1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "src/trace_processor/prelude/operators/span_join_operator.h"
18
19 #include <sqlite3.h>
20 #include <string.h>
21
22 #include <algorithm>
23 #include <set>
24 #include <utility>
25
26 #include "perfetto/base/logging.h"
27 #include "perfetto/base/status.h"
28 #include "perfetto/ext/base/string_splitter.h"
29 #include "perfetto/ext/base/string_utils.h"
30 #include "perfetto/ext/base/string_view.h"
31 #include "src/trace_processor/sqlite/sqlite_utils.h"
32 #include "src/trace_processor/tp_metatrace.h"
33 #include "src/trace_processor/util/status_macros.h"
34
35 namespace perfetto {
36 namespace trace_processor {
37
38 namespace {
39
40 constexpr char kTsColumnName[] = "ts";
41 constexpr char kDurColumnName[] = "dur";
42
IsRequiredColumn(const std::string & name)43 bool IsRequiredColumn(const std::string& name) {
44 return name == kTsColumnName || name == kDurColumnName;
45 }
46
HasDuplicateColumns(const std::vector<SqliteTable::Column> & cols)47 std::optional<std::string> HasDuplicateColumns(
48 const std::vector<SqliteTable::Column>& cols) {
49 std::set<std::string> names;
50 for (const auto& col : cols) {
51 if (names.count(col.name()) > 0)
52 return col.name();
53 names.insert(col.name());
54 }
55 return std::nullopt;
56 }
57
OpToString(int op)58 std::string OpToString(int op) {
59 switch (op) {
60 case SQLITE_INDEX_CONSTRAINT_EQ:
61 return "=";
62 case SQLITE_INDEX_CONSTRAINT_NE:
63 return "!=";
64 case SQLITE_INDEX_CONSTRAINT_GE:
65 return ">=";
66 case SQLITE_INDEX_CONSTRAINT_GT:
67 return ">";
68 case SQLITE_INDEX_CONSTRAINT_LE:
69 return "<=";
70 case SQLITE_INDEX_CONSTRAINT_LT:
71 return "<";
72 case SQLITE_INDEX_CONSTRAINT_LIKE:
73 return " like ";
74 case SQLITE_INDEX_CONSTRAINT_GLOB:
75 return " glob ";
76 case SQLITE_INDEX_CONSTRAINT_ISNULL:
77 // The "null" will be added below in EscapedSqliteValueAsString.
78 return " is ";
79 case SQLITE_INDEX_CONSTRAINT_ISNOTNULL:
80 // The "null" will be added below in EscapedSqliteValueAsString.
81 return " is not ";
82 default:
83 PERFETTO_FATAL("Operator to string conversion not impemented for %d", op);
84 }
85 }
86
EscapedSqliteValueAsString(sqlite3_value * value)87 std::string EscapedSqliteValueAsString(sqlite3_value* value) {
88 switch (sqlite3_value_type(value)) {
89 case SQLITE_INTEGER:
90 return std::to_string(sqlite3_value_int64(value));
91 case SQLITE_FLOAT:
92 return std::to_string(sqlite3_value_double(value));
93 case SQLITE_TEXT: {
94 // If str itself contains a single quote, we need to escape it with
95 // another single quote.
96 const char* str =
97 reinterpret_cast<const char*>(sqlite3_value_text(value));
98 return "'" + base::ReplaceAll(str, "'", "''") + "'";
99 }
100 case SQLITE_NULL:
101 return " null";
102 default:
103 PERFETTO_FATAL("Unknown value type %d", sqlite3_value_type(value));
104 }
105 }
106
107 } // namespace
108
SpanJoinOperatorTable(sqlite3 * db,const void *)109 SpanJoinOperatorTable::SpanJoinOperatorTable(sqlite3* db, const void*)
110 : db_(db) {}
111 SpanJoinOperatorTable::~SpanJoinOperatorTable() = default;
112
Init(int argc,const char * const * argv,Schema * schema)113 util::Status SpanJoinOperatorTable::Init(int argc,
114 const char* const* argv,
115 Schema* schema) {
116 // argv[0] - argv[2] are SQLite populated fields which are always present.
117 if (argc < 5)
118 return util::Status("SPAN_JOIN: expected at least 2 args");
119
120 TableDescriptor t1_desc;
121 auto status = TableDescriptor::Parse(
122 std::string(reinterpret_cast<const char*>(argv[3])), &t1_desc);
123 if (!status.ok())
124 return status;
125
126 TableDescriptor t2_desc;
127 status = TableDescriptor::Parse(
128 std::string(reinterpret_cast<const char*>(argv[4])), &t2_desc);
129 if (!status.ok())
130 return status;
131
132 // Check that the partition columns match between the two tables.
133 if (t1_desc.partition_col == t2_desc.partition_col) {
134 partitioning_ = t1_desc.IsPartitioned()
135 ? PartitioningType::kSamePartitioning
136 : PartitioningType::kNoPartitioning;
137 } else if (t1_desc.IsPartitioned() && t2_desc.IsPartitioned()) {
138 return util::ErrStatus(
139 "SPAN_JOIN: mismatching partitions between the two tables; "
140 "(partition %s in table %s, partition %s in table %s)",
141 t1_desc.partition_col.c_str(), t1_desc.name.c_str(),
142 t2_desc.partition_col.c_str(), t2_desc.name.c_str());
143 } else {
144 partitioning_ = PartitioningType::kMixedPartitioning;
145 }
146
147 bool t1_part_mixed = t1_desc.IsPartitioned() &&
148 partitioning_ == PartitioningType::kMixedPartitioning;
149 bool t2_part_mixed = t2_desc.IsPartitioned() &&
150 partitioning_ == PartitioningType::kMixedPartitioning;
151
152 EmitShadowType t1_shadow_type;
153 if (IsOuterJoin()) {
154 if (t1_part_mixed || partitioning_ == PartitioningType::kNoPartitioning) {
155 t1_shadow_type = EmitShadowType::kPresentPartitionOnly;
156 } else {
157 t1_shadow_type = EmitShadowType::kAll;
158 }
159 } else {
160 t1_shadow_type = EmitShadowType::kNone;
161 }
162 status = CreateTableDefinition(t1_desc, t1_shadow_type, &t1_defn_);
163 if (!status.ok())
164 return status;
165
166 EmitShadowType t2_shadow_type;
167 if (IsOuterJoin() || IsLeftJoin()) {
168 if (t2_part_mixed || partitioning_ == PartitioningType::kNoPartitioning) {
169 t2_shadow_type = EmitShadowType::kPresentPartitionOnly;
170 } else {
171 t2_shadow_type = EmitShadowType::kAll;
172 }
173 } else {
174 t2_shadow_type = EmitShadowType::kNone;
175 }
176 status = CreateTableDefinition(t2_desc, t2_shadow_type, &t2_defn_);
177 if (!status.ok())
178 return status;
179
180 std::vector<SqliteTable::Column> cols;
181 // Ensure the shared columns are consistently ordered and are not
182 // present twice in the final schema
183 cols.emplace_back(Column::kTimestamp, kTsColumnName, SqlValue::Type::kLong);
184 cols.emplace_back(Column::kDuration, kDurColumnName, SqlValue::Type::kLong);
185 if (partitioning_ != PartitioningType::kNoPartitioning)
186 cols.emplace_back(Column::kPartition, partition_col(),
187 SqlValue::Type::kLong);
188
189 CreateSchemaColsForDefn(t1_defn_, &cols);
190 CreateSchemaColsForDefn(t2_defn_, &cols);
191
192 // Check if any column has : in its name. This often happens when SELECT *
193 // is used to create a view with the same column name in two joined tables.
194 for (const auto& col : cols) {
195 if (base::Contains(col.name(), ':')) {
196 return util::ErrStatus("SPAN_JOIN: column %s has illegal character :",
197 col.name().c_str());
198 }
199 }
200
201 if (auto opt_dupe_col = HasDuplicateColumns(cols)) {
202 return util::ErrStatus(
203 "SPAN_JOIN: column %s present in both tables %s and %s",
204 opt_dupe_col->c_str(), t1_defn_.name().c_str(),
205 t2_defn_.name().c_str());
206 }
207 std::vector<size_t> primary_keys = {Column::kTimestamp};
208 if (partitioning_ != PartitioningType::kNoPartitioning)
209 primary_keys.push_back(Column::kPartition);
210 *schema = Schema(cols, primary_keys);
211
212 return util::OkStatus();
213 }
214
CreateSchemaColsForDefn(const TableDefinition & defn,std::vector<SqliteTable::Column> * cols)215 void SpanJoinOperatorTable::CreateSchemaColsForDefn(
216 const TableDefinition& defn,
217 std::vector<SqliteTable::Column>* cols) {
218 for (size_t i = 0; i < defn.columns().size(); i++) {
219 const auto& n = defn.columns()[i].name();
220 if (IsRequiredColumn(n) || n == defn.partition_col())
221 continue;
222
223 ColumnLocator* locator = &global_index_to_column_locator_[cols->size()];
224 locator->defn = &defn;
225 locator->col_index = i;
226
227 cols->emplace_back(cols->size(), n, defn.columns()[i].type());
228 }
229 }
230
CreateCursor()231 std::unique_ptr<SqliteTable::BaseCursor> SpanJoinOperatorTable::CreateCursor() {
232 return std::unique_ptr<SpanJoinOperatorTable::Cursor>(new Cursor(this, db_));
233 }
234
BestIndex(const QueryConstraints & qc,BestIndexInfo * info)235 int SpanJoinOperatorTable::BestIndex(const QueryConstraints& qc,
236 BestIndexInfo* info) {
237 // TODO(lalitm): figure out cost estimation.
238 const auto& ob = qc.order_by();
239
240 if (partitioning_ == PartitioningType::kNoPartitioning) {
241 // If both tables are not partitioned and we have a single order by on ts,
242 // we return data in the correct order.
243 info->sqlite_omit_order_by =
244 ob.size() == 1 && ob[0].iColumn == Column::kTimestamp && !ob[0].desc;
245 } else {
246 // If one of the tables is partitioned, and we have an order by on the
247 // partition column followed (optionally) by an order by on timestamp, we
248 // return data in the correct order.
249 bool is_first_ob_partition =
250 ob.size() >= 1 && ob[0].iColumn == Column::kPartition && !ob[0].desc;
251 bool is_second_ob_ts =
252 ob.size() >= 2 && ob[1].iColumn == Column::kTimestamp && !ob[1].desc;
253 info->sqlite_omit_order_by =
254 (ob.size() == 1 && is_first_ob_partition) ||
255 (ob.size() == 2 && is_first_ob_partition && is_second_ob_ts);
256 }
257
258 const auto& cs = qc.constraints();
259 for (uint32_t i = 0; i < cs.size(); ++i) {
260 if (cs[i].op == kSourceGeqOpCode) {
261 info->sqlite_omit_constraint[i] = true;
262 }
263 }
264
265 return SQLITE_OK;
266 }
267
FindFunction(const char * name,FindFunctionFn * fn,void **)268 int SpanJoinOperatorTable::FindFunction(const char* name,
269 FindFunctionFn* fn,
270 void**) {
271 if (base::CaseInsensitiveEqual(name, "source_geq")) {
272 *fn = [](sqlite3_context* ctx, int, sqlite3_value**) {
273 sqlite3_result_error(ctx, "Should not be called.", -1);
274 };
275 return kSourceGeqOpCode;
276 }
277 return 0;
278 }
279
280 std::vector<std::string>
ComputeSqlConstraintsForDefinition(const TableDefinition & defn,const QueryConstraints & qc,sqlite3_value ** argv)281 SpanJoinOperatorTable::ComputeSqlConstraintsForDefinition(
282 const TableDefinition& defn,
283 const QueryConstraints& qc,
284 sqlite3_value** argv) {
285 std::vector<std::string> constraints;
286 for (size_t i = 0; i < qc.constraints().size(); i++) {
287 const auto& cs = qc.constraints()[i];
288 auto col_name = GetNameForGlobalColumnIndex(defn, cs.column);
289 if (col_name.empty())
290 continue;
291
292 // Le constraints can be passed straight to the child tables as they won't
293 // affect the span join computation. Similarily, source_geq constraints
294 // explicitly request that they are passed as geq constraints to the source
295 // tables.
296 if (col_name == kTsColumnName && !sqlite_utils::IsOpLe(cs.op) &&
297 cs.op != kSourceGeqOpCode)
298 continue;
299
300 // Allow SQLite handle any constraints on duration apart from source_geq
301 // constraints.
302 if (col_name == kDurColumnName && cs.op != kSourceGeqOpCode)
303 continue;
304
305 // If we're emitting shadow slices, don't propogate any constraints
306 // on this table as this will break the shadow slice computation.
307 if (defn.ShouldEmitPresentPartitionShadow())
308 continue;
309
310 auto op = OpToString(cs.op == kSourceGeqOpCode ? SQLITE_INDEX_CONSTRAINT_GE
311 : cs.op);
312 auto value = EscapedSqliteValueAsString(argv[i]);
313
314 constraints.emplace_back("`" + col_name + "`" + op + value);
315 }
316 return constraints;
317 }
318
CreateTableDefinition(const TableDescriptor & desc,EmitShadowType emit_shadow_type,SpanJoinOperatorTable::TableDefinition * defn)319 util::Status SpanJoinOperatorTable::CreateTableDefinition(
320 const TableDescriptor& desc,
321 EmitShadowType emit_shadow_type,
322 SpanJoinOperatorTable::TableDefinition* defn) {
323 if (desc.partition_col == kTsColumnName ||
324 desc.partition_col == kDurColumnName) {
325 return util::ErrStatus(
326 "SPAN_JOIN: partition column cannot be any of {ts, dur} for table %s",
327 desc.name.c_str());
328 }
329
330 std::vector<SqliteTable::Column> cols;
331 auto status = sqlite_utils::GetColumnsForTable(db_, desc.name, cols);
332 if (!status.ok()) {
333 return status;
334 }
335
336 uint32_t required_columns_found = 0;
337 uint32_t ts_idx = std::numeric_limits<uint32_t>::max();
338 uint32_t dur_idx = std::numeric_limits<uint32_t>::max();
339 uint32_t partition_idx = std::numeric_limits<uint32_t>::max();
340 for (uint32_t i = 0; i < cols.size(); i++) {
341 auto col = cols[i];
342 if (IsRequiredColumn(col.name())) {
343 ++required_columns_found;
344 if (col.type() != SqlValue::Type::kLong &&
345 col.type() != SqlValue::Type::kNull) {
346 return util::ErrStatus(
347 "SPAN_JOIN: Invalid type for column %s in table %s",
348 col.name().c_str(), desc.name.c_str());
349 }
350 }
351
352 if (col.name() == kTsColumnName) {
353 ts_idx = i;
354 } else if (col.name() == kDurColumnName) {
355 dur_idx = i;
356 } else if (col.name() == desc.partition_col) {
357 partition_idx = i;
358 }
359 }
360 if (required_columns_found != 2) {
361 return util::ErrStatus(
362 "SPAN_JOIN: Missing one of columns {ts, dur} in table %s",
363 desc.name.c_str());
364 } else if (desc.IsPartitioned() && partition_idx >= cols.size()) {
365 return util::ErrStatus("SPAN_JOIN: Missing partition column %s in table %s",
366 desc.partition_col.c_str(), desc.name.c_str());
367 }
368
369 PERFETTO_DCHECK(ts_idx < cols.size());
370 PERFETTO_DCHECK(dur_idx < cols.size());
371
372 *defn = TableDefinition(desc.name, desc.partition_col, std::move(cols),
373 emit_shadow_type, ts_idx, dur_idx, partition_idx);
374 return util::OkStatus();
375 }
376
GetNameForGlobalColumnIndex(const TableDefinition & defn,int global_column)377 std::string SpanJoinOperatorTable::GetNameForGlobalColumnIndex(
378 const TableDefinition& defn,
379 int global_column) {
380 size_t col_idx = static_cast<size_t>(global_column);
381 if (col_idx == Column::kTimestamp)
382 return kTsColumnName;
383 else if (col_idx == Column::kDuration)
384 return kDurColumnName;
385 else if (col_idx == Column::kPartition &&
386 partitioning_ != PartitioningType::kNoPartitioning)
387 return defn.partition_col().c_str();
388
389 const auto& locator = global_index_to_column_locator_[col_idx];
390 if (locator.defn != &defn)
391 return "";
392 return defn.columns()[locator.col_index].name().c_str();
393 }
394
Cursor(SpanJoinOperatorTable * table,sqlite3 * db)395 SpanJoinOperatorTable::Cursor::Cursor(SpanJoinOperatorTable* table, sqlite3* db)
396 : SqliteTable::BaseCursor(table),
397 t1_(table, &table->t1_defn_, db),
398 t2_(table, &table->t2_defn_, db),
399 table_(table) {}
400 SpanJoinOperatorTable::Cursor::~Cursor() = default;
401
Filter(const QueryConstraints & qc,sqlite3_value ** argv,FilterHistory)402 base::Status SpanJoinOperatorTable::Cursor::Filter(const QueryConstraints& qc,
403 sqlite3_value** argv,
404 FilterHistory) {
405 PERFETTO_TP_TRACE(metatrace::Category::QUERY, "SPAN_JOIN_XFILTER");
406
407 bool t1_partitioned_mixed =
408 t1_.definition()->IsPartitioned() &&
409 table_->partitioning_ == PartitioningType::kMixedPartitioning;
410 auto t1_eof = table_->IsOuterJoin() && !t1_partitioned_mixed
411 ? Query::InitialEofBehavior::kTreatAsMissingPartitionShadow
412 : Query::InitialEofBehavior::kTreatAsEof;
413 RETURN_IF_ERROR(t1_.Initialize(qc, argv, t1_eof));
414
415 bool t2_partitioned_mixed =
416 t2_.definition()->IsPartitioned() &&
417 table_->partitioning_ == PartitioningType::kMixedPartitioning;
418 auto t2_eof =
419 (table_->IsLeftJoin() || table_->IsOuterJoin()) && !t2_partitioned_mixed
420 ? Query::InitialEofBehavior::kTreatAsMissingPartitionShadow
421 : Query::InitialEofBehavior::kTreatAsEof;
422 RETURN_IF_ERROR(t2_.Initialize(qc, argv, t2_eof));
423 return FindOverlappingSpan();
424 }
425
Next()426 base::Status SpanJoinOperatorTable::Cursor::Next() {
427 RETURN_IF_ERROR(next_query_->Next());
428 return FindOverlappingSpan();
429 }
430
IsOverlappingSpan()431 bool SpanJoinOperatorTable::Cursor::IsOverlappingSpan() {
432 // If either of the tables are eof, then we cannot possibly have an
433 // overlapping span.
434 if (t1_.IsEof() || t2_.IsEof())
435 return false;
436
437 // One of the tables always needs to have a real span to have a valid
438 // overlapping span.
439 if (!t1_.IsReal() && !t2_.IsReal())
440 return false;
441
442 if (table_->partitioning_ == PartitioningType::kSamePartitioning) {
443 // If both tables are partitioned, then ensure that the partitions overlap.
444 bool partition_in_bounds = (t1_.FirstPartition() >= t2_.FirstPartition() &&
445 t1_.FirstPartition() <= t2_.LastPartition()) ||
446 (t2_.FirstPartition() >= t1_.FirstPartition() &&
447 t2_.FirstPartition() <= t1_.LastPartition());
448 if (!partition_in_bounds)
449 return false;
450 }
451
452 // We consider all slices to be [start, end) - that is the range of
453 // timestamps has an open interval at the start but a closed interval
454 // at the end. (with the exception of dur == -1 which we treat as if
455 // end == start for the purpose of this function).
456 return (t1_.ts() == t2_.ts() && t1_.IsReal() && t2_.IsReal()) ||
457 (t1_.ts() >= t2_.ts() && t1_.ts() < t2_.AdjustedTsEnd()) ||
458 (t2_.ts() >= t1_.ts() && t2_.ts() < t1_.AdjustedTsEnd());
459 }
460
FindOverlappingSpan()461 util::Status SpanJoinOperatorTable::Cursor::FindOverlappingSpan() {
462 // We loop until we find a slice which overlaps from the two tables.
463 while (true) {
464 if (table_->partitioning_ == PartitioningType::kMixedPartitioning) {
465 // If we have a mixed partition setup, we need to have special checks
466 // for eof and to reset the unpartitioned cursor every time the partition
467 // changes in the partitioned table.
468 auto* partitioned = t1_.definition()->IsPartitioned() ? &t1_ : &t2_;
469 auto* unpartitioned = t1_.definition()->IsPartitioned() ? &t2_ : &t1_;
470
471 // If the partitioned table reaches eof, then we are really done.
472 if (partitioned->IsEof())
473 break;
474
475 // If the partition has changed from the previous one, reset the cursor
476 // and keep a lot of the new partition.
477 if (last_mixed_partition_ != partitioned->partition()) {
478 util::Status status = unpartitioned->Rewind();
479 if (!status.ok())
480 return status;
481 last_mixed_partition_ = partitioned->partition();
482 }
483 } else if (t1_.IsEof() || t2_.IsEof()) {
484 // For both no partition and same partition cases, either cursor ending
485 // ends the whole span join.
486 break;
487 }
488
489 // Find which slice finishes first.
490 next_query_ = FindEarliestFinishQuery();
491
492 // If the current span is overlapping, just finish there to emit the current
493 // slice.
494 if (IsOverlappingSpan())
495 break;
496
497 // Otherwise, step to the next row.
498 util::Status status = next_query_->Next();
499 if (!status.ok())
500 return status;
501 }
502 return util::OkStatus();
503 }
504
505 SpanJoinOperatorTable::Query*
FindEarliestFinishQuery()506 SpanJoinOperatorTable::Cursor::FindEarliestFinishQuery() {
507 int64_t t1_part;
508 int64_t t2_part;
509
510 switch (table_->partitioning_) {
511 case PartitioningType::kMixedPartitioning: {
512 // If either table is EOF, forward the other table to try and make
513 // the partitions not match anymore.
514 if (t1_.IsEof())
515 return &t2_;
516 if (t2_.IsEof())
517 return &t1_;
518
519 // Otherwise, just make the partition equal from both tables.
520 t1_part = last_mixed_partition_;
521 t2_part = last_mixed_partition_;
522 break;
523 }
524 case PartitioningType::kSamePartitioning: {
525 // Get the partition values from the cursor.
526 t1_part = t1_.LastPartition();
527 t2_part = t2_.LastPartition();
528 break;
529 }
530 case PartitioningType::kNoPartitioning: {
531 t1_part = 0;
532 t2_part = 0;
533 break;
534 }
535 }
536
537 // Prefer to forward the earliest cursors based on the following
538 // lexiographical ordering:
539 // 1. partition
540 // 2. end timestamp
541 // 3. whether the slice is real or shadow (shadow < real)
542 bool t1_less = std::make_tuple(t1_part, t1_.AdjustedTsEnd(), t1_.IsReal()) <
543 std::make_tuple(t2_part, t2_.AdjustedTsEnd(), t2_.IsReal());
544 return t1_less ? &t1_ : &t2_;
545 }
546
Eof()547 bool SpanJoinOperatorTable::Cursor::Eof() {
548 return t1_.IsEof() || t2_.IsEof();
549 }
550
Column(sqlite3_context * context,int N)551 base::Status SpanJoinOperatorTable::Cursor::Column(sqlite3_context* context,
552 int N) {
553 PERFETTO_DCHECK(t1_.IsReal() || t2_.IsReal());
554
555 switch (N) {
556 case Column::kTimestamp: {
557 auto max_ts = std::max(t1_.ts(), t2_.ts());
558 sqlite3_result_int64(context, static_cast<sqlite3_int64>(max_ts));
559 break;
560 }
561 case Column::kDuration: {
562 auto max_start = std::max(t1_.ts(), t2_.ts());
563 auto min_end = std::min(t1_.raw_ts_end(), t2_.raw_ts_end());
564 auto dur = min_end - max_start;
565 sqlite3_result_int64(context, static_cast<sqlite3_int64>(dur));
566 break;
567 }
568 case Column::kPartition: {
569 if (table_->partitioning_ != PartitioningType::kNoPartitioning) {
570 int64_t partition;
571 if (table_->partitioning_ == PartitioningType::kMixedPartitioning) {
572 partition = last_mixed_partition_;
573 } else {
574 partition = t1_.IsReal() ? t1_.partition() : t2_.partition();
575 }
576 sqlite3_result_int64(context, static_cast<sqlite3_int64>(partition));
577 break;
578 }
579 [[clang::fallthrough]];
580 }
581 default: {
582 size_t index = static_cast<size_t>(N);
583 const auto& locator = table_->global_index_to_column_locator_[index];
584 if (locator.defn == t1_.definition())
585 t1_.ReportSqliteResult(context, locator.col_index);
586 else
587 t2_.ReportSqliteResult(context, locator.col_index);
588 }
589 }
590 return base::OkStatus();
591 }
592
Query(SpanJoinOperatorTable * table,const TableDefinition * definition,sqlite3 * db)593 SpanJoinOperatorTable::Query::Query(SpanJoinOperatorTable* table,
594 const TableDefinition* definition,
595 sqlite3* db)
596 : defn_(definition), db_(db), table_(table) {
597 PERFETTO_DCHECK(!defn_->IsPartitioned() ||
598 defn_->partition_idx() < defn_->columns().size());
599 }
600
601 SpanJoinOperatorTable::Query::~Query() = default;
602
Initialize(const QueryConstraints & qc,sqlite3_value ** argv,InitialEofBehavior eof_behavior)603 util::Status SpanJoinOperatorTable::Query::Initialize(
604 const QueryConstraints& qc,
605 sqlite3_value** argv,
606 InitialEofBehavior eof_behavior) {
607 *this = Query(table_, definition(), db_);
608 sql_query_ = CreateSqlQuery(
609 table_->ComputeSqlConstraintsForDefinition(*defn_, qc, argv));
610 util::Status status = Rewind();
611 if (!status.ok())
612 return status;
613 if (eof_behavior == InitialEofBehavior::kTreatAsMissingPartitionShadow &&
614 IsEof()) {
615 state_ = State::kMissingPartitionShadow;
616 }
617 return status;
618 }
619
Next()620 util::Status SpanJoinOperatorTable::Query::Next() {
621 RETURN_IF_ERROR(NextSliceState());
622 return FindNextValidSlice();
623 }
624
IsValidSlice()625 bool SpanJoinOperatorTable::Query::IsValidSlice() {
626 // Disallow any single partition shadow slices if the definition doesn't allow
627 // them.
628 if (IsPresentPartitionShadow() && !defn_->ShouldEmitPresentPartitionShadow())
629 return false;
630
631 // Disallow any missing partition shadow slices if the definition doesn't
632 // allow them.
633 if (IsMissingPartitionShadow() && !defn_->ShouldEmitMissingPartitionShadow())
634 return false;
635
636 // Disallow any "empty" shadows; these are shadows which either have the same
637 // start and end time or missing-partition shadows which have the same start
638 // and end partition.
639 if (IsEmptyShadow())
640 return false;
641
642 return true;
643 }
644
FindNextValidSlice()645 util::Status SpanJoinOperatorTable::Query::FindNextValidSlice() {
646 // The basic idea of this function is that |NextSliceState()| always emits
647 // all possible slices (including shadows for any gaps inbetween the real
648 // slices) and we filter out the invalid slices (as defined by the table
649 // definition) using |IsValidSlice()|.
650 //
651 // This has proved to be a lot cleaner to implement than trying to choose
652 // when to emit and not emit shadows directly.
653 while (!IsEof() && !IsValidSlice()) {
654 RETURN_IF_ERROR(NextSliceState());
655 }
656 return util::OkStatus();
657 }
658
NextSliceState()659 util::Status SpanJoinOperatorTable::Query::NextSliceState() {
660 switch (state_) {
661 case State::kReal: {
662 // Forward the cursor to figure out where the next slice should be.
663 RETURN_IF_ERROR(CursorNext());
664
665 // Depending on the next slice, we can do two things here:
666 // 1. If the next slice is on the same partition, we can just emit a
667 // single shadow until the start of the next slice.
668 // 2. If the next slice is on another partition or we hit eof, just emit
669 // a shadow to the end of the whole partition.
670 bool shadow_to_end = cursor_eof_ || (defn_->IsPartitioned() &&
671 partition_ != CursorPartition());
672 state_ = State::kPresentPartitionShadow;
673 ts_ = AdjustedTsEnd();
674 ts_end_ =
675 shadow_to_end ? std::numeric_limits<int64_t>::max() : CursorTs();
676 return util::OkStatus();
677 }
678 case State::kPresentPartitionShadow: {
679 if (ts_end_ == std::numeric_limits<int64_t>::max()) {
680 // If the shadow is to the end of the slice, create a missing partition
681 // shadow to the start of the partition of the next slice or to the max
682 // partition if we hit eof.
683 state_ = State::kMissingPartitionShadow;
684 ts_ = 0;
685 ts_end_ = std::numeric_limits<int64_t>::max();
686
687 missing_partition_start_ = partition_ + 1;
688 missing_partition_end_ = cursor_eof_
689 ? std::numeric_limits<int64_t>::max()
690 : CursorPartition();
691 } else {
692 // If the shadow is not to the end, we must have another slice on the
693 // current partition.
694 state_ = State::kReal;
695 ts_ = CursorTs();
696 ts_end_ = ts_ + CursorDur();
697
698 PERFETTO_DCHECK(!defn_->IsPartitioned() ||
699 partition_ == CursorPartition());
700 }
701 return util::OkStatus();
702 }
703 case State::kMissingPartitionShadow: {
704 if (missing_partition_end_ == std::numeric_limits<int64_t>::max()) {
705 PERFETTO_DCHECK(cursor_eof_);
706
707 // If we have a missing partition to the max partition, we must have hit
708 // eof.
709 state_ = State::kEof;
710 } else {
711 PERFETTO_DCHECK(!defn_->IsPartitioned() ||
712 CursorPartition() == missing_partition_end_);
713
714 // Otherwise, setup a single partition slice on the end partition to the
715 // start of the next slice.
716 state_ = State::kPresentPartitionShadow;
717 ts_ = 0;
718 ts_end_ = CursorTs();
719 partition_ = missing_partition_end_;
720 }
721 return util::OkStatus();
722 }
723 case State::kEof: {
724 PERFETTO_DFATAL("Called Next when EOF");
725 return util::ErrStatus("Called Next when EOF");
726 }
727 }
728 PERFETTO_FATAL("For GCC");
729 }
730
Rewind()731 util::Status SpanJoinOperatorTable::Query::Rewind() {
732 sqlite3_stmt* stmt = nullptr;
733 int res =
734 sqlite3_prepare_v2(db_, sql_query_.c_str(),
735 static_cast<int>(sql_query_.size()), &stmt, nullptr);
736 stmt_.reset(stmt);
737
738 cursor_eof_ = res != SQLITE_OK;
739 if (res != SQLITE_OK)
740 return util::ErrStatus(
741 "%s", sqlite_utils::FormatErrorMessage(
742 stmt_.get(), base::StringView(sql_query_), db_, res)
743 .c_message());
744
745 RETURN_IF_ERROR(CursorNext());
746
747 // Setup the first slice as a missing partition shadow from the lowest
748 // partition until the first slice partition. We will handle finding the real
749 // slice in |FindNextValidSlice()|.
750 state_ = State::kMissingPartitionShadow;
751 ts_ = 0;
752 ts_end_ = std::numeric_limits<int64_t>::max();
753 missing_partition_start_ = std::numeric_limits<int64_t>::min();
754
755 if (cursor_eof_) {
756 missing_partition_end_ = std::numeric_limits<int64_t>::max();
757 } else if (defn_->IsPartitioned()) {
758 missing_partition_end_ = CursorPartition();
759 } else {
760 missing_partition_end_ = std::numeric_limits<int64_t>::min();
761 }
762
763 // Actually compute the first valid slice.
764 return FindNextValidSlice();
765 }
766
CursorNext()767 util::Status SpanJoinOperatorTable::Query::CursorNext() {
768 auto* stmt = stmt_.get();
769 int res;
770 if (defn_->IsPartitioned()) {
771 auto partition_idx = static_cast<int>(defn_->partition_idx());
772 // Fastforward through any rows with null partition keys.
773 int row_type;
774 do {
775 res = sqlite3_step(stmt);
776 row_type = sqlite3_column_type(stmt, partition_idx);
777 } while (res == SQLITE_ROW && row_type == SQLITE_NULL);
778
779 if (res == SQLITE_ROW && row_type != SQLITE_INTEGER) {
780 return util::ErrStatus("SPAN_JOIN: partition is not an int");
781 }
782 } else {
783 res = sqlite3_step(stmt);
784 }
785 cursor_eof_ = res != SQLITE_ROW;
786 return res == SQLITE_ROW || res == SQLITE_DONE
787 ? util::OkStatus()
788 : util::ErrStatus("SPAN_JOIN: %s", sqlite3_errmsg(db_));
789 }
790
CreateSqlQuery(const std::vector<std::string> & cs) const791 std::string SpanJoinOperatorTable::Query::CreateSqlQuery(
792 const std::vector<std::string>& cs) const {
793 std::vector<std::string> col_names;
794 for (const SqliteTable::Column& c : defn_->columns()) {
795 col_names.push_back("`" + c.name() + "`");
796 }
797
798 std::string sql = "SELECT " + base::Join(col_names, ", ");
799 sql += " FROM " + defn_->name();
800 if (!cs.empty()) {
801 sql += " WHERE " + base::Join(cs, " AND ");
802 }
803 sql += " ORDER BY ";
804 sql += defn_->IsPartitioned()
805 ? base::Join({"`" + defn_->partition_col() + "`", "ts"}, ", ")
806 : "ts";
807 sql += ";";
808 PERFETTO_DLOG("%s", sql.c_str());
809 return sql;
810 }
811
ReportSqliteResult(sqlite3_context * context,size_t index)812 void SpanJoinOperatorTable::Query::ReportSqliteResult(sqlite3_context* context,
813 size_t index) {
814 if (state_ != State::kReal) {
815 sqlite3_result_null(context);
816 return;
817 }
818
819 sqlite3_stmt* stmt = stmt_.get();
820 int idx = static_cast<int>(index);
821 switch (sqlite3_column_type(stmt, idx)) {
822 case SQLITE_INTEGER:
823 sqlite3_result_int64(context, sqlite3_column_int64(stmt, idx));
824 break;
825 case SQLITE_FLOAT:
826 sqlite3_result_double(context, sqlite3_column_double(stmt, idx));
827 break;
828 case SQLITE_TEXT: {
829 // TODO(lalitm): note for future optimizations: if we knew the addresses
830 // of the string intern pool, we could check if the string returned here
831 // comes from the pool, and pass it as non-transient.
832 const auto kSqliteTransient =
833 reinterpret_cast<sqlite3_destructor_type>(-1);
834 auto ptr = reinterpret_cast<const char*>(sqlite3_column_text(stmt, idx));
835 sqlite3_result_text(context, ptr, -1, kSqliteTransient);
836 break;
837 }
838 }
839 }
840
TableDefinition(std::string name,std::string partition_col,std::vector<SqliteTable::Column> cols,EmitShadowType emit_shadow_type,uint32_t ts_idx,uint32_t dur_idx,uint32_t partition_idx)841 SpanJoinOperatorTable::TableDefinition::TableDefinition(
842 std::string name,
843 std::string partition_col,
844 std::vector<SqliteTable::Column> cols,
845 EmitShadowType emit_shadow_type,
846 uint32_t ts_idx,
847 uint32_t dur_idx,
848 uint32_t partition_idx)
849 : emit_shadow_type_(emit_shadow_type),
850 name_(std::move(name)),
851 partition_col_(std::move(partition_col)),
852 cols_(std::move(cols)),
853 ts_idx_(ts_idx),
854 dur_idx_(dur_idx),
855 partition_idx_(partition_idx) {}
856
Parse(const std::string & raw_descriptor,SpanJoinOperatorTable::TableDescriptor * descriptor)857 util::Status SpanJoinOperatorTable::TableDescriptor::Parse(
858 const std::string& raw_descriptor,
859 SpanJoinOperatorTable::TableDescriptor* descriptor) {
860 // Descriptors have one of the following forms:
861 // table_name [PARTITIONED column_name]
862
863 // Find the table name.
864 base::StringSplitter splitter(raw_descriptor, ' ');
865 if (!splitter.Next())
866 return util::ErrStatus("SPAN_JOIN: Missing table name");
867
868 descriptor->name = splitter.cur_token();
869 if (!splitter.Next())
870 return util::OkStatus();
871
872 if (!base::CaseInsensitiveEqual(splitter.cur_token(), "PARTITIONED"))
873 return util::ErrStatus("SPAN_JOIN: Invalid token");
874
875 if (!splitter.Next())
876 return util::ErrStatus("SPAN_JOIN: Missing partitioning column");
877
878 descriptor->partition_col = splitter.cur_token();
879 return util::OkStatus();
880 }
881
882 } // namespace trace_processor
883 } // namespace perfetto
884