• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //#define LOG_NDEBUG 0
18 //#define LOG_NNDEBUG 0
19 #include "system/graphics-base-v1.1.h"
20 #define LOG_TAG "EmulatedSensor"
21 #define ATRACE_TAG ATRACE_TAG_CAMERA
22 
23 #ifdef LOG_NNDEBUG
24 #define ALOGVV(...) ALOGV(__VA_ARGS__)
25 #else
26 #define ALOGVV(...) ((void)0)
27 #endif
28 
29 #include <android/hardware/graphics/common/1.2/types.h>
30 #include <cutils/properties.h>
31 #include <inttypes.h>
32 #include <libyuv.h>
33 #include <memory.h>
34 #include <system/camera_metadata.h>
35 #include <utils/Log.h>
36 #include <utils/Trace.h>
37 
38 #include <cmath>
39 #include <cstdlib>
40 
41 #include "EmulatedSensor.h"
42 #include "utils/ExifUtils.h"
43 #include "utils/HWLUtils.h"
44 
45 namespace android {
46 
47 using android::google_camera_hal::ErrorCode;
48 using google_camera_hal::HalCameraMetadata;
49 using google_camera_hal::MessageType;
50 using google_camera_hal::NotifyMessage;
51 
52 using android::hardware::graphics::common::V1_2::Dataspace;
53 
54 // Copied from ColorSpace.java (see Named)
55 enum ColorSpaceNamed {
56   SRGB,
57   LINEAR_SRGB,
58   EXTENDED_SRGB,
59   LINEAR_EXTENDED_SRGB,
60   BT709,
61   BT2020,
62   DCI_P3,
63   DISPLAY_P3,
64   NTSC_1953,
65   SMPTE_C,
66   ADOBE_RGB,
67   PRO_PHOTO_RGB,
68   ACES,
69   ACESCG,
70   CIE_XYZ,
71   CIE_LAB
72 };
73 
74 const uint32_t EmulatedSensor::kRegularSceneHandshake = 1; // Scene handshake divider
75 const uint32_t EmulatedSensor::kReducedSceneHandshake = 2; // Scene handshake divider
76 
77 // 1 us - 30 sec
78 const nsecs_t EmulatedSensor::kSupportedExposureTimeRange[2] = {1000LL,
79                                                                 30000000000LL};
80 
81 // ~1/30 s - 30 sec
82 const nsecs_t EmulatedSensor::kSupportedFrameDurationRange[2] = {33331760LL,
83                                                                  30000000000LL};
84 
85 const int32_t EmulatedSensor::kSupportedSensitivityRange[2] = {100, 1600};
86 const int32_t EmulatedSensor::kDefaultSensitivity = 100;  // ISO
87 const nsecs_t EmulatedSensor::kDefaultExposureTime = ms2ns(15);
88 const nsecs_t EmulatedSensor::kDefaultFrameDuration = ms2ns(33);
89 // Deadline within we should return the results as soon as possible to
90 // avoid skewing the frame cycle due to external delays.
91 const nsecs_t EmulatedSensor::kReturnResultThreshod = 3 * kDefaultFrameDuration;
92 
93 // Sensor defaults
94 const uint8_t EmulatedSensor::kSupportedColorFilterArrangement =
95     ANDROID_SENSOR_INFO_COLOR_FILTER_ARRANGEMENT_RGGB;
96 const uint32_t EmulatedSensor::kDefaultMaxRawValue = 4000;
97 const uint32_t EmulatedSensor::kDefaultBlackLevelPattern[4] = {1000, 1000, 1000,
98                                                                1000};
99 
100 const nsecs_t EmulatedSensor::kMinVerticalBlank = 10000L;
101 
102 // Sensor sensitivity
103 const float EmulatedSensor::kSaturationVoltage = 0.520f;
104 const uint32_t EmulatedSensor::kSaturationElectrons = 2000;
105 const float EmulatedSensor::kVoltsPerLuxSecond = 0.100f;
106 
107 const float EmulatedSensor::kElectronsPerLuxSecond =
108     EmulatedSensor::kSaturationElectrons / EmulatedSensor::kSaturationVoltage *
109     EmulatedSensor::kVoltsPerLuxSecond;
110 
111 const float EmulatedSensor::kReadNoiseStddevBeforeGain = 1.177;  // in electrons
112 const float EmulatedSensor::kReadNoiseStddevAfterGain =
113     2.100;  // in digital counts
114 const float EmulatedSensor::kReadNoiseVarBeforeGain =
115     EmulatedSensor::kReadNoiseStddevBeforeGain *
116     EmulatedSensor::kReadNoiseStddevBeforeGain;
117 const float EmulatedSensor::kReadNoiseVarAfterGain =
118     EmulatedSensor::kReadNoiseStddevAfterGain *
119     EmulatedSensor::kReadNoiseStddevAfterGain;
120 
121 const uint32_t EmulatedSensor::kMaxRAWStreams = 1;
122 const uint32_t EmulatedSensor::kMaxProcessedStreams = 3;
123 const uint32_t EmulatedSensor::kMaxStallingStreams = 2;
124 const uint32_t EmulatedSensor::kMaxInputStreams = 1;
125 
126 const uint32_t EmulatedSensor::kMaxLensShadingMapSize[2]{64, 64};
127 const int32_t EmulatedSensor::kFixedBitPrecision = 64;  // 6-bit
128 // In fixed-point math, saturation point of sensor after gain
129 const int32_t EmulatedSensor::kSaturationPoint = kFixedBitPrecision * 255;
130 const camera_metadata_rational EmulatedSensor::kNeutralColorPoint[3] = {
131     {255, 1}, {255, 1}, {255, 1}};
132 const float EmulatedSensor::kGreenSplit = 1.f;  // No divergence
133 // Reduce memory usage by allowing only one buffer in sensor, one in jpeg
134 // compressor and one pending request to avoid stalls.
135 const uint8_t EmulatedSensor::kPipelineDepth = 3;
136 
137 const camera_metadata_rational EmulatedSensor::kDefaultColorTransform[9] = {
138     {1, 1}, {0, 1}, {0, 1}, {0, 1}, {1, 1}, {0, 1}, {0, 1}, {0, 1}, {1, 1}};
139 const float EmulatedSensor::kDefaultColorCorrectionGains[4] = {1.0f, 1.0f, 1.0f,
140                                                                1.0f};
141 
142 const float EmulatedSensor::kDefaultToneMapCurveRed[4] = {.0f, .0f, 1.f, 1.f};
143 const float EmulatedSensor::kDefaultToneMapCurveGreen[4] = {.0f, .0f, 1.f, 1.f};
144 const float EmulatedSensor::kDefaultToneMapCurveBlue[4] = {.0f, .0f, 1.f, 1.f};
145 
146 // All XY matrix coefficients sourced from
147 // https://developer.android.com/reference/kotlin/android/graphics/ColorSpace.Named
148 // and XYZ coefficients calculated using the method found in
149 // ColorSpace.Rgb.computeXyzMatrix
150 struct XyzMatrix {
151   float xR = 3.2406f;
152   float yR = -1.5372f;
153   float zR = -0.4986f;
154   float xG = -0.9689f;
155   float yG = 1.8758f;
156   float zG = 0.0415f;
157   float xB = 0.0557f;
158   float yB = -0.2040f;
159   float zB = 1.0570f;
160 };
161 
162 static const XyzMatrix kSrgbXyzMatrix = {3.2406f,  -1.5372f, -0.4986f,
163                                          -0.9689f, 1.8758f,  0.0415f,
164                                          0.0557f,  -0.2040f, 1.0570f};
165 
166 static const XyzMatrix kDisplayP3Matrix = {2.4931f,  -0.9316f, -0.4023f,
167                                            -0.8291f, 1.7627f,  0.0234f,
168                                            0.0361f,  -0.0761f, 0.9570f};
169 
170 static const XyzMatrix kBt709Matrix = {3.2410f,  -1.5374f, -0.4986f,
171                                        -0.9692f, 1.8760f,  0.0416f,
172                                        0.0556f,  -0.2040f, 1.0570f};
173 
174 static const XyzMatrix kBt2020Matrix = {1.7167f,  -0.3556f, -0.2534f,
175                                         -0.6666f, 1.6164f,  0.0158f,
176                                         0.0177f,  -0.0428f, 0.9421f};
177 
178 /** A few utility functions for math, normal distributions */
179 
180 // Take advantage of IEEE floating-point format to calculate an approximate
181 // square root. Accurate to within +-3.6%
sqrtf_approx(float r)182 float sqrtf_approx(float r) {
183   // Modifier is based on IEEE floating-point representation; the
184   // manipulations boil down to finding approximate log2, dividing by two, and
185   // then inverting the log2. A bias is added to make the relative error
186   // symmetric about the real answer.
187   const int32_t modifier = 0x1FBB4000;
188 
189   int32_t r_i = *(int32_t*)(&r);
190   r_i = (r_i >> 1) + modifier;
191 
192   return *(float*)(&r_i);
193 }
194 
EmulatedSensor()195 EmulatedSensor::EmulatedSensor() : Thread(false), got_vsync_(false) {
196   gamma_table_sRGB_.resize(kSaturationPoint + 1);
197   gamma_table_smpte170m_.resize(kSaturationPoint + 1);
198   gamma_table_hlg_.resize(kSaturationPoint + 1);
199   for (int32_t i = 0; i <= kSaturationPoint; i++) {
200     gamma_table_sRGB_[i] = ApplysRGBGamma(i, kSaturationPoint);
201     gamma_table_smpte170m_[i] = ApplySMPTE170MGamma(i, kSaturationPoint);
202     gamma_table_hlg_[i] = ApplyHLGGamma(i, kSaturationPoint);
203   }
204 }
205 
~EmulatedSensor()206 EmulatedSensor::~EmulatedSensor() {
207   ShutDown();
208 }
209 
AreCharacteristicsSupported(const SensorCharacteristics & characteristics)210 bool EmulatedSensor::AreCharacteristicsSupported(
211     const SensorCharacteristics& characteristics) {
212   if ((characteristics.width == 0) || (characteristics.height == 0)) {
213     ALOGE("%s: Invalid sensor size %zux%zu", __FUNCTION__,
214           characteristics.width, characteristics.height);
215     return false;
216   }
217 
218   if ((characteristics.full_res_width == 0) ||
219       (characteristics.full_res_height == 0)) {
220     ALOGE("%s: Invalid sensor full res size %zux%zu", __FUNCTION__,
221           characteristics.full_res_width, characteristics.full_res_height);
222     return false;
223   }
224 
225   if (characteristics.is_10bit_dynamic_range_capable) {
226     // We support only HLG10 at the moment
227     const auto& hlg10_entry = characteristics.dynamic_range_profiles.find(
228         ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_HLG10);
229     if ((characteristics.dynamic_range_profiles.size() != 1) ||
230         (hlg10_entry == characteristics.dynamic_range_profiles.end())) {
231       ALOGE("%s: Only support for HLG10 is available!", __FUNCTION__);
232       return false;
233     }
234   }
235 
236   if ((characteristics.exposure_time_range[0] >=
237        characteristics.exposure_time_range[1]) ||
238       ((characteristics.exposure_time_range[0] < kSupportedExposureTimeRange[0]) ||
239        (characteristics.exposure_time_range[1] >
240         kSupportedExposureTimeRange[1]))) {
241     ALOGE("%s: Unsupported exposure range", __FUNCTION__);
242     return false;
243   }
244 
245   if ((characteristics.frame_duration_range[0] >=
246        characteristics.frame_duration_range[1]) ||
247       ((characteristics.frame_duration_range[0] <
248         kSupportedFrameDurationRange[0]) ||
249        (characteristics.frame_duration_range[1] >
250         kSupportedFrameDurationRange[1]))) {
251     ALOGE("%s: Unsupported frame duration range", __FUNCTION__);
252     return false;
253   }
254 
255   if ((characteristics.sensitivity_range[0] >=
256        characteristics.sensitivity_range[1]) ||
257       ((characteristics.sensitivity_range[0] < kSupportedSensitivityRange[0]) ||
258        (characteristics.sensitivity_range[1] > kSupportedSensitivityRange[1])) ||
259       (!((kDefaultSensitivity >= characteristics.sensitivity_range[0]) &&
260          (kDefaultSensitivity <= characteristics.sensitivity_range[1])))) {
261     ALOGE("%s: Unsupported sensitivity range", __FUNCTION__);
262     return false;
263   }
264 
265   if (characteristics.color_arangement != kSupportedColorFilterArrangement) {
266     ALOGE("%s: Unsupported color arrangement!", __FUNCTION__);
267     return false;
268   }
269 
270   for (const auto& blackLevel : characteristics.black_level_pattern) {
271     if (blackLevel >= characteristics.max_raw_value) {
272       ALOGE("%s: Black level matches or exceeds max RAW value!", __FUNCTION__);
273       return false;
274     }
275   }
276 
277   if ((characteristics.frame_duration_range[0] / characteristics.height) == 0) {
278     ALOGE("%s: Zero row readout time!", __FUNCTION__);
279     return false;
280   }
281 
282   if (characteristics.max_raw_streams > kMaxRAWStreams) {
283     ALOGE("%s: RAW streams maximum %u exceeds supported maximum %u",
284           __FUNCTION__, characteristics.max_raw_streams, kMaxRAWStreams);
285     return false;
286   }
287 
288   if (characteristics.max_processed_streams > kMaxProcessedStreams) {
289     ALOGE("%s: Processed streams maximum %u exceeds supported maximum %u",
290           __FUNCTION__, characteristics.max_processed_streams,
291           kMaxProcessedStreams);
292     return false;
293   }
294 
295   if (characteristics.max_stalling_streams > kMaxStallingStreams) {
296     ALOGE("%s: Stalling streams maximum %u exceeds supported maximum %u",
297           __FUNCTION__, characteristics.max_stalling_streams,
298           kMaxStallingStreams);
299     return false;
300   }
301 
302   if (characteristics.max_input_streams > kMaxInputStreams) {
303     ALOGE("%s: Input streams maximum %u exceeds supported maximum %u",
304           __FUNCTION__, characteristics.max_input_streams, kMaxInputStreams);
305     return false;
306   }
307 
308   if ((characteristics.lens_shading_map_size[0] > kMaxLensShadingMapSize[0]) ||
309       (characteristics.lens_shading_map_size[1] > kMaxLensShadingMapSize[1])) {
310     ALOGE("%s: Lens shading map [%dx%d] exceeds supprorted maximum [%dx%d]",
311           __FUNCTION__, characteristics.lens_shading_map_size[0],
312           characteristics.lens_shading_map_size[1], kMaxLensShadingMapSize[0],
313           kMaxLensShadingMapSize[1]);
314     return false;
315   }
316 
317   if (characteristics.max_pipeline_depth < kPipelineDepth) {
318     ALOGE("%s: Pipeline depth %d smaller than supprorted minimum %d",
319           __FUNCTION__, characteristics.max_pipeline_depth, kPipelineDepth);
320     return false;
321   }
322 
323   return true;
324 }
325 
SplitStreamCombination(const StreamConfiguration & original_config,StreamConfiguration * default_mode_config,StreamConfiguration * max_resolution_mode_config,StreamConfiguration * input_stream_config)326 static void SplitStreamCombination(
327     const StreamConfiguration& original_config,
328     StreamConfiguration* default_mode_config,
329     StreamConfiguration* max_resolution_mode_config,
330     StreamConfiguration* input_stream_config) {
331   // Go through the streams
332   if (default_mode_config == nullptr || max_resolution_mode_config == nullptr ||
333       input_stream_config == nullptr) {
334     ALOGE("%s: Input stream / output stream configs are nullptr", __FUNCTION__);
335     return;
336   }
337   for (const auto& stream : original_config.streams) {
338     if (stream.stream_type == google_camera_hal::StreamType::kInput) {
339       input_stream_config->streams.push_back(stream);
340       continue;
341     }
342     if (stream.intended_for_default_resolution_mode) {
343       default_mode_config->streams.push_back(stream);
344     }
345     if (stream.intended_for_max_resolution_mode) {
346       max_resolution_mode_config->streams.push_back(stream);
347     }
348   }
349 }
350 
IsStreamCombinationSupported(uint32_t logical_id,const StreamConfiguration & config,StreamConfigurationMap & default_config_map,StreamConfigurationMap & max_resolution_config_map,const PhysicalStreamConfigurationMap & physical_map,const PhysicalStreamConfigurationMap & physical_map_max_resolution,const LogicalCharacteristics & sensor_chars)351 bool EmulatedSensor::IsStreamCombinationSupported(
352     uint32_t logical_id, const StreamConfiguration& config,
353     StreamConfigurationMap& default_config_map,
354     StreamConfigurationMap& max_resolution_config_map,
355     const PhysicalStreamConfigurationMap& physical_map,
356     const PhysicalStreamConfigurationMap& physical_map_max_resolution,
357     const LogicalCharacteristics& sensor_chars) {
358   StreamConfiguration default_mode_config, max_resolution_mode_config,
359       input_stream_config;
360   SplitStreamCombination(config, &default_mode_config,
361                          &max_resolution_mode_config, &input_stream_config);
362 
363   return IsStreamCombinationSupported(logical_id, default_mode_config,
364                                       default_config_map, physical_map,
365                                       sensor_chars) &&
366          IsStreamCombinationSupported(
367              logical_id, max_resolution_mode_config, max_resolution_config_map,
368              physical_map_max_resolution, sensor_chars, /*is_max_res*/ true) &&
369 
370          (IsStreamCombinationSupported(logical_id, input_stream_config,
371                                        default_config_map, physical_map,
372                                        sensor_chars) ||
373           IsStreamCombinationSupported(
374               logical_id, input_stream_config, max_resolution_config_map,
375               physical_map_max_resolution, sensor_chars, /*is_max_res*/ true));
376 }
377 
IsStreamCombinationSupported(uint32_t logical_id,const StreamConfiguration & config,StreamConfigurationMap & config_map,const PhysicalStreamConfigurationMap & physical_map,const LogicalCharacteristics & sensor_chars,bool is_max_res)378 bool EmulatedSensor::IsStreamCombinationSupported(
379     uint32_t logical_id, const StreamConfiguration& config,
380     StreamConfigurationMap& config_map,
381     const PhysicalStreamConfigurationMap& physical_map,
382     const LogicalCharacteristics& sensor_chars, bool is_max_res) {
383   uint32_t input_stream_count = 0;
384   // Map from physical camera id to number of streams for that physical camera
385   std::map<uint32_t, uint32_t> raw_stream_count;
386   std::map<uint32_t, uint32_t> processed_stream_count;
387   std::map<uint32_t, uint32_t> stalling_stream_count;
388 
389   // Only allow the stream configurations specified in
390   // dynamicSizeStreamConfigurations.
391   for (const auto& stream : config.streams) {
392     bool is_dynamic_output =
393         (stream.is_physical_camera_stream && stream.group_id != -1);
394     if (stream.rotation != google_camera_hal::StreamRotation::kRotation0) {
395       ALOGE("%s: Stream rotation: 0x%x not supported!", __FUNCTION__,
396             stream.rotation);
397       return false;
398     }
399 
400     if (stream.stream_type == google_camera_hal::StreamType::kInput) {
401       if (sensor_chars.at(logical_id).max_input_streams == 0) {
402         ALOGE("%s: Input streams are not supported on this device!",
403               __FUNCTION__);
404         return false;
405       }
406 
407       auto const& supported_outputs =
408           config_map.GetValidOutputFormatsForInput(stream.format);
409       if (supported_outputs.empty()) {
410         ALOGE("%s: Input stream with format: 0x%x no supported on this device!",
411               __FUNCTION__, stream.format);
412         return false;
413       }
414 
415       input_stream_count++;
416     } else {
417       if (stream.is_physical_camera_stream &&
418           physical_map.find(stream.physical_camera_id) == physical_map.end()) {
419         ALOGE("%s: Invalid physical camera id %d", __FUNCTION__,
420               stream.physical_camera_id);
421         return false;
422       }
423 
424       if (is_dynamic_output) {
425         auto dynamic_physical_output_formats =
426             physical_map.at(stream.physical_camera_id)
427                 ->GetDynamicPhysicalStreamOutputFormats();
428         if (dynamic_physical_output_formats.find(stream.format) ==
429             dynamic_physical_output_formats.end()) {
430           ALOGE("%s: Unsupported physical stream format %d", __FUNCTION__,
431                 stream.format);
432           return false;
433         }
434       }
435 
436       if (stream.dynamic_profile !=
437           ANDROID_REQUEST_AVAILABLE_DYNAMIC_RANGE_PROFILES_MAP_STANDARD) {
438         const SensorCharacteristics& sensor_char =
439             stream.is_physical_camera_stream
440                 ? sensor_chars.at(stream.physical_camera_id)
441                 : sensor_chars.at(logical_id);
442         if (!sensor_char.is_10bit_dynamic_range_capable) {
443           ALOGE("%s: 10-bit dynamic range output not supported on this device!",
444                 __FUNCTION__);
445           return false;
446         }
447 
448         if ((stream.format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED) &&
449             (static_cast<android_pixel_format_v1_1_t>(stream.format) !=
450              HAL_PIXEL_FORMAT_YCBCR_P010)) {
451           ALOGE(
452               "%s: 10-bit dynamic range profile 0x%x not supported on a non "
453               "10-bit output stream"
454               " pixel format 0x%x",
455               __FUNCTION__, stream.dynamic_profile, stream.format);
456           return false;
457         }
458 
459         if ((static_cast<android_pixel_format_v1_1_t>(stream.format) ==
460              HAL_PIXEL_FORMAT_YCBCR_P010) &&
461             ((stream.data_space !=
462               static_cast<android_dataspace_t>(Dataspace::BT2020_ITU_HLG)) &&
463              (stream.data_space !=
464               static_cast<android_dataspace_t>(Dataspace::BT2020_HLG)) &&
465              (stream.data_space !=
466               static_cast<android_dataspace_t>(Dataspace::UNKNOWN)))) {
467           ALOGE(
468               "%s: Unsupported stream data space 0x%x for 10-bit YUV "
469               "output",
470               __FUNCTION__, stream.data_space);
471           return false;
472         }
473       }
474 
475       switch (stream.format) {
476         case HAL_PIXEL_FORMAT_BLOB:
477           if ((stream.data_space != HAL_DATASPACE_V0_JFIF) &&
478               (stream.data_space != HAL_DATASPACE_UNKNOWN)) {
479             ALOGE("%s: Unsupported Blob dataspace 0x%x", __FUNCTION__,
480                   stream.data_space);
481             return false;
482           }
483           if (stream.is_physical_camera_stream) {
484             stalling_stream_count[stream.physical_camera_id]++;
485           } else {
486             for (const auto& p : physical_map) {
487               stalling_stream_count[p.first]++;
488             }
489           }
490           break;
491         case HAL_PIXEL_FORMAT_RAW16: {
492           const SensorCharacteristics& sensor_char =
493               stream.is_physical_camera_stream
494                   ? sensor_chars.at(stream.physical_camera_id)
495                   : sensor_chars.at(logical_id);
496           auto sensor_height =
497               is_max_res ? sensor_char.full_res_height : sensor_char.height;
498           auto sensor_width =
499               is_max_res ? sensor_char.full_res_width : sensor_char.width;
500           if (stream.height != sensor_height || stream.width != sensor_width) {
501             ALOGE(
502                 "%s, RAW16 buffer height %d and width %d must match sensor "
503                 "height: %zu"
504                 " and width: %zu",
505                 __FUNCTION__, stream.height, stream.width, sensor_height,
506                 sensor_width);
507             return false;
508           }
509           if (stream.is_physical_camera_stream) {
510             raw_stream_count[stream.physical_camera_id]++;
511           } else {
512             for (const auto& p : physical_map) {
513               raw_stream_count[p.first]++;
514             }
515           }
516         } break;
517         default:
518           if (stream.is_physical_camera_stream) {
519             processed_stream_count[stream.physical_camera_id]++;
520           } else {
521             for (const auto& p : physical_map) {
522               processed_stream_count[p.first]++;
523             }
524           }
525       }
526 
527       auto output_sizes =
528           is_dynamic_output
529               ? physical_map.at(stream.physical_camera_id)
530                     ->GetDynamicPhysicalStreamOutputSizes(stream.format)
531               : stream.is_physical_camera_stream
532                     ? physical_map.at(stream.physical_camera_id)
533                           ->GetOutputSizes(stream.format)
534                     : config_map.GetOutputSizes(stream.format);
535 
536       auto stream_size = std::make_pair(stream.width, stream.height);
537       if (output_sizes.find(stream_size) == output_sizes.end()) {
538         ALOGE("%s: Stream with size %dx%d and format 0x%x is not supported!",
539               __FUNCTION__, stream.width, stream.height, stream.format);
540         return false;
541       }
542     }
543 
544     if (!sensor_chars.at(logical_id).support_stream_use_case) {
545       if (stream.use_case != ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_DEFAULT) {
546         ALOGE("%s: Camera device doesn't support non-default stream use case!",
547               __FUNCTION__);
548         return false;
549       }
550     } else if (stream.use_case >
551                sensor_chars.at(logical_id).end_valid_stream_use_case) {
552       ALOGE("%s: Stream with use case %d is not supported!", __FUNCTION__,
553             stream.use_case);
554       return false;
555     } else if (stream.use_case !=
556                ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_DEFAULT) {
557       if (stream.use_case ==
558               ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_STILL_CAPTURE) {
559         if (stream.format != HAL_PIXEL_FORMAT_YCBCR_420_888 &&
560             stream.format != HAL_PIXEL_FORMAT_BLOB) {
561           ALOGE("%s: Stream with use case %d isn't compatible with format %d",
562               __FUNCTION__, stream.use_case, stream.format);
563           return false;
564         }
565       } else if ((stream.format == HAL_PIXEL_FORMAT_RAW16) ^
566                  (stream.use_case ==
567                   ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_CROPPED_RAW)) {
568         // Either both stream use case == CROPPED_RAW and format == RAW16, or
569         // stream use case != CROPPED_RAW and format != RAW16 for the
570         // combination to be valid.
571         ALOGE(
572             "%s: Stream with use case CROPPED_RAW isn't compatible with non "
573             "RAW_SENSOR formats",
574             __FUNCTION__);
575         return false;
576 
577       } else if (stream.format != HAL_PIXEL_FORMAT_YCBCR_420_888 &&
578                  stream.format != HAL_PIXEL_FORMAT_IMPLEMENTATION_DEFINED &&
579                  stream.format != HAL_PIXEL_FORMAT_RAW16) {
580         ALOGE("%s: Stream with use case %d isn't compatible with format %d",
581               __FUNCTION__, stream.use_case, stream.format);
582         return false;
583       }
584     }
585   }
586 
587   for (const auto& raw_count : raw_stream_count) {
588     unsigned int max_raw_streams =
589         sensor_chars.at(raw_count.first).max_raw_streams +
590         (is_max_res
591              ? 1
592              : 0);  // The extra raw stream is allowed for remosaic reprocessing.
593     if (raw_count.second > max_raw_streams) {
594       ALOGE("%s: RAW streams maximum %u exceeds supported maximum %u",
595             __FUNCTION__, raw_count.second, max_raw_streams);
596       return false;
597     }
598   }
599 
600   for (const auto& stalling_count : stalling_stream_count) {
601     if (stalling_count.second >
602         sensor_chars.at(stalling_count.first).max_stalling_streams) {
603       ALOGE("%s: Stalling streams maximum %u exceeds supported maximum %u",
604             __FUNCTION__, stalling_count.second,
605             sensor_chars.at(stalling_count.first).max_stalling_streams);
606       return false;
607     }
608   }
609 
610   for (const auto& processed_count : processed_stream_count) {
611     if (processed_count.second >
612         sensor_chars.at(processed_count.first).max_processed_streams) {
613       ALOGE("%s: Processed streams maximum %u exceeds supported maximum %u",
614             __FUNCTION__, processed_count.second,
615             sensor_chars.at(processed_count.first).max_processed_streams);
616       return false;
617     }
618   }
619 
620   if (input_stream_count > sensor_chars.at(logical_id).max_input_streams) {
621     ALOGE("%s: Input stream maximum %u exceeds supported maximum %u",
622           __FUNCTION__, input_stream_count,
623           sensor_chars.at(logical_id).max_input_streams);
624     return false;
625   }
626 
627   return true;
628 }
629 
StartUp(uint32_t logical_camera_id,std::unique_ptr<LogicalCharacteristics> logical_chars)630 status_t EmulatedSensor::StartUp(
631     uint32_t logical_camera_id,
632     std::unique_ptr<LogicalCharacteristics> logical_chars) {
633   if (isRunning()) {
634     return OK;
635   }
636 
637   if (logical_chars.get() == nullptr) {
638     return BAD_VALUE;
639   }
640 
641   chars_ = std::move(logical_chars);
642   auto device_chars = chars_->find(logical_camera_id);
643   if (device_chars == chars_->end()) {
644     ALOGE(
645         "%s: Logical camera id: %u absent from logical camera characteristics!",
646         __FUNCTION__, logical_camera_id);
647     return BAD_VALUE;
648   }
649 
650   for (const auto& it : *chars_) {
651     if (!AreCharacteristicsSupported(it.second)) {
652       ALOGE("%s: Sensor characteristics for camera id: %u not supported!",
653             __FUNCTION__, it.first);
654       return BAD_VALUE;
655     }
656   }
657 
658   logical_camera_id_ = logical_camera_id;
659   scene_ = std::make_unique<EmulatedScene>(
660       device_chars->second.full_res_width, device_chars->second.full_res_height,
661       kElectronsPerLuxSecond, device_chars->second.orientation,
662       device_chars->second.is_front_facing);
663   jpeg_compressor_ = std::make_unique<JpegCompressor>();
664 
665   auto res = run(LOG_TAG, ANDROID_PRIORITY_URGENT_DISPLAY);
666   if (res != OK) {
667     ALOGE("Unable to start up sensor capture thread: %d", res);
668   }
669 
670   return res;
671 }
672 
ShutDown()673 status_t EmulatedSensor::ShutDown() {
674   int res;
675   res = requestExitAndWait();
676   if (res != OK) {
677     ALOGE("Unable to shut down sensor capture thread: %d", res);
678   }
679   return res;
680 }
681 
SetCurrentRequest(std::unique_ptr<LogicalCameraSettings> logical_settings,std::unique_ptr<HwlPipelineResult> result,std::unique_ptr<Buffers> input_buffers,std::unique_ptr<Buffers> output_buffers)682 void EmulatedSensor::SetCurrentRequest(
683     std::unique_ptr<LogicalCameraSettings> logical_settings,
684     std::unique_ptr<HwlPipelineResult> result,
685     std::unique_ptr<Buffers> input_buffers,
686     std::unique_ptr<Buffers> output_buffers) {
687   Mutex::Autolock lock(control_mutex_);
688   current_settings_ = std::move(logical_settings);
689   current_result_ = std::move(result);
690   current_input_buffers_ = std::move(input_buffers);
691   current_output_buffers_ = std::move(output_buffers);
692 }
693 
WaitForVSyncLocked(nsecs_t reltime)694 bool EmulatedSensor::WaitForVSyncLocked(nsecs_t reltime) {
695   got_vsync_ = false;
696   while (!got_vsync_) {
697     auto res = vsync_.waitRelative(control_mutex_, reltime);
698     if (res != OK && res != TIMED_OUT) {
699       ALOGE("%s: Error waiting for VSync signal: %d", __FUNCTION__, res);
700       return false;
701     }
702   }
703 
704   return got_vsync_;
705 }
706 
WaitForVSync(nsecs_t reltime)707 bool EmulatedSensor::WaitForVSync(nsecs_t reltime) {
708   Mutex::Autolock lock(control_mutex_);
709 
710   return WaitForVSyncLocked(reltime);
711 }
712 
Flush()713 status_t EmulatedSensor::Flush() {
714   Mutex::Autolock lock(control_mutex_);
715   auto ret = WaitForVSyncLocked(kSupportedFrameDurationRange[1]);
716 
717   // First recreate the jpeg compressor. This will abort any ongoing processing
718   // and flush any pending jobs.
719   jpeg_compressor_ = std::make_unique<JpegCompressor>();
720 
721   // Then return any pending frames here
722   if ((current_input_buffers_.get() != nullptr) &&
723       (!current_input_buffers_->empty())) {
724     current_input_buffers_->clear();
725   }
726   if ((current_output_buffers_.get() != nullptr) &&
727       (!current_output_buffers_->empty())) {
728     for (const auto& buffer : *current_output_buffers_) {
729       buffer->stream_buffer.status = BufferStatus::kError;
730     }
731 
732     if ((current_result_.get() != nullptr) &&
733         (current_result_->result_metadata.get() != nullptr)) {
734       if (current_output_buffers_->at(0)->callback.notify != nullptr) {
735         NotifyMessage msg{
736             .type = MessageType::kError,
737             .message.error = {
738                 .frame_number = current_output_buffers_->at(0)->frame_number,
739                 .error_stream_id = -1,
740                 .error_code = ErrorCode::kErrorResult,
741             }};
742 
743         current_output_buffers_->at(0)->callback.notify(
744             current_result_->pipeline_id, msg);
745       }
746     }
747 
748     current_output_buffers_->clear();
749   }
750 
751   return ret ? OK : TIMED_OUT;
752 }
753 
threadLoop()754 bool EmulatedSensor::threadLoop() {
755   ATRACE_CALL();
756   /**
757    * Sensor capture operation main loop.
758    *
759    */
760 
761   /**
762    * Stage 1: Read in latest control parameters
763    */
764   std::unique_ptr<Buffers> next_buffers;
765   std::unique_ptr<Buffers> next_input_buffer;
766   std::unique_ptr<HwlPipelineResult> next_result;
767   std::unique_ptr<LogicalCameraSettings> settings;
768   HwlPipelineCallback callback = {nullptr, nullptr};
769   {
770     Mutex::Autolock lock(control_mutex_);
771     std::swap(settings, current_settings_);
772     std::swap(next_buffers, current_output_buffers_);
773     std::swap(next_input_buffer, current_input_buffers_);
774     std::swap(next_result, current_result_);
775 
776     // Signal VSync for start of readout
777     ALOGVV("Sensor VSync");
778     got_vsync_ = true;
779     vsync_.signal();
780   }
781 
782   auto frame_duration = EmulatedSensor::kSupportedFrameDurationRange[0];
783   auto exposure_time = EmulatedSensor::kSupportedExposureTimeRange[0];
784   // Frame duration must always be the same among all physical devices
785   if ((settings.get() != nullptr) && (!settings->empty())) {
786     frame_duration = settings->begin()->second.frame_duration;
787     exposure_time = settings->begin()->second.exposure_time;
788   }
789 
790   nsecs_t start_real_time = systemTime();
791   // Stagefright cares about system time for timestamps, so base simulated
792   // time on that.
793   nsecs_t frame_end_real_time = start_real_time + frame_duration;
794 
795   /**
796    * Stage 2: Capture new image
797    */
798   next_capture_time_ = frame_end_real_time;
799   next_readout_time_ = frame_end_real_time + exposure_time;
800 
801   sensor_binning_factor_info_.clear();
802 
803   bool reprocess_request = false;
804   if ((next_input_buffer.get() != nullptr) && (!next_input_buffer->empty())) {
805     if (next_input_buffer->size() > 1) {
806       ALOGW("%s: Reprocess supports only single input!", __FUNCTION__);
807     }
808 
809       camera_metadata_ro_entry_t entry;
810       auto ret =
811           next_result->result_metadata->Get(ANDROID_SENSOR_TIMESTAMP, &entry);
812       if ((ret == OK) && (entry.count == 1)) {
813         next_capture_time_ = entry.data.i64[0];
814       } else {
815         ALOGW("%s: Reprocess timestamp absent!", __FUNCTION__);
816       }
817 
818       ret = next_result->result_metadata->Get(ANDROID_SENSOR_EXPOSURE_TIME,
819                                               &entry);
820       if ((ret == OK) && (entry.count == 1)) {
821         next_readout_time_ = next_capture_time_ + entry.data.i64[0];
822       } else {
823         next_readout_time_ = next_capture_time_;
824       }
825 
826       reprocess_request = true;
827   }
828 
829   if ((next_buffers != nullptr) && (settings != nullptr)) {
830     callback = next_buffers->at(0)->callback;
831     if (callback.notify != nullptr) {
832       NotifyMessage msg{
833           .type = MessageType::kShutter,
834           .message.shutter = {
835               .frame_number = next_buffers->at(0)->frame_number,
836               .timestamp_ns = static_cast<uint64_t>(next_capture_time_),
837               .readout_timestamp_ns =
838                   static_cast<uint64_t>(next_readout_time_)}};
839       callback.notify(next_result->pipeline_id, msg);
840     }
841     auto b = next_buffers->begin();
842     while (b != next_buffers->end()) {
843       auto device_settings = settings->find((*b)->camera_id);
844       if (device_settings == settings->end()) {
845         ALOGE("%s: Sensor settings absent for device: %d", __func__,
846               (*b)->camera_id);
847         b = next_buffers->erase(b);
848         continue;
849       }
850 
851       auto device_chars = chars_->find((*b)->camera_id);
852       if (device_chars == chars_->end()) {
853         ALOGE("%s: Sensor characteristics absent for device: %d", __func__,
854               (*b)->camera_id);
855         b = next_buffers->erase(b);
856         continue;
857       }
858 
859       sensor_binning_factor_info_[(*b)->camera_id].quad_bayer_sensor =
860           device_chars->second.quad_bayer_sensor;
861 
862       ALOGVV("Starting next capture: Exposure: %" PRIu64 " ms, gain: %d",
863              ns2ms(device_settings->second.exposure_time),
864              device_settings->second.gain);
865 
866       scene_->Initialize(device_chars->second.full_res_width,
867                          device_chars->second.full_res_height,
868                          kElectronsPerLuxSecond);
869       scene_->SetExposureDuration((float)device_settings->second.exposure_time /
870                                   1e9);
871       scene_->SetColorFilterXYZ(device_chars->second.color_filter.rX,
872                                 device_chars->second.color_filter.rY,
873                                 device_chars->second.color_filter.rZ,
874                                 device_chars->second.color_filter.grX,
875                                 device_chars->second.color_filter.grY,
876                                 device_chars->second.color_filter.grZ,
877                                 device_chars->second.color_filter.gbX,
878                                 device_chars->second.color_filter.gbY,
879                                 device_chars->second.color_filter.gbZ,
880                                 device_chars->second.color_filter.bX,
881                                 device_chars->second.color_filter.bY,
882                                 device_chars->second.color_filter.bZ);
883       scene_->SetTestPattern(device_settings->second.test_pattern_mode ==
884                              ANDROID_SENSOR_TEST_PATTERN_MODE_SOLID_COLOR);
885       scene_->SetTestPatternData(device_settings->second.test_pattern_data);
886       scene_->SetScreenRotation(device_settings->second.screen_rotation);
887 
888       uint32_t handshake_divider =
889           (device_settings->second.video_stab ==
890            ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_ON) ||
891                   (device_settings->second.video_stab ==
892                    ANDROID_CONTROL_VIDEO_STABILIZATION_MODE_PREVIEW_STABILIZATION)
893               ? kReducedSceneHandshake
894               : kRegularSceneHandshake;
895       scene_->CalculateScene(next_capture_time_, handshake_divider);
896 
897       (*b)->stream_buffer.status = BufferStatus::kOk;
898       bool max_res_mode = device_settings->second.sensor_pixel_mode;
899       sensor_binning_factor_info_[(*b)->camera_id].max_res_request =
900           max_res_mode;
901       switch ((*b)->format) {
902         case PixelFormat::RAW16:
903           sensor_binning_factor_info_[(*b)->camera_id].has_raw_stream = true;
904           if (!sensor_binning_factor_info_[(*b)->camera_id]
905                    .has_cropped_raw_stream &&
906               (*b)->use_case ==
907                   ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_CROPPED_RAW) {
908             sensor_binning_factor_info_[(*b)->camera_id].has_cropped_raw_stream =
909                 true;
910           }
911           break;
912         default:
913           sensor_binning_factor_info_[(*b)->camera_id].has_non_raw_stream = true;
914       }
915 
916       // TODO: remove hack. Implement RAW -> YUV / JPEG reprocessing http://b/192382904
917       bool treat_as_reprocess =
918           (device_chars->second.quad_bayer_sensor && reprocess_request &&
919            (*next_input_buffer->begin())->format == PixelFormat::RAW16)
920               ? false
921               : reprocess_request;
922 
923       if ((*b)->color_space !=
924           ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_UNSPECIFIED) {
925         CalculateRgbRgbMatrix((*b)->color_space, device_chars->second);
926       }
927 
928       switch ((*b)->format) {
929         case PixelFormat::RAW16:
930           if (!reprocess_request) {
931             uint64_t min_full_res_raw_size =
932                 2 * device_chars->second.full_res_width *
933                 device_chars->second.full_res_height;
934             uint64_t min_default_raw_size =
935                 2 * device_chars->second.width * device_chars->second.height;
936             bool default_mode_for_qb =
937                 device_chars->second.quad_bayer_sensor && !max_res_mode;
938             size_t buffer_size = (*b)->plane.img.buffer_size;
939             if (default_mode_for_qb) {
940               if (buffer_size < min_default_raw_size) {
941                 ALOGE(
942                     "%s: Output buffer size too small for RAW capture in "
943                     "default "
944                     "mode, "
945                     "expected %" PRIu64 ", got %zu, for camera id %d",
946                     __FUNCTION__, min_default_raw_size, buffer_size,
947                     (*b)->camera_id);
948                 (*b)->stream_buffer.status = BufferStatus::kError;
949                 break;
950               }
951             } else if (buffer_size < min_full_res_raw_size) {
952               ALOGE(
953                   "%s: Output buffer size too small for RAW capture in max res "
954                   "mode, "
955                   "expected %" PRIu64 ", got %zu, for camera id %d",
956                   __FUNCTION__, min_full_res_raw_size, buffer_size,
957                   (*b)->camera_id);
958               (*b)->stream_buffer.status = BufferStatus::kError;
959               break;
960             }
961             if (default_mode_for_qb) {
962               if (device_settings->second.zoom_ratio > 2.0f &&
963                   ((*b)->use_case ==
964                    ANDROID_SCALER_AVAILABLE_STREAM_USE_CASES_CROPPED_RAW)) {
965                 sensor_binning_factor_info_[(*b)->camera_id]
966                     .raw_in_sensor_zoom_applied = true;
967                 CaptureRawInSensorZoom(
968                     (*b)->plane.img.img, (*b)->plane.img.stride_in_bytes,
969                     device_settings->second.gain, device_chars->second);
970 
971               } else {
972                 CaptureRawBinned(
973                     (*b)->plane.img.img, (*b)->plane.img.stride_in_bytes,
974                     device_settings->second.gain, device_chars->second);
975               }
976             } else {
977               CaptureRawFullRes(
978                   (*b)->plane.img.img, (*b)->plane.img.stride_in_bytes,
979                   device_settings->second.gain, device_chars->second);
980             }
981           } else {
982             if (!device_chars->second.quad_bayer_sensor) {
983               ALOGE(
984                   "%s: Reprocess requests with output format %x no supported!",
985                   __FUNCTION__, (*b)->format);
986               (*b)->stream_buffer.status = BufferStatus::kError;
987               break;
988             }
989             // Remosaic the RAW input buffer
990             if ((*next_input_buffer->begin())->width != (*b)->width ||
991                 (*next_input_buffer->begin())->height != (*b)->height) {
992               ALOGE(
993                   "%s: RAW16 input dimensions %dx%d don't match output buffer "
994                   "dimensions %dx%d",
995                   __FUNCTION__, (*next_input_buffer->begin())->width,
996                   (*next_input_buffer->begin())->height, (*b)->width,
997                   (*b)->height);
998               (*b)->stream_buffer.status = BufferStatus::kError;
999               break;
1000             }
1001             ALOGV("%s remosaic Raw16 Image", __FUNCTION__);
1002             RemosaicRAW16Image(
1003                 (uint16_t*)(*next_input_buffer->begin())->plane.img.img,
1004                 (uint16_t*)(*b)->plane.img.img, (*b)->plane.img.stride_in_bytes,
1005                 device_chars->second);
1006           }
1007           break;
1008         case PixelFormat::RGB_888:
1009           if (!reprocess_request) {
1010             CaptureRGB((*b)->plane.img.img, (*b)->width, (*b)->height,
1011                        (*b)->plane.img.stride_in_bytes, RGBLayout::RGB,
1012                        device_settings->second.gain, (*b)->color_space,
1013                        device_chars->second);
1014           } else {
1015             ALOGE("%s: Reprocess requests with output format %x no supported!",
1016                   __FUNCTION__, (*b)->format);
1017             (*b)->stream_buffer.status = BufferStatus::kError;
1018           }
1019           break;
1020         case PixelFormat::RGBA_8888:
1021           if (!reprocess_request) {
1022             CaptureRGB((*b)->plane.img.img, (*b)->width, (*b)->height,
1023                        (*b)->plane.img.stride_in_bytes, RGBLayout::RGBA,
1024                        device_settings->second.gain, (*b)->color_space,
1025                        device_chars->second);
1026           } else {
1027             ALOGE("%s: Reprocess requests with output format %x no supported!",
1028                   __FUNCTION__, (*b)->format);
1029             (*b)->stream_buffer.status = BufferStatus::kError;
1030           }
1031           break;
1032         case PixelFormat::BLOB:
1033           if ((*b)->dataSpace == HAL_DATASPACE_V0_JFIF) {
1034             YUV420Frame yuv_input{
1035                 .width = treat_as_reprocess
1036                              ? (*next_input_buffer->begin())->width
1037                              : 0,
1038                 .height = treat_as_reprocess
1039                               ? (*next_input_buffer->begin())->height
1040                               : 0,
1041                 .planes = treat_as_reprocess
1042                               ? (*next_input_buffer->begin())->plane.img_y_crcb
1043                               : YCbCrPlanes{}};
1044             auto jpeg_input = std::make_unique<JpegYUV420Input>();
1045             jpeg_input->width = (*b)->width;
1046             jpeg_input->height = (*b)->height;
1047             jpeg_input->color_space = (*b)->color_space;
1048             auto img =
1049                 new uint8_t[(jpeg_input->width * jpeg_input->height * 3) / 2];
1050             jpeg_input->yuv_planes = {
1051                 .img_y = img,
1052                 .img_cb = img + jpeg_input->width * jpeg_input->height,
1053                 .img_cr = img + (jpeg_input->width * jpeg_input->height * 5) / 4,
1054                 .y_stride = jpeg_input->width,
1055                 .cbcr_stride = jpeg_input->width / 2,
1056                 .cbcr_step = 1};
1057             jpeg_input->buffer_owner = true;
1058             YUV420Frame yuv_output{.width = jpeg_input->width,
1059                                    .height = jpeg_input->height,
1060                                    .planes = jpeg_input->yuv_planes};
1061 
1062             bool rotate =
1063                 device_settings->second.rotate_and_crop == ANDROID_SCALER_ROTATE_AND_CROP_90;
1064             ProcessType process_type =
1065                 treat_as_reprocess ? REPROCESS
1066                                    : (device_settings->second.edge_mode ==
1067                                       ANDROID_EDGE_MODE_HIGH_QUALITY)
1068                                          ? HIGH_QUALITY
1069                                          : REGULAR;
1070             auto ret = ProcessYUV420(yuv_input, yuv_output,
1071                                      device_settings->second.gain, process_type,
1072                                      device_settings->second.zoom_ratio, rotate,
1073                                      (*b)->color_space, device_chars->second);
1074             if (ret != 0) {
1075               (*b)->stream_buffer.status = BufferStatus::kError;
1076               break;
1077             }
1078 
1079             auto jpeg_job = std::make_unique<JpegYUV420Job>();
1080             jpeg_job->exif_utils = std::unique_ptr<ExifUtils>(
1081                 ExifUtils::Create(device_chars->second));
1082             jpeg_job->input = std::move(jpeg_input);
1083             // If jpeg compression is successful, then the jpeg compressor
1084             // must set the corresponding status.
1085             (*b)->stream_buffer.status = BufferStatus::kError;
1086             std::swap(jpeg_job->output, *b);
1087             jpeg_job->result_metadata =
1088                 HalCameraMetadata::Clone(next_result->result_metadata.get());
1089 
1090             Mutex::Autolock lock(control_mutex_);
1091             jpeg_compressor_->QueueYUV420(std::move(jpeg_job));
1092           } else {
1093             ALOGE("%s: Format %x with dataspace %x is TODO", __FUNCTION__,
1094                   (*b)->format, (*b)->dataSpace);
1095             (*b)->stream_buffer.status = BufferStatus::kError;
1096           }
1097           break;
1098         case PixelFormat::YCRCB_420_SP:
1099         case PixelFormat::YCBCR_420_888: {
1100           YUV420Frame yuv_input{
1101               .width =
1102                   treat_as_reprocess ? (*next_input_buffer->begin())->width : 0,
1103               .height =
1104                   treat_as_reprocess ? (*next_input_buffer->begin())->height : 0,
1105               .planes = treat_as_reprocess
1106                             ? (*next_input_buffer->begin())->plane.img_y_crcb
1107                             : YCbCrPlanes{}};
1108           YUV420Frame yuv_output{.width = (*b)->width,
1109                                  .height = (*b)->height,
1110                                  .planes = (*b)->plane.img_y_crcb};
1111           bool rotate =
1112               device_settings->second.rotate_and_crop == ANDROID_SCALER_ROTATE_AND_CROP_90;
1113           ProcessType process_type = treat_as_reprocess
1114                                          ? REPROCESS
1115                                          : (device_settings->second.edge_mode ==
1116                                             ANDROID_EDGE_MODE_HIGH_QUALITY)
1117                                                ? HIGH_QUALITY
1118                                                : REGULAR;
1119           auto ret =
1120               ProcessYUV420(yuv_input, yuv_output, device_settings->second.gain,
1121                             process_type, device_settings->second.zoom_ratio,
1122                             rotate, (*b)->color_space, device_chars->second);
1123           if (ret != 0) {
1124             (*b)->stream_buffer.status = BufferStatus::kError;
1125           }
1126         } break;
1127         case PixelFormat::Y16:
1128           if (!reprocess_request) {
1129             if ((*b)->dataSpace == HAL_DATASPACE_DEPTH) {
1130               CaptureDepth((*b)->plane.img.img, device_settings->second.gain,
1131                            (*b)->width, (*b)->height,
1132                            (*b)->plane.img.stride_in_bytes,
1133                            device_chars->second);
1134             } else {
1135               ALOGE("%s: Format %x with dataspace %x is TODO", __FUNCTION__,
1136                     (*b)->format, (*b)->dataSpace);
1137               (*b)->stream_buffer.status = BufferStatus::kError;
1138             }
1139           } else {
1140             ALOGE("%s: Reprocess requests with output format %x no supported!",
1141                   __FUNCTION__, (*b)->format);
1142             (*b)->stream_buffer.status = BufferStatus::kError;
1143           }
1144           break;
1145         case PixelFormat::YCBCR_P010:
1146             if (!reprocess_request) {
1147               bool rotate = device_settings->second.rotate_and_crop ==
1148                             ANDROID_SCALER_ROTATE_AND_CROP_90;
1149               CaptureYUV420((*b)->plane.img_y_crcb, (*b)->width, (*b)->height,
1150                             device_settings->second.gain,
1151                             device_settings->second.zoom_ratio, rotate,
1152                             (*b)->color_space, device_chars->second);
1153             } else {
1154               ALOGE(
1155                   "%s: Reprocess requests with output format %x no supported!",
1156                   __FUNCTION__, (*b)->format);
1157               (*b)->stream_buffer.status = BufferStatus::kError;
1158             }
1159             break;
1160         default:
1161           ALOGE("%s: Unknown format %x, no output", __FUNCTION__, (*b)->format);
1162           (*b)->stream_buffer.status = BufferStatus::kError;
1163           break;
1164       }
1165 
1166       b = next_buffers->erase(b);
1167     }
1168   }
1169 
1170   if (reprocess_request) {
1171     auto input_buffer = next_input_buffer->begin();
1172     while (input_buffer != next_input_buffer->end()) {
1173       (*input_buffer++)->stream_buffer.status = BufferStatus::kOk;
1174     }
1175     next_input_buffer->clear();
1176   }
1177 
1178   nsecs_t work_done_real_time = systemTime();
1179   // Returning the results at this point is not entirely correct from timing
1180   // perspective. Under ideal conditions where 'ReturnResults' completes
1181   // in less than 'time_accuracy' we need to return the results after the
1182   // frame cycle expires. However under real conditions various system
1183   // components like SurfaceFlinger, Encoder, LMK etc. could be consuming most
1184   // of the resources and the duration of "ReturnResults" can get comparable to
1185   // 'kDefaultFrameDuration'. This will skew the frame cycle and can result in
1186   // potential frame drops. To avoid this scenario when we are running under
1187   // tight deadlines (less than 'kReturnResultThreshod') try to return the
1188   // results immediately. In all other cases with more relaxed deadlines
1189   // the occasional bump during 'ReturnResults' should not have any
1190   // noticeable effect.
1191   if ((work_done_real_time + kReturnResultThreshod) > frame_end_real_time) {
1192     ReturnResults(callback, std::move(settings), std::move(next_result),
1193                   reprocess_request);
1194   }
1195 
1196   work_done_real_time = systemTime();
1197   ALOGVV("Sensor vertical blanking interval");
1198   const nsecs_t time_accuracy = 2e6;  // 2 ms of imprecision is ok
1199   if (work_done_real_time < frame_end_real_time - time_accuracy) {
1200     timespec t;
1201     t.tv_sec = (frame_end_real_time - work_done_real_time) / 1000000000L;
1202     t.tv_nsec = (frame_end_real_time - work_done_real_time) % 1000000000L;
1203 
1204     int ret;
1205     do {
1206       ret = nanosleep(&t, &t);
1207     } while (ret != 0);
1208   }
1209 
1210   ReturnResults(callback, std::move(settings), std::move(next_result),
1211                 reprocess_request);
1212 
1213   return true;
1214 };
1215 
ReturnResults(HwlPipelineCallback callback,std::unique_ptr<LogicalCameraSettings> settings,std::unique_ptr<HwlPipelineResult> result,bool reprocess_request)1216 void EmulatedSensor::ReturnResults(
1217     HwlPipelineCallback callback,
1218     std::unique_ptr<LogicalCameraSettings> settings,
1219     std::unique_ptr<HwlPipelineResult> result, bool reprocess_request) {
1220   if ((callback.process_pipeline_result != nullptr) &&
1221       (result.get() != nullptr) && (result->result_metadata.get() != nullptr)) {
1222     auto logical_settings = settings->find(logical_camera_id_);
1223     if (logical_settings == settings->end()) {
1224       ALOGE("%s: Logical camera id: %u not found in settings!", __FUNCTION__,
1225             logical_camera_id_);
1226       return;
1227     }
1228     auto device_chars = chars_->find(logical_camera_id_);
1229     if (device_chars == chars_->end()) {
1230       ALOGE("%s: Sensor characteristics absent for device: %d", __func__,
1231             logical_camera_id_);
1232       return;
1233     }
1234     result->result_metadata->Set(ANDROID_SENSOR_TIMESTAMP, &next_capture_time_,
1235                                  1);
1236     uint8_t raw_binned_factor_used = false;
1237     if (sensor_binning_factor_info_.find(logical_camera_id_) !=
1238         sensor_binning_factor_info_.end()) {
1239       auto& info = sensor_binning_factor_info_[logical_camera_id_];
1240       // Logical stream was included in the request
1241       if (!reprocess_request && info.quad_bayer_sensor && info.max_res_request &&
1242           info.has_raw_stream && !info.has_non_raw_stream) {
1243         raw_binned_factor_used = true;
1244       }
1245       result->result_metadata->Set(ANDROID_SENSOR_RAW_BINNING_FACTOR_USED,
1246                                    &raw_binned_factor_used, 1);
1247       if (info.has_cropped_raw_stream) {
1248         if (info.raw_in_sensor_zoom_applied) {
1249           result->result_metadata->Set(
1250               ANDROID_SCALER_RAW_CROP_REGION,
1251               device_chars->second.raw_crop_region_zoomed, 4);
1252 
1253         } else {
1254           result->result_metadata->Set(
1255               ANDROID_SCALER_RAW_CROP_REGION,
1256               device_chars->second.raw_crop_region_unzoomed, 4);
1257         }
1258       }
1259     }
1260     if (logical_settings->second.lens_shading_map_mode ==
1261         ANDROID_STATISTICS_LENS_SHADING_MAP_MODE_ON) {
1262       if ((device_chars->second.lens_shading_map_size[0] > 0) &&
1263           (device_chars->second.lens_shading_map_size[1] > 0)) {
1264         // Perfect lens, no actual shading needed.
1265         std::vector<float> lens_shading_map(
1266             device_chars->second.lens_shading_map_size[0] *
1267                 device_chars->second.lens_shading_map_size[1] * 4,
1268             1.f);
1269 
1270         result->result_metadata->Set(ANDROID_STATISTICS_LENS_SHADING_MAP,
1271                                      lens_shading_map.data(),
1272                                      lens_shading_map.size());
1273       }
1274     }
1275     if (logical_settings->second.report_video_stab) {
1276       result->result_metadata->Set(ANDROID_CONTROL_VIDEO_STABILIZATION_MODE,
1277                                    &logical_settings->second.video_stab, 1);
1278     }
1279     if (logical_settings->second.report_edge_mode) {
1280       result->result_metadata->Set(ANDROID_EDGE_MODE,
1281                                    &logical_settings->second.edge_mode, 1);
1282     }
1283     if (logical_settings->second.report_neutral_color_point) {
1284       result->result_metadata->Set(ANDROID_SENSOR_NEUTRAL_COLOR_POINT,
1285                                    kNeutralColorPoint,
1286                                    ARRAY_SIZE(kNeutralColorPoint));
1287     }
1288     if (logical_settings->second.report_green_split) {
1289       result->result_metadata->Set(ANDROID_SENSOR_GREEN_SPLIT, &kGreenSplit, 1);
1290     }
1291     if (logical_settings->second.report_noise_profile) {
1292       CalculateAndAppendNoiseProfile(
1293           logical_settings->second.gain,
1294           GetBaseGainFactor(device_chars->second.max_raw_value),
1295           result->result_metadata.get());
1296     }
1297     if (logical_settings->second.report_rotate_and_crop) {
1298       result->result_metadata->Set(ANDROID_SCALER_ROTATE_AND_CROP,
1299           &logical_settings->second.rotate_and_crop, 1);
1300     }
1301 
1302     if (!result->physical_camera_results.empty()) {
1303       for (auto& it : result->physical_camera_results) {
1304         auto physical_settings = settings->find(it.first);
1305         if (physical_settings == settings->end()) {
1306           ALOGE("%s: Physical settings for camera id: %u are absent!",
1307                 __FUNCTION__, it.first);
1308           continue;
1309         }
1310         uint8_t raw_binned_factor_used = false;
1311         if (sensor_binning_factor_info_.find(it.first) !=
1312             sensor_binning_factor_info_.end()) {
1313           auto& info = sensor_binning_factor_info_[it.first];
1314           // physical stream was included in the request
1315           if (!reprocess_request && info.quad_bayer_sensor &&
1316               info.max_res_request && info.has_raw_stream &&
1317               !info.has_non_raw_stream) {
1318             raw_binned_factor_used = true;
1319           }
1320           it.second->Set(ANDROID_SENSOR_RAW_BINNING_FACTOR_USED,
1321                          &raw_binned_factor_used, 1);
1322         }
1323         // Sensor timestamp for all physical devices must be the same.
1324         it.second->Set(ANDROID_SENSOR_TIMESTAMP, &next_capture_time_, 1);
1325         if (physical_settings->second.report_neutral_color_point) {
1326           it.second->Set(ANDROID_SENSOR_NEUTRAL_COLOR_POINT, kNeutralColorPoint,
1327                          ARRAY_SIZE(kNeutralColorPoint));
1328         }
1329         if (physical_settings->second.report_green_split) {
1330           it.second->Set(ANDROID_SENSOR_GREEN_SPLIT, &kGreenSplit, 1);
1331         }
1332         if (physical_settings->second.report_noise_profile) {
1333           auto device_chars = chars_->find(it.first);
1334           if (device_chars == chars_->end()) {
1335             ALOGE("%s: Sensor characteristics absent for device: %d", __func__,
1336                   it.first);
1337           }
1338           CalculateAndAppendNoiseProfile(
1339               physical_settings->second.gain,
1340               GetBaseGainFactor(device_chars->second.max_raw_value),
1341               it.second.get());
1342         }
1343       }
1344     }
1345 
1346     callback.process_pipeline_result(std::move(result));
1347   }
1348 }
1349 
CalculateAndAppendNoiseProfile(float gain,float base_gain_factor,HalCameraMetadata * result)1350 void EmulatedSensor::CalculateAndAppendNoiseProfile(
1351     float gain /*in ISO*/, float base_gain_factor,
1352     HalCameraMetadata* result /*out*/) {
1353   if (result != nullptr) {
1354     float total_gain = gain / 100.0 * base_gain_factor;
1355     float noise_var_gain = total_gain * total_gain;
1356     float read_noise_var =
1357         kReadNoiseVarBeforeGain * noise_var_gain + kReadNoiseVarAfterGain;
1358     // Noise profile is the same across all 4 CFA channels
1359     double noise_profile[2 * 4] = {
1360         noise_var_gain, read_noise_var, noise_var_gain, read_noise_var,
1361         noise_var_gain, read_noise_var, noise_var_gain, read_noise_var};
1362     result->Set(ANDROID_SENSOR_NOISE_PROFILE, noise_profile,
1363                 ARRAY_SIZE(noise_profile));
1364   }
1365 }
1366 
GetQuadBayerColor(uint32_t x,uint32_t y)1367 EmulatedScene::ColorChannels EmulatedSensor::GetQuadBayerColor(uint32_t x,
1368                                                                uint32_t y) {
1369   // Row within larger set of quad bayer filter
1370   uint32_t row_mod = y % 4;
1371   // Column within larger set of quad bayer filter
1372   uint32_t col_mod = x % 4;
1373 
1374   // Row is within the left quadrants of a quad bayer sensor
1375   if (row_mod < 2) {
1376     if (col_mod < 2) {
1377       return EmulatedScene::ColorChannels::R;
1378     }
1379     return EmulatedScene::ColorChannels::Gr;
1380   } else {
1381     if (col_mod < 2) {
1382       return EmulatedScene::ColorChannels::Gb;
1383     }
1384     return EmulatedScene::ColorChannels::B;
1385   }
1386 }
1387 
RemosaicQuadBayerBlock(uint16_t * img_in,uint16_t * img_out,int xstart,int ystart,int row_stride_in_bytes)1388 void EmulatedSensor::RemosaicQuadBayerBlock(uint16_t* img_in, uint16_t* img_out,
1389                                             int xstart, int ystart,
1390                                             int row_stride_in_bytes) {
1391   uint32_t quad_block_copy_idx_map[16] = {0, 2, 1, 3, 8,  10, 6,  11,
1392                                           4, 9, 5, 7, 12, 14, 13, 15};
1393   uint16_t quad_block_copy[16];
1394   uint32_t i = 0;
1395   for (uint32_t row = 0; row < 4; row++) {
1396     uint16_t* quad_bayer_row =
1397         img_in + (ystart + row) * (row_stride_in_bytes / 2) + xstart;
1398     for (uint32_t j = 0; j < 4; j++, i++) {
1399       quad_block_copy[i] = quad_bayer_row[j];
1400     }
1401   }
1402 
1403   for (uint32_t row = 0; row < 4; row++) {
1404     uint16_t* regular_bayer_row =
1405         img_out + (ystart + row) * (row_stride_in_bytes / 2) + xstart;
1406     for (uint32_t j = 0; j < 4; j++, i++) {
1407       uint32_t idx = quad_block_copy_idx_map[row + 4 * j];
1408       regular_bayer_row[j] = quad_block_copy[idx];
1409     }
1410   }
1411 }
1412 
RemosaicRAW16Image(uint16_t * img_in,uint16_t * img_out,size_t row_stride_in_bytes,const SensorCharacteristics & chars)1413 status_t EmulatedSensor::RemosaicRAW16Image(uint16_t* img_in, uint16_t* img_out,
1414                                             size_t row_stride_in_bytes,
1415                                             const SensorCharacteristics& chars) {
1416   if (chars.full_res_width % 2 != 0 || chars.full_res_height % 2 != 0) {
1417     ALOGE(
1418         "%s RAW16 Image with quad CFA, height %zu and width %zu, not multiples "
1419         "of 4",
1420         __FUNCTION__, chars.full_res_height, chars.full_res_width);
1421     return BAD_VALUE;
1422   }
1423   for (uint32_t i = 0; i < chars.full_res_width; i += 4) {
1424     for (uint32_t j = 0; j < chars.full_res_height; j += 4) {
1425       RemosaicQuadBayerBlock(img_in, img_out, i, j, row_stride_in_bytes);
1426     }
1427   }
1428   return OK;
1429 }
1430 
CaptureRawBinned(uint8_t * img,size_t row_stride_in_bytes,uint32_t gain,const SensorCharacteristics & chars)1431 void EmulatedSensor::CaptureRawBinned(uint8_t* img, size_t row_stride_in_bytes,
1432                                       uint32_t gain,
1433                                       const SensorCharacteristics& chars) {
1434   CaptureRaw(img, row_stride_in_bytes, gain, chars, /*in_sensor_zoom*/ false,
1435              /*binned*/ true);
1436   return;
1437 }
1438 
CaptureRawInSensorZoom(uint8_t * img,size_t row_stride_in_bytes,uint32_t gain,const SensorCharacteristics & chars)1439 void EmulatedSensor::CaptureRawInSensorZoom(uint8_t* img,
1440                                             size_t row_stride_in_bytes,
1441                                             uint32_t gain,
1442                                             const SensorCharacteristics& chars) {
1443   CaptureRaw(img, row_stride_in_bytes, gain, chars, /*in_sensor_zoom*/ true,
1444              /*binned*/ false);
1445   return;
1446 }
1447 
CaptureRawFullRes(uint8_t * img,size_t row_stride_in_bytes,uint32_t gain,const SensorCharacteristics & chars)1448 void EmulatedSensor::CaptureRawFullRes(uint8_t* img, size_t row_stride_in_bytes,
1449                                        uint32_t gain,
1450                                        const SensorCharacteristics& chars) {
1451   CaptureRaw(img, row_stride_in_bytes, gain, chars, /*inSensorZoom*/ false,
1452              /*binned*/ false);
1453   return;
1454 }
1455 
CaptureRaw(uint8_t * img,size_t row_stride_in_bytes,uint32_t gain,const SensorCharacteristics & chars,bool in_sensor_zoom,bool binned)1456 void EmulatedSensor::CaptureRaw(uint8_t* img, size_t row_stride_in_bytes,
1457                                 uint32_t gain,
1458                                 const SensorCharacteristics& chars,
1459                                 bool in_sensor_zoom, bool binned) {
1460   ATRACE_CALL();
1461   if (in_sensor_zoom && binned) {
1462     ALOGE("%s: Can't perform in-sensor zoom in binned mode", __FUNCTION__);
1463     return;
1464   }
1465   float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
1466   float noise_var_gain = total_gain * total_gain;
1467   float read_noise_var =
1468       kReadNoiseVarBeforeGain * noise_var_gain + kReadNoiseVarAfterGain;
1469 
1470   scene_->SetReadoutPixel(0, 0);
1471   // RGGB
1472   int bayer_select[4] = {EmulatedScene::R, EmulatedScene::Gr, EmulatedScene::Gb,
1473                          EmulatedScene::B};
1474   const float raw_zoom_ratio = in_sensor_zoom ? 2.0f : 1.0f;
1475   unsigned int image_width =
1476       in_sensor_zoom || binned ? chars.width : chars.full_res_width;
1477   unsigned int image_height =
1478       in_sensor_zoom || binned ? chars.height : chars.full_res_height;
1479   const float norm_left_top = 0.5f - 0.5f / raw_zoom_ratio;
1480   for (unsigned int out_y = 0; out_y < image_height; out_y++) {
1481     int* bayer_row = bayer_select + (out_y & 0x1) * 2;
1482     uint16_t* px = (uint16_t*)img + out_y * (row_stride_in_bytes / 2);
1483 
1484     float norm_y = out_y / (image_height * raw_zoom_ratio);
1485     int y = static_cast<int>(chars.full_res_height * (norm_left_top + norm_y));
1486     y = std::min(std::max(y, 0), (int)chars.full_res_height - 1);
1487 
1488     for (unsigned int out_x = 0; out_x < image_width; out_x++) {
1489       int color_idx = chars.quad_bayer_sensor && !(in_sensor_zoom || binned)
1490                           ? GetQuadBayerColor(out_x, out_y)
1491                           : bayer_row[out_x & 0x1];
1492       float norm_x = out_x / (image_width * raw_zoom_ratio);
1493       int x = static_cast<int>(chars.full_res_width * (norm_left_top + norm_x));
1494       x = std::min(std::max(x, 0), (int)chars.full_res_width - 1);
1495 
1496       uint32_t electron_count;
1497       scene_->SetReadoutPixel(x, y);
1498       electron_count = scene_->GetPixelElectrons()[color_idx];
1499 
1500       // TODO: Better pixel saturation curve?
1501       electron_count = (electron_count < kSaturationElectrons)
1502                            ? electron_count
1503                            : kSaturationElectrons;
1504 
1505       // TODO: Better A/D saturation curve?
1506       uint16_t raw_count = electron_count * total_gain;
1507       raw_count =
1508           (raw_count < chars.max_raw_value) ? raw_count : chars.max_raw_value;
1509 
1510       // Calculate noise value
1511       // TODO: Use more-correct Gaussian instead of uniform noise
1512       float photon_noise_var = electron_count * noise_var_gain;
1513       float noise_stddev = sqrtf_approx(read_noise_var + photon_noise_var);
1514       // Scaled to roughly match gaussian/uniform noise stddev
1515       float noise_sample = rand_r(&rand_seed_) * (2.5 / (1.0 + RAND_MAX)) - 1.25;
1516 
1517       raw_count += chars.black_level_pattern[color_idx];
1518       raw_count += noise_stddev * noise_sample;
1519 
1520       *px++ = raw_count;
1521     }
1522     // TODO: Handle this better
1523     // simulatedTime += mRowReadoutTime;
1524   }
1525   ALOGVV("Raw sensor image captured");
1526 }
1527 
CaptureRGB(uint8_t * img,uint32_t width,uint32_t height,uint32_t stride,RGBLayout layout,uint32_t gain,int32_t color_space,const SensorCharacteristics & chars)1528 void EmulatedSensor::CaptureRGB(uint8_t* img, uint32_t width, uint32_t height,
1529                                 uint32_t stride, RGBLayout layout,
1530                                 uint32_t gain, int32_t color_space,
1531                                 const SensorCharacteristics& chars) {
1532   ATRACE_CALL();
1533   float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
1534   // In fixed-point math, calculate total scaling from electrons to 8bpp
1535   int scale64x = 64 * total_gain * 255 / chars.max_raw_value;
1536   uint32_t inc_h = ceil((float)chars.full_res_width / width);
1537   uint32_t inc_v = ceil((float)chars.full_res_height / height);
1538 
1539   for (unsigned int y = 0, outy = 0; y < chars.full_res_height;
1540        y += inc_v, outy++) {
1541     scene_->SetReadoutPixel(0, y);
1542     uint8_t* px = img + outy * stride;
1543     for (unsigned int x = 0; x < chars.full_res_width; x += inc_h) {
1544       uint32_t r_count, g_count, b_count;
1545       // TODO: Perfect demosaicing is a cheat
1546       const uint32_t* pixel = scene_->GetPixelElectrons();
1547       r_count = pixel[EmulatedScene::R] * scale64x;
1548       g_count = pixel[EmulatedScene::Gr] * scale64x;
1549       b_count = pixel[EmulatedScene::B] * scale64x;
1550 
1551       if (color_space !=
1552           ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_UNSPECIFIED) {
1553         RgbToRgb(&r_count, &g_count, &b_count);
1554       }
1555 
1556       uint8_t r = r_count < 255 * 64 ? r_count / 64 : 255;
1557       uint8_t g = g_count < 255 * 64 ? g_count / 64 : 255;
1558       uint8_t b = b_count < 255 * 64 ? b_count / 64 : 255;
1559       switch (layout) {
1560         case RGB:
1561           *px++ = r;
1562           *px++ = g;
1563           *px++ = b;
1564           break;
1565         case RGBA:
1566           *px++ = r;
1567           *px++ = g;
1568           *px++ = b;
1569           *px++ = 255;
1570           break;
1571         case ARGB:
1572           *px++ = 255;
1573           *px++ = r;
1574           *px++ = g;
1575           *px++ = b;
1576           break;
1577         default:
1578           ALOGE("%s: RGB layout: %d not supported", __FUNCTION__, layout);
1579           return;
1580       }
1581       for (unsigned int j = 1; j < inc_h; j++) scene_->GetPixelElectrons();
1582     }
1583   }
1584   ALOGVV("RGB sensor image captured");
1585 }
1586 
CaptureYUV420(YCbCrPlanes yuv_layout,uint32_t width,uint32_t height,uint32_t gain,float zoom_ratio,bool rotate,int32_t color_space,const SensorCharacteristics & chars)1587 void EmulatedSensor::CaptureYUV420(YCbCrPlanes yuv_layout, uint32_t width,
1588                                    uint32_t height, uint32_t gain,
1589                                    float zoom_ratio, bool rotate,
1590                                    int32_t color_space,
1591                                    const SensorCharacteristics& chars) {
1592   ATRACE_CALL();
1593   float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
1594   // Using fixed-point math with 6 bits of fractional precision.
1595   // In fixed-point math, calculate total scaling from electrons to 8bpp
1596   const int scale64x =
1597       kFixedBitPrecision * total_gain * 255 / chars.max_raw_value;
1598   // Fixed-point coefficients for RGB-YUV transform
1599   // Based on JFIF RGB->YUV transform.
1600   // Cb/Cr offset scaled by 64x twice since they're applied post-multiply
1601   const int rgb_to_y[] = {19, 37, 7};
1602   const int rgb_to_cb[] = {-10, -21, 32, 524288};
1603   const int rgb_to_cr[] = {32, -26, -5, 524288};
1604   // Scale back to 8bpp non-fixed-point
1605   const int scale_out = 64;
1606   const int scale_out_sq = scale_out * scale_out;  // after multiplies
1607 
1608   // inc = how many pixels to skip while reading every next pixel
1609   const float aspect_ratio = static_cast<float>(width) / height;
1610 
1611   // precalculate normalized coordinates and dimensions
1612   const float norm_left_top = 0.5f - 0.5f / zoom_ratio;
1613   const float norm_rot_top = norm_left_top;
1614   const float norm_width = 1 / zoom_ratio;
1615   const float norm_rot_width = norm_width / aspect_ratio;
1616   const float norm_rot_height = norm_width;
1617   const float norm_rot_left =
1618       norm_left_top + (norm_width + norm_rot_width) * 0.5f;
1619 
1620   for (unsigned int out_y = 0; out_y < height; out_y++) {
1621     uint8_t* px_y = yuv_layout.img_y + out_y * yuv_layout.y_stride;
1622     uint8_t* px_cb = yuv_layout.img_cb + (out_y / 2) * yuv_layout.cbcr_stride;
1623     uint8_t* px_cr = yuv_layout.img_cr + (out_y / 2) * yuv_layout.cbcr_stride;
1624 
1625     for (unsigned int out_x = 0; out_x < width; out_x++) {
1626       int x, y;
1627       float norm_x = out_x / (width * zoom_ratio);
1628       float norm_y = out_y / (height * zoom_ratio);
1629       if (rotate) {
1630         x = static_cast<int>(chars.full_res_width *
1631                              (norm_rot_left - norm_y * norm_rot_width));
1632         y = static_cast<int>(chars.full_res_height *
1633                              (norm_rot_top + norm_x * norm_rot_height));
1634       } else {
1635         x = static_cast<int>(chars.full_res_width * (norm_left_top + norm_x));
1636         y = static_cast<int>(chars.full_res_height * (norm_left_top + norm_y));
1637       }
1638       x = std::min(std::max(x, 0), (int)chars.full_res_width - 1);
1639       y = std::min(std::max(y, 0), (int)chars.full_res_height - 1);
1640       scene_->SetReadoutPixel(x, y);
1641 
1642       uint32_t r_count, g_count, b_count;
1643       // TODO: Perfect demosaicing is a cheat
1644       const uint32_t* pixel = rotate ? scene_->GetPixelElectronsColumn()
1645                                      : scene_->GetPixelElectrons();
1646       r_count = pixel[EmulatedScene::R] * scale64x;
1647       g_count = pixel[EmulatedScene::Gr] * scale64x;
1648       b_count = pixel[EmulatedScene::B] * scale64x;
1649 
1650       if (color_space !=
1651           ANDROID_REQUEST_AVAILABLE_COLOR_SPACE_PROFILES_MAP_UNSPECIFIED) {
1652         RgbToRgb(&r_count, &g_count, &b_count);
1653       }
1654 
1655       r_count = r_count < kSaturationPoint ? r_count : kSaturationPoint;
1656       g_count = g_count < kSaturationPoint ? g_count : kSaturationPoint;
1657       b_count = b_count < kSaturationPoint ? b_count : kSaturationPoint;
1658 
1659       // Gamma correction
1660       r_count = GammaTable(r_count, color_space);
1661       g_count = GammaTable(g_count, color_space);
1662       b_count = GammaTable(b_count, color_space);
1663 
1664       uint8_t y8 = (rgb_to_y[0] * r_count + rgb_to_y[1] * g_count +
1665                     rgb_to_y[2] * b_count) /
1666                    scale_out_sq;
1667       if (yuv_layout.bytesPerPixel == 1) {
1668         *px_y = y8;
1669       } else if (yuv_layout.bytesPerPixel == 2) {
1670         *(reinterpret_cast<uint16_t*>(px_y)) = htole16(y8 << 8);
1671       } else {
1672         ALOGE("%s: Unsupported bytes per pixel value: %zu", __func__,
1673               yuv_layout.bytesPerPixel);
1674         return;
1675       }
1676       px_y += yuv_layout.bytesPerPixel;
1677 
1678       if (out_y % 2 == 0 && out_x % 2 == 0) {
1679         uint8_t cb8 = (rgb_to_cb[0] * r_count + rgb_to_cb[1] * g_count +
1680                        rgb_to_cb[2] * b_count + rgb_to_cb[3]) /
1681                       scale_out_sq;
1682         uint8_t cr8 = (rgb_to_cr[0] * r_count + rgb_to_cr[1] * g_count +
1683                        rgb_to_cr[2] * b_count + rgb_to_cr[3]) /
1684                       scale_out_sq;
1685         if (yuv_layout.bytesPerPixel == 1) {
1686           *px_cb = cb8;
1687           *px_cr = cr8;
1688         } else if (yuv_layout.bytesPerPixel == 2) {
1689           *(reinterpret_cast<uint16_t*>(px_cb)) = htole16(cb8 << 8);
1690           *(reinterpret_cast<uint16_t*>(px_cr)) = htole16(cr8 << 8);
1691         } else {
1692           ALOGE("%s: Unsupported bytes per pixel value: %zu", __func__,
1693                 yuv_layout.bytesPerPixel);
1694           return;
1695         }
1696         px_cr += yuv_layout.cbcr_step;
1697         px_cb += yuv_layout.cbcr_step;
1698       }
1699     }
1700   }
1701   ALOGVV("YUV420 sensor image captured");
1702 }
1703 
CaptureDepth(uint8_t * img,uint32_t gain,uint32_t width,uint32_t height,uint32_t stride,const SensorCharacteristics & chars)1704 void EmulatedSensor::CaptureDepth(uint8_t* img, uint32_t gain, uint32_t width,
1705                                   uint32_t height, uint32_t stride,
1706                                   const SensorCharacteristics& chars) {
1707   ATRACE_CALL();
1708   float total_gain = gain / 100.0 * GetBaseGainFactor(chars.max_raw_value);
1709   // In fixed-point math, calculate scaling factor to 13bpp millimeters
1710   int scale64x = 64 * total_gain * 8191 / chars.max_raw_value;
1711   uint32_t inc_h = ceil((float)chars.full_res_width / width);
1712   uint32_t inc_v = ceil((float)chars.full_res_height / height);
1713 
1714   for (unsigned int y = 0, out_y = 0; y < chars.full_res_height;
1715        y += inc_v, out_y++) {
1716     scene_->SetReadoutPixel(0, y);
1717     uint16_t* px = (uint16_t*)(img + (out_y * stride));
1718     for (unsigned int x = 0; x < chars.full_res_width; x += inc_h) {
1719       uint32_t depth_count;
1720       // TODO: Make up real depth scene instead of using green channel
1721       // as depth
1722       const uint32_t* pixel = scene_->GetPixelElectrons();
1723       depth_count = pixel[EmulatedScene::Gr] * scale64x;
1724 
1725       *px++ = depth_count < 8191 * 64 ? depth_count / 64 : 0;
1726       for (unsigned int j = 1; j < inc_h; j++) scene_->GetPixelElectrons();
1727     }
1728     // TODO: Handle this better
1729     // simulatedTime += mRowReadoutTime;
1730   }
1731   ALOGVV("Depth sensor image captured");
1732 }
1733 
ProcessYUV420(const YUV420Frame & input,const YUV420Frame & output,uint32_t gain,ProcessType process_type,float zoom_ratio,bool rotate_and_crop,int32_t color_space,const SensorCharacteristics & chars)1734 status_t EmulatedSensor::ProcessYUV420(const YUV420Frame& input,
1735                                        const YUV420Frame& output, uint32_t gain,
1736                                        ProcessType process_type,
1737                                        float zoom_ratio, bool rotate_and_crop,
1738                                        int32_t color_space,
1739                                        const SensorCharacteristics& chars) {
1740   ATRACE_CALL();
1741   size_t input_width, input_height;
1742   YCbCrPlanes input_planes, output_planes;
1743   std::vector<uint8_t> temp_yuv, temp_output_uv, temp_input_uv;
1744 
1745   // Overwrite HIGH_QUALITY to REGULAR for Emulator if property
1746   // ro.boot.qemu.camera_hq_edge_processing is false;
1747   if (process_type == HIGH_QUALITY &&
1748       !property_get_bool("ro.boot.qemu.camera_hq_edge_processing", true)) {
1749     process_type = REGULAR;
1750   }
1751 
1752   switch (process_type) {
1753     case HIGH_QUALITY:
1754       CaptureYUV420(output.planes, output.width, output.height, gain,
1755                     zoom_ratio, rotate_and_crop, color_space, chars);
1756       return OK;
1757     case REPROCESS:
1758       input_width = input.width;
1759       input_height = input.height;
1760       input_planes = input.planes;
1761 
1762       // libyuv only supports planar YUV420 during scaling.
1763       // Split the input U/V plane in separate planes if needed.
1764       if (input_planes.cbcr_step == 2) {
1765         temp_input_uv.resize(input_width * input_height / 2);
1766         auto temp_uv_buffer = temp_input_uv.data();
1767         input_planes.img_cb = temp_uv_buffer;
1768         input_planes.img_cr = temp_uv_buffer + (input_width * input_height) / 4;
1769         input_planes.cbcr_stride = input_width / 2;
1770         if (input.planes.img_cb < input.planes.img_cr) {
1771           libyuv::SplitUVPlane(input.planes.img_cb, input.planes.cbcr_stride,
1772                                input_planes.img_cb, input_planes.cbcr_stride,
1773                                input_planes.img_cr, input_planes.cbcr_stride,
1774                                input_width / 2, input_height / 2);
1775         } else {
1776           libyuv::SplitUVPlane(input.planes.img_cr, input.planes.cbcr_stride,
1777                                input_planes.img_cr, input_planes.cbcr_stride,
1778                                input_planes.img_cb, input_planes.cbcr_stride,
1779                                input_width / 2, input_height / 2);
1780         }
1781       }
1782       break;
1783     case REGULAR:
1784     default:
1785       // Generate the smallest possible frame with the expected AR and
1786       // then scale using libyuv.
1787       float aspect_ratio = static_cast<float>(output.width) / output.height;
1788       zoom_ratio = std::max(1.f, zoom_ratio);
1789       input_width = EmulatedScene::kSceneWidth * aspect_ratio;
1790       input_height = EmulatedScene::kSceneHeight;
1791       temp_yuv.reserve((input_width * input_height * 3) / 2);
1792       auto temp_yuv_buffer = temp_yuv.data();
1793       input_planes = {
1794           .img_y = temp_yuv_buffer,
1795           .img_cb = temp_yuv_buffer + input_width * input_height,
1796           .img_cr = temp_yuv_buffer + (input_width * input_height * 5) / 4,
1797           .y_stride = static_cast<uint32_t>(input_width),
1798           .cbcr_stride = static_cast<uint32_t>(input_width) / 2,
1799           .cbcr_step = 1};
1800       CaptureYUV420(input_planes, input_width, input_height, gain, zoom_ratio,
1801                     rotate_and_crop, color_space, chars);
1802   }
1803 
1804   output_planes = output.planes;
1805   // libyuv only supports planar YUV420 during scaling.
1806   // Treat the output UV space as planar first and then
1807   // interleave in the second step.
1808   if (output_planes.cbcr_step == 2) {
1809     temp_output_uv.resize(output.width * output.height / 2);
1810     auto temp_uv_buffer = temp_output_uv.data();
1811     output_planes.img_cb = temp_uv_buffer;
1812     output_planes.img_cr = temp_uv_buffer + output.width * output.height / 4;
1813     output_planes.cbcr_stride = output.width / 2;
1814   }
1815 
1816   auto ret = I420Scale(
1817       input_planes.img_y, input_planes.y_stride, input_planes.img_cb,
1818       input_planes.cbcr_stride, input_planes.img_cr, input_planes.cbcr_stride,
1819       input_width, input_height, output_planes.img_y, output_planes.y_stride,
1820       output_planes.img_cb, output_planes.cbcr_stride, output_planes.img_cr,
1821       output_planes.cbcr_stride, output.width, output.height,
1822       libyuv::kFilterNone);
1823   if (ret != 0) {
1824     ALOGE("%s: Failed during YUV scaling: %d", __FUNCTION__, ret);
1825     return ret;
1826   }
1827 
1828   // Merge U/V Planes for the interleaved case
1829   if (output_planes.cbcr_step == 2) {
1830     if (output.planes.img_cb < output.planes.img_cr) {
1831       libyuv::MergeUVPlane(output_planes.img_cb, output_planes.cbcr_stride,
1832                            output_planes.img_cr, output_planes.cbcr_stride,
1833                            output.planes.img_cb, output.planes.cbcr_stride,
1834                            output.width / 2, output.height / 2);
1835     } else {
1836       libyuv::MergeUVPlane(output_planes.img_cr, output_planes.cbcr_stride,
1837                            output_planes.img_cb, output_planes.cbcr_stride,
1838                            output.planes.img_cr, output.planes.cbcr_stride,
1839                            output.width / 2, output.height / 2);
1840     }
1841   }
1842 
1843   return ret;
1844 }
1845 
ApplysRGBGamma(int32_t value,int32_t saturation)1846 int32_t EmulatedSensor::ApplysRGBGamma(int32_t value, int32_t saturation) {
1847   float n_value = (static_cast<float>(value) / saturation);
1848   n_value = (n_value <= 0.0031308f)
1849                 ? n_value * 12.92f
1850                 : 1.055f * pow(n_value, 0.4166667f) - 0.055f;
1851   return n_value * saturation;
1852 }
1853 
ApplySMPTE170MGamma(int32_t value,int32_t saturation)1854 int32_t EmulatedSensor::ApplySMPTE170MGamma(int32_t value, int32_t saturation) {
1855   float n_value = (static_cast<float>(value) / saturation);
1856   n_value = (n_value <= 0.018f) ? n_value * 4.5f
1857                                 : 1.099f * pow(n_value, 0.45f) - 0.099f;
1858   return n_value * saturation;
1859 }
1860 
ApplyST2084Gamma(int32_t value,int32_t saturation)1861 int32_t EmulatedSensor::ApplyST2084Gamma(int32_t value, int32_t saturation) {
1862   float n_value = (static_cast<float>(value) / saturation);
1863   float c2 = 32.f * 2413.f / 4096.f;
1864   float c3 = 32.f * 2392.f / 4096.f;
1865   float c1 = c3 - c2 + 1.f;
1866   float m = 128.f * 2523.f / 4096.f;
1867   float n = 0.25f * 2610.f / 4096.f;
1868   n_value = pow((c1 + c2 * pow(n_value, n)) / (1 + c3 * pow(n_value, n)), m);
1869   return n_value * saturation;
1870 }
1871 
ApplyHLGGamma(int32_t value,int32_t saturation)1872 int32_t EmulatedSensor::ApplyHLGGamma(int32_t value, int32_t saturation) {
1873   float n_value = (static_cast<float>(value) / saturation);
1874   // The full HLG gamma curve has additional parameters for n_value > 1, but n_value
1875   // in the emulated camera is always <= 1 due to lack of HDR display features.
1876   n_value = 0.5f * pow(n_value, 0.5f);
1877   return n_value * saturation;
1878 }
1879 
GammaTable(int32_t value,int32_t color_space)1880 int32_t EmulatedSensor::GammaTable(int32_t value, int32_t color_space) {
1881   switch (color_space) {
1882     case ColorSpaceNamed::BT709:
1883       return gamma_table_smpte170m_[value];
1884     case ColorSpaceNamed::BT2020:
1885       return gamma_table_hlg_[value];  // Assume HLG
1886     case ColorSpaceNamed::DISPLAY_P3:
1887     case ColorSpaceNamed::SRGB:
1888     default:
1889       return gamma_table_sRGB_[value];
1890   }
1891 
1892   return 0;
1893 }
1894 
RgbToRgb(uint32_t * r_count,uint32_t * g_count,uint32_t * b_count)1895 void EmulatedSensor::RgbToRgb(uint32_t* r_count, uint32_t* g_count,
1896                               uint32_t* b_count) {
1897   uint32_t r = *r_count;
1898   uint32_t g = *g_count;
1899   uint32_t b = *b_count;
1900   *r_count = (uint32_t)std::max(
1901       r * rgb_rgb_matrix_.rR + g * rgb_rgb_matrix_.gR + b * rgb_rgb_matrix_.bR,
1902       0.0f);
1903   *g_count = (uint32_t)std::max(
1904       r * rgb_rgb_matrix_.rG + g * rgb_rgb_matrix_.gG + b * rgb_rgb_matrix_.bG,
1905       0.0f);
1906   *b_count = (uint32_t)std::max(
1907       r * rgb_rgb_matrix_.rB + g * rgb_rgb_matrix_.gB + b * rgb_rgb_matrix_.bB,
1908       0.0f);
1909 }
1910 
CalculateRgbRgbMatrix(int32_t color_space,const SensorCharacteristics & chars)1911 void EmulatedSensor::CalculateRgbRgbMatrix(int32_t color_space,
1912                                            const SensorCharacteristics& chars) {
1913   const XyzMatrix* xyzMatrix;
1914   switch (color_space) {
1915     case ColorSpaceNamed::DISPLAY_P3:
1916       xyzMatrix = &kDisplayP3Matrix;
1917       break;
1918     case ColorSpaceNamed::BT709:
1919       xyzMatrix = &kBt709Matrix;
1920       break;
1921     case ColorSpaceNamed::BT2020:
1922       xyzMatrix = &kBt2020Matrix;
1923       break;
1924     case ColorSpaceNamed::SRGB:
1925     default:
1926       xyzMatrix = &kSrgbXyzMatrix;
1927       break;
1928   }
1929 
1930   rgb_rgb_matrix_.rR = xyzMatrix->xR * chars.forward_matrix.rX +
1931                        xyzMatrix->yR * chars.forward_matrix.rY +
1932                        xyzMatrix->zR * chars.forward_matrix.rZ;
1933   rgb_rgb_matrix_.gR = xyzMatrix->xR * chars.forward_matrix.gX +
1934                        xyzMatrix->yR * chars.forward_matrix.gY +
1935                        xyzMatrix->zR * chars.forward_matrix.gZ;
1936   rgb_rgb_matrix_.bR = xyzMatrix->xR * chars.forward_matrix.bX +
1937                        xyzMatrix->yR * chars.forward_matrix.bY +
1938                        xyzMatrix->zR * chars.forward_matrix.bZ;
1939   rgb_rgb_matrix_.rG = xyzMatrix->xG * chars.forward_matrix.rX +
1940                        xyzMatrix->yG * chars.forward_matrix.rY +
1941                        xyzMatrix->zG * chars.forward_matrix.rZ;
1942   rgb_rgb_matrix_.gG = xyzMatrix->xG * chars.forward_matrix.gX +
1943                        xyzMatrix->yG * chars.forward_matrix.gY +
1944                        xyzMatrix->zG * chars.forward_matrix.gZ;
1945   rgb_rgb_matrix_.bG = xyzMatrix->xG * chars.forward_matrix.bX +
1946                        xyzMatrix->yG * chars.forward_matrix.bY +
1947                        xyzMatrix->zG * chars.forward_matrix.bZ;
1948   rgb_rgb_matrix_.rB = xyzMatrix->xB * chars.forward_matrix.rX +
1949                        xyzMatrix->yB * chars.forward_matrix.rY +
1950                        xyzMatrix->zB * chars.forward_matrix.rZ;
1951   rgb_rgb_matrix_.gB = xyzMatrix->xB * chars.forward_matrix.gX +
1952                        xyzMatrix->yB * chars.forward_matrix.gY +
1953                        xyzMatrix->zB * chars.forward_matrix.gZ;
1954   rgb_rgb_matrix_.bB = xyzMatrix->xB * chars.forward_matrix.bX +
1955                        xyzMatrix->yB * chars.forward_matrix.bY +
1956                        xyzMatrix->zB * chars.forward_matrix.bZ;
1957 }
1958 
1959 }  // namespace android
1960