1 /*
2 * Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10 #include "modules/video_coding/jitter_buffer.h"
11
12 #include <algorithm>
13 #include <limits>
14 #include <utility>
15
16 #include "api/units/timestamp.h"
17 #include "modules/video_coding/frame_buffer.h"
18 #include "modules/video_coding/include/video_coding.h"
19 #include "modules/video_coding/internal_defines.h"
20 #include "modules/video_coding/jitter_buffer_common.h"
21 #include "modules/video_coding/packet.h"
22 #include "modules/video_coding/timing/inter_frame_delay.h"
23 #include "modules/video_coding/timing/jitter_estimator.h"
24 #include "rtc_base/checks.h"
25 #include "rtc_base/logging.h"
26 #include "system_wrappers/include/clock.h"
27
28 namespace webrtc {
29 // Use this rtt if no value has been reported.
30 static const int64_t kDefaultRtt = 200;
31
32 typedef std::pair<uint32_t, VCMFrameBuffer*> FrameListPair;
33
IsKeyFrame(FrameListPair pair)34 bool IsKeyFrame(FrameListPair pair) {
35 return pair.second->FrameType() == VideoFrameType::kVideoFrameKey;
36 }
37
HasNonEmptyState(FrameListPair pair)38 bool HasNonEmptyState(FrameListPair pair) {
39 return pair.second->GetState() != kStateEmpty;
40 }
41
InsertFrame(VCMFrameBuffer * frame)42 void FrameList::InsertFrame(VCMFrameBuffer* frame) {
43 insert(rbegin().base(), FrameListPair(frame->Timestamp(), frame));
44 }
45
PopFrame(uint32_t timestamp)46 VCMFrameBuffer* FrameList::PopFrame(uint32_t timestamp) {
47 FrameList::iterator it = find(timestamp);
48 if (it == end())
49 return NULL;
50 VCMFrameBuffer* frame = it->second;
51 erase(it);
52 return frame;
53 }
54
Front() const55 VCMFrameBuffer* FrameList::Front() const {
56 return begin()->second;
57 }
58
Back() const59 VCMFrameBuffer* FrameList::Back() const {
60 return rbegin()->second;
61 }
62
RecycleFramesUntilKeyFrame(FrameList::iterator * key_frame_it,UnorderedFrameList * free_frames)63 int FrameList::RecycleFramesUntilKeyFrame(FrameList::iterator* key_frame_it,
64 UnorderedFrameList* free_frames) {
65 int drop_count = 0;
66 FrameList::iterator it = begin();
67 while (!empty()) {
68 // Throw at least one frame.
69 it->second->Reset();
70 free_frames->push_back(it->second);
71 erase(it++);
72 ++drop_count;
73 if (it != end() &&
74 it->second->FrameType() == VideoFrameType::kVideoFrameKey) {
75 *key_frame_it = it;
76 return drop_count;
77 }
78 }
79 *key_frame_it = end();
80 return drop_count;
81 }
82
CleanUpOldOrEmptyFrames(VCMDecodingState * decoding_state,UnorderedFrameList * free_frames)83 void FrameList::CleanUpOldOrEmptyFrames(VCMDecodingState* decoding_state,
84 UnorderedFrameList* free_frames) {
85 while (!empty()) {
86 VCMFrameBuffer* oldest_frame = Front();
87 bool remove_frame = false;
88 if (oldest_frame->GetState() == kStateEmpty && size() > 1) {
89 // This frame is empty, try to update the last decoded state and drop it
90 // if successful.
91 remove_frame = decoding_state->UpdateEmptyFrame(oldest_frame);
92 } else {
93 remove_frame = decoding_state->IsOldFrame(oldest_frame);
94 }
95 if (!remove_frame) {
96 break;
97 }
98 free_frames->push_back(oldest_frame);
99 erase(begin());
100 }
101 }
102
Reset(UnorderedFrameList * free_frames)103 void FrameList::Reset(UnorderedFrameList* free_frames) {
104 while (!empty()) {
105 begin()->second->Reset();
106 free_frames->push_back(begin()->second);
107 erase(begin());
108 }
109 }
110
VCMJitterBuffer(Clock * clock,std::unique_ptr<EventWrapper> event,const FieldTrialsView & field_trials)111 VCMJitterBuffer::VCMJitterBuffer(Clock* clock,
112 std::unique_ptr<EventWrapper> event,
113 const FieldTrialsView& field_trials)
114 : clock_(clock),
115 running_(false),
116 frame_event_(std::move(event)),
117 max_number_of_frames_(kStartNumberOfFrames),
118 free_frames_(),
119 decodable_frames_(),
120 incomplete_frames_(),
121 last_decoded_state_(),
122 first_packet_since_reset_(true),
123 num_consecutive_old_packets_(0),
124 num_packets_(0),
125 num_duplicated_packets_(0),
126 jitter_estimate_(clock, field_trials),
127 missing_sequence_numbers_(SequenceNumberLessThan()),
128 latest_received_sequence_number_(0),
129 max_nack_list_size_(0),
130 max_packet_age_to_nack_(0),
131 max_incomplete_time_ms_(0),
132 average_packets_per_frame_(0.0f),
133 frame_counter_(0) {
134 for (int i = 0; i < kStartNumberOfFrames; i++)
135 free_frames_.push_back(new VCMFrameBuffer());
136 }
137
~VCMJitterBuffer()138 VCMJitterBuffer::~VCMJitterBuffer() {
139 Stop();
140 for (UnorderedFrameList::iterator it = free_frames_.begin();
141 it != free_frames_.end(); ++it) {
142 delete *it;
143 }
144 for (FrameList::iterator it = incomplete_frames_.begin();
145 it != incomplete_frames_.end(); ++it) {
146 delete it->second;
147 }
148 for (FrameList::iterator it = decodable_frames_.begin();
149 it != decodable_frames_.end(); ++it) {
150 delete it->second;
151 }
152 }
153
Start()154 void VCMJitterBuffer::Start() {
155 MutexLock lock(&mutex_);
156 running_ = true;
157
158 num_consecutive_old_packets_ = 0;
159 num_packets_ = 0;
160 num_duplicated_packets_ = 0;
161
162 // Start in a non-signaled state.
163 waiting_for_completion_.frame_size = 0;
164 waiting_for_completion_.timestamp = 0;
165 waiting_for_completion_.latest_packet_time = -1;
166 first_packet_since_reset_ = true;
167 last_decoded_state_.Reset();
168
169 decodable_frames_.Reset(&free_frames_);
170 incomplete_frames_.Reset(&free_frames_);
171 }
172
Stop()173 void VCMJitterBuffer::Stop() {
174 MutexLock lock(&mutex_);
175 running_ = false;
176 last_decoded_state_.Reset();
177
178 // Make sure we wake up any threads waiting on these events.
179 frame_event_->Set();
180 }
181
Running() const182 bool VCMJitterBuffer::Running() const {
183 MutexLock lock(&mutex_);
184 return running_;
185 }
186
Flush()187 void VCMJitterBuffer::Flush() {
188 MutexLock lock(&mutex_);
189 decodable_frames_.Reset(&free_frames_);
190 incomplete_frames_.Reset(&free_frames_);
191 last_decoded_state_.Reset(); // TODO(mikhal): sync reset.
192 num_consecutive_old_packets_ = 0;
193 // Also reset the jitter and delay estimates
194 jitter_estimate_.Reset();
195 inter_frame_delay_.Reset();
196 waiting_for_completion_.frame_size = 0;
197 waiting_for_completion_.timestamp = 0;
198 waiting_for_completion_.latest_packet_time = -1;
199 first_packet_since_reset_ = true;
200 missing_sequence_numbers_.clear();
201 }
202
num_packets() const203 int VCMJitterBuffer::num_packets() const {
204 MutexLock lock(&mutex_);
205 return num_packets_;
206 }
207
num_duplicated_packets() const208 int VCMJitterBuffer::num_duplicated_packets() const {
209 MutexLock lock(&mutex_);
210 return num_duplicated_packets_;
211 }
212
213 // Returns immediately or a `max_wait_time_ms` ms event hang waiting for a
214 // complete frame, `max_wait_time_ms` decided by caller.
NextCompleteFrame(uint32_t max_wait_time_ms)215 VCMEncodedFrame* VCMJitterBuffer::NextCompleteFrame(uint32_t max_wait_time_ms) {
216 MutexLock lock(&mutex_);
217 if (!running_) {
218 return nullptr;
219 }
220 CleanUpOldOrEmptyFrames();
221
222 if (decodable_frames_.empty() ||
223 decodable_frames_.Front()->GetState() != kStateComplete) {
224 const int64_t end_wait_time_ms =
225 clock_->TimeInMilliseconds() + max_wait_time_ms;
226 int64_t wait_time_ms = max_wait_time_ms;
227 while (wait_time_ms > 0) {
228 mutex_.Unlock();
229 const EventTypeWrapper ret =
230 frame_event_->Wait(static_cast<uint32_t>(wait_time_ms));
231 mutex_.Lock();
232 if (ret == kEventSignaled) {
233 // Are we shutting down the jitter buffer?
234 if (!running_) {
235 return nullptr;
236 }
237 // Finding oldest frame ready for decoder.
238 CleanUpOldOrEmptyFrames();
239 if (decodable_frames_.empty() ||
240 decodable_frames_.Front()->GetState() != kStateComplete) {
241 wait_time_ms = end_wait_time_ms - clock_->TimeInMilliseconds();
242 } else {
243 break;
244 }
245 } else {
246 break;
247 }
248 }
249 }
250 if (decodable_frames_.empty() ||
251 decodable_frames_.Front()->GetState() != kStateComplete) {
252 return nullptr;
253 }
254 return decodable_frames_.Front();
255 }
256
ExtractAndSetDecode(uint32_t timestamp)257 VCMEncodedFrame* VCMJitterBuffer::ExtractAndSetDecode(uint32_t timestamp) {
258 MutexLock lock(&mutex_);
259 if (!running_) {
260 return NULL;
261 }
262 // Extract the frame with the desired timestamp.
263 VCMFrameBuffer* frame = decodable_frames_.PopFrame(timestamp);
264 bool continuous = true;
265 if (!frame) {
266 frame = incomplete_frames_.PopFrame(timestamp);
267 if (frame)
268 continuous = last_decoded_state_.ContinuousFrame(frame);
269 else
270 return NULL;
271 }
272 // Frame pulled out from jitter buffer, update the jitter estimate.
273 const bool retransmitted = (frame->GetNackCount() > 0);
274 if (retransmitted) {
275 jitter_estimate_.FrameNacked();
276 } else if (frame->size() > 0) {
277 // Ignore retransmitted and empty frames.
278 if (waiting_for_completion_.latest_packet_time >= 0) {
279 UpdateJitterEstimate(waiting_for_completion_, true);
280 }
281 if (frame->GetState() == kStateComplete) {
282 UpdateJitterEstimate(*frame, false);
283 } else {
284 // Wait for this one to get complete.
285 waiting_for_completion_.frame_size = frame->size();
286 waiting_for_completion_.latest_packet_time = frame->LatestPacketTimeMs();
287 waiting_for_completion_.timestamp = frame->Timestamp();
288 }
289 }
290
291 // The state must be changed to decoding before cleaning up zero sized
292 // frames to avoid empty frames being cleaned up and then given to the
293 // decoder. Propagates the missing_frame bit.
294 frame->PrepareForDecode(continuous);
295
296 // We have a frame - update the last decoded state and nack list.
297 last_decoded_state_.SetState(frame);
298 DropPacketsFromNackList(last_decoded_state_.sequence_num());
299
300 UpdateAveragePacketsPerFrame(frame->NumPackets());
301
302 return frame;
303 }
304
305 // Release frame when done with decoding. Should never be used to release
306 // frames from within the jitter buffer.
ReleaseFrame(VCMEncodedFrame * frame)307 void VCMJitterBuffer::ReleaseFrame(VCMEncodedFrame* frame) {
308 RTC_CHECK(frame != nullptr);
309 MutexLock lock(&mutex_);
310 VCMFrameBuffer* frame_buffer = static_cast<VCMFrameBuffer*>(frame);
311 RecycleFrameBuffer(frame_buffer);
312 }
313
314 // Gets frame to use for this timestamp. If no match, get empty frame.
GetFrame(const VCMPacket & packet,VCMFrameBuffer ** frame,FrameList ** frame_list)315 VCMFrameBufferEnum VCMJitterBuffer::GetFrame(const VCMPacket& packet,
316 VCMFrameBuffer** frame,
317 FrameList** frame_list) {
318 *frame = incomplete_frames_.PopFrame(packet.timestamp);
319 if (*frame != NULL) {
320 *frame_list = &incomplete_frames_;
321 return kNoError;
322 }
323 *frame = decodable_frames_.PopFrame(packet.timestamp);
324 if (*frame != NULL) {
325 *frame_list = &decodable_frames_;
326 return kNoError;
327 }
328
329 *frame_list = NULL;
330 // No match, return empty frame.
331 *frame = GetEmptyFrame();
332 if (*frame == NULL) {
333 // No free frame! Try to reclaim some...
334 RTC_LOG(LS_WARNING) << "Unable to get empty frame; Recycling.";
335 bool found_key_frame = RecycleFramesUntilKeyFrame();
336 *frame = GetEmptyFrame();
337 RTC_CHECK(*frame);
338 if (!found_key_frame) {
339 RecycleFrameBuffer(*frame);
340 return kFlushIndicator;
341 }
342 }
343 (*frame)->Reset();
344 return kNoError;
345 }
346
LastPacketTime(const VCMEncodedFrame * frame,bool * retransmitted) const347 int64_t VCMJitterBuffer::LastPacketTime(const VCMEncodedFrame* frame,
348 bool* retransmitted) const {
349 RTC_DCHECK(retransmitted);
350 MutexLock lock(&mutex_);
351 const VCMFrameBuffer* frame_buffer =
352 static_cast<const VCMFrameBuffer*>(frame);
353 *retransmitted = (frame_buffer->GetNackCount() > 0);
354 return frame_buffer->LatestPacketTimeMs();
355 }
356
InsertPacket(const VCMPacket & packet,bool * retransmitted)357 VCMFrameBufferEnum VCMJitterBuffer::InsertPacket(const VCMPacket& packet,
358 bool* retransmitted) {
359 MutexLock lock(&mutex_);
360
361 ++num_packets_;
362 // Does this packet belong to an old frame?
363 if (last_decoded_state_.IsOldPacket(&packet)) {
364 // Account only for media packets.
365 if (packet.sizeBytes > 0) {
366 num_consecutive_old_packets_++;
367 }
368 // Update last decoded sequence number if the packet arrived late and
369 // belongs to a frame with a timestamp equal to the last decoded
370 // timestamp.
371 last_decoded_state_.UpdateOldPacket(&packet);
372 DropPacketsFromNackList(last_decoded_state_.sequence_num());
373
374 // Also see if this old packet made more incomplete frames continuous.
375 FindAndInsertContinuousFramesWithState(last_decoded_state_);
376
377 if (num_consecutive_old_packets_ > kMaxConsecutiveOldPackets) {
378 RTC_LOG(LS_WARNING)
379 << num_consecutive_old_packets_
380 << " consecutive old packets received. Flushing the jitter buffer.";
381 Flush();
382 return kFlushIndicator;
383 }
384 return kOldPacket;
385 }
386
387 num_consecutive_old_packets_ = 0;
388
389 VCMFrameBuffer* frame;
390 FrameList* frame_list;
391 const VCMFrameBufferEnum error = GetFrame(packet, &frame, &frame_list);
392 if (error != kNoError)
393 return error;
394
395 Timestamp now = clock_->CurrentTime();
396 // We are keeping track of the first and latest seq numbers, and
397 // the number of wraps to be able to calculate how many packets we expect.
398 if (first_packet_since_reset_) {
399 // Now it's time to start estimating jitter
400 // reset the delay estimate.
401 inter_frame_delay_.Reset();
402 }
403
404 // Empty packets may bias the jitter estimate (lacking size component),
405 // therefore don't let empty packet trigger the following updates:
406 if (packet.video_header.frame_type != VideoFrameType::kEmptyFrame) {
407 if (waiting_for_completion_.timestamp == packet.timestamp) {
408 // This can get bad if we have a lot of duplicate packets,
409 // we will then count some packet multiple times.
410 waiting_for_completion_.frame_size += packet.sizeBytes;
411 waiting_for_completion_.latest_packet_time = now.ms();
412 } else if (waiting_for_completion_.latest_packet_time >= 0 &&
413 waiting_for_completion_.latest_packet_time + 2000 <= now.ms()) {
414 // A packet should never be more than two seconds late
415 UpdateJitterEstimate(waiting_for_completion_, true);
416 waiting_for_completion_.latest_packet_time = -1;
417 waiting_for_completion_.frame_size = 0;
418 waiting_for_completion_.timestamp = 0;
419 }
420 }
421
422 VCMFrameBufferStateEnum previous_state = frame->GetState();
423 // Insert packet.
424 FrameData frame_data;
425 frame_data.rtt_ms = kDefaultRtt;
426 frame_data.rolling_average_packets_per_frame = average_packets_per_frame_;
427 VCMFrameBufferEnum buffer_state =
428 frame->InsertPacket(packet, now.ms(), frame_data);
429
430 if (buffer_state > 0) {
431 if (first_packet_since_reset_) {
432 latest_received_sequence_number_ = packet.seqNum;
433 first_packet_since_reset_ = false;
434 } else {
435 if (IsPacketRetransmitted(packet)) {
436 frame->IncrementNackCount();
437 }
438 if (!UpdateNackList(packet.seqNum) &&
439 packet.video_header.frame_type != VideoFrameType::kVideoFrameKey) {
440 buffer_state = kFlushIndicator;
441 }
442
443 latest_received_sequence_number_ =
444 LatestSequenceNumber(latest_received_sequence_number_, packet.seqNum);
445 }
446 }
447
448 // Is the frame already in the decodable list?
449 bool continuous = IsContinuous(*frame);
450 switch (buffer_state) {
451 case kGeneralError:
452 case kTimeStampError:
453 case kSizeError: {
454 RecycleFrameBuffer(frame);
455 break;
456 }
457 case kCompleteSession: {
458 if (previous_state != kStateComplete) {
459 if (continuous) {
460 // Signal that we have a complete session.
461 frame_event_->Set();
462 }
463 }
464
465 *retransmitted = (frame->GetNackCount() > 0);
466 if (continuous) {
467 decodable_frames_.InsertFrame(frame);
468 FindAndInsertContinuousFrames(*frame);
469 } else {
470 incomplete_frames_.InsertFrame(frame);
471 }
472 break;
473 }
474 case kIncomplete: {
475 if (frame->GetState() == kStateEmpty &&
476 last_decoded_state_.UpdateEmptyFrame(frame)) {
477 RecycleFrameBuffer(frame);
478 return kNoError;
479 } else {
480 incomplete_frames_.InsertFrame(frame);
481 }
482 break;
483 }
484 case kNoError:
485 case kOutOfBoundsPacket:
486 case kDuplicatePacket: {
487 // Put back the frame where it came from.
488 if (frame_list != NULL) {
489 frame_list->InsertFrame(frame);
490 } else {
491 RecycleFrameBuffer(frame);
492 }
493 ++num_duplicated_packets_;
494 break;
495 }
496 case kFlushIndicator:
497 RecycleFrameBuffer(frame);
498 return kFlushIndicator;
499 default:
500 RTC_DCHECK_NOTREACHED();
501 }
502 return buffer_state;
503 }
504
IsContinuousInState(const VCMFrameBuffer & frame,const VCMDecodingState & decoding_state) const505 bool VCMJitterBuffer::IsContinuousInState(
506 const VCMFrameBuffer& frame,
507 const VCMDecodingState& decoding_state) const {
508 // Is this frame complete and continuous?
509 return (frame.GetState() == kStateComplete) &&
510 decoding_state.ContinuousFrame(&frame);
511 }
512
IsContinuous(const VCMFrameBuffer & frame) const513 bool VCMJitterBuffer::IsContinuous(const VCMFrameBuffer& frame) const {
514 if (IsContinuousInState(frame, last_decoded_state_)) {
515 return true;
516 }
517 VCMDecodingState decoding_state;
518 decoding_state.CopyFrom(last_decoded_state_);
519 for (FrameList::const_iterator it = decodable_frames_.begin();
520 it != decodable_frames_.end(); ++it) {
521 VCMFrameBuffer* decodable_frame = it->second;
522 if (IsNewerTimestamp(decodable_frame->Timestamp(), frame.Timestamp())) {
523 break;
524 }
525 decoding_state.SetState(decodable_frame);
526 if (IsContinuousInState(frame, decoding_state)) {
527 return true;
528 }
529 }
530 return false;
531 }
532
FindAndInsertContinuousFrames(const VCMFrameBuffer & new_frame)533 void VCMJitterBuffer::FindAndInsertContinuousFrames(
534 const VCMFrameBuffer& new_frame) {
535 VCMDecodingState decoding_state;
536 decoding_state.CopyFrom(last_decoded_state_);
537 decoding_state.SetState(&new_frame);
538 FindAndInsertContinuousFramesWithState(decoding_state);
539 }
540
FindAndInsertContinuousFramesWithState(const VCMDecodingState & original_decoded_state)541 void VCMJitterBuffer::FindAndInsertContinuousFramesWithState(
542 const VCMDecodingState& original_decoded_state) {
543 // Copy original_decoded_state so we can move the state forward with each
544 // decodable frame we find.
545 VCMDecodingState decoding_state;
546 decoding_state.CopyFrom(original_decoded_state);
547
548 // When temporal layers are available, we search for a complete or decodable
549 // frame until we hit one of the following:
550 // 1. Continuous base or sync layer.
551 // 2. The end of the list was reached.
552 for (FrameList::iterator it = incomplete_frames_.begin();
553 it != incomplete_frames_.end();) {
554 VCMFrameBuffer* frame = it->second;
555 if (IsNewerTimestamp(original_decoded_state.time_stamp(),
556 frame->Timestamp())) {
557 ++it;
558 continue;
559 }
560 if (IsContinuousInState(*frame, decoding_state)) {
561 decodable_frames_.InsertFrame(frame);
562 incomplete_frames_.erase(it++);
563 decoding_state.SetState(frame);
564 } else if (frame->TemporalId() <= 0) {
565 break;
566 } else {
567 ++it;
568 }
569 }
570 }
571
EstimatedJitterMs()572 uint32_t VCMJitterBuffer::EstimatedJitterMs() {
573 MutexLock lock(&mutex_);
574 const double rtt_mult = 1.0f;
575 return jitter_estimate_.GetJitterEstimate(rtt_mult, absl::nullopt).ms();
576 }
577
SetNackSettings(size_t max_nack_list_size,int max_packet_age_to_nack,int max_incomplete_time_ms)578 void VCMJitterBuffer::SetNackSettings(size_t max_nack_list_size,
579 int max_packet_age_to_nack,
580 int max_incomplete_time_ms) {
581 MutexLock lock(&mutex_);
582 RTC_DCHECK_GE(max_packet_age_to_nack, 0);
583 RTC_DCHECK_GE(max_incomplete_time_ms_, 0);
584 max_nack_list_size_ = max_nack_list_size;
585 max_packet_age_to_nack_ = max_packet_age_to_nack;
586 max_incomplete_time_ms_ = max_incomplete_time_ms;
587 }
588
NonContinuousOrIncompleteDuration()589 int VCMJitterBuffer::NonContinuousOrIncompleteDuration() {
590 if (incomplete_frames_.empty()) {
591 return 0;
592 }
593 uint32_t start_timestamp = incomplete_frames_.Front()->Timestamp();
594 if (!decodable_frames_.empty()) {
595 start_timestamp = decodable_frames_.Back()->Timestamp();
596 }
597 return incomplete_frames_.Back()->Timestamp() - start_timestamp;
598 }
599
EstimatedLowSequenceNumber(const VCMFrameBuffer & frame) const600 uint16_t VCMJitterBuffer::EstimatedLowSequenceNumber(
601 const VCMFrameBuffer& frame) const {
602 RTC_DCHECK_GE(frame.GetLowSeqNum(), 0);
603 if (frame.HaveFirstPacket())
604 return frame.GetLowSeqNum();
605
606 // This estimate is not accurate if more than one packet with lower sequence
607 // number is lost.
608 return frame.GetLowSeqNum() - 1;
609 }
610
GetNackList(bool * request_key_frame)611 std::vector<uint16_t> VCMJitterBuffer::GetNackList(bool* request_key_frame) {
612 MutexLock lock(&mutex_);
613 *request_key_frame = false;
614 if (last_decoded_state_.in_initial_state()) {
615 VCMFrameBuffer* next_frame = NextFrame();
616 const bool first_frame_is_key =
617 next_frame &&
618 next_frame->FrameType() == VideoFrameType::kVideoFrameKey &&
619 next_frame->HaveFirstPacket();
620 if (!first_frame_is_key) {
621 bool have_non_empty_frame =
622 decodable_frames_.end() != find_if(decodable_frames_.begin(),
623 decodable_frames_.end(),
624 HasNonEmptyState);
625 if (!have_non_empty_frame) {
626 have_non_empty_frame =
627 incomplete_frames_.end() != find_if(incomplete_frames_.begin(),
628 incomplete_frames_.end(),
629 HasNonEmptyState);
630 }
631 bool found_key_frame = RecycleFramesUntilKeyFrame();
632 if (!found_key_frame) {
633 *request_key_frame = have_non_empty_frame;
634 return std::vector<uint16_t>();
635 }
636 }
637 }
638 if (TooLargeNackList()) {
639 *request_key_frame = !HandleTooLargeNackList();
640 }
641 if (max_incomplete_time_ms_ > 0) {
642 int non_continuous_incomplete_duration =
643 NonContinuousOrIncompleteDuration();
644 if (non_continuous_incomplete_duration > 90 * max_incomplete_time_ms_) {
645 RTC_LOG_F(LS_WARNING) << "Too long non-decodable duration: "
646 << non_continuous_incomplete_duration << " > "
647 << 90 * max_incomplete_time_ms_;
648 FrameList::reverse_iterator rit = find_if(
649 incomplete_frames_.rbegin(), incomplete_frames_.rend(), IsKeyFrame);
650 if (rit == incomplete_frames_.rend()) {
651 // Request a key frame if we don't have one already.
652 *request_key_frame = true;
653 return std::vector<uint16_t>();
654 } else {
655 // Skip to the last key frame. If it's incomplete we will start
656 // NACKing it.
657 // Note that the estimated low sequence number is correct for VP8
658 // streams because only the first packet of a key frame is marked.
659 last_decoded_state_.Reset();
660 DropPacketsFromNackList(EstimatedLowSequenceNumber(*rit->second));
661 }
662 }
663 }
664 std::vector<uint16_t> nack_list(missing_sequence_numbers_.begin(),
665 missing_sequence_numbers_.end());
666 return nack_list;
667 }
668
NextFrame() const669 VCMFrameBuffer* VCMJitterBuffer::NextFrame() const {
670 if (!decodable_frames_.empty())
671 return decodable_frames_.Front();
672 if (!incomplete_frames_.empty())
673 return incomplete_frames_.Front();
674 return NULL;
675 }
676
UpdateNackList(uint16_t sequence_number)677 bool VCMJitterBuffer::UpdateNackList(uint16_t sequence_number) {
678 // Make sure we don't add packets which are already too old to be decoded.
679 if (!last_decoded_state_.in_initial_state()) {
680 latest_received_sequence_number_ = LatestSequenceNumber(
681 latest_received_sequence_number_, last_decoded_state_.sequence_num());
682 }
683 if (IsNewerSequenceNumber(sequence_number,
684 latest_received_sequence_number_)) {
685 // Push any missing sequence numbers to the NACK list.
686 for (uint16_t i = latest_received_sequence_number_ + 1;
687 IsNewerSequenceNumber(sequence_number, i); ++i) {
688 missing_sequence_numbers_.insert(missing_sequence_numbers_.end(), i);
689 }
690 if (TooLargeNackList() && !HandleTooLargeNackList()) {
691 RTC_LOG(LS_WARNING) << "Requesting key frame due to too large NACK list.";
692 return false;
693 }
694 if (MissingTooOldPacket(sequence_number) &&
695 !HandleTooOldPackets(sequence_number)) {
696 RTC_LOG(LS_WARNING)
697 << "Requesting key frame due to missing too old packets";
698 return false;
699 }
700 } else {
701 missing_sequence_numbers_.erase(sequence_number);
702 }
703 return true;
704 }
705
TooLargeNackList() const706 bool VCMJitterBuffer::TooLargeNackList() const {
707 return missing_sequence_numbers_.size() > max_nack_list_size_;
708 }
709
HandleTooLargeNackList()710 bool VCMJitterBuffer::HandleTooLargeNackList() {
711 // Recycle frames until the NACK list is small enough. It is likely cheaper to
712 // request a key frame than to retransmit this many missing packets.
713 RTC_LOG_F(LS_WARNING) << "NACK list has grown too large: "
714 << missing_sequence_numbers_.size() << " > "
715 << max_nack_list_size_;
716 bool key_frame_found = false;
717 while (TooLargeNackList()) {
718 key_frame_found = RecycleFramesUntilKeyFrame();
719 }
720 return key_frame_found;
721 }
722
MissingTooOldPacket(uint16_t latest_sequence_number) const723 bool VCMJitterBuffer::MissingTooOldPacket(
724 uint16_t latest_sequence_number) const {
725 if (missing_sequence_numbers_.empty()) {
726 return false;
727 }
728 const uint16_t age_of_oldest_missing_packet =
729 latest_sequence_number - *missing_sequence_numbers_.begin();
730 // Recycle frames if the NACK list contains too old sequence numbers as
731 // the packets may have already been dropped by the sender.
732 return age_of_oldest_missing_packet > max_packet_age_to_nack_;
733 }
734
HandleTooOldPackets(uint16_t latest_sequence_number)735 bool VCMJitterBuffer::HandleTooOldPackets(uint16_t latest_sequence_number) {
736 bool key_frame_found = false;
737 const uint16_t age_of_oldest_missing_packet =
738 latest_sequence_number - *missing_sequence_numbers_.begin();
739 RTC_LOG_F(LS_WARNING) << "NACK list contains too old sequence numbers: "
740 << age_of_oldest_missing_packet << " > "
741 << max_packet_age_to_nack_;
742 while (MissingTooOldPacket(latest_sequence_number)) {
743 key_frame_found = RecycleFramesUntilKeyFrame();
744 }
745 return key_frame_found;
746 }
747
DropPacketsFromNackList(uint16_t last_decoded_sequence_number)748 void VCMJitterBuffer::DropPacketsFromNackList(
749 uint16_t last_decoded_sequence_number) {
750 // Erase all sequence numbers from the NACK list which we won't need any
751 // longer.
752 missing_sequence_numbers_.erase(
753 missing_sequence_numbers_.begin(),
754 missing_sequence_numbers_.upper_bound(last_decoded_sequence_number));
755 }
756
GetEmptyFrame()757 VCMFrameBuffer* VCMJitterBuffer::GetEmptyFrame() {
758 if (free_frames_.empty()) {
759 if (!TryToIncreaseJitterBufferSize()) {
760 return NULL;
761 }
762 }
763 VCMFrameBuffer* frame = free_frames_.front();
764 free_frames_.pop_front();
765 return frame;
766 }
767
TryToIncreaseJitterBufferSize()768 bool VCMJitterBuffer::TryToIncreaseJitterBufferSize() {
769 if (max_number_of_frames_ >= kMaxNumberOfFrames)
770 return false;
771 free_frames_.push_back(new VCMFrameBuffer());
772 ++max_number_of_frames_;
773 return true;
774 }
775
776 // Recycle oldest frames up to a key frame, used if jitter buffer is completely
777 // full.
RecycleFramesUntilKeyFrame()778 bool VCMJitterBuffer::RecycleFramesUntilKeyFrame() {
779 // First release incomplete frames, and only release decodable frames if there
780 // are no incomplete ones.
781 FrameList::iterator key_frame_it;
782 bool key_frame_found = false;
783 int dropped_frames = 0;
784 dropped_frames += incomplete_frames_.RecycleFramesUntilKeyFrame(
785 &key_frame_it, &free_frames_);
786 key_frame_found = key_frame_it != incomplete_frames_.end();
787 if (dropped_frames == 0) {
788 dropped_frames += decodable_frames_.RecycleFramesUntilKeyFrame(
789 &key_frame_it, &free_frames_);
790 key_frame_found = key_frame_it != decodable_frames_.end();
791 }
792 if (key_frame_found) {
793 RTC_LOG(LS_INFO) << "Found key frame while dropping frames.";
794 // Reset last decoded state to make sure the next frame decoded is a key
795 // frame, and start NACKing from here.
796 last_decoded_state_.Reset();
797 DropPacketsFromNackList(EstimatedLowSequenceNumber(*key_frame_it->second));
798 } else if (decodable_frames_.empty()) {
799 // All frames dropped. Reset the decoding state and clear missing sequence
800 // numbers as we're starting fresh.
801 last_decoded_state_.Reset();
802 missing_sequence_numbers_.clear();
803 }
804 return key_frame_found;
805 }
806
UpdateAveragePacketsPerFrame(int current_number_packets)807 void VCMJitterBuffer::UpdateAveragePacketsPerFrame(int current_number_packets) {
808 if (frame_counter_ > kFastConvergeThreshold) {
809 average_packets_per_frame_ =
810 average_packets_per_frame_ * (1 - kNormalConvergeMultiplier) +
811 current_number_packets * kNormalConvergeMultiplier;
812 } else if (frame_counter_ > 0) {
813 average_packets_per_frame_ =
814 average_packets_per_frame_ * (1 - kFastConvergeMultiplier) +
815 current_number_packets * kFastConvergeMultiplier;
816 frame_counter_++;
817 } else {
818 average_packets_per_frame_ = current_number_packets;
819 frame_counter_++;
820 }
821 }
822
823 // Must be called under the critical section `mutex_`.
CleanUpOldOrEmptyFrames()824 void VCMJitterBuffer::CleanUpOldOrEmptyFrames() {
825 decodable_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
826 &free_frames_);
827 incomplete_frames_.CleanUpOldOrEmptyFrames(&last_decoded_state_,
828 &free_frames_);
829 if (!last_decoded_state_.in_initial_state()) {
830 DropPacketsFromNackList(last_decoded_state_.sequence_num());
831 }
832 }
833
834 // Must be called from within `mutex_`.
IsPacketRetransmitted(const VCMPacket & packet) const835 bool VCMJitterBuffer::IsPacketRetransmitted(const VCMPacket& packet) const {
836 return missing_sequence_numbers_.find(packet.seqNum) !=
837 missing_sequence_numbers_.end();
838 }
839
840 // Must be called under the critical section `mutex_`. Should never be
841 // called with retransmitted frames, they must be filtered out before this
842 // function is called.
UpdateJitterEstimate(const VCMJitterSample & sample,bool incomplete_frame)843 void VCMJitterBuffer::UpdateJitterEstimate(const VCMJitterSample& sample,
844 bool incomplete_frame) {
845 if (sample.latest_packet_time == -1) {
846 return;
847 }
848 UpdateJitterEstimate(sample.latest_packet_time, sample.timestamp,
849 sample.frame_size, incomplete_frame);
850 }
851
852 // Must be called under the critical section mutex_. Should never be
853 // called with retransmitted frames, they must be filtered out before this
854 // function is called.
UpdateJitterEstimate(const VCMFrameBuffer & frame,bool incomplete_frame)855 void VCMJitterBuffer::UpdateJitterEstimate(const VCMFrameBuffer& frame,
856 bool incomplete_frame) {
857 if (frame.LatestPacketTimeMs() == -1) {
858 return;
859 }
860 // No retransmitted frames should be a part of the jitter
861 // estimate.
862 UpdateJitterEstimate(frame.LatestPacketTimeMs(), frame.Timestamp(),
863 frame.size(), incomplete_frame);
864 }
865
866 // Must be called under the critical section `mutex_`. Should never be
867 // called with retransmitted frames, they must be filtered out before this
868 // function is called.
UpdateJitterEstimate(int64_t latest_packet_time_ms,uint32_t timestamp,unsigned int frame_size,bool)869 void VCMJitterBuffer::UpdateJitterEstimate(int64_t latest_packet_time_ms,
870 uint32_t timestamp,
871 unsigned int frame_size,
872 bool /*incomplete_frame*/) {
873 if (latest_packet_time_ms == -1) {
874 return;
875 }
876 auto frame_delay = inter_frame_delay_.CalculateDelay(
877 timestamp, Timestamp::Millis(latest_packet_time_ms));
878
879 bool not_reordered = frame_delay.has_value();
880 // Filter out frames which have been reordered in time by the network
881 if (not_reordered) {
882 // Update the jitter estimate with the new samples
883 jitter_estimate_.UpdateEstimate(*frame_delay, DataSize::Bytes(frame_size));
884 }
885 }
886
RecycleFrameBuffer(VCMFrameBuffer * frame)887 void VCMJitterBuffer::RecycleFrameBuffer(VCMFrameBuffer* frame) {
888 frame->Reset();
889 free_frames_.push_back(frame);
890 }
891
892 } // namespace webrtc
893