, and corresponding card is clean/aged
1334 * 3) Black-dirty: marked in bitmap, and corresponding card is dirty
1335 * 4) Gray: marked in bitmap, and exists in mark stack
1336 * 5) Gray-dirty: marked in bitmap, rb_state is gray, corresponding card is
1337 * dirty, and exists in mark stack
1338 * 6) White: unmarked in bitmap, rb_state is non-gray, and not in mark stack
1339 *
1340 * B) Before marking phase
1341 * -----------------------
1342 * 1) All objects are white
1343 * 2) Cards are either clean or aged (cannot be asserted without a STW pause)
1344 * 3) Mark bitmap is cleared
1345 * 4) Mark stack is empty
1346 *
1347 * C) During marking phase
1348 * ------------------------
1349 * 1) If a black object holds an inter-region or white reference, then its
1350 * corresponding card is dirty. In other words, it changes from being
1351 * black-clean to black-dirty
1352 * 2) No black-clean object points to a white object
1353 *
1354 * D) After marking phase
1355 * -----------------------
1356 * 1) There are no gray objects
1357 * 2) All newly allocated objects are in from space
1358 * 3) No white object can be reachable, directly or otherwise, from a
1359 * black-clean object
1360 *
1361 * E) During copying phase
1362 * ------------------------
1363 * 1) Mutators cannot observe white and black-dirty objects
1364 * 2) New allocations are in to-space (newly allocated regions are part of to-space)
1365 * 3) An object in mark stack must have its rb_state = Gray
1366 *
1367 * F) During card table scan
1368 * --------------------------
1369 * 1) Referents corresponding to root references are gray or in to-space
1370 * 2) Every path from an object that is read or written by a mutator during
1371 * this period to a dirty black object goes through some gray object.
1372 * Mutators preserve this by graying black objects as needed during this
1373 * period. Ensures that a mutator never encounters a black dirty object.
1374 *
1375 * G) After card table scan
1376 * ------------------------
1377 * 1) There are no black-dirty objects
1378 * 2) Referents corresponding to root references are gray, black-clean or in
1379 * to-space
1380 *
1381 * H) After copying phase
1382 * -----------------------
1383 * 1) Mark stack is empty
1384 * 2) No references into evacuated from-space
1385 * 3) No reference to an object which is unmarked and is also not in newly
1386 * allocated region. In other words, no reference to white objects.
1387 */
1388
MarkingPhase()1389 void ConcurrentCopying::MarkingPhase() {
1390 TimingLogger::ScopedTiming split("MarkingPhase", GetTimings());
1391 if (kVerboseMode) {
1392 LOG(INFO) << "GC MarkingPhase";
1393 }
1394 accounting::CardTable* const card_table = heap_->GetCardTable();
1395 Thread* const self = Thread::Current();
1396 CHECK_EQ(self, thread_running_gc_);
1397 // Clear live_bytes_ of every non-free region, except the ones that are newly
1398 // allocated.
1399 region_space_->SetAllRegionLiveBytesZero();
1400 if (kIsDebugBuild) {
1401 region_space_->AssertAllRegionLiveBytesZeroOrCleared();
1402 }
1403 // Scan immune spaces
1404 {
1405 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1406 for (auto& space : immune_spaces_.GetSpaces()) {
1407 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1408 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1409 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1410 ImmuneSpaceCaptureRefsVisitor visitor(this);
1411 if (table != nullptr) {
1412 table->VisitObjects(ImmuneSpaceCaptureRefsVisitor::Callback, &visitor);
1413 } else {
1414 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1415 card_table->Scan<false>(
1416 live_bitmap,
1417 space->Begin(),
1418 space->Limit(),
1419 visitor,
1420 accounting::CardTable::kCardDirty - 1);
1421 }
1422 }
1423 }
1424 // Scan runtime roots
1425 {
1426 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1427 CaptureRootsForMarkingVisitor visitor(this, self);
1428 Runtime::Current()->VisitConcurrentRoots(&visitor, kVisitRootFlagAllRoots);
1429 }
1430 {
1431 // TODO: don't visit the transaction roots if it's not active.
1432 TimingLogger::ScopedTiming split2("VisitNonThreadRoots", GetTimings());
1433 CaptureRootsForMarkingVisitor visitor(this, self);
1434 Runtime::Current()->VisitNonThreadRoots(&visitor);
1435 }
1436 // Capture thread roots
1437 CaptureThreadRootsForMarking();
1438 // Process mark stack
1439 ProcessMarkStackForMarkingAndComputeLiveBytes();
1440
1441 if (kVerboseMode) {
1442 LOG(INFO) << "GC end of MarkingPhase";
1443 }
1444 }
1445
1446 template <bool kNoUnEvac>
ScanDirtyObject(mirror::Object * obj)1447 void ConcurrentCopying::ScanDirtyObject(mirror::Object* obj) {
1448 Scan<kNoUnEvac>(obj);
1449 // Set the read-barrier state of a reference-type object to gray if its
1450 // referent is not marked yet. This is to ensure that if GetReferent() is
1451 // called, it triggers the read-barrier to process the referent before use.
1452 if (UNLIKELY((obj->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass()))) {
1453 mirror::Object* referent =
1454 obj->AsReference<kVerifyNone, kWithoutReadBarrier>()->GetReferent<kWithoutReadBarrier>();
1455 if (referent != nullptr && !IsInToSpace(referent)) {
1456 obj->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState());
1457 }
1458 }
1459 }
1460
1461 // Concurrently mark roots that are guarded by read barriers and process the mark stack.
CopyingPhase()1462 void ConcurrentCopying::CopyingPhase() {
1463 TimingLogger::ScopedTiming split("CopyingPhase", GetTimings());
1464 if (kVerboseMode) {
1465 LOG(INFO) << "GC CopyingPhase";
1466 }
1467 Thread* self = Thread::Current();
1468 accounting::CardTable* const card_table = heap_->GetCardTable();
1469 if (kIsDebugBuild) {
1470 MutexLock mu(self, *Locks::thread_list_lock_);
1471 CHECK(weak_ref_access_enabled_);
1472 }
1473
1474 // Scan immune spaces.
1475 // Update all the fields in the immune spaces first without graying the objects so that we
1476 // minimize dirty pages in the immune spaces. Note mutators can concurrently access and gray some
1477 // of the objects.
1478 if (kUseBakerReadBarrier) {
1479 gc_grays_immune_objects_ = false;
1480 }
1481 if (use_generational_cc_) {
1482 if (kVerboseMode) {
1483 LOG(INFO) << "GC ScanCardsForSpace";
1484 }
1485 TimingLogger::ScopedTiming split2("ScanCardsForSpace", GetTimings());
1486 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1487 CHECK(!done_scanning_.load(std::memory_order_relaxed));
1488 if (kIsDebugBuild) {
1489 // Leave some time for mutators to race ahead to try and find races between the GC card
1490 // scanning and mutators reading references.
1491 usleep(10 * 1000);
1492 }
1493 for (space::ContinuousSpace* space : GetHeap()->GetContinuousSpaces()) {
1494 if (space->IsImageSpace() || space->IsZygoteSpace()) {
1495 // Image and zygote spaces are already handled since we gray the objects in the pause.
1496 continue;
1497 }
1498 // Scan all of the objects on dirty cards in unevac from space, and non moving space. These
1499 // are from previous GCs (or from marking phase of 2-phase full GC) and may reference things
1500 // in the from space.
1501 //
1502 // Note that we do not need to process the large-object space (the only discontinuous space)
1503 // as it contains only large string objects and large primitive array objects, that have no
1504 // reference to other objects, except their class. There is no need to scan these large
1505 // objects, as the String class and the primitive array classes are expected to never move
1506 // during a collection:
1507 // - In the case where we run with a boot image, these classes are part of the image space,
1508 // which is an immune space.
1509 // - In the case where we run without a boot image, these classes are allocated in the
1510 // non-moving space (see art::ClassLinker::InitWithoutImage).
1511 card_table->Scan<false>(
1512 space->GetMarkBitmap(),
1513 space->Begin(),
1514 space->End(),
1515 [this, space](mirror::Object* obj)
1516 REQUIRES(Locks::heap_bitmap_lock_)
1517 REQUIRES_SHARED(Locks::mutator_lock_) {
1518 // TODO: This code may be refactored to avoid scanning object while
1519 // done_scanning_ is false by setting rb_state to gray, and pushing the
1520 // object on mark stack. However, it will also require clearing the
1521 // corresponding mark-bit and, for region space objects,
1522 // decrementing the object's size from the corresponding region's
1523 // live_bytes.
1524 if (young_gen_) {
1525 // Don't push or gray unevac refs.
1526 if (kIsDebugBuild && space == region_space_) {
1527 // We may get unevac large objects.
1528 if (!region_space_->IsInUnevacFromSpace(obj)) {
1529 CHECK(region_space_bitmap_->Test(obj));
1530 region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
1531 LOG(FATAL) << "Scanning " << obj << " not in unevac space";
1532 }
1533 }
1534 ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1535 } else if (space != region_space_) {
1536 DCHECK(space == heap_->non_moving_space_);
1537 // We need to process un-evac references as they may be unprocessed,
1538 // if they skipped the marking phase due to heap mutation.
1539 ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1540 non_moving_space_inter_region_bitmap_.Clear(obj);
1541 } else if (region_space_->IsInUnevacFromSpace(obj)) {
1542 ScanDirtyObject</*kNoUnEvac*/ false>(obj);
1543 region_space_inter_region_bitmap_.Clear(obj);
1544 }
1545 },
1546 accounting::CardTable::kCardAged);
1547
1548 if (!young_gen_) {
1549 auto visitor = [this](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) {
1550 // We don't need to process un-evac references as any unprocessed
1551 // ones will be taken care of in the card-table scan above.
1552 ScanDirtyObject</*kNoUnEvac*/ true>(obj);
1553 };
1554 if (space == region_space_) {
1555 region_space_->ScanUnevacFromSpace(®ion_space_inter_region_bitmap_, visitor);
1556 } else {
1557 DCHECK(space == heap_->non_moving_space_);
1558 non_moving_space_inter_region_bitmap_.VisitMarkedRange(
1559 reinterpret_cast<uintptr_t>(space->Begin()),
1560 reinterpret_cast<uintptr_t>(space->End()),
1561 visitor);
1562 }
1563 }
1564 }
1565 // Done scanning unevac space.
1566 done_scanning_.store(true, std::memory_order_release);
1567 // NOTE: inter-region-ref bitmaps can be cleared here to release memory, if needed.
1568 // Currently we do it in ReclaimPhase().
1569 if (kVerboseMode) {
1570 LOG(INFO) << "GC end of ScanCardsForSpace";
1571 }
1572 }
1573 {
1574 // For a sticky-bit collection, this phase needs to be after the card scanning since the
1575 // mutator may read an unevac space object out of an image object. If the image object is no
1576 // longer gray it will trigger a read barrier for the unevac space object.
1577 TimingLogger::ScopedTiming split2("ScanImmuneSpaces", GetTimings());
1578 for (auto& space : immune_spaces_.GetSpaces()) {
1579 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
1580 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
1581 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
1582 ImmuneSpaceScanObjVisitor visitor(this);
1583 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects && table != nullptr) {
1584 table->VisitObjects(ImmuneSpaceScanObjVisitor::Callback, &visitor);
1585 } else {
1586 WriterMutexLock rmu(Thread::Current(), *Locks::heap_bitmap_lock_);
1587 card_table->Scan<false>(
1588 live_bitmap,
1589 space->Begin(),
1590 space->Limit(),
1591 visitor,
1592 accounting::CardTable::kCardDirty - 1);
1593 }
1594 }
1595 }
1596 if (kUseBakerReadBarrier) {
1597 // This release fence makes the field updates in the above loop visible before allowing mutator
1598 // getting access to immune objects without graying it first.
1599 updated_all_immune_objects_.store(true, std::memory_order_release);
1600 // Now "un-gray" (conceptually blacken) immune objects concurrently accessed and grayed by
1601 // mutators. We can't do this in the above loop because we would incorrectly disable the read
1602 // barrier by un-graying (conceptually blackening) an object which may point to an unscanned,
1603 // white object, breaking the to-space invariant (a mutator shall never observe a from-space
1604 // (white) object).
1605 //
1606 // Make sure no mutators are in the middle of marking an immune object before un-graying
1607 // (blackening) immune objects.
1608 IssueEmptyCheckpoint();
1609 MutexLock mu(Thread::Current(), immune_gray_stack_lock_);
1610 if (kVerboseMode) {
1611 LOG(INFO) << "immune gray stack size=" << immune_gray_stack_.size();
1612 }
1613 for (mirror::Object* obj : immune_gray_stack_) {
1614 DCHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::GrayState());
1615 bool success = obj->AtomicSetReadBarrierState(ReadBarrier::GrayState(),
1616 ReadBarrier::NonGrayState());
1617 DCHECK(success);
1618 }
1619 immune_gray_stack_.clear();
1620 }
1621
1622 {
1623 TimingLogger::ScopedTiming split2("VisitConcurrentRoots", GetTimings());
1624 Runtime::Current()->VisitConcurrentRoots(this, kVisitRootFlagAllRoots);
1625 }
1626 {
1627 // TODO: don't visit the transaction roots if it's not active.
1628 TimingLogger::ScopedTiming split5("VisitNonThreadRoots", GetTimings());
1629 Runtime::Current()->VisitNonThreadRoots(this);
1630 }
1631
1632 {
1633 TimingLogger::ScopedTiming split7("Process mark stacks and References", GetTimings());
1634
1635 // Process the mark stack once in the thread local stack mode. This marks most of the live
1636 // objects, aside from weak ref accesses with read barriers (Reference::GetReferent() and
1637 // system weaks) that may happen concurrently while we are processing the mark stack and newly
1638 // mark/gray objects and push refs on the mark stack.
1639 ProcessMarkStack();
1640
1641 ReferenceProcessor* rp = GetHeap()->GetReferenceProcessor();
1642 bool clear_soft_references = GetCurrentIteration()->GetClearSoftReferences();
1643 rp->Setup(self, this, /*concurrent=*/ true, clear_soft_references);
1644 if (!clear_soft_references) {
1645 // Forward as many SoftReferences as possible before inhibiting reference access.
1646 rp->ForwardSoftReferences(GetTimings());
1647 }
1648
1649 // We transition through three mark stack modes (thread-local, shared, GC-exclusive). The
1650 // primary reasons are that we need to use a checkpoint to process thread-local mark
1651 // stacks, but after we disable weak refs accesses, we can't use a checkpoint due to a deadlock
1652 // issue because running threads potentially blocking at WaitHoldingLocks, and that once we
1653 // reach the point where we process weak references, we can avoid using a lock when accessing
1654 // the GC mark stack, which makes mark stack processing more efficient.
1655
1656 // Switch to the shared mark stack mode. That is, revoke and process thread-local mark stacks
1657 // for the last time before transitioning to the shared mark stack mode, which would process new
1658 // refs that may have been concurrently pushed onto the mark stack during the ProcessMarkStack()
1659 // call above. At the same time, disable weak ref accesses using a per-thread flag. It's
1660 // important to do these together so that we can ensure that mutators won't
1661 // newly gray objects and push new refs onto the mark stack due to weak ref accesses and
1662 // mutators safely transition to the shared mark stack mode (without leaving unprocessed refs on
1663 // the thread-local mark stacks), without a race. This is why we use a thread-local weak ref
1664 // access flag Thread::tls32_.weak_ref_access_enabled_ instead of the global ones.
1665 // We must use a stop-the-world pause to disable weak ref access. A checkpoint may lead to a
1666 // deadlock if one mutator acquires a low-level mutex and then gets blocked while accessing
1667 // a weak-ref (after participating in the checkpoint), and another mutator indefinitely waits
1668 // for the mutex before it participates in the checkpoint. Consequently, the gc-thread blocks
1669 // forever as the checkpoint never finishes (See runtime/mutator_gc_coord.md).
1670 SwitchToSharedMarkStackMode();
1671 CHECK(!self->GetWeakRefAccessEnabled());
1672
1673 // Now that weak refs accesses are disabled, once we exhaust the shared mark stack again here
1674 // (which may be non-empty if there were refs found on thread-local mark stacks during the above
1675 // SwitchToSharedMarkStackMode() call), we won't have new refs to process, that is, mutators
1676 // (via read barriers) have no way to produce any more refs to process. Marking converges once
1677 // before we process weak refs below.
1678 ProcessMarkStack();
1679 CheckEmptyMarkStack();
1680
1681 // Switch to the GC exclusive mark stack mode so that we can process the mark stack without a
1682 // lock from this point on.
1683 SwitchToGcExclusiveMarkStackMode();
1684 CheckEmptyMarkStack();
1685 if (kVerboseMode) {
1686 LOG(INFO) << "ProcessReferences";
1687 }
1688 // Process weak references. This also marks through finalizers. Although
1689 // reference processing is "disabled", some accesses will proceed once we've ensured that
1690 // objects directly reachable by the mutator are marked, i.e. before we mark through
1691 // finalizers.
1692 ProcessReferences(self);
1693 CheckEmptyMarkStack();
1694 // JNI WeakGlobalRefs and most other system weaks cannot be processed until we're done marking
1695 // through finalizers, since such references to finalizer-reachable objects must be preserved.
1696 if (kVerboseMode) {
1697 LOG(INFO) << "SweepSystemWeaks";
1698 }
1699 SweepSystemWeaks(self);
1700 CheckEmptyMarkStack();
1701 ReenableWeakRefAccess(self);
1702 if (kVerboseMode) {
1703 LOG(INFO) << "SweepSystemWeaks done";
1704 }
1705 // Marking is done. Disable marking.
1706 DisableMarking();
1707 CheckEmptyMarkStack();
1708 }
1709
1710 if (kIsDebugBuild) {
1711 MutexLock mu(self, *Locks::thread_list_lock_);
1712 CHECK(weak_ref_access_enabled_);
1713 }
1714 if (kVerboseMode) {
1715 LOG(INFO) << "GC end of CopyingPhase";
1716 }
1717 }
1718
ReenableWeakRefAccess(Thread * self)1719 void ConcurrentCopying::ReenableWeakRefAccess(Thread* self) {
1720 if (kVerboseMode) {
1721 LOG(INFO) << "ReenableWeakRefAccess";
1722 }
1723 // Iterate all threads (don't need to or can't use a checkpoint) and re-enable weak ref access.
1724 {
1725 MutexLock mu(self, *Locks::thread_list_lock_);
1726 weak_ref_access_enabled_ = true; // This is for new threads.
1727 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
1728 for (Thread* thread : thread_list) {
1729 thread->SetWeakRefAccessEnabled(true);
1730 }
1731 }
1732 // Unblock blocking threads.
1733 GetHeap()->GetReferenceProcessor()->BroadcastForSlowPath(self);
1734 Runtime::Current()->BroadcastForNewSystemWeaks();
1735 }
1736
1737 class ConcurrentCopying::DisableMarkingCheckpoint : public Closure {
1738 public:
DisableMarkingCheckpoint(ConcurrentCopying * concurrent_copying)1739 explicit DisableMarkingCheckpoint(ConcurrentCopying* concurrent_copying)
1740 : concurrent_copying_(concurrent_copying) {
1741 }
1742
Run(Thread * thread)1743 void Run(Thread* thread) override NO_THREAD_SAFETY_ANALYSIS {
1744 // Note: self is not necessarily equal to thread since thread may be suspended.
1745 Thread* self = Thread::Current();
1746 DCHECK(thread == self ||
1747 thread->IsSuspended() ||
1748 thread->GetState() == ThreadState::kWaitingPerformingGc)
1749 << thread->GetState() << " thread " << thread << " self " << self;
1750 // We sweep interpreter caches here so that it can be done after all
1751 // reachable objects are marked and the mutators can sweep their caches
1752 // without synchronization.
1753 thread->SweepInterpreterCache(concurrent_copying_);
1754 // Disable the thread-local is_gc_marking flag.
1755 // Note a thread that has just started right before this checkpoint may have already this flag
1756 // set to false, which is ok.
1757 thread->SetIsGcMarkingAndUpdateEntrypoints(false);
1758 // If thread is a running mutator, then act on behalf of the garbage collector.
1759 // See the code in ThreadList::RunCheckpoint.
1760 concurrent_copying_->GetBarrier().Pass(self);
1761 }
1762
1763 private:
1764 ConcurrentCopying* const concurrent_copying_;
1765 };
1766
1767 class ConcurrentCopying::DisableMarkingCallback : public Closure {
1768 public:
DisableMarkingCallback(ConcurrentCopying * concurrent_copying)1769 explicit DisableMarkingCallback(ConcurrentCopying* concurrent_copying)
1770 : concurrent_copying_(concurrent_copying) {
1771 }
1772
Run(Thread * self ATTRIBUTE_UNUSED)1773 void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
1774 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
1775 // to avoid a race with ThreadList::Register().
1776 CHECK(concurrent_copying_->is_marking_);
1777 concurrent_copying_->is_marking_ = false;
1778 if (kUseBakerReadBarrier && kGrayDirtyImmuneObjects) {
1779 CHECK(concurrent_copying_->is_using_read_barrier_entrypoints_);
1780 concurrent_copying_->is_using_read_barrier_entrypoints_ = false;
1781 } else {
1782 CHECK(!concurrent_copying_->is_using_read_barrier_entrypoints_);
1783 }
1784 }
1785
1786 private:
1787 ConcurrentCopying* const concurrent_copying_;
1788 };
1789
IssueDisableMarkingCheckpoint()1790 void ConcurrentCopying::IssueDisableMarkingCheckpoint() {
1791 Thread* self = Thread::Current();
1792 DisableMarkingCheckpoint check_point(this);
1793 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1794 gc_barrier_->Init(self, 0);
1795 DisableMarkingCallback dmc(this);
1796 size_t barrier_count = thread_list->RunCheckpoint(&check_point, &dmc);
1797 // If there are no threads to wait which implies that all the checkpoint functions are finished,
1798 // then no need to release the mutator lock.
1799 if (barrier_count == 0) {
1800 return;
1801 }
1802 // Release locks then wait for all mutator threads to pass the barrier.
1803 Locks::mutator_lock_->SharedUnlock(self);
1804 {
1805 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
1806 gc_barrier_->Increment(self, barrier_count);
1807 }
1808 Locks::mutator_lock_->SharedLock(self);
1809 }
1810
DisableMarking()1811 void ConcurrentCopying::DisableMarking() {
1812 // Use a checkpoint to turn off the global is_marking and the thread-local is_gc_marking flags and
1813 // to ensure no threads are still in the middle of a read barrier which may have a from-space ref
1814 // cached in a local variable.
1815 IssueDisableMarkingCheckpoint();
1816 if (kUseTableLookupReadBarrier) {
1817 heap_->rb_table_->ClearAll();
1818 DCHECK(heap_->rb_table_->IsAllCleared());
1819 }
1820 is_mark_stack_push_disallowed_.store(1, std::memory_order_seq_cst);
1821 mark_stack_mode_.store(kMarkStackModeOff, std::memory_order_seq_cst);
1822 }
1823
IssueEmptyCheckpoint()1824 void ConcurrentCopying::IssueEmptyCheckpoint() {
1825 Thread* self = Thread::Current();
1826 ThreadList* thread_list = Runtime::Current()->GetThreadList();
1827 // Release locks then wait for all mutator threads to pass the barrier.
1828 Locks::mutator_lock_->SharedUnlock(self);
1829 thread_list->RunEmptyCheckpoint();
1830 Locks::mutator_lock_->SharedLock(self);
1831 }
1832
ExpandGcMarkStack()1833 void ConcurrentCopying::ExpandGcMarkStack() {
1834 DCHECK(gc_mark_stack_->IsFull());
1835 const size_t new_size = gc_mark_stack_->Capacity() * 2;
1836 std::vector<StackReference<mirror::Object>> temp(gc_mark_stack_->Begin(),
1837 gc_mark_stack_->End());
1838 gc_mark_stack_->Resize(new_size);
1839 for (auto& ref : temp) {
1840 gc_mark_stack_->PushBack(ref.AsMirrorPtr());
1841 }
1842 DCHECK(!gc_mark_stack_->IsFull());
1843 }
1844
PushOntoMarkStack(Thread * const self,mirror::Object * to_ref)1845 void ConcurrentCopying::PushOntoMarkStack(Thread* const self, mirror::Object* to_ref) {
1846 CHECK_EQ(is_mark_stack_push_disallowed_.load(std::memory_order_relaxed), 0)
1847 << " " << to_ref << " " << mirror::Object::PrettyTypeOf(to_ref);
1848 CHECK(thread_running_gc_ != nullptr);
1849 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
1850 if (LIKELY(mark_stack_mode == kMarkStackModeThreadLocal)) {
1851 if (LIKELY(self == thread_running_gc_)) {
1852 // If GC-running thread, use the GC mark stack instead of a thread-local mark stack.
1853 CHECK(self->GetThreadLocalMarkStack() == nullptr);
1854 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1855 ExpandGcMarkStack();
1856 }
1857 gc_mark_stack_->PushBack(to_ref);
1858 } else {
1859 // Otherwise, use a thread-local mark stack.
1860 accounting::AtomicStack<mirror::Object>* tl_mark_stack = self->GetThreadLocalMarkStack();
1861 if (UNLIKELY(tl_mark_stack == nullptr || tl_mark_stack->IsFull())) {
1862 MutexLock mu(self, mark_stack_lock_);
1863 // Get a new thread local mark stack.
1864 accounting::AtomicStack<mirror::Object>* new_tl_mark_stack;
1865 if (!pooled_mark_stacks_.empty()) {
1866 // Use a pooled mark stack.
1867 new_tl_mark_stack = pooled_mark_stacks_.back();
1868 pooled_mark_stacks_.pop_back();
1869 } else {
1870 // None pooled. Create a new one.
1871 new_tl_mark_stack =
1872 accounting::AtomicStack<mirror::Object>::Create(
1873 "thread local mark stack", 4 * KB, 4 * KB);
1874 }
1875 DCHECK(new_tl_mark_stack != nullptr);
1876 DCHECK(new_tl_mark_stack->IsEmpty());
1877 new_tl_mark_stack->PushBack(to_ref);
1878 self->SetThreadLocalMarkStack(new_tl_mark_stack);
1879 if (tl_mark_stack != nullptr) {
1880 // Store the old full stack into a vector.
1881 revoked_mark_stacks_.push_back(tl_mark_stack);
1882 }
1883 } else {
1884 tl_mark_stack->PushBack(to_ref);
1885 }
1886 }
1887 } else if (mark_stack_mode == kMarkStackModeShared) {
1888 // Access the shared GC mark stack with a lock.
1889 MutexLock mu(self, mark_stack_lock_);
1890 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1891 ExpandGcMarkStack();
1892 }
1893 gc_mark_stack_->PushBack(to_ref);
1894 } else {
1895 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
1896 static_cast<uint32_t>(kMarkStackModeGcExclusive))
1897 << "ref=" << to_ref
1898 << " self->gc_marking=" << self->GetIsGcMarking()
1899 << " cc->is_marking=" << is_marking_;
1900 CHECK(self == thread_running_gc_)
1901 << "Only GC-running thread should access the mark stack "
1902 << "in the GC exclusive mark stack mode. "
1903 << "ref=" << to_ref
1904 << " self->gc_marking=" << self->GetIsGcMarking()
1905 << " cc->is_marking=" << is_marking_;
1906 // Access the GC mark stack without a lock.
1907 if (UNLIKELY(gc_mark_stack_->IsFull())) {
1908 ExpandGcMarkStack();
1909 }
1910 gc_mark_stack_->PushBack(to_ref);
1911 }
1912 }
1913
GetAllocationStack()1914 accounting::ObjectStack* ConcurrentCopying::GetAllocationStack() {
1915 return heap_->allocation_stack_.get();
1916 }
1917
GetLiveStack()1918 accounting::ObjectStack* ConcurrentCopying::GetLiveStack() {
1919 return heap_->live_stack_.get();
1920 }
1921
1922 // The following visitors are used to verify that there's no references to the from-space left after
1923 // marking.
1924 class ConcurrentCopying::VerifyNoFromSpaceRefsVisitor : public SingleRootVisitor {
1925 public:
VerifyNoFromSpaceRefsVisitor(ConcurrentCopying * collector)1926 explicit VerifyNoFromSpaceRefsVisitor(ConcurrentCopying* collector)
1927 : collector_(collector) {}
1928
operator ()(mirror::Object * ref,MemberOffset offset=MemberOffset (0),mirror::Object * holder=nullptr) const1929 void operator()(mirror::Object* ref,
1930 MemberOffset offset = MemberOffset(0),
1931 mirror::Object* holder = nullptr) const
1932 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1933 if (ref == nullptr) {
1934 // OK.
1935 return;
1936 }
1937 collector_->AssertToSpaceInvariant(holder, offset, ref);
1938 if (kUseBakerReadBarrier) {
1939 CHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState())
1940 << "Ref " << ref << " " << ref->PrettyTypeOf() << " has gray rb_state";
1941 }
1942 }
1943
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)1944 void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
1945 override REQUIRES_SHARED(Locks::mutator_lock_) {
1946 DCHECK(root != nullptr);
1947 operator()(root);
1948 }
1949
1950 private:
1951 ConcurrentCopying* const collector_;
1952 };
1953
1954 class ConcurrentCopying::VerifyNoFromSpaceRefsFieldVisitor {
1955 public:
VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying * collector)1956 explicit VerifyNoFromSpaceRefsFieldVisitor(ConcurrentCopying* collector)
1957 : collector_(collector) {}
1958
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1959 void operator()(ObjPtr<mirror::Object> obj,
1960 MemberOffset offset,
1961 bool is_static ATTRIBUTE_UNUSED) const
1962 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1963 mirror::Object* ref =
1964 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
1965 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1966 visitor(ref, offset, obj.Ptr());
1967 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1968 void operator()(ObjPtr<mirror::Class> klass,
1969 ObjPtr<mirror::Reference> ref) const
1970 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1971 CHECK(klass->IsTypeOfReferenceClass());
1972 this->operator()(ref, mirror::Reference::ReferentOffset(), false);
1973 }
1974
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1975 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1976 REQUIRES_SHARED(Locks::mutator_lock_) {
1977 if (!root->IsNull()) {
1978 VisitRoot(root);
1979 }
1980 }
1981
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1982 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1983 REQUIRES_SHARED(Locks::mutator_lock_) {
1984 VerifyNoFromSpaceRefsVisitor visitor(collector_);
1985 visitor(root->AsMirrorPtr());
1986 }
1987
1988 private:
1989 ConcurrentCopying* const collector_;
1990 };
1991
1992 // Verify there's no from-space references left after the marking phase.
VerifyNoFromSpaceReferences()1993 void ConcurrentCopying::VerifyNoFromSpaceReferences() {
1994 Thread* self = Thread::Current();
1995 DCHECK(Locks::mutator_lock_->IsExclusiveHeld(self));
1996 // Verify all threads have is_gc_marking to be false
1997 {
1998 MutexLock mu(self, *Locks::thread_list_lock_);
1999 std::list<Thread*> thread_list = Runtime::Current()->GetThreadList()->GetList();
2000 for (Thread* thread : thread_list) {
2001 CHECK(!thread->GetIsGcMarking());
2002 }
2003 }
2004
2005 auto verify_no_from_space_refs_visitor = [&](mirror::Object* obj)
2006 REQUIRES_SHARED(Locks::mutator_lock_) {
2007 CHECK(obj != nullptr);
2008 space::RegionSpace* region_space = RegionSpace();
2009 CHECK(!region_space->IsInFromSpace(obj)) << "Scanning object " << obj << " in from space";
2010 VerifyNoFromSpaceRefsFieldVisitor visitor(this);
2011 obj->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
2012 visitor,
2013 visitor);
2014 if (kUseBakerReadBarrier) {
2015 CHECK_EQ(obj->GetReadBarrierState(), ReadBarrier::NonGrayState())
2016 << "obj=" << obj << " has gray rb_state " << obj->GetReadBarrierState();
2017 }
2018 };
2019 // Roots.
2020 {
2021 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2022 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
2023 Runtime::Current()->VisitRoots(&ref_visitor);
2024 }
2025 // The to-space.
2026 region_space_->WalkToSpace(verify_no_from_space_refs_visitor);
2027 // Non-moving spaces.
2028 {
2029 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2030 heap_->GetMarkBitmap()->Visit(verify_no_from_space_refs_visitor);
2031 }
2032 // The alloc stack.
2033 {
2034 VerifyNoFromSpaceRefsVisitor ref_visitor(this);
2035 for (auto* it = heap_->allocation_stack_->Begin(), *end = heap_->allocation_stack_->End();
2036 it < end; ++it) {
2037 mirror::Object* const obj = it->AsMirrorPtr();
2038 if (obj != nullptr && obj->GetClass() != nullptr) {
2039 // TODO: need to call this only if obj is alive?
2040 ref_visitor(obj);
2041 verify_no_from_space_refs_visitor(obj);
2042 }
2043 }
2044 }
2045 // TODO: LOS. But only refs in LOS are classes.
2046 }
2047
2048 // The following visitors are used to assert the to-space invariant.
2049 class ConcurrentCopying::AssertToSpaceInvariantFieldVisitor {
2050 public:
AssertToSpaceInvariantFieldVisitor(ConcurrentCopying * collector)2051 explicit AssertToSpaceInvariantFieldVisitor(ConcurrentCopying* collector)
2052 : collector_(collector) {}
2053
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const2054 void operator()(ObjPtr<mirror::Object> obj,
2055 MemberOffset offset,
2056 bool is_static ATTRIBUTE_UNUSED) const
2057 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
2058 mirror::Object* ref =
2059 obj->GetFieldObject<mirror::Object, kDefaultVerifyFlags, kWithoutReadBarrier>(offset);
2060 collector_->AssertToSpaceInvariant(obj.Ptr(), offset, ref);
2061 }
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const2062 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref ATTRIBUTE_UNUSED) const
2063 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
2064 CHECK(klass->IsTypeOfReferenceClass());
2065 }
2066
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const2067 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
2068 REQUIRES_SHARED(Locks::mutator_lock_) {
2069 if (!root->IsNull()) {
2070 VisitRoot(root);
2071 }
2072 }
2073
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const2074 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
2075 REQUIRES_SHARED(Locks::mutator_lock_) {
2076 mirror::Object* ref = root->AsMirrorPtr();
2077 collector_->AssertToSpaceInvariant(/* obj */ nullptr, MemberOffset(0), ref);
2078 }
2079
2080 private:
2081 ConcurrentCopying* const collector_;
2082 };
2083
RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback)2084 void ConcurrentCopying::RevokeThreadLocalMarkStacks(bool disable_weak_ref_access,
2085 Closure* checkpoint_callback) {
2086 Thread* self = Thread::Current();
2087 Locks::mutator_lock_->AssertSharedHeld(self);
2088 ThreadList* thread_list = Runtime::Current()->GetThreadList();
2089 RevokeThreadLocalMarkStackCheckpoint check_point(this, disable_weak_ref_access);
2090 if (disable_weak_ref_access) {
2091 // We're the only thread that could possibly ask for exclusive access here.
2092 Locks::mutator_lock_->SharedUnlock(self);
2093 {
2094 ScopedPause pause(this);
2095 MutexLock mu(self, *Locks::thread_list_lock_);
2096 checkpoint_callback->Run(self);
2097 for (Thread* thread : thread_list->GetList()) {
2098 check_point.Run(thread);
2099 }
2100 }
2101 Locks::mutator_lock_->SharedLock(self);
2102 } else {
2103 gc_barrier_->Init(self, 0);
2104 size_t barrier_count = thread_list->RunCheckpoint(&check_point, checkpoint_callback);
2105 // If there are no threads to wait which implys that all the checkpoint functions are finished,
2106 // then no need to release the mutator lock.
2107 if (barrier_count == 0) {
2108 return;
2109 }
2110 Locks::mutator_lock_->SharedUnlock(self);
2111 {
2112 ScopedThreadStateChange tsc(self, ThreadState::kWaitingForCheckPointsToRun);
2113 gc_barrier_->Increment(self, barrier_count);
2114 }
2115 Locks::mutator_lock_->SharedLock(self);
2116 }
2117 }
2118
RevokeThreadLocalMarkStack(Thread * thread)2119 void ConcurrentCopying::RevokeThreadLocalMarkStack(Thread* thread) {
2120 Thread* self = Thread::Current();
2121 CHECK_EQ(self, thread);
2122 MutexLock mu(self, mark_stack_lock_);
2123 accounting::AtomicStack<mirror::Object>* tl_mark_stack = thread->GetThreadLocalMarkStack();
2124 if (tl_mark_stack != nullptr) {
2125 CHECK(is_marking_);
2126 revoked_mark_stacks_.push_back(tl_mark_stack);
2127 thread->SetThreadLocalMarkStack(nullptr);
2128 }
2129 }
2130
ProcessMarkStack()2131 void ConcurrentCopying::ProcessMarkStack() {
2132 if (kVerboseMode) {
2133 LOG(INFO) << "ProcessMarkStack. ";
2134 }
2135 bool empty_prev = false;
2136 while (true) {
2137 bool empty = ProcessMarkStackOnce();
2138 if (empty_prev && empty) {
2139 // Saw empty mark stack for a second time, done.
2140 break;
2141 }
2142 empty_prev = empty;
2143 }
2144 }
2145
ProcessMarkStackOnce()2146 bool ConcurrentCopying::ProcessMarkStackOnce() {
2147 DCHECK(thread_running_gc_ != nullptr);
2148 Thread* const self = Thread::Current();
2149 DCHECK(self == thread_running_gc_);
2150 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2151 size_t count = 0;
2152 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2153 if (mark_stack_mode == kMarkStackModeThreadLocal) {
2154 // Process the thread-local mark stacks and the GC mark stack.
2155 count += ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ false,
2156 /* checkpoint_callback= */ nullptr,
2157 [this] (mirror::Object* ref)
2158 REQUIRES_SHARED(Locks::mutator_lock_) {
2159 ProcessMarkStackRef(ref);
2160 });
2161 while (!gc_mark_stack_->IsEmpty()) {
2162 mirror::Object* to_ref = gc_mark_stack_->PopBack();
2163 ProcessMarkStackRef(to_ref);
2164 ++count;
2165 }
2166 gc_mark_stack_->Reset();
2167 } else if (mark_stack_mode == kMarkStackModeShared) {
2168 // Do an empty checkpoint to avoid a race with a mutator preempted in the middle of a read
2169 // barrier but before pushing onto the mark stack. b/32508093. Note the weak ref access is
2170 // disabled at this point.
2171 IssueEmptyCheckpoint();
2172 // Process the shared GC mark stack with a lock.
2173 {
2174 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2175 CHECK(revoked_mark_stacks_.empty());
2176 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2177 }
2178 while (true) {
2179 std::vector<mirror::Object*> refs;
2180 {
2181 // Copy refs with lock. Note the number of refs should be small.
2182 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2183 if (gc_mark_stack_->IsEmpty()) {
2184 break;
2185 }
2186 for (StackReference<mirror::Object>* p = gc_mark_stack_->Begin();
2187 p != gc_mark_stack_->End(); ++p) {
2188 refs.push_back(p->AsMirrorPtr());
2189 }
2190 gc_mark_stack_->Reset();
2191 }
2192 for (mirror::Object* ref : refs) {
2193 ProcessMarkStackRef(ref);
2194 ++count;
2195 }
2196 }
2197 } else {
2198 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode),
2199 static_cast<uint32_t>(kMarkStackModeGcExclusive));
2200 {
2201 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2202 CHECK(revoked_mark_stacks_.empty());
2203 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2204 }
2205 // Process the GC mark stack in the exclusive mode. No need to take the lock.
2206 while (!gc_mark_stack_->IsEmpty()) {
2207 mirror::Object* to_ref = gc_mark_stack_->PopBack();
2208 ProcessMarkStackRef(to_ref);
2209 ++count;
2210 }
2211 gc_mark_stack_->Reset();
2212 }
2213
2214 // Return true if the stack was empty.
2215 return count == 0;
2216 }
2217
2218 template <typename Processor>
ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,Closure * checkpoint_callback,const Processor & processor)2219 size_t ConcurrentCopying::ProcessThreadLocalMarkStacks(bool disable_weak_ref_access,
2220 Closure* checkpoint_callback,
2221 const Processor& processor) {
2222 // Run a checkpoint to collect all thread local mark stacks and iterate over them all.
2223 RevokeThreadLocalMarkStacks(disable_weak_ref_access, checkpoint_callback);
2224 if (disable_weak_ref_access) {
2225 CHECK_EQ(static_cast<uint32_t>(mark_stack_mode_.load(std::memory_order_relaxed)),
2226 static_cast<uint32_t>(kMarkStackModeShared));
2227 }
2228 size_t count = 0;
2229 std::vector<accounting::AtomicStack<mirror::Object>*> mark_stacks;
2230 {
2231 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2232 // Make a copy of the mark stack vector.
2233 mark_stacks = revoked_mark_stacks_;
2234 revoked_mark_stacks_.clear();
2235 }
2236 for (accounting::AtomicStack<mirror::Object>* mark_stack : mark_stacks) {
2237 for (StackReference<mirror::Object>* p = mark_stack->Begin(); p != mark_stack->End(); ++p) {
2238 mirror::Object* to_ref = p->AsMirrorPtr();
2239 processor(to_ref);
2240 ++count;
2241 }
2242 {
2243 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2244 if (pooled_mark_stacks_.size() >= kMarkStackPoolSize) {
2245 // The pool has enough. Delete it.
2246 delete mark_stack;
2247 } else {
2248 // Otherwise, put it into the pool for later reuse.
2249 mark_stack->Reset();
2250 pooled_mark_stacks_.push_back(mark_stack);
2251 }
2252 }
2253 }
2254 if (disable_weak_ref_access) {
2255 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2256 CHECK(revoked_mark_stacks_.empty());
2257 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2258 }
2259 return count;
2260 }
2261
ProcessMarkStackRef(mirror::Object * to_ref)2262 inline void ConcurrentCopying::ProcessMarkStackRef(mirror::Object* to_ref) {
2263 DCHECK(!region_space_->IsInFromSpace(to_ref));
2264 size_t obj_size = 0;
2265 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(to_ref);
2266 if (kUseBakerReadBarrier) {
2267 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2268 << " to_ref=" << to_ref
2269 << " rb_state=" << to_ref->GetReadBarrierState()
2270 << " is_marked=" << IsMarked(to_ref)
2271 << " type=" << to_ref->PrettyTypeOf()
2272 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2273 << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2274 << " region_type=" << rtype;
2275 }
2276 bool add_to_live_bytes = false;
2277 // Invariant: There should be no object from a newly-allocated
2278 // region (either large or non-large) on the mark stack.
2279 DCHECK(!region_space_->IsInNewlyAllocatedRegion(to_ref)) << to_ref;
2280 bool perform_scan = false;
2281 switch (rtype) {
2282 case space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace:
2283 // Mark the bitmap only in the GC thread here so that we don't need a CAS.
2284 if (!kUseBakerReadBarrier || !region_space_bitmap_->Set(to_ref)) {
2285 // It may be already marked if we accidentally pushed the same object twice due to the racy
2286 // bitmap read in MarkUnevacFromSpaceRegion.
2287 if (use_generational_cc_ && young_gen_) {
2288 CHECK(region_space_->IsLargeObject(to_ref));
2289 region_space_->ZeroLiveBytesForLargeObject(to_ref);
2290 }
2291 perform_scan = true;
2292 // Only add to the live bytes if the object was not already marked and we are not the young
2293 // GC.
2294 // Why add live bytes even after 2-phase GC?
2295 // We need to ensure that if there is a unevac region with any live
2296 // objects, then its live_bytes must be non-zero. Otherwise,
2297 // ClearFromSpace() will clear the region. Considering, that we may skip
2298 // live objects during marking phase of 2-phase GC, we have to take care
2299 // of such objects here.
2300 add_to_live_bytes = true;
2301 }
2302 break;
2303 case space::RegionSpace::RegionType::kRegionTypeToSpace:
2304 if (use_generational_cc_) {
2305 // Copied to to-space, set the bit so that the next GC can scan objects.
2306 region_space_bitmap_->Set(to_ref);
2307 }
2308 perform_scan = true;
2309 break;
2310 default:
2311 DCHECK(!region_space_->HasAddress(to_ref)) << to_ref;
2312 DCHECK(!immune_spaces_.ContainsObject(to_ref));
2313 // Non-moving or large-object space.
2314 if (kUseBakerReadBarrier) {
2315 accounting::ContinuousSpaceBitmap* mark_bitmap =
2316 heap_->GetNonMovingSpace()->GetMarkBitmap();
2317 const bool is_los = !mark_bitmap->HasAddress(to_ref);
2318 if (is_los) {
2319 if (!IsAligned<kPageSize>(to_ref)) {
2320 // Ref is a large object that is not aligned, it must be heap
2321 // corruption. Remove memory protection and dump data before
2322 // AtomicSetReadBarrierState since it will fault if the address is not
2323 // valid.
2324 region_space_->Unprotect();
2325 heap_->GetVerification()->LogHeapCorruption(/* obj */ nullptr,
2326 MemberOffset(0),
2327 to_ref,
2328 /* fatal */ true);
2329 }
2330 DCHECK(heap_->GetLargeObjectsSpace())
2331 << "ref=" << to_ref
2332 << " doesn't belong to non-moving space and large object space doesn't exist";
2333 accounting::LargeObjectBitmap* los_bitmap =
2334 heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2335 DCHECK(los_bitmap->HasAddress(to_ref));
2336 // Only the GC thread could be setting the LOS bit map hence doesn't
2337 // need to be atomically done.
2338 perform_scan = !los_bitmap->Set(to_ref);
2339 } else {
2340 // Only the GC thread could be setting the non-moving space bit map
2341 // hence doesn't need to be atomically done.
2342 perform_scan = !mark_bitmap->Set(to_ref);
2343 }
2344 } else {
2345 perform_scan = true;
2346 }
2347 }
2348 if (perform_scan) {
2349 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
2350 if (use_generational_cc_ && young_gen_) {
2351 Scan<true>(to_ref, obj_size);
2352 } else {
2353 Scan<false>(to_ref, obj_size);
2354 }
2355 }
2356 if (kUseBakerReadBarrier) {
2357 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState())
2358 << " to_ref=" << to_ref
2359 << " rb_state=" << to_ref->GetReadBarrierState()
2360 << " is_marked=" << IsMarked(to_ref)
2361 << " type=" << to_ref->PrettyTypeOf()
2362 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
2363 << " space=" << heap_->DumpSpaceNameFromAddress(to_ref)
2364 << " region_type=" << rtype
2365 // TODO: Temporary; remove this when this is no longer needed (b/116087961).
2366 << " runtime->sentinel=" << Runtime::Current()->GetSentinel().Read<kWithoutReadBarrier>();
2367 }
2368 #ifdef USE_BAKER_READ_BARRIER
2369 mirror::Object* referent = nullptr;
2370 if (UNLIKELY((to_ref->GetClass<kVerifyNone, kWithoutReadBarrier>()->IsTypeOfReferenceClass() &&
2371 (referent = to_ref->AsReference()->GetReferent<kWithoutReadBarrier>()) != nullptr &&
2372 !IsInToSpace(referent)))) {
2373 // Leave this reference gray in the queue so that GetReferent() will trigger a read barrier. We
2374 // will change it to non-gray later in ReferenceQueue::DisableReadBarrierForReference.
2375 DCHECK(to_ref->AsReference()->GetPendingNext() != nullptr)
2376 << "Left unenqueued ref gray " << to_ref;
2377 } else {
2378 // We may occasionally leave a reference non-gray in the queue if its referent happens to be
2379 // concurrently marked after the Scan() call above has enqueued the Reference, in which case the
2380 // above IsInToSpace() evaluates to true and we change the color from gray to non-gray here in
2381 // this else block.
2382 if (kUseBakerReadBarrier) {
2383 bool success = to_ref->AtomicSetReadBarrierState<std::memory_order_release>(
2384 ReadBarrier::GrayState(),
2385 ReadBarrier::NonGrayState());
2386 DCHECK(success) << "Must succeed as we won the race.";
2387 }
2388 }
2389 #else
2390 DCHECK(!kUseBakerReadBarrier);
2391 #endif
2392
2393 if (add_to_live_bytes) {
2394 // Add to the live bytes per unevacuated from-space. Note this code is always run by the
2395 // GC-running thread (no synchronization required).
2396 DCHECK(region_space_bitmap_->Test(to_ref));
2397 if (obj_size == 0) {
2398 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
2399 }
2400 region_space_->AddLiveBytes(to_ref, RoundUp(obj_size, space::RegionSpace::kAlignment));
2401 }
2402 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
2403 CHECK(to_ref != nullptr);
2404 space::RegionSpace* region_space = RegionSpace();
2405 CHECK(!region_space->IsInFromSpace(to_ref)) << "Scanning object " << to_ref << " in from space";
2406 AssertToSpaceInvariant(nullptr, MemberOffset(0), to_ref);
2407 AssertToSpaceInvariantFieldVisitor visitor(this);
2408 to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
2409 visitor,
2410 visitor);
2411 }
2412 }
2413
2414 class ConcurrentCopying::DisableWeakRefAccessCallback : public Closure {
2415 public:
DisableWeakRefAccessCallback(ConcurrentCopying * concurrent_copying)2416 explicit DisableWeakRefAccessCallback(ConcurrentCopying* concurrent_copying)
2417 : concurrent_copying_(concurrent_copying) {
2418 }
2419
Run(Thread * self ATTRIBUTE_UNUSED)2420 void Run(Thread* self ATTRIBUTE_UNUSED) override REQUIRES(Locks::thread_list_lock_) {
2421 // This needs to run under the thread_list_lock_ critical section in ThreadList::RunCheckpoint()
2422 // to avoid a deadlock b/31500969.
2423 CHECK(concurrent_copying_->weak_ref_access_enabled_);
2424 concurrent_copying_->weak_ref_access_enabled_ = false;
2425 }
2426
2427 private:
2428 ConcurrentCopying* const concurrent_copying_;
2429 };
2430
SwitchToSharedMarkStackMode()2431 void ConcurrentCopying::SwitchToSharedMarkStackMode() {
2432 Thread* self = Thread::Current();
2433 DCHECK(thread_running_gc_ != nullptr);
2434 DCHECK(self == thread_running_gc_);
2435 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2436 MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2437 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
2438 static_cast<uint32_t>(kMarkStackModeThreadLocal));
2439 mark_stack_mode_.store(kMarkStackModeShared, std::memory_order_relaxed);
2440 DisableWeakRefAccessCallback dwrac(this);
2441 // Process the thread local mark stacks one last time after switching to the shared mark stack
2442 // mode and disable weak ref accesses.
2443 ProcessThreadLocalMarkStacks(/* disable_weak_ref_access= */ true,
2444 &dwrac,
2445 [this] (mirror::Object* ref)
2446 REQUIRES_SHARED(Locks::mutator_lock_) {
2447 ProcessMarkStackRef(ref);
2448 });
2449 if (kVerboseMode) {
2450 LOG(INFO) << "Switched to shared mark stack mode and disabled weak ref access";
2451 }
2452 }
2453
SwitchToGcExclusiveMarkStackMode()2454 void ConcurrentCopying::SwitchToGcExclusiveMarkStackMode() {
2455 Thread* self = Thread::Current();
2456 DCHECK(thread_running_gc_ != nullptr);
2457 DCHECK(self == thread_running_gc_);
2458 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2459 MarkStackMode before_mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2460 CHECK_EQ(static_cast<uint32_t>(before_mark_stack_mode),
2461 static_cast<uint32_t>(kMarkStackModeShared));
2462 mark_stack_mode_.store(kMarkStackModeGcExclusive, std::memory_order_relaxed);
2463 QuasiAtomic::ThreadFenceForConstructor();
2464 if (kVerboseMode) {
2465 LOG(INFO) << "Switched to GC exclusive mark stack mode";
2466 }
2467 }
2468
CheckEmptyMarkStack()2469 void ConcurrentCopying::CheckEmptyMarkStack() {
2470 Thread* self = Thread::Current();
2471 DCHECK(thread_running_gc_ != nullptr);
2472 DCHECK(self == thread_running_gc_);
2473 DCHECK(thread_running_gc_->GetThreadLocalMarkStack() == nullptr);
2474 MarkStackMode mark_stack_mode = mark_stack_mode_.load(std::memory_order_relaxed);
2475 if (mark_stack_mode == kMarkStackModeThreadLocal) {
2476 // Thread-local mark stack mode.
2477 RevokeThreadLocalMarkStacks(false, nullptr);
2478 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2479 if (!revoked_mark_stacks_.empty()) {
2480 for (accounting::AtomicStack<mirror::Object>* mark_stack : revoked_mark_stacks_) {
2481 while (!mark_stack->IsEmpty()) {
2482 mirror::Object* obj = mark_stack->PopBack();
2483 if (kUseBakerReadBarrier) {
2484 uint32_t rb_state = obj->GetReadBarrierState();
2485 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf() << " rb_state="
2486 << rb_state << " is_marked=" << IsMarked(obj);
2487 } else {
2488 LOG(INFO) << "On mark queue : " << obj << " " << obj->PrettyTypeOf()
2489 << " is_marked=" << IsMarked(obj);
2490 }
2491 }
2492 }
2493 LOG(FATAL) << "mark stack is not empty";
2494 }
2495 } else {
2496 // Shared, GC-exclusive, or off.
2497 MutexLock mu(thread_running_gc_, mark_stack_lock_);
2498 CHECK(gc_mark_stack_->IsEmpty());
2499 CHECK(revoked_mark_stacks_.empty());
2500 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
2501 }
2502 }
2503
SweepSystemWeaks(Thread * self)2504 void ConcurrentCopying::SweepSystemWeaks(Thread* self) {
2505 TimingLogger::ScopedTiming split("SweepSystemWeaks", GetTimings());
2506 ReaderMutexLock mu(self, *Locks::heap_bitmap_lock_);
2507 Runtime::Current()->SweepSystemWeaks(this);
2508 }
2509
Sweep(bool swap_bitmaps)2510 void ConcurrentCopying::Sweep(bool swap_bitmaps) {
2511 if (use_generational_cc_ && young_gen_) {
2512 // Only sweep objects on the live stack.
2513 SweepArray(heap_->GetLiveStack(), /* swap_bitmaps= */ false);
2514 } else {
2515 {
2516 TimingLogger::ScopedTiming t("MarkStackAsLive", GetTimings());
2517 accounting::ObjectStack* live_stack = heap_->GetLiveStack();
2518 if (kEnableFromSpaceAccountingCheck) {
2519 // Ensure that nobody inserted items in the live stack after we swapped the stacks.
2520 CHECK_GE(live_stack_freeze_size_, live_stack->Size());
2521 }
2522 heap_->MarkAllocStackAsLive(live_stack);
2523 live_stack->Reset();
2524 }
2525 CheckEmptyMarkStack();
2526 TimingLogger::ScopedTiming split("Sweep", GetTimings());
2527 for (const auto& space : GetHeap()->GetContinuousSpaces()) {
2528 if (space->IsContinuousMemMapAllocSpace() && space != region_space_
2529 && !immune_spaces_.ContainsSpace(space)) {
2530 space::ContinuousMemMapAllocSpace* alloc_space = space->AsContinuousMemMapAllocSpace();
2531 TimingLogger::ScopedTiming split2(
2532 alloc_space->IsZygoteSpace() ? "SweepZygoteSpace" : "SweepAllocSpace", GetTimings());
2533 RecordFree(alloc_space->Sweep(swap_bitmaps));
2534 }
2535 }
2536 SweepLargeObjects(swap_bitmaps);
2537 }
2538 }
2539
2540 // Copied and adapted from MarkSweep::SweepArray.
SweepArray(accounting::ObjectStack * allocations,bool swap_bitmaps)2541 void ConcurrentCopying::SweepArray(accounting::ObjectStack* allocations, bool swap_bitmaps) {
2542 // This method is only used when Generational CC collection is enabled.
2543 DCHECK(use_generational_cc_);
2544 CheckEmptyMarkStack();
2545 TimingLogger::ScopedTiming t("SweepArray", GetTimings());
2546 Thread* self = Thread::Current();
2547 mirror::Object** chunk_free_buffer = reinterpret_cast<mirror::Object**>(
2548 sweep_array_free_buffer_mem_map_.BaseBegin());
2549 size_t chunk_free_pos = 0;
2550 ObjectBytePair freed;
2551 ObjectBytePair freed_los;
2552 // How many objects are left in the array, modified after each space is swept.
2553 StackReference<mirror::Object>* objects = allocations->Begin();
2554 size_t count = allocations->Size();
2555 // Start by sweeping the continuous spaces.
2556 for (space::ContinuousSpace* space : heap_->GetContinuousSpaces()) {
2557 if (!space->IsAllocSpace() ||
2558 space == region_space_ ||
2559 immune_spaces_.ContainsSpace(space) ||
2560 space->GetLiveBitmap() == nullptr) {
2561 continue;
2562 }
2563 space::AllocSpace* alloc_space = space->AsAllocSpace();
2564 accounting::ContinuousSpaceBitmap* live_bitmap = space->GetLiveBitmap();
2565 accounting::ContinuousSpaceBitmap* mark_bitmap = space->GetMarkBitmap();
2566 if (swap_bitmaps) {
2567 std::swap(live_bitmap, mark_bitmap);
2568 }
2569 StackReference<mirror::Object>* out = objects;
2570 for (size_t i = 0; i < count; ++i) {
2571 mirror::Object* const obj = objects[i].AsMirrorPtr();
2572 if (kUseThreadLocalAllocationStack && obj == nullptr) {
2573 continue;
2574 }
2575 if (space->HasAddress(obj)) {
2576 // This object is in the space, remove it from the array and add it to the sweep buffer
2577 // if needed.
2578 if (!mark_bitmap->Test(obj)) {
2579 if (chunk_free_pos >= kSweepArrayChunkFreeSize) {
2580 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
2581 freed.objects += chunk_free_pos;
2582 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
2583 chunk_free_pos = 0;
2584 }
2585 chunk_free_buffer[chunk_free_pos++] = obj;
2586 }
2587 } else {
2588 (out++)->Assign(obj);
2589 }
2590 }
2591 if (chunk_free_pos > 0) {
2592 TimingLogger::ScopedTiming t2("FreeList", GetTimings());
2593 freed.objects += chunk_free_pos;
2594 freed.bytes += alloc_space->FreeList(self, chunk_free_pos, chunk_free_buffer);
2595 chunk_free_pos = 0;
2596 }
2597 // All of the references which space contained are no longer in the allocation stack, update
2598 // the count.
2599 count = out - objects;
2600 }
2601 // Handle the large object space.
2602 space::LargeObjectSpace* large_object_space = GetHeap()->GetLargeObjectsSpace();
2603 if (large_object_space != nullptr) {
2604 accounting::LargeObjectBitmap* large_live_objects = large_object_space->GetLiveBitmap();
2605 accounting::LargeObjectBitmap* large_mark_objects = large_object_space->GetMarkBitmap();
2606 if (swap_bitmaps) {
2607 std::swap(large_live_objects, large_mark_objects);
2608 }
2609 for (size_t i = 0; i < count; ++i) {
2610 mirror::Object* const obj = objects[i].AsMirrorPtr();
2611 // Handle large objects.
2612 if (kUseThreadLocalAllocationStack && obj == nullptr) {
2613 continue;
2614 }
2615 if (!large_mark_objects->Test(obj)) {
2616 ++freed_los.objects;
2617 freed_los.bytes += large_object_space->Free(self, obj);
2618 }
2619 }
2620 }
2621 {
2622 TimingLogger::ScopedTiming t2("RecordFree", GetTimings());
2623 RecordFree(freed);
2624 RecordFreeLOS(freed_los);
2625 t2.NewTiming("ResetStack");
2626 allocations->Reset();
2627 }
2628 sweep_array_free_buffer_mem_map_.MadviseDontNeedAndZero();
2629 }
2630
MarkZygoteLargeObjects()2631 void ConcurrentCopying::MarkZygoteLargeObjects() {
2632 TimingLogger::ScopedTiming split(__FUNCTION__, GetTimings());
2633 Thread* const self = Thread::Current();
2634 WriterMutexLock rmu(self, *Locks::heap_bitmap_lock_);
2635 space::LargeObjectSpace* const los = heap_->GetLargeObjectsSpace();
2636 if (los != nullptr) {
2637 // Pick the current live bitmap (mark bitmap if swapped).
2638 accounting::LargeObjectBitmap* const live_bitmap = los->GetLiveBitmap();
2639 accounting::LargeObjectBitmap* const mark_bitmap = los->GetMarkBitmap();
2640 // Walk through all of the objects and explicitly mark the zygote ones so they don't get swept.
2641 std::pair<uint8_t*, uint8_t*> range = los->GetBeginEndAtomic();
2642 live_bitmap->VisitMarkedRange(reinterpret_cast<uintptr_t>(range.first),
2643 reinterpret_cast<uintptr_t>(range.second),
2644 [mark_bitmap, los, self](mirror::Object* obj)
2645 REQUIRES(Locks::heap_bitmap_lock_)
2646 REQUIRES_SHARED(Locks::mutator_lock_) {
2647 if (los->IsZygoteLargeObject(self, obj)) {
2648 mark_bitmap->Set(obj);
2649 }
2650 });
2651 }
2652 }
2653
SweepLargeObjects(bool swap_bitmaps)2654 void ConcurrentCopying::SweepLargeObjects(bool swap_bitmaps) {
2655 TimingLogger::ScopedTiming split("SweepLargeObjects", GetTimings());
2656 if (heap_->GetLargeObjectsSpace() != nullptr) {
2657 RecordFreeLOS(heap_->GetLargeObjectsSpace()->Sweep(swap_bitmaps));
2658 }
2659 }
2660
CaptureRssAtPeak()2661 void ConcurrentCopying::CaptureRssAtPeak() {
2662 using range_t = std::pair<void*, void*>;
2663 // This operation is expensive as several calls to mincore() are performed.
2664 // Also, this must be called before clearing regions in ReclaimPhase().
2665 // Therefore, we make it conditional on the flag that enables dumping GC
2666 // performance info on shutdown.
2667 if (Runtime::Current()->GetDumpGCPerformanceOnShutdown()) {
2668 std::list<range_t> gc_ranges;
2669 auto add_gc_range = [&gc_ranges](void* start, size_t size) {
2670 void* end = static_cast<char*>(start) + RoundUp(size, kPageSize);
2671 gc_ranges.emplace_back(range_t(start, end));
2672 };
2673
2674 // region space
2675 DCHECK(IsAligned<kPageSize>(region_space_->Limit()));
2676 gc_ranges.emplace_back(range_t(region_space_->Begin(), region_space_->Limit()));
2677 // mark bitmap
2678 add_gc_range(region_space_bitmap_->Begin(), region_space_bitmap_->Size());
2679
2680 // non-moving space
2681 {
2682 DCHECK(IsAligned<kPageSize>(heap_->non_moving_space_->Limit()));
2683 gc_ranges.emplace_back(range_t(heap_->non_moving_space_->Begin(),
2684 heap_->non_moving_space_->Limit()));
2685 // mark bitmap
2686 accounting::ContinuousSpaceBitmap *bitmap = heap_->non_moving_space_->GetMarkBitmap();
2687 add_gc_range(bitmap->Begin(), bitmap->Size());
2688 // live bitmap. Deal with bound bitmaps.
2689 ReaderMutexLock mu(Thread::Current(), *Locks::heap_bitmap_lock_);
2690 if (heap_->non_moving_space_->HasBoundBitmaps()) {
2691 DCHECK_EQ(bitmap, heap_->non_moving_space_->GetLiveBitmap());
2692 bitmap = heap_->non_moving_space_->GetTempBitmap();
2693 } else {
2694 bitmap = heap_->non_moving_space_->GetLiveBitmap();
2695 }
2696 add_gc_range(bitmap->Begin(), bitmap->Size());
2697 }
2698 // large-object space
2699 if (heap_->GetLargeObjectsSpace()) {
2700 heap_->GetLargeObjectsSpace()->ForEachMemMap([&add_gc_range](const MemMap& map) {
2701 DCHECK(IsAligned<kPageSize>(map.BaseSize()));
2702 add_gc_range(map.BaseBegin(), map.BaseSize());
2703 });
2704 // mark bitmap
2705 accounting::LargeObjectBitmap* bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
2706 add_gc_range(bitmap->Begin(), bitmap->Size());
2707 // live bitmap
2708 bitmap = heap_->GetLargeObjectsSpace()->GetLiveBitmap();
2709 add_gc_range(bitmap->Begin(), bitmap->Size());
2710 }
2711 // card table
2712 add_gc_range(heap_->GetCardTable()->MemMapBegin(), heap_->GetCardTable()->MemMapSize());
2713 // inter-region refs
2714 if (use_generational_cc_ && !young_gen_) {
2715 // region space
2716 add_gc_range(region_space_inter_region_bitmap_.Begin(),
2717 region_space_inter_region_bitmap_.Size());
2718 // non-moving space
2719 add_gc_range(non_moving_space_inter_region_bitmap_.Begin(),
2720 non_moving_space_inter_region_bitmap_.Size());
2721 }
2722 // Extract RSS using mincore(). Updates the cummulative RSS counter.
2723 ExtractRssFromMincore(&gc_ranges);
2724 }
2725 }
2726
ReclaimPhase()2727 void ConcurrentCopying::ReclaimPhase() {
2728 TimingLogger::ScopedTiming split("ReclaimPhase", GetTimings());
2729 if (kVerboseMode) {
2730 LOG(INFO) << "GC ReclaimPhase";
2731 }
2732 Thread* self = Thread::Current();
2733
2734 // Free data for class loaders that we unloaded. This includes removing
2735 // dead methods from JIT's internal maps. This must be done before
2736 // reclaiming the memory of the dead methods' declaring classes.
2737 Runtime::Current()->GetClassLinker()->CleanupClassLoaders();
2738
2739 {
2740 // Double-check that the mark stack is empty.
2741 // Note: need to set this after VerifyNoFromSpaceRef().
2742 is_asserting_to_space_invariant_ = false;
2743 QuasiAtomic::ThreadFenceForConstructor();
2744 if (kVerboseMode) {
2745 LOG(INFO) << "Issue an empty check point. ";
2746 }
2747 IssueEmptyCheckpoint();
2748 // Disable the check.
2749 is_mark_stack_push_disallowed_.store(0, std::memory_order_seq_cst);
2750 if (kUseBakerReadBarrier) {
2751 updated_all_immune_objects_.store(false, std::memory_order_seq_cst);
2752 }
2753 CheckEmptyMarkStack();
2754 }
2755
2756 // Capture RSS at the time when memory usage is at its peak. All GC related
2757 // memory ranges like java heap, card table, bitmap etc. are taken into
2758 // account.
2759 // TODO: We can fetch resident memory for region space directly by going
2760 // through list of allocated regions. This way we can avoid calling mincore on
2761 // the biggest memory range, thereby reducing the cost of this function.
2762 CaptureRssAtPeak();
2763
2764 // Sweep the malloc spaces before clearing the from space since the memory tool mode might
2765 // access the object classes in the from space for dead objects.
2766 {
2767 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
2768 Sweep(/* swap_bitmaps= */ false);
2769 SwapBitmaps();
2770 heap_->UnBindBitmaps();
2771
2772 // The bitmap was cleared at the start of the GC, there is nothing we need to do here.
2773 DCHECK(region_space_bitmap_ != nullptr);
2774 region_space_bitmap_ = nullptr;
2775 }
2776
2777
2778 {
2779 // Record freed objects.
2780 TimingLogger::ScopedTiming split2("RecordFree", GetTimings());
2781 // Don't include thread-locals that are in the to-space.
2782 const uint64_t from_bytes = region_space_->GetBytesAllocatedInFromSpace();
2783 const uint64_t from_objects = region_space_->GetObjectsAllocatedInFromSpace();
2784 const uint64_t unevac_from_bytes = region_space_->GetBytesAllocatedInUnevacFromSpace();
2785 const uint64_t unevac_from_objects = region_space_->GetObjectsAllocatedInUnevacFromSpace();
2786 uint64_t to_bytes = bytes_moved_.load(std::memory_order_relaxed) + bytes_moved_gc_thread_;
2787 cumulative_bytes_moved_ += to_bytes;
2788 uint64_t to_objects = objects_moved_.load(std::memory_order_relaxed) + objects_moved_gc_thread_;
2789 cumulative_objects_moved_ += to_objects;
2790 if (kEnableFromSpaceAccountingCheck) {
2791 CHECK_EQ(from_space_num_objects_at_first_pause_, from_objects + unevac_from_objects);
2792 CHECK_EQ(from_space_num_bytes_at_first_pause_, from_bytes + unevac_from_bytes);
2793 }
2794 CHECK_LE(to_objects, from_objects);
2795 // to_bytes <= from_bytes is only approximately true, because objects expand a little when
2796 // copying to non-moving space in near-OOM situations.
2797 if (from_bytes > 0) {
2798 copied_live_bytes_ratio_sum_ += static_cast<float>(to_bytes) / from_bytes;
2799 gc_count_++;
2800 }
2801
2802 // Cleared bytes and objects, populated by the call to RegionSpace::ClearFromSpace below.
2803 uint64_t cleared_bytes;
2804 uint64_t cleared_objects;
2805 {
2806 TimingLogger::ScopedTiming split4("ClearFromSpace", GetTimings());
2807 region_space_->ClearFromSpace(&cleared_bytes, &cleared_objects, /*clear_bitmap*/ !young_gen_);
2808 // `cleared_bytes` and `cleared_objects` may be greater than the from space equivalents since
2809 // RegionSpace::ClearFromSpace may clear empty unevac regions.
2810 CHECK_GE(cleared_bytes, from_bytes);
2811 CHECK_GE(cleared_objects, from_objects);
2812 }
2813 // freed_bytes could conceivably be negative if we fall back to nonmoving space and have to
2814 // pad to a larger size.
2815 int64_t freed_bytes = (int64_t)cleared_bytes - (int64_t)to_bytes;
2816 uint64_t freed_objects = cleared_objects - to_objects;
2817 if (kVerboseMode) {
2818 LOG(INFO) << "RecordFree:"
2819 << " from_bytes=" << from_bytes << " from_objects=" << from_objects
2820 << " unevac_from_bytes=" << unevac_from_bytes
2821 << " unevac_from_objects=" << unevac_from_objects
2822 << " to_bytes=" << to_bytes << " to_objects=" << to_objects
2823 << " freed_bytes=" << freed_bytes << " freed_objects=" << freed_objects
2824 << " from_space size=" << region_space_->FromSpaceSize()
2825 << " unevac_from_space size=" << region_space_->UnevacFromSpaceSize()
2826 << " to_space size=" << region_space_->ToSpaceSize();
2827 LOG(INFO) << "(before) num_bytes_allocated="
2828 << heap_->num_bytes_allocated_.load();
2829 }
2830 RecordFree(ObjectBytePair(freed_objects, freed_bytes));
2831 GetCurrentIteration()->SetScannedBytes(bytes_scanned_);
2832 if (kVerboseMode) {
2833 LOG(INFO) << "(after) num_bytes_allocated="
2834 << heap_->num_bytes_allocated_.load();
2835 }
2836
2837 float reclaimed_bytes_ratio = static_cast<float>(freed_bytes) / num_bytes_allocated_before_gc_;
2838 reclaimed_bytes_ratio_sum_ += reclaimed_bytes_ratio;
2839 }
2840
2841 CheckEmptyMarkStack();
2842
2843 if (heap_->dump_region_info_after_gc_) {
2844 LOG(INFO) << "time=" << region_space_->Time();
2845 region_space_->DumpNonFreeRegions(LOG_STREAM(INFO));
2846 }
2847
2848 if (kVerboseMode) {
2849 LOG(INFO) << "GC end of ReclaimPhase";
2850 }
2851 }
2852
DumpReferenceInfo(mirror::Object * ref,const char * ref_name,const char * indent)2853 std::string ConcurrentCopying::DumpReferenceInfo(mirror::Object* ref,
2854 const char* ref_name,
2855 const char* indent) {
2856 std::ostringstream oss;
2857 oss << indent << heap_->GetVerification()->DumpObjectInfo(ref, ref_name) << '\n';
2858 if (ref != nullptr) {
2859 if (kUseBakerReadBarrier) {
2860 oss << indent << ref_name << "->GetMarkBit()=" << ref->GetMarkBit() << '\n';
2861 oss << indent << ref_name << "->GetReadBarrierState()=" << ref->GetReadBarrierState() << '\n';
2862 }
2863 }
2864 if (region_space_->HasAddress(ref)) {
2865 oss << indent << "Region containing " << ref_name << ":" << '\n';
2866 region_space_->DumpRegionForObject(oss, ref);
2867 if (region_space_bitmap_ != nullptr) {
2868 oss << indent << "region_space_bitmap_->Test(" << ref_name << ")="
2869 << std::boolalpha << region_space_bitmap_->Test(ref) << std::noboolalpha;
2870 }
2871 }
2872 return oss.str();
2873 }
2874
DumpHeapReference(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2875 std::string ConcurrentCopying::DumpHeapReference(mirror::Object* obj,
2876 MemberOffset offset,
2877 mirror::Object* ref) {
2878 std::ostringstream oss;
2879 constexpr const char* kIndent = " ";
2880 oss << kIndent << "Invalid reference: ref=" << ref
2881 << " referenced from: object=" << obj << " offset= " << offset << '\n';
2882 // Information about `obj`.
2883 oss << DumpReferenceInfo(obj, "obj", kIndent) << '\n';
2884 // Information about `ref`.
2885 oss << DumpReferenceInfo(ref, "ref", kIndent);
2886 return oss.str();
2887 }
2888
AssertToSpaceInvariant(mirror::Object * obj,MemberOffset offset,mirror::Object * ref)2889 void ConcurrentCopying::AssertToSpaceInvariant(mirror::Object* obj,
2890 MemberOffset offset,
2891 mirror::Object* ref) {
2892 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2893 if (is_asserting_to_space_invariant_) {
2894 if (ref == nullptr) {
2895 // OK.
2896 return;
2897 } else if (region_space_->HasAddress(ref)) {
2898 // Check to-space invariant in region space (moving space).
2899 using RegionType = space::RegionSpace::RegionType;
2900 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
2901 if (type == RegionType::kRegionTypeToSpace) {
2902 // OK.
2903 return;
2904 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
2905 if (!IsMarkedInUnevacFromSpace(ref)) {
2906 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
2907 // Remove memory protection from the region space and log debugging information.
2908 region_space_->Unprotect();
2909 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2910 Thread::Current()->DumpJavaStack(LOG_STREAM(FATAL_WITHOUT_ABORT));
2911 }
2912 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
2913 } else {
2914 // Not OK: either a from-space ref or a reference in an unused region.
2915 if (type == RegionType::kRegionTypeFromSpace) {
2916 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
2917 } else {
2918 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
2919 }
2920 // Remove memory protection from the region space and log debugging information.
2921 region_space_->Unprotect();
2922 LOG(FATAL_WITHOUT_ABORT) << DumpHeapReference(obj, offset, ref);
2923 if (obj != nullptr) {
2924 LogFromSpaceRefHolder(obj, offset);
2925 LOG(FATAL_WITHOUT_ABORT) << "UNEVAC " << region_space_->IsInUnevacFromSpace(obj) << " "
2926 << obj << " " << obj->GetMarkBit();
2927 if (region_space_->HasAddress(obj)) {
2928 region_space_->DumpRegionForObject(LOG_STREAM(FATAL_WITHOUT_ABORT), obj);
2929 }
2930 LOG(FATAL_WITHOUT_ABORT) << "CARD " << static_cast<size_t>(
2931 *Runtime::Current()->GetHeap()->GetCardTable()->CardFromAddr(
2932 reinterpret_cast<uint8_t*>(obj)));
2933 if (region_space_->HasAddress(obj)) {
2934 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << region_space_bitmap_->Test(obj);
2935 } else {
2936 accounting::ContinuousSpaceBitmap* mark_bitmap =
2937 heap_mark_bitmap_->GetContinuousSpaceBitmap(obj);
2938 if (mark_bitmap != nullptr) {
2939 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << mark_bitmap->Test(obj);
2940 } else {
2941 accounting::LargeObjectBitmap* los_bitmap =
2942 heap_mark_bitmap_->GetLargeObjectBitmap(obj);
2943 LOG(FATAL_WITHOUT_ABORT) << "BITMAP " << los_bitmap->Test(obj);
2944 }
2945 }
2946 }
2947 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
2948 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
2949 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
2950 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
2951 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
2952 LOG(FATAL) << "Invalid reference " << ref
2953 << " referenced from object " << obj << " at offset " << offset;
2954 }
2955 } else {
2956 // Check to-space invariant in non-moving space.
2957 AssertToSpaceInvariantInNonMovingSpace(obj, ref);
2958 }
2959 }
2960 }
2961
2962 class RootPrinter {
2963 public:
RootPrinter()2964 RootPrinter() { }
2965
2966 template <class MirrorType>
VisitRootIfNonNull(mirror::CompressedReference<MirrorType> * root)2967 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<MirrorType>* root)
2968 REQUIRES_SHARED(Locks::mutator_lock_) {
2969 if (!root->IsNull()) {
2970 VisitRoot(root);
2971 }
2972 }
2973
2974 template <class MirrorType>
VisitRoot(mirror::Object ** root)2975 void VisitRoot(mirror::Object** root)
2976 REQUIRES_SHARED(Locks::mutator_lock_) {
2977 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << *root;
2978 }
2979
2980 template <class MirrorType>
VisitRoot(mirror::CompressedReference<MirrorType> * root)2981 void VisitRoot(mirror::CompressedReference<MirrorType>* root)
2982 REQUIRES_SHARED(Locks::mutator_lock_) {
2983 LOG(FATAL_WITHOUT_ABORT) << "root=" << root << " ref=" << root->AsMirrorPtr();
2984 }
2985 };
2986
DumpGcRoot(mirror::Object * ref)2987 std::string ConcurrentCopying::DumpGcRoot(mirror::Object* ref) {
2988 std::ostringstream oss;
2989 constexpr const char* kIndent = " ";
2990 oss << kIndent << "Invalid GC root: ref=" << ref << '\n';
2991 // Information about `ref`.
2992 oss << DumpReferenceInfo(ref, "ref", kIndent);
2993 return oss.str();
2994 }
2995
AssertToSpaceInvariant(GcRootSource * gc_root_source,mirror::Object * ref)2996 void ConcurrentCopying::AssertToSpaceInvariant(GcRootSource* gc_root_source,
2997 mirror::Object* ref) {
2998 CHECK_EQ(heap_->collector_type_, kCollectorTypeCC) << static_cast<size_t>(heap_->collector_type_);
2999 if (is_asserting_to_space_invariant_) {
3000 if (ref == nullptr) {
3001 // OK.
3002 return;
3003 } else if (region_space_->HasAddress(ref)) {
3004 // Check to-space invariant in region space (moving space).
3005 using RegionType = space::RegionSpace::RegionType;
3006 space::RegionSpace::RegionType type = region_space_->GetRegionTypeUnsafe(ref);
3007 if (type == RegionType::kRegionTypeToSpace) {
3008 // OK.
3009 return;
3010 } else if (type == RegionType::kRegionTypeUnevacFromSpace) {
3011 if (!IsMarkedInUnevacFromSpace(ref)) {
3012 LOG(FATAL_WITHOUT_ABORT) << "Found unmarked reference in unevac from-space:";
3013 // Remove memory protection from the region space and log debugging information.
3014 region_space_->Unprotect();
3015 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
3016 }
3017 CHECK(IsMarkedInUnevacFromSpace(ref)) << ref;
3018 } else {
3019 // Not OK: either a from-space ref or a reference in an unused region.
3020 if (type == RegionType::kRegionTypeFromSpace) {
3021 LOG(FATAL_WITHOUT_ABORT) << "Found from-space reference:";
3022 } else {
3023 LOG(FATAL_WITHOUT_ABORT) << "Found reference in region with type " << type << ":";
3024 }
3025 // Remove memory protection from the region space and log debugging information.
3026 region_space_->Unprotect();
3027 LOG(FATAL_WITHOUT_ABORT) << DumpGcRoot(ref);
3028 if (gc_root_source == nullptr) {
3029 // No info.
3030 } else if (gc_root_source->HasArtField()) {
3031 ArtField* field = gc_root_source->GetArtField();
3032 LOG(FATAL_WITHOUT_ABORT) << "gc root in field " << field << " "
3033 << ArtField::PrettyField(field);
3034 RootPrinter root_printer;
3035 field->VisitRoots(root_printer);
3036 } else if (gc_root_source->HasArtMethod()) {
3037 ArtMethod* method = gc_root_source->GetArtMethod();
3038 LOG(FATAL_WITHOUT_ABORT) << "gc root in method " << method << " "
3039 << ArtMethod::PrettyMethod(method);
3040 RootPrinter root_printer;
3041 method->VisitRoots(root_printer, kRuntimePointerSize);
3042 }
3043 ref->GetLockWord(false).Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
3044 LOG(FATAL_WITHOUT_ABORT) << "Non-free regions:";
3045 region_space_->DumpNonFreeRegions(LOG_STREAM(FATAL_WITHOUT_ABORT));
3046 PrintFileToLog("/proc/self/maps", LogSeverity::FATAL_WITHOUT_ABORT);
3047 MemMap::DumpMaps(LOG_STREAM(FATAL_WITHOUT_ABORT), /* terse= */ true);
3048 LOG(FATAL) << "Invalid reference " << ref;
3049 }
3050 } else {
3051 // Check to-space invariant in non-moving space.
3052 AssertToSpaceInvariantInNonMovingSpace(/* obj= */ nullptr, ref);
3053 }
3054 }
3055 }
3056
LogFromSpaceRefHolder(mirror::Object * obj,MemberOffset offset)3057 void ConcurrentCopying::LogFromSpaceRefHolder(mirror::Object* obj, MemberOffset offset) {
3058 if (kUseBakerReadBarrier) {
3059 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf()
3060 << " holder rb_state=" << obj->GetReadBarrierState();
3061 } else {
3062 LOG(INFO) << "holder=" << obj << " " << obj->PrettyTypeOf();
3063 }
3064 if (region_space_->IsInFromSpace(obj)) {
3065 LOG(INFO) << "holder is in the from-space.";
3066 } else if (region_space_->IsInToSpace(obj)) {
3067 LOG(INFO) << "holder is in the to-space.";
3068 } else if (region_space_->IsInUnevacFromSpace(obj)) {
3069 LOG(INFO) << "holder is in the unevac from-space.";
3070 if (IsMarkedInUnevacFromSpace(obj)) {
3071 LOG(INFO) << "holder is marked in the region space bitmap.";
3072 } else {
3073 LOG(INFO) << "holder is not marked in the region space bitmap.";
3074 }
3075 } else {
3076 // In a non-moving space.
3077 if (immune_spaces_.ContainsObject(obj)) {
3078 LOG(INFO) << "holder is in an immune image or the zygote space.";
3079 } else {
3080 LOG(INFO) << "holder is in a non-immune, non-moving (or main) space.";
3081 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3082 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3083 const bool is_los = !mark_bitmap->HasAddress(obj);
3084 if (is_los) {
3085 DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(obj))
3086 << "obj=" << obj
3087 << " LOS bit map covers the entire lower 4GB address range";
3088 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3089 }
3090 if (!is_los && mark_bitmap->Test(obj)) {
3091 LOG(INFO) << "holder is marked in the non-moving space mark bit map.";
3092 } else if (is_los && los_bitmap->Test(obj)) {
3093 LOG(INFO) << "holder is marked in the los bit map.";
3094 } else {
3095 // If ref is on the allocation stack, then it is considered
3096 // mark/alive (but not necessarily on the live stack.)
3097 if (IsOnAllocStack(obj)) {
3098 LOG(INFO) << "holder is on the alloc stack.";
3099 } else {
3100 LOG(INFO) << "holder is not marked or on the alloc stack.";
3101 }
3102 }
3103 }
3104 }
3105 LOG(INFO) << "offset=" << offset.SizeValue();
3106 }
3107
IsMarkedInNonMovingSpace(mirror::Object * from_ref)3108 bool ConcurrentCopying::IsMarkedInNonMovingSpace(mirror::Object* from_ref) {
3109 DCHECK(!region_space_->HasAddress(from_ref)) << "ref=" << from_ref;
3110 DCHECK(!immune_spaces_.ContainsObject(from_ref)) << "ref=" << from_ref;
3111 if (kUseBakerReadBarrier && from_ref->GetReadBarrierStateAcquire() == ReadBarrier::GrayState()) {
3112 return true;
3113 } else if (!use_generational_cc_ || done_scanning_.load(std::memory_order_acquire)) {
3114 // Read the comment in IsMarkedInUnevacFromSpace()
3115 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3116 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3117 const bool is_los = !mark_bitmap->HasAddress(from_ref);
3118 if (is_los) {
3119 DCHECK(heap_->GetLargeObjectsSpace() && heap_->GetLargeObjectsSpace()->Contains(from_ref))
3120 << "ref=" << from_ref
3121 << " doesn't belong to non-moving space and large object space doesn't exist";
3122 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3123 }
3124 if (is_los ? los_bitmap->Test(from_ref) : mark_bitmap->Test(from_ref)) {
3125 return true;
3126 }
3127 }
3128 return IsOnAllocStack(from_ref);
3129 }
3130
AssertToSpaceInvariantInNonMovingSpace(mirror::Object * obj,mirror::Object * ref)3131 void ConcurrentCopying::AssertToSpaceInvariantInNonMovingSpace(mirror::Object* obj,
3132 mirror::Object* ref) {
3133 CHECK(ref != nullptr);
3134 CHECK(!region_space_->HasAddress(ref)) << "obj=" << obj << " ref=" << ref;
3135 // In a non-moving space. Check that the ref is marked.
3136 if (immune_spaces_.ContainsObject(ref)) {
3137 // Immune space case.
3138 if (kUseBakerReadBarrier) {
3139 // Immune object may not be gray if called from the GC.
3140 if (Thread::Current() == thread_running_gc_ && !gc_grays_immune_objects_) {
3141 return;
3142 }
3143 bool updated_all_immune_objects = updated_all_immune_objects_.load(std::memory_order_seq_cst);
3144 CHECK(updated_all_immune_objects || ref->GetReadBarrierState() == ReadBarrier::GrayState())
3145 << "Unmarked immune space ref. obj=" << obj << " rb_state="
3146 << (obj != nullptr ? obj->GetReadBarrierState() : 0U)
3147 << " ref=" << ref << " ref rb_state=" << ref->GetReadBarrierState()
3148 << " updated_all_immune_objects=" << updated_all_immune_objects;
3149 }
3150 } else {
3151 // Non-moving space and large-object space (LOS) cases.
3152 // If `ref` is on the allocation stack, then it may not be
3153 // marked live, but considered marked/alive (but not
3154 // necessarily on the live stack).
3155 CHECK(IsMarkedInNonMovingSpace(ref))
3156 << "Unmarked ref that's not on the allocation stack."
3157 << " obj=" << obj
3158 << " ref=" << ref
3159 << " rb_state=" << ref->GetReadBarrierState()
3160 << " is_marking=" << std::boolalpha << is_marking_ << std::noboolalpha
3161 << " young_gen=" << std::boolalpha << young_gen_ << std::noboolalpha
3162 << " done_scanning="
3163 << std::boolalpha << done_scanning_.load(std::memory_order_acquire) << std::noboolalpha
3164 << " self=" << Thread::Current();
3165 }
3166 }
3167
3168 // Used to scan ref fields of an object.
3169 template <bool kNoUnEvac>
3170 class ConcurrentCopying::RefFieldsVisitor {
3171 public:
RefFieldsVisitor(ConcurrentCopying * collector,Thread * const thread)3172 explicit RefFieldsVisitor(ConcurrentCopying* collector, Thread* const thread)
3173 : collector_(collector), thread_(thread) {
3174 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3175 DCHECK_IMPLIES(kNoUnEvac, collector_->use_generational_cc_);
3176 }
3177
operator ()(mirror::Object * obj,MemberOffset offset,bool) const3178 void operator()(mirror::Object* obj, MemberOffset offset, bool /* is_static */)
3179 const ALWAYS_INLINE REQUIRES_SHARED(Locks::mutator_lock_)
3180 REQUIRES_SHARED(Locks::heap_bitmap_lock_) {
3181 collector_->Process<kNoUnEvac>(obj, offset);
3182 }
3183
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const3184 void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
3185 REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
3186 CHECK(klass->IsTypeOfReferenceClass());
3187 collector_->DelayReferenceReferent(klass, ref);
3188 }
3189
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const3190 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
3191 ALWAYS_INLINE
3192 REQUIRES_SHARED(Locks::mutator_lock_) {
3193 if (!root->IsNull()) {
3194 VisitRoot(root);
3195 }
3196 }
3197
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const3198 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
3199 ALWAYS_INLINE
3200 REQUIRES_SHARED(Locks::mutator_lock_) {
3201 collector_->MarkRoot</*kGrayImmuneObject=*/false>(thread_, root);
3202 }
3203
3204 private:
3205 ConcurrentCopying* const collector_;
3206 Thread* const thread_;
3207 };
3208
3209 template <bool kNoUnEvac>
Scan(mirror::Object * to_ref,size_t obj_size)3210 inline void ConcurrentCopying::Scan(mirror::Object* to_ref, size_t obj_size) {
3211 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3212 DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_);
3213 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3214 // Avoid all read barriers during visit references to help performance.
3215 // Don't do this in transaction mode because we may read the old value of an field which may
3216 // trigger read barriers.
3217 Thread::Current()->ModifyDebugDisallowReadBarrier(1);
3218 }
3219 if (obj_size == 0) {
3220 obj_size = to_ref->SizeOf<kDefaultVerifyFlags>();
3221 }
3222 bytes_scanned_ += obj_size;
3223
3224 DCHECK(!region_space_->IsInFromSpace(to_ref));
3225 DCHECK_EQ(Thread::Current(), thread_running_gc_);
3226 RefFieldsVisitor<kNoUnEvac> visitor(this, thread_running_gc_);
3227 // Disable the read barrier for a performance reason.
3228 to_ref->VisitReferences</*kVisitNativeRoots=*/true, kDefaultVerifyFlags, kWithoutReadBarrier>(
3229 visitor, visitor);
3230 if (kDisallowReadBarrierDuringScan && !Runtime::Current()->IsActiveTransaction()) {
3231 thread_running_gc_->ModifyDebugDisallowReadBarrier(-1);
3232 }
3233 }
3234
3235 template <bool kNoUnEvac>
Process(mirror::Object * obj,MemberOffset offset)3236 inline void ConcurrentCopying::Process(mirror::Object* obj, MemberOffset offset) {
3237 // Cannot have `kNoUnEvac` when Generational CC collection is disabled.
3238 DCHECK_IMPLIES(kNoUnEvac, use_generational_cc_);
3239 DCHECK_EQ(Thread::Current(), thread_running_gc_);
3240 mirror::Object* ref = obj->GetFieldObject<
3241 mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset);
3242 mirror::Object* to_ref = Mark</*kGrayImmuneObject=*/false, kNoUnEvac, /*kFromGCThread=*/true>(
3243 thread_running_gc_,
3244 ref,
3245 /*holder=*/ obj,
3246 offset);
3247 if (to_ref == ref) {
3248 return;
3249 }
3250 // This may fail if the mutator writes to the field at the same time. But it's ok.
3251 mirror::Object* expected_ref = ref;
3252 mirror::Object* new_ref = to_ref;
3253 do {
3254 if (expected_ref !=
3255 obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier, false>(offset)) {
3256 // It was updated by the mutator.
3257 break;
3258 }
3259 // Use release CAS to make sure threads reading the reference see contents of copied objects.
3260 } while (!obj->CasFieldObjectWithoutWriteBarrier<false, false, kVerifyNone>(
3261 offset,
3262 expected_ref,
3263 new_ref,
3264 CASMode::kWeak,
3265 std::memory_order_release));
3266 }
3267
3268 // Process some roots.
VisitRoots(mirror::Object *** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)3269 inline void ConcurrentCopying::VisitRoots(
3270 mirror::Object*** roots, size_t count, const RootInfo& info ATTRIBUTE_UNUSED) {
3271 Thread* const self = Thread::Current();
3272 for (size_t i = 0; i < count; ++i) {
3273 mirror::Object** root = roots[i];
3274 mirror::Object* ref = *root;
3275 mirror::Object* to_ref = Mark(self, ref);
3276 if (to_ref == ref) {
3277 continue;
3278 }
3279 Atomic<mirror::Object*>* addr = reinterpret_cast<Atomic<mirror::Object*>*>(root);
3280 mirror::Object* expected_ref = ref;
3281 mirror::Object* new_ref = to_ref;
3282 do {
3283 if (expected_ref != addr->load(std::memory_order_relaxed)) {
3284 // It was updated by the mutator.
3285 break;
3286 }
3287 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3288 }
3289 }
3290
3291 template<bool kGrayImmuneObject>
MarkRoot(Thread * const self,mirror::CompressedReference<mirror::Object> * root)3292 inline void ConcurrentCopying::MarkRoot(Thread* const self,
3293 mirror::CompressedReference<mirror::Object>* root) {
3294 DCHECK(!root->IsNull());
3295 mirror::Object* const ref = root->AsMirrorPtr();
3296 mirror::Object* to_ref = Mark<kGrayImmuneObject>(self, ref);
3297 if (to_ref != ref) {
3298 auto* addr = reinterpret_cast<Atomic<mirror::CompressedReference<mirror::Object>>*>(root);
3299 auto expected_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(ref);
3300 auto new_ref = mirror::CompressedReference<mirror::Object>::FromMirrorPtr(to_ref);
3301 // If the cas fails, then it was updated by the mutator.
3302 do {
3303 if (ref != addr->load(std::memory_order_relaxed).AsMirrorPtr()) {
3304 // It was updated by the mutator.
3305 break;
3306 }
3307 } while (!addr->CompareAndSetWeakRelaxed(expected_ref, new_ref));
3308 }
3309 }
3310
VisitRoots(mirror::CompressedReference<mirror::Object> ** roots,size_t count,const RootInfo & info ATTRIBUTE_UNUSED)3311 inline void ConcurrentCopying::VisitRoots(
3312 mirror::CompressedReference<mirror::Object>** roots, size_t count,
3313 const RootInfo& info ATTRIBUTE_UNUSED) {
3314 Thread* const self = Thread::Current();
3315 for (size_t i = 0; i < count; ++i) {
3316 mirror::CompressedReference<mirror::Object>* const root = roots[i];
3317 if (!root->IsNull()) {
3318 // kGrayImmuneObject is true because this is used for the thread flip.
3319 MarkRoot</*kGrayImmuneObject=*/true>(self, root);
3320 }
3321 }
3322 }
3323
3324 // Temporary set gc_grays_immune_objects_ to true in a scope if the current thread is GC.
3325 class ConcurrentCopying::ScopedGcGraysImmuneObjects {
3326 public:
ScopedGcGraysImmuneObjects(ConcurrentCopying * collector)3327 explicit ScopedGcGraysImmuneObjects(ConcurrentCopying* collector)
3328 : collector_(collector), enabled_(false) {
3329 if (kUseBakerReadBarrier &&
3330 collector_->thread_running_gc_ == Thread::Current() &&
3331 !collector_->gc_grays_immune_objects_) {
3332 collector_->gc_grays_immune_objects_ = true;
3333 enabled_ = true;
3334 }
3335 }
3336
~ScopedGcGraysImmuneObjects()3337 ~ScopedGcGraysImmuneObjects() {
3338 if (kUseBakerReadBarrier &&
3339 collector_->thread_running_gc_ == Thread::Current() &&
3340 enabled_) {
3341 DCHECK(collector_->gc_grays_immune_objects_);
3342 collector_->gc_grays_immune_objects_ = false;
3343 }
3344 }
3345
3346 private:
3347 ConcurrentCopying* const collector_;
3348 bool enabled_;
3349 };
3350
3351 // Fill the given memory block with a fake object. Used to fill in a
3352 // copy of objects that was lost in race.
FillWithFakeObject(Thread * const self,mirror::Object * fake_obj,size_t byte_size)3353 void ConcurrentCopying::FillWithFakeObject(Thread* const self,
3354 mirror::Object* fake_obj,
3355 size_t byte_size) {
3356 // GC doesn't gray immune objects while scanning immune objects. But we need to trigger the read
3357 // barriers here because we need the updated reference to the int array class, etc. Temporary set
3358 // gc_grays_immune_objects_ to true so that we won't cause a DCHECK failure in MarkImmuneSpace().
3359 ScopedGcGraysImmuneObjects scoped_gc_gray_immune_objects(this);
3360 CHECK_ALIGNED(byte_size, kObjectAlignment);
3361 memset(fake_obj, 0, byte_size);
3362 // Avoid going through read barrier for since kDisallowReadBarrierDuringScan may be enabled.
3363 // Explicitly mark to make sure to get an object in the to-space.
3364 mirror::Class* int_array_class = down_cast<mirror::Class*>(
3365 Mark(self, GetClassRoot<mirror::IntArray, kWithoutReadBarrier>().Ptr()));
3366 CHECK(int_array_class != nullptr);
3367 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3368 AssertToSpaceInvariant(nullptr, MemberOffset(0), int_array_class);
3369 }
3370 size_t component_size = int_array_class->GetComponentSize();
3371 CHECK_EQ(component_size, sizeof(int32_t));
3372 size_t data_offset = mirror::Array::DataOffset(component_size).SizeValue();
3373 if (data_offset > byte_size) {
3374 // An int array is too big. Use java.lang.Object.
3375 CHECK(java_lang_Object_ != nullptr);
3376 if (ReadBarrier::kEnableToSpaceInvariantChecks) {
3377 AssertToSpaceInvariant(nullptr, MemberOffset(0), java_lang_Object_);
3378 }
3379 CHECK_EQ(byte_size, java_lang_Object_->GetObjectSize<kVerifyNone>());
3380 fake_obj->SetClass(java_lang_Object_);
3381 CHECK_EQ(byte_size, (fake_obj->SizeOf<kVerifyNone>()));
3382 } else {
3383 // Use an int array.
3384 fake_obj->SetClass(int_array_class);
3385 CHECK(fake_obj->IsArrayInstance<kVerifyNone>());
3386 int32_t length = (byte_size - data_offset) / component_size;
3387 ObjPtr<mirror::Array> fake_arr = fake_obj->AsArray<kVerifyNone>();
3388 fake_arr->SetLength(length);
3389 CHECK_EQ(fake_arr->GetLength(), length)
3390 << "byte_size=" << byte_size << " length=" << length
3391 << " component_size=" << component_size << " data_offset=" << data_offset;
3392 CHECK_EQ(byte_size, (fake_obj->SizeOf<kVerifyNone>()))
3393 << "byte_size=" << byte_size << " length=" << length
3394 << " component_size=" << component_size << " data_offset=" << data_offset;
3395 }
3396 }
3397
3398 // Reuse the memory blocks that were copy of objects that were lost in race.
AllocateInSkippedBlock(Thread * const self,size_t alloc_size)3399 mirror::Object* ConcurrentCopying::AllocateInSkippedBlock(Thread* const self, size_t alloc_size) {
3400 // Try to reuse the blocks that were unused due to CAS failures.
3401 CHECK_ALIGNED(alloc_size, space::RegionSpace::kAlignment);
3402 size_t min_object_size = RoundUp(sizeof(mirror::Object), space::RegionSpace::kAlignment);
3403 size_t byte_size;
3404 uint8_t* addr;
3405 {
3406 MutexLock mu(self, skipped_blocks_lock_);
3407 auto it = skipped_blocks_map_.lower_bound(alloc_size);
3408 if (it == skipped_blocks_map_.end()) {
3409 // Not found.
3410 return nullptr;
3411 }
3412 byte_size = it->first;
3413 CHECK_GE(byte_size, alloc_size);
3414 if (byte_size > alloc_size && byte_size - alloc_size < min_object_size) {
3415 // If remainder would be too small for a fake object, retry with a larger request size.
3416 it = skipped_blocks_map_.lower_bound(alloc_size + min_object_size);
3417 if (it == skipped_blocks_map_.end()) {
3418 // Not found.
3419 return nullptr;
3420 }
3421 CHECK_ALIGNED(it->first - alloc_size, space::RegionSpace::kAlignment);
3422 CHECK_GE(it->first - alloc_size, min_object_size)
3423 << "byte_size=" << byte_size << " it->first=" << it->first << " alloc_size=" << alloc_size;
3424 }
3425 // Found a block.
3426 CHECK(it != skipped_blocks_map_.end());
3427 byte_size = it->first;
3428 addr = it->second;
3429 CHECK_GE(byte_size, alloc_size);
3430 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr)));
3431 CHECK_ALIGNED(byte_size, space::RegionSpace::kAlignment);
3432 if (kVerboseMode) {
3433 LOG(INFO) << "Reusing skipped bytes : " << reinterpret_cast<void*>(addr) << ", " << byte_size;
3434 }
3435 skipped_blocks_map_.erase(it);
3436 }
3437 memset(addr, 0, byte_size);
3438 if (byte_size > alloc_size) {
3439 // Return the remainder to the map.
3440 CHECK_ALIGNED(byte_size - alloc_size, space::RegionSpace::kAlignment);
3441 CHECK_GE(byte_size - alloc_size, min_object_size);
3442 // FillWithFakeObject may mark an object, avoid holding skipped_blocks_lock_ to prevent lock
3443 // violation and possible deadlock. The deadlock case is a recursive case:
3444 // FillWithFakeObject -> Mark(IntArray.class) -> Copy -> AllocateInSkippedBlock.
3445 FillWithFakeObject(self,
3446 reinterpret_cast<mirror::Object*>(addr + alloc_size),
3447 byte_size - alloc_size);
3448 CHECK(region_space_->IsInToSpace(reinterpret_cast<mirror::Object*>(addr + alloc_size)));
3449 {
3450 MutexLock mu(self, skipped_blocks_lock_);
3451 skipped_blocks_map_.insert(std::make_pair(byte_size - alloc_size, addr + alloc_size));
3452 }
3453 }
3454 return reinterpret_cast<mirror::Object*>(addr);
3455 }
3456
Copy(Thread * const self,mirror::Object * from_ref,mirror::Object * holder,MemberOffset offset)3457 mirror::Object* ConcurrentCopying::Copy(Thread* const self,
3458 mirror::Object* from_ref,
3459 mirror::Object* holder,
3460 MemberOffset offset) {
3461 DCHECK(region_space_->IsInFromSpace(from_ref));
3462 // If the class pointer is null, the object is invalid. This could occur for a dangling pointer
3463 // from a previous GC that is either inside or outside the allocated region.
3464 mirror::Class* klass = from_ref->GetClass<kVerifyNone, kWithoutReadBarrier>();
3465 if (UNLIKELY(klass == nullptr)) {
3466 // Remove memory protection from the region space and log debugging information.
3467 region_space_->Unprotect();
3468 heap_->GetVerification()->LogHeapCorruption(holder, offset, from_ref, /* fatal= */ true);
3469 }
3470 // There must not be a read barrier to avoid nested RB that might violate the to-space invariant.
3471 // Note that from_ref is a from space ref so the SizeOf() call will access the from-space meta
3472 // objects, but it's ok and necessary.
3473 size_t obj_size = from_ref->SizeOf<kDefaultVerifyFlags>();
3474 size_t region_space_alloc_size = RoundUp(obj_size, space::RegionSpace::kAlignment);
3475 // Large objects are never evacuated.
3476 CHECK_LE(region_space_alloc_size, space::RegionSpace::kRegionSize);
3477 size_t region_space_bytes_allocated = 0U;
3478 size_t non_moving_space_bytes_allocated = 0U;
3479 size_t bytes_allocated = 0U;
3480 size_t unused_size;
3481 bool fall_back_to_non_moving = false;
3482 mirror::Object* to_ref = region_space_->AllocNonvirtual</*kForEvac=*/ true>(
3483 region_space_alloc_size, ®ion_space_bytes_allocated, nullptr, &unused_size);
3484 bytes_allocated = region_space_bytes_allocated;
3485 if (LIKELY(to_ref != nullptr)) {
3486 DCHECK_EQ(region_space_alloc_size, region_space_bytes_allocated);
3487 } else {
3488 // Failed to allocate in the region space. Try the skipped blocks.
3489 to_ref = AllocateInSkippedBlock(self, region_space_alloc_size);
3490 if (to_ref != nullptr) {
3491 // Succeeded to allocate in a skipped block.
3492 if (heap_->use_tlab_) {
3493 // This is necessary for the tlab case as it's not accounted in the space.
3494 region_space_->RecordAlloc(to_ref);
3495 }
3496 bytes_allocated = region_space_alloc_size;
3497 heap_->num_bytes_allocated_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3498 to_space_bytes_skipped_.fetch_sub(bytes_allocated, std::memory_order_relaxed);
3499 to_space_objects_skipped_.fetch_sub(1, std::memory_order_relaxed);
3500 } else {
3501 // Fall back to the non-moving space.
3502 fall_back_to_non_moving = true;
3503 if (kVerboseMode) {
3504 LOG(INFO) << "Out of memory in the to-space. Fall back to non-moving. skipped_bytes="
3505 << to_space_bytes_skipped_.load(std::memory_order_relaxed)
3506 << " skipped_objects="
3507 << to_space_objects_skipped_.load(std::memory_order_relaxed);
3508 }
3509 to_ref = heap_->non_moving_space_->Alloc(
3510 self, obj_size, &non_moving_space_bytes_allocated, nullptr, &unused_size);
3511 if (UNLIKELY(to_ref == nullptr)) {
3512 LOG(FATAL_WITHOUT_ABORT) << "Fall-back non-moving space allocation failed for a "
3513 << obj_size << " byte object in region type "
3514 << region_space_->GetRegionType(from_ref);
3515 LOG(FATAL) << "Object address=" << from_ref << " type=" << from_ref->PrettyTypeOf();
3516 }
3517 bytes_allocated = non_moving_space_bytes_allocated;
3518 }
3519 }
3520 DCHECK(to_ref != nullptr);
3521
3522 // Copy the object excluding the lock word since that is handled in the loop.
3523 to_ref->SetClass(klass);
3524 const size_t kObjectHeaderSize = sizeof(mirror::Object);
3525 DCHECK_GE(obj_size, kObjectHeaderSize);
3526 static_assert(kObjectHeaderSize == sizeof(mirror::HeapReference<mirror::Class>) +
3527 sizeof(LockWord),
3528 "Object header size does not match");
3529 // Memcpy can tear for words since it may do byte copy. It is only safe to do this since the
3530 // object in the from space is immutable other than the lock word. b/31423258
3531 memcpy(reinterpret_cast<uint8_t*>(to_ref) + kObjectHeaderSize,
3532 reinterpret_cast<const uint8_t*>(from_ref) + kObjectHeaderSize,
3533 obj_size - kObjectHeaderSize);
3534
3535 // Attempt to install the forward pointer. This is in a loop as the
3536 // lock word atomic write can fail.
3537 while (true) {
3538 LockWord old_lock_word = from_ref->GetLockWord(false);
3539
3540 if (old_lock_word.GetState() == LockWord::kForwardingAddress) {
3541 // Lost the race. Another thread (either GC or mutator) stored
3542 // the forwarding pointer first. Make the lost copy (to_ref)
3543 // look like a valid but dead (fake) object and keep it for
3544 // future reuse.
3545 FillWithFakeObject(self, to_ref, bytes_allocated);
3546 if (!fall_back_to_non_moving) {
3547 DCHECK(region_space_->IsInToSpace(to_ref));
3548 // Record the lost copy for later reuse.
3549 heap_->num_bytes_allocated_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3550 to_space_bytes_skipped_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3551 to_space_objects_skipped_.fetch_add(1, std::memory_order_relaxed);
3552 MutexLock mu(self, skipped_blocks_lock_);
3553 skipped_blocks_map_.insert(std::make_pair(bytes_allocated,
3554 reinterpret_cast<uint8_t*>(to_ref)));
3555 } else {
3556 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3557 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3558 // Free the non-moving-space chunk.
3559 heap_->non_moving_space_->Free(self, to_ref);
3560 }
3561
3562 // Get the winner's forward ptr.
3563 mirror::Object* lost_fwd_ptr = to_ref;
3564 to_ref = reinterpret_cast<mirror::Object*>(old_lock_word.ForwardingAddress());
3565 CHECK(to_ref != nullptr);
3566 CHECK_NE(to_ref, lost_fwd_ptr);
3567 CHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref))
3568 << "to_ref=" << to_ref << " " << heap_->DumpSpaces();
3569 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3570 return to_ref;
3571 }
3572
3573 // Copy the old lock word over since we did not copy it yet.
3574 to_ref->SetLockWord(old_lock_word, false);
3575 // Set the gray ptr.
3576 if (kUseBakerReadBarrier) {
3577 to_ref->SetReadBarrierState(ReadBarrier::GrayState());
3578 }
3579
3580 LockWord new_lock_word = LockWord::FromForwardingAddress(reinterpret_cast<size_t>(to_ref));
3581
3582 // Try to atomically write the fwd ptr. Make sure that the copied object is visible to any
3583 // readers of the fwd pointer.
3584 bool success = from_ref->CasLockWord(old_lock_word,
3585 new_lock_word,
3586 CASMode::kWeak,
3587 std::memory_order_release);
3588 if (LIKELY(success)) {
3589 // The CAS succeeded.
3590 DCHECK(thread_running_gc_ != nullptr);
3591 if (LIKELY(self == thread_running_gc_)) {
3592 objects_moved_gc_thread_ += 1;
3593 bytes_moved_gc_thread_ += bytes_allocated;
3594 } else {
3595 objects_moved_.fetch_add(1, std::memory_order_relaxed);
3596 bytes_moved_.fetch_add(bytes_allocated, std::memory_order_relaxed);
3597 }
3598
3599 if (LIKELY(!fall_back_to_non_moving)) {
3600 DCHECK(region_space_->IsInToSpace(to_ref));
3601 } else {
3602 DCHECK(heap_->non_moving_space_->HasAddress(to_ref));
3603 DCHECK_EQ(bytes_allocated, non_moving_space_bytes_allocated);
3604 if (!use_generational_cc_ || !young_gen_) {
3605 // Mark it in the live bitmap.
3606 CHECK(!heap_->non_moving_space_->GetLiveBitmap()->AtomicTestAndSet(to_ref));
3607 }
3608 if (!kUseBakerReadBarrier) {
3609 // Mark it in the mark bitmap.
3610 CHECK(!heap_->non_moving_space_->GetMarkBitmap()->AtomicTestAndSet(to_ref));
3611 }
3612 }
3613 if (kUseBakerReadBarrier) {
3614 DCHECK(to_ref->GetReadBarrierState() == ReadBarrier::GrayState());
3615 }
3616 DCHECK(GetFwdPtr(from_ref) == to_ref);
3617 CHECK_NE(to_ref->GetLockWord(false).GetState(), LockWord::kForwardingAddress);
3618 // Make sure that anyone who sees to_ref also sees both the object contents and the
3619 // fwd pointer.
3620 QuasiAtomic::ThreadFenceForConstructor();
3621 PushOntoMarkStack(self, to_ref);
3622 return to_ref;
3623 } else {
3624 // The CAS failed. It may have lost the race or may have failed
3625 // due to monitor/hashcode ops. Either way, retry.
3626 }
3627 }
3628 }
3629
IsMarked(mirror::Object * from_ref)3630 mirror::Object* ConcurrentCopying::IsMarked(mirror::Object* from_ref) {
3631 DCHECK(from_ref != nullptr);
3632 space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref);
3633 if (rtype == space::RegionSpace::RegionType::kRegionTypeToSpace) {
3634 // It's already marked.
3635 return from_ref;
3636 }
3637 mirror::Object* to_ref;
3638 if (rtype == space::RegionSpace::RegionType::kRegionTypeFromSpace) {
3639 to_ref = GetFwdPtr(from_ref);
3640 DCHECK(to_ref == nullptr || region_space_->IsInToSpace(to_ref) ||
3641 heap_->non_moving_space_->HasAddress(to_ref))
3642 << "from_ref=" << from_ref << " to_ref=" << to_ref;
3643 } else if (rtype == space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace) {
3644 if (IsMarkedInUnevacFromSpace(from_ref)) {
3645 to_ref = from_ref;
3646 } else {
3647 to_ref = nullptr;
3648 }
3649 } else {
3650 // At this point, `from_ref` should not be in the region space
3651 // (i.e. within an "unused" region).
3652 DCHECK(!region_space_->HasAddress(from_ref)) << from_ref;
3653 // from_ref is in a non-moving space.
3654 if (immune_spaces_.ContainsObject(from_ref)) {
3655 // An immune object is alive.
3656 to_ref = from_ref;
3657 } else {
3658 // Non-immune non-moving space. Use the mark bitmap.
3659 if (IsMarkedInNonMovingSpace(from_ref)) {
3660 // Already marked.
3661 to_ref = from_ref;
3662 } else {
3663 to_ref = nullptr;
3664 }
3665 }
3666 }
3667 return to_ref;
3668 }
3669
IsOnAllocStack(mirror::Object * ref)3670 bool ConcurrentCopying::IsOnAllocStack(mirror::Object* ref) {
3671 // TODO: Explain why this is here. What release operation does it pair with?
3672 std::atomic_thread_fence(std::memory_order_acquire);
3673 accounting::ObjectStack* alloc_stack = GetAllocationStack();
3674 return alloc_stack->Contains(ref);
3675 }
3676
MarkNonMoving(Thread * const self,mirror::Object * ref,mirror::Object * holder,MemberOffset offset)3677 mirror::Object* ConcurrentCopying::MarkNonMoving(Thread* const self,
3678 mirror::Object* ref,
3679 mirror::Object* holder,
3680 MemberOffset offset) {
3681 // ref is in a non-moving space (from_ref == to_ref).
3682 DCHECK(!region_space_->HasAddress(ref)) << ref;
3683 DCHECK(!immune_spaces_.ContainsObject(ref));
3684 // Use the mark bitmap.
3685 accounting::ContinuousSpaceBitmap* mark_bitmap = heap_->GetNonMovingSpace()->GetMarkBitmap();
3686 accounting::LargeObjectBitmap* los_bitmap = nullptr;
3687 const bool is_los = !mark_bitmap->HasAddress(ref);
3688 if (is_los) {
3689 if (!IsAligned<kPageSize>(ref)) {
3690 // Ref is a large object that is not aligned, it must be heap
3691 // corruption. Remove memory protection and dump data before
3692 // AtomicSetReadBarrierState since it will fault if the address is not
3693 // valid.
3694 region_space_->Unprotect();
3695 heap_->GetVerification()->LogHeapCorruption(holder, offset, ref, /* fatal= */ true);
3696 }
3697 DCHECK(heap_->GetLargeObjectsSpace())
3698 << "ref=" << ref
3699 << " doesn't belong to non-moving space and large object space doesn't exist";
3700 los_bitmap = heap_->GetLargeObjectsSpace()->GetMarkBitmap();
3701 DCHECK(los_bitmap->HasAddress(ref));
3702 }
3703 if (use_generational_cc_) {
3704 // The sticky-bit CC collector is only compatible with Baker-style read barriers.
3705 DCHECK(kUseBakerReadBarrier);
3706 // Not done scanning, use AtomicSetReadBarrierPointer.
3707 if (!done_scanning_.load(std::memory_order_acquire)) {
3708 // Since the mark bitmap is still filled in from last GC, we can not use that or else the
3709 // mutator may see references to the from space. Instead, use the Baker pointer itself as
3710 // the mark bit.
3711 //
3712 // We need to avoid marking objects that are on allocation stack as that will lead to a
3713 // situation (after this GC cycle is finished) where some object(s) are on both allocation
3714 // stack and live bitmap. This leads to visiting the same object(s) twice during a heapdump
3715 // (b/117426281).
3716 if (!IsOnAllocStack(ref) &&
3717 ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(), ReadBarrier::GrayState())) {
3718 // TODO: We don't actually need to scan this object later, we just need to clear the gray
3719 // bit.
3720 // We don't need to mark newly allocated objects (those in allocation stack) as they can
3721 // only point to to-space objects. Also, they are considered live till the next GC cycle.
3722 PushOntoMarkStack(self, ref);
3723 }
3724 return ref;
3725 }
3726 }
3727 if (!is_los && mark_bitmap->Test(ref)) {
3728 // Already marked.
3729 } else if (is_los && los_bitmap->Test(ref)) {
3730 // Already marked in LOS.
3731 } else if (IsOnAllocStack(ref)) {
3732 // If it's on the allocation stack, it's considered marked. Keep it white (non-gray).
3733 // Objects on the allocation stack need not be marked.
3734 if (!is_los) {
3735 DCHECK(!mark_bitmap->Test(ref));
3736 } else {
3737 DCHECK(!los_bitmap->Test(ref));
3738 }
3739 if (kUseBakerReadBarrier) {
3740 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::NonGrayState());
3741 }
3742 } else {
3743 // Not marked nor on the allocation stack. Try to mark it.
3744 // This may or may not succeed, which is ok.
3745 bool success = false;
3746 if (kUseBakerReadBarrier) {
3747 success = ref->AtomicSetReadBarrierState(ReadBarrier::NonGrayState(),
3748 ReadBarrier::GrayState());
3749 } else {
3750 success = is_los ?
3751 !los_bitmap->AtomicTestAndSet(ref) :
3752 !mark_bitmap->AtomicTestAndSet(ref);
3753 }
3754 if (success) {
3755 if (kUseBakerReadBarrier) {
3756 DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState());
3757 }
3758 PushOntoMarkStack(self, ref);
3759 }
3760 }
3761 return ref;
3762 }
3763
FinishPhase()3764 void ConcurrentCopying::FinishPhase() {
3765 Thread* const self = Thread::Current();
3766 {
3767 MutexLock mu(self, mark_stack_lock_);
3768 CHECK(revoked_mark_stacks_.empty());
3769 CHECK_EQ(pooled_mark_stacks_.size(), kMarkStackPoolSize);
3770 }
3771 // kVerifyNoMissingCardMarks relies on the region space cards not being cleared to avoid false
3772 // positives.
3773 if (!kVerifyNoMissingCardMarks && !use_generational_cc_) {
3774 TimingLogger::ScopedTiming split("ClearRegionSpaceCards", GetTimings());
3775 // We do not currently use the region space cards at all, madvise them away to save ram.
3776 heap_->GetCardTable()->ClearCardRange(region_space_->Begin(), region_space_->Limit());
3777 } else if (use_generational_cc_ && !young_gen_) {
3778 region_space_inter_region_bitmap_.Clear();
3779 non_moving_space_inter_region_bitmap_.Clear();
3780 }
3781 {
3782 MutexLock mu(self, skipped_blocks_lock_);
3783 skipped_blocks_map_.clear();
3784 }
3785 {
3786 ReaderMutexLock mu(self, *Locks::mutator_lock_);
3787 {
3788 WriterMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3789 heap_->ClearMarkedObjects();
3790 }
3791 if (kUseBakerReadBarrier && kFilterModUnionCards) {
3792 TimingLogger::ScopedTiming split("FilterModUnionCards", GetTimings());
3793 ReaderMutexLock mu2(self, *Locks::heap_bitmap_lock_);
3794 for (space::ContinuousSpace* space : immune_spaces_.GetSpaces()) {
3795 DCHECK(space->IsImageSpace() || space->IsZygoteSpace());
3796 accounting::ModUnionTable* table = heap_->FindModUnionTableFromSpace(space);
3797 // Filter out cards that don't need to be set.
3798 if (table != nullptr) {
3799 table->FilterCards();
3800 }
3801 }
3802 }
3803 if (kUseBakerReadBarrier) {
3804 TimingLogger::ScopedTiming split("EmptyRBMarkBitStack", GetTimings());
3805 DCHECK(rb_mark_bit_stack_ != nullptr);
3806 const auto* limit = rb_mark_bit_stack_->End();
3807 for (StackReference<mirror::Object>* it = rb_mark_bit_stack_->Begin(); it != limit; ++it) {
3808 CHECK(it->AsMirrorPtr()->AtomicSetMarkBit(1, 0))
3809 << "rb_mark_bit_stack_->Begin()" << rb_mark_bit_stack_->Begin() << '\n'
3810 << "rb_mark_bit_stack_->End()" << rb_mark_bit_stack_->End() << '\n'
3811 << "rb_mark_bit_stack_->IsFull()"
3812 << std::boolalpha << rb_mark_bit_stack_->IsFull() << std::noboolalpha << '\n'
3813 << DumpReferenceInfo(it->AsMirrorPtr(), "*it");
3814 }
3815 rb_mark_bit_stack_->Reset();
3816 }
3817 }
3818 if (measure_read_barrier_slow_path_) {
3819 MutexLock mu(self, rb_slow_path_histogram_lock_);
3820 rb_slow_path_time_histogram_.AdjustAndAddValue(
3821 rb_slow_path_ns_.load(std::memory_order_relaxed));
3822 rb_slow_path_count_total_ += rb_slow_path_count_.load(std::memory_order_relaxed);
3823 rb_slow_path_count_gc_total_ += rb_slow_path_count_gc_.load(std::memory_order_relaxed);
3824 }
3825 }
3826
IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object> * field,bool do_atomic_update)3827 bool ConcurrentCopying::IsNullOrMarkedHeapReference(mirror::HeapReference<mirror::Object>* field,
3828 bool do_atomic_update) {
3829 mirror::Object* from_ref = field->AsMirrorPtr();
3830 if (from_ref == nullptr) {
3831 return true;
3832 }
3833 mirror::Object* to_ref = IsMarked(from_ref);
3834 if (to_ref == nullptr) {
3835 return false;
3836 }
3837 if (from_ref != to_ref) {
3838 if (do_atomic_update) {
3839 do {
3840 if (field->AsMirrorPtr() != from_ref) {
3841 // Concurrently overwritten by a mutator.
3842 break;
3843 }
3844 } while (!field->CasWeakRelaxed(from_ref, to_ref));
3845 } else {
3846 field->Assign(to_ref);
3847 }
3848 }
3849 return true;
3850 }
3851
MarkObject(mirror::Object * from_ref)3852 mirror::Object* ConcurrentCopying::MarkObject(mirror::Object* from_ref) {
3853 return Mark(Thread::Current(), from_ref);
3854 }
3855
DelayReferenceReferent(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> reference)3856 void ConcurrentCopying::DelayReferenceReferent(ObjPtr<mirror::Class> klass,
3857 ObjPtr<mirror::Reference> reference) {
3858 heap_->GetReferenceProcessor()->DelayReferenceReferent(klass, reference, this);
3859 }
3860
ProcessReferences(Thread * self)3861 void ConcurrentCopying::ProcessReferences(Thread* self) {
3862 // We don't really need to lock the heap bitmap lock as we use CAS to mark in bitmaps.
3863 WriterMutexLock mu(self, *Locks::heap_bitmap_lock_);
3864 GetHeap()->GetReferenceProcessor()->ProcessReferences(self, GetTimings());
3865 }
3866
RevokeAllThreadLocalBuffers()3867 void ConcurrentCopying::RevokeAllThreadLocalBuffers() {
3868 TimingLogger::ScopedTiming t(__FUNCTION__, GetTimings());
3869 region_space_->RevokeAllThreadLocalBuffers();
3870 }
3871
MarkFromReadBarrierWithMeasurements(Thread * const self,mirror::Object * from_ref)3872 mirror::Object* ConcurrentCopying::MarkFromReadBarrierWithMeasurements(Thread* const self,
3873 mirror::Object* from_ref) {
3874 if (self != thread_running_gc_) {
3875 rb_slow_path_count_.fetch_add(1u, std::memory_order_relaxed);
3876 } else {
3877 rb_slow_path_count_gc_.fetch_add(1u, std::memory_order_relaxed);
3878 }
3879 ScopedTrace tr(__FUNCTION__);
3880 const uint64_t start_time = measure_read_barrier_slow_path_ ? NanoTime() : 0u;
3881 mirror::Object* ret =
3882 Mark</*kGrayImmuneObject=*/true, /*kNoUnEvac=*/false, /*kFromGCThread=*/false>(self,
3883 from_ref);
3884 if (measure_read_barrier_slow_path_) {
3885 rb_slow_path_ns_.fetch_add(NanoTime() - start_time, std::memory_order_relaxed);
3886 }
3887 return ret;
3888 }
3889
DumpPerformanceInfo(std::ostream & os)3890 void ConcurrentCopying::DumpPerformanceInfo(std::ostream& os) {
3891 GarbageCollector::DumpPerformanceInfo(os);
3892 size_t num_gc_cycles = GetCumulativeTimings().GetIterations();
3893 MutexLock mu(Thread::Current(), rb_slow_path_histogram_lock_);
3894 if (rb_slow_path_time_histogram_.SampleSize() > 0) {
3895 Histogram<uint64_t>::CumulativeData cumulative_data;
3896 rb_slow_path_time_histogram_.CreateHistogram(&cumulative_data);
3897 rb_slow_path_time_histogram_.PrintConfidenceIntervals(os, 0.99, cumulative_data);
3898 }
3899 if (rb_slow_path_count_total_ > 0) {
3900 os << "Slow path count " << rb_slow_path_count_total_ << "\n";
3901 }
3902 if (rb_slow_path_count_gc_total_ > 0) {
3903 os << "GC slow path count " << rb_slow_path_count_gc_total_ << "\n";
3904 }
3905
3906 os << "Average " << (young_gen_ ? "minor" : "major") << " GC reclaim bytes ratio "
3907 << (reclaimed_bytes_ratio_sum_ / num_gc_cycles) << " over " << num_gc_cycles
3908 << " GC cycles\n";
3909
3910 os << "Average " << (young_gen_ ? "minor" : "major") << " GC copied live bytes ratio "
3911 << (copied_live_bytes_ratio_sum_ / gc_count_) << " over " << gc_count_
3912 << " " << (young_gen_ ? "minor" : "major") << " GCs\n";
3913
3914 os << "Cumulative bytes moved " << cumulative_bytes_moved_ << "\n";
3915 os << "Cumulative objects moved " << cumulative_objects_moved_ << "\n";
3916
3917 os << "Peak regions allocated "
3918 << region_space_->GetMaxPeakNumNonFreeRegions() << " ("
3919 << PrettySize(region_space_->GetMaxPeakNumNonFreeRegions() * space::RegionSpace::kRegionSize)
3920 << ") / " << region_space_->GetNumRegions() / 2 << " ("
3921 << PrettySize(region_space_->GetNumRegions() * space::RegionSpace::kRegionSize / 2)
3922 << ")\n";
3923 if (!young_gen_) {
3924 os << "Total madvise time " << PrettyDuration(region_space_->GetMadviseTime()) << "\n";
3925 }
3926 }
3927
3928 } // namespace collector
3929 } // namespace gc
3930 } // namespace art
3931