• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2020 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "src/trace_processor/prelude/table_functions/experimental_flamegraph.h"
18 
19 #include <unordered_set>
20 
21 #include "perfetto/ext/base/string_splitter.h"
22 #include "perfetto/ext/base/string_utils.h"
23 
24 #include "src/trace_processor/importers/proto/heap_graph_tracker.h"
25 #include "src/trace_processor/importers/proto/heap_profile_tracker.h"
26 #include "src/trace_processor/sqlite/sqlite_utils.h"
27 #include "src/trace_processor/types/trace_processor_context.h"
28 
29 namespace perfetto {
30 namespace trace_processor {
31 
32 namespace {
33 
extractProfileType(std::string & profile_name)34 ExperimentalFlamegraph::ProfileType extractProfileType(
35     std::string& profile_name) {
36   if (profile_name == "graph") {
37     return ExperimentalFlamegraph::ProfileType::kGraph;
38   }
39   if (profile_name == "native") {
40     return ExperimentalFlamegraph::ProfileType::kHeapProfile;
41   }
42   if (profile_name == "perf") {
43     return ExperimentalFlamegraph::ProfileType::kPerf;
44   }
45   PERFETTO_FATAL("Could not recognize profile type: %s.", profile_name.c_str());
46 }
47 
IsValidTimestampOp(int op)48 bool IsValidTimestampOp(int op) {
49   return sqlite_utils::IsOpEq(op) || sqlite_utils::IsOpGt(op) ||
50          sqlite_utils::IsOpLe(op) || sqlite_utils::IsOpLt(op) ||
51          sqlite_utils::IsOpGe(op);
52 }
53 
IsValidFilterOp(FilterOp filterOp)54 bool IsValidFilterOp(FilterOp filterOp) {
55   return filterOp == FilterOp::kEq || filterOp == FilterOp::kGt ||
56          filterOp == FilterOp::kLe || filterOp == FilterOp::kLt ||
57          filterOp == FilterOp::kGe;
58 }
59 
60 // For filtering, this method uses the same constraints as
61 // ExperimentalFlamegraph::ValidateConstraints and should therefore
62 // be kept in sync.
GetFlamegraphInputValues(const std::vector<Constraint> & cs)63 ExperimentalFlamegraph::InputValues GetFlamegraphInputValues(
64     const std::vector<Constraint>& cs) {
65   using T = tables::ExperimentalFlamegraphNodesTable;
66 
67   auto ts_fn = [](const Constraint& c) {
68     return c.col_idx == static_cast<uint32_t>(T::ColumnIndex::ts) &&
69            IsValidFilterOp(c.op);
70   };
71   auto upid_fn = [](const Constraint& c) {
72     return c.col_idx == static_cast<uint32_t>(T::ColumnIndex::upid) &&
73            c.op == FilterOp::kEq;
74   };
75   auto upid_group_fn = [](const Constraint& c) {
76     return c.col_idx == static_cast<uint32_t>(T::ColumnIndex::upid_group) &&
77            c.op == FilterOp::kEq;
78   };
79   auto profile_type_fn = [](const Constraint& c) {
80     return c.col_idx == static_cast<uint32_t>(T::ColumnIndex::profile_type) &&
81            c.op == FilterOp::kEq;
82   };
83   auto focus_str_fn = [](const Constraint& c) {
84     return c.col_idx == static_cast<uint32_t>(T::ColumnIndex::focus_str) &&
85            c.op == FilterOp::kEq;
86   };
87 
88   auto ts_it = std::find_if(cs.begin(), cs.end(), ts_fn);
89   auto upid_it = std::find_if(cs.begin(), cs.end(), upid_fn);
90   auto upid_group_it = std::find_if(cs.begin(), cs.end(), upid_group_fn);
91   auto profile_type_it = std::find_if(cs.begin(), cs.end(), profile_type_fn);
92   auto focus_str_it = std::find_if(cs.begin(), cs.end(), focus_str_fn);
93 
94   // We should always have valid iterators here because BestIndex should only
95   // allow the constraint set to be chosen when we have an equality constraint
96   // on upid and a constraint on ts.
97   PERFETTO_CHECK(ts_it != cs.end());
98   PERFETTO_CHECK(upid_it != cs.end() || upid_group_it != cs.end());
99   PERFETTO_CHECK(profile_type_it != cs.end());
100 
101   std::string profile_name(profile_type_it->value.AsString());
102   ExperimentalFlamegraph::ProfileType profile_type =
103       extractProfileType(profile_name);
104   int64_t ts = -1;
105   std::vector<TimeConstraints> time_constraints = {};
106 
107   for (; ts_it != cs.end(); ts_it++) {
108     if (ts_it->col_idx != static_cast<uint32_t>(T::ColumnIndex::ts)) {
109       continue;
110     }
111 
112     if (profile_type == ExperimentalFlamegraph::ProfileType::kPerf) {
113       PERFETTO_CHECK(ts_it->op != FilterOp::kEq);
114       time_constraints.push_back(
115           TimeConstraints{ts_it->op, ts_it->value.AsLong()});
116     } else {
117       PERFETTO_CHECK(ts_it->op == FilterOp::kEq);
118       ts = ts_it->value.AsLong();
119     }
120   }
121 
122   std::optional<UniquePid> upid;
123   std::optional<std::string> upid_group;
124   if (upid_it != cs.end()) {
125     upid = static_cast<UniquePid>(upid_it->value.AsLong());
126   } else {
127     upid_group = upid_group_it->value.AsString();
128   }
129 
130   std::string focus_str =
131       focus_str_it != cs.end() ? focus_str_it->value.AsString() : "";
132   return ExperimentalFlamegraph::InputValues{
133       profile_type, ts,         std::move(time_constraints),
134       upid,         upid_group, focus_str};
135 }
136 
137 class Matcher {
138  public:
Matcher(const std::string & str)139   explicit Matcher(const std::string& str) : focus_str_(base::ToLower(str)) {}
140   Matcher(const Matcher&) = delete;
141   Matcher& operator=(const Matcher&) = delete;
142 
matches(const std::string & s) const143   bool matches(const std::string& s) const {
144     // TODO(149833691): change to regex.
145     // We cannot use regex.h (does not exist in windows) or std regex (throws
146     // exceptions).
147     return base::Contains(base::ToLower(s), focus_str_);
148   }
149 
150  private:
151   const std::string focus_str_;
152 };
153 
154 enum class FocusedState {
155   kNotFocused,
156   kFocusedPropagating,
157   kFocusedNotPropagating,
158 };
159 
160 using tables::ExperimentalFlamegraphNodesTable;
ComputeFocusedState(const ExperimentalFlamegraphNodesTable & table,const Matcher & focus_matcher)161 std::vector<FocusedState> ComputeFocusedState(
162     const ExperimentalFlamegraphNodesTable& table,
163     const Matcher& focus_matcher) {
164   // Each row corresponds to a node in the flame chart tree with its parent
165   // ptr. Root trees (no parents) will have a null parent ptr.
166   std::vector<FocusedState> focused(table.row_count());
167 
168   for (uint32_t i = 0; i < table.row_count(); ++i) {
169     auto parent_id = table.parent_id()[i];
170     // Constraint: all descendants MUST come after their parents.
171     PERFETTO_DCHECK(!parent_id.has_value() || *parent_id < table.id()[i]);
172 
173     if (focus_matcher.matches(table.name().GetString(i).ToStdString())) {
174       // Mark as focused
175       focused[i] = FocusedState::kFocusedPropagating;
176       auto current = parent_id;
177       // Mark all parent nodes as focused
178       while (current.has_value()) {
179         auto current_idx = *table.id().IndexOf(*current);
180         if (focused[current_idx] != FocusedState::kNotFocused) {
181           // We have already visited these nodes, skip
182           break;
183         }
184         focused[current_idx] = FocusedState::kFocusedNotPropagating;
185         current = table.parent_id()[current_idx];
186       }
187     } else if (parent_id.has_value() &&
188                focused[*table.id().IndexOf(*parent_id)] ==
189                    FocusedState::kFocusedPropagating) {
190       // Focus cascades downwards.
191       focused[i] = FocusedState::kFocusedPropagating;
192     } else {
193       focused[i] = FocusedState::kNotFocused;
194     }
195   }
196   return focused;
197 }
198 
199 struct CumulativeCounts {
200   int64_t size;
201   int64_t count;
202   int64_t alloc_size;
203   int64_t alloc_count;
204 };
FocusTable(TraceStorage * storage,std::unique_ptr<ExperimentalFlamegraphNodesTable> in,const std::string & focus_str)205 std::unique_ptr<tables::ExperimentalFlamegraphNodesTable> FocusTable(
206     TraceStorage* storage,
207     std::unique_ptr<ExperimentalFlamegraphNodesTable> in,
208     const std::string& focus_str) {
209   if (in->row_count() == 0 || focus_str.empty()) {
210     return in;
211   }
212   std::vector<FocusedState> focused_state =
213       ComputeFocusedState(*in, Matcher(focus_str));
214   std::unique_ptr<ExperimentalFlamegraphNodesTable> tbl(
215       new tables::ExperimentalFlamegraphNodesTable(
216           storage->mutable_string_pool()));
217 
218   // Recompute cumulative counts
219   std::vector<CumulativeCounts> node_to_cumulatives(in->row_count());
220   for (int64_t idx = in->row_count() - 1; idx >= 0; --idx) {
221     auto i = static_cast<uint32_t>(idx);
222     if (focused_state[i] == FocusedState::kNotFocused) {
223       continue;
224     }
225     auto& cumulatives = node_to_cumulatives[i];
226     cumulatives.size += in->size()[i];
227     cumulatives.count += in->count()[i];
228     cumulatives.alloc_size += in->alloc_size()[i];
229     cumulatives.alloc_count += in->alloc_count()[i];
230 
231     auto parent_id = in->parent_id()[i];
232     if (parent_id.has_value()) {
233       auto& parent_cumulatives =
234           node_to_cumulatives[*in->id().IndexOf(*parent_id)];
235       parent_cumulatives.size += cumulatives.size;
236       parent_cumulatives.count += cumulatives.count;
237       parent_cumulatives.alloc_size += cumulatives.alloc_size;
238       parent_cumulatives.alloc_count += cumulatives.alloc_count;
239     }
240   }
241 
242   // Mapping between the old rows ('node') to the new identifiers.
243   std::vector<ExperimentalFlamegraphNodesTable::Id> node_to_id(in->row_count());
244   for (uint32_t i = 0; i < in->row_count(); ++i) {
245     if (focused_state[i] == FocusedState::kNotFocused) {
246       continue;
247     }
248 
249     tables::ExperimentalFlamegraphNodesTable::Row alloc_row{};
250     // We must reparent the rows as every insertion will get its own
251     // identifier.
252     auto original_parent_id = in->parent_id()[i];
253     if (original_parent_id.has_value()) {
254       auto original_idx = *in->id().IndexOf(*original_parent_id);
255       alloc_row.parent_id = node_to_id[original_idx];
256     }
257 
258     alloc_row.ts = in->ts()[i];
259     alloc_row.upid = in->upid()[i];
260     alloc_row.profile_type = in->profile_type()[i];
261     alloc_row.depth = in->depth()[i];
262     alloc_row.name = in->name()[i];
263     alloc_row.map_name = in->map_name()[i];
264     alloc_row.count = in->count()[i];
265     alloc_row.size = in->size()[i];
266     alloc_row.alloc_count = in->alloc_count()[i];
267     alloc_row.alloc_size = in->alloc_size()[i];
268 
269     const auto& cumulative = node_to_cumulatives[i];
270     alloc_row.cumulative_count = cumulative.count;
271     alloc_row.cumulative_size = cumulative.size;
272     alloc_row.cumulative_alloc_count = cumulative.alloc_count;
273     alloc_row.cumulative_alloc_size = cumulative.alloc_size;
274     node_to_id[i] = tbl->Insert(alloc_row).id;
275   }
276   return tbl;
277 }
278 }  // namespace
279 
ExperimentalFlamegraph(TraceProcessorContext * context)280 ExperimentalFlamegraph::ExperimentalFlamegraph(TraceProcessorContext* context)
281     : context_(context) {}
282 
283 ExperimentalFlamegraph::~ExperimentalFlamegraph() = default;
284 
285 // For filtering, this method uses the same constraints as
286 // ExperimentalFlamegraph::GetFlamegraphInputValues and should
287 // therefore be kept in sync.
ValidateConstraints(const QueryConstraints & qc)288 base::Status ExperimentalFlamegraph::ValidateConstraints(
289     const QueryConstraints& qc) {
290   using T = tables::ExperimentalFlamegraphNodesTable;
291 
292   const auto& cs = qc.constraints();
293 
294   auto ts_fn = [](const QueryConstraints::Constraint& c) {
295     return c.column == static_cast<int>(T::ColumnIndex::ts) &&
296            IsValidTimestampOp(c.op);
297   };
298   bool has_ts_cs = std::find_if(cs.begin(), cs.end(), ts_fn) != cs.end();
299 
300   auto upid_fn = [](const QueryConstraints::Constraint& c) {
301     return c.column == static_cast<int>(T::ColumnIndex::upid) &&
302            c.op == SQLITE_INDEX_CONSTRAINT_EQ;
303   };
304   bool has_upid_cs = std::find_if(cs.begin(), cs.end(), upid_fn) != cs.end();
305 
306   auto upid_group_fn = [](const QueryConstraints::Constraint& c) {
307     return c.column == static_cast<int>(T::ColumnIndex::upid_group) &&
308            c.op == SQLITE_INDEX_CONSTRAINT_EQ;
309   };
310   bool has_upid_group_cs =
311       std::find_if(cs.begin(), cs.end(), upid_group_fn) != cs.end();
312 
313   auto profile_type_fn = [](const QueryConstraints::Constraint& c) {
314     return c.column == static_cast<int>(T::ColumnIndex::profile_type) &&
315            c.op == SQLITE_INDEX_CONSTRAINT_EQ;
316   };
317   bool has_profile_type_cs =
318       std::find_if(cs.begin(), cs.end(), profile_type_fn) != cs.end();
319 
320   return has_ts_cs && (has_upid_cs || has_upid_group_cs) && has_profile_type_cs
321              ? base::OkStatus()
322              : base::ErrStatus("Failed to find required constraints");
323 }
324 
ComputeTable(const std::vector<Constraint> & cs,const std::vector<Order> &,const BitVector &,std::unique_ptr<Table> & table_return)325 base::Status ExperimentalFlamegraph::ComputeTable(
326     const std::vector<Constraint>& cs,
327     const std::vector<Order>&,
328     const BitVector&,
329     std::unique_ptr<Table>& table_return) {
330   // Get the input column values and compute the flamegraph using them.
331   auto values = GetFlamegraphInputValues(cs);
332 
333   std::unique_ptr<tables::ExperimentalFlamegraphNodesTable> table;
334   if (values.profile_type == ProfileType::kGraph) {
335     auto* tracker = HeapGraphTracker::GetOrCreate(context_);
336     table = tracker->BuildFlamegraph(values.ts, *values.upid);
337   } else if (values.profile_type == ProfileType::kHeapProfile) {
338     table = BuildHeapProfileFlamegraph(context_->storage.get(), *values.upid,
339                                        values.ts);
340   } else if (values.profile_type == ProfileType::kPerf) {
341     table = BuildNativeCallStackSamplingFlamegraph(
342         context_->storage.get(), values.upid, values.upid_group,
343         values.time_constraints);
344   }
345   if (!values.focus_str.empty()) {
346     table =
347         FocusTable(context_->storage.get(), std::move(table), values.focus_str);
348     // The pseudocolumns must be populated because as far as SQLite is
349     // concerned these are equality constraints.
350     auto focus_id =
351         context_->storage->InternString(base::StringView(values.focus_str));
352     for (uint32_t i = 0; i < table->row_count(); ++i) {
353       table->mutable_focus_str()->Set(i, focus_id);
354     }
355   }
356   table_return = std::move(table);
357   return base::OkStatus();
358 }
359 
CreateSchema()360 Table::Schema ExperimentalFlamegraph::CreateSchema() {
361   return tables::ExperimentalFlamegraphNodesTable::ComputeStaticSchema();
362 }
363 
TableName()364 std::string ExperimentalFlamegraph::TableName() {
365   return "experimental_flamegraph";
366 }
367 
EstimateRowCount()368 uint32_t ExperimentalFlamegraph::EstimateRowCount() {
369   // TODO(lalitm): return a better estimate here when possible.
370   return 1024;
371 }
372 
373 }  // namespace trace_processor
374 }  // namespace perfetto
375