1 /*
2 * Copyright (C) 2008 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "fault_handler.h"
18
19 #include <string.h>
20 #include <sys/mman.h>
21 #include <sys/ucontext.h>
22
23 #include <atomic>
24
25 #include "art_method-inl.h"
26 #include "base/logging.h" // For VLOG
27 #include "base/membarrier.h"
28 #include "base/safe_copy.h"
29 #include "base/stl_util.h"
30 #include "dex/dex_file_types.h"
31 #include "gc/heap.h"
32 #include "jit/jit.h"
33 #include "jit/jit_code_cache.h"
34 #include "mirror/class.h"
35 #include "mirror/object_reference.h"
36 #include "oat_file.h"
37 #include "oat_quick_method_header.h"
38 #include "sigchain.h"
39 #include "thread-current-inl.h"
40 #include "verify_object-inl.h"
41
42 namespace art {
43 // Static fault manger object accessed by signal handler.
44 FaultManager fault_manager;
45
46 // This needs to be NO_INLINE since some debuggers do not read the inline-info to set a breakpoint
47 // if it isn't.
art_sigsegv_fault()48 extern "C" NO_INLINE __attribute__((visibility("default"))) void art_sigsegv_fault() {
49 // Set a breakpoint here to be informed when a SIGSEGV is unhandled by ART.
50 VLOG(signals)<< "Caught unknown SIGSEGV in ART fault handler - chaining to next handler.";
51 }
52
53 // Signal handler called on SIGSEGV.
art_sigsegv_handler(int sig,siginfo_t * info,void * context)54 static bool art_sigsegv_handler(int sig, siginfo_t* info, void* context) {
55 return fault_manager.HandleSigsegvFault(sig, info, context);
56 }
57
58 // Signal handler called on SIGBUS.
art_sigbus_handler(int sig,siginfo_t * info,void * context)59 static bool art_sigbus_handler(int sig, siginfo_t* info, void* context) {
60 return fault_manager.HandleSigbusFault(sig, info, context);
61 }
62
FaultManager()63 FaultManager::FaultManager()
64 : generated_code_ranges_lock_("FaultHandler generated code ranges lock",
65 LockLevel::kGenericBottomLock),
66 initialized_(false) {}
67
~FaultManager()68 FaultManager::~FaultManager() {
69 }
70
SignalCodeName(int sig,int code)71 static const char* SignalCodeName(int sig, int code) {
72 if (sig == SIGSEGV) {
73 switch (code) {
74 case SEGV_MAPERR: return "SEGV_MAPERR";
75 case SEGV_ACCERR: return "SEGV_ACCERR";
76 case 8: return "SEGV_MTEAERR";
77 case 9: return "SEGV_MTESERR";
78 default: return "SEGV_UNKNOWN";
79 }
80 } else if (sig == SIGBUS) {
81 switch (code) {
82 case BUS_ADRALN: return "BUS_ADRALN";
83 case BUS_ADRERR: return "BUS_ADRERR";
84 case BUS_OBJERR: return "BUS_OBJERR";
85 default: return "BUS_UNKNOWN";
86 }
87 } else {
88 return "UNKNOWN";
89 }
90 }
91
PrintSignalInfo(std::ostream & os,siginfo_t * info)92 static std::ostream& PrintSignalInfo(std::ostream& os, siginfo_t* info) {
93 os << " si_signo: " << info->si_signo << " (" << strsignal(info->si_signo) << ")\n"
94 << " si_code: " << info->si_code
95 << " (" << SignalCodeName(info->si_signo, info->si_code) << ")";
96 if (info->si_signo == SIGSEGV || info->si_signo == SIGBUS) {
97 os << "\n" << " si_addr: " << info->si_addr;
98 }
99 return os;
100 }
101
InstallSigbusHandler()102 static bool InstallSigbusHandler() {
103 return gUseUserfaultfd &&
104 Runtime::Current()->GetHeap()->MarkCompactCollector()->IsUsingSigbusFeature();
105 }
106
Init(bool use_sig_chain)107 void FaultManager::Init(bool use_sig_chain) {
108 CHECK(!initialized_);
109 if (use_sig_chain) {
110 sigset_t mask;
111 sigfillset(&mask);
112 sigdelset(&mask, SIGABRT);
113 sigdelset(&mask, SIGBUS);
114 sigdelset(&mask, SIGFPE);
115 sigdelset(&mask, SIGILL);
116 sigdelset(&mask, SIGSEGV);
117
118 SigchainAction sa = {
119 .sc_sigaction = art_sigsegv_handler,
120 .sc_mask = mask,
121 .sc_flags = 0UL,
122 };
123
124 AddSpecialSignalHandlerFn(SIGSEGV, &sa);
125 if (InstallSigbusHandler()) {
126 sa.sc_sigaction = art_sigbus_handler;
127 AddSpecialSignalHandlerFn(SIGBUS, &sa);
128 }
129
130 // Notify the kernel that we intend to use a specific `membarrier()` command.
131 int result = art::membarrier(MembarrierCommand::kRegisterPrivateExpedited);
132 if (result != 0) {
133 LOG(WARNING) << "FaultHandler: MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED failed: "
134 << errno << " " << strerror(errno);
135 }
136
137 {
138 MutexLock lock(Thread::Current(), generated_code_ranges_lock_);
139 for (size_t i = 0; i != kNumLocalGeneratedCodeRanges; ++i) {
140 GeneratedCodeRange* next = (i + 1u != kNumLocalGeneratedCodeRanges)
141 ? &generated_code_ranges_storage_[i + 1u]
142 : nullptr;
143 generated_code_ranges_storage_[i].next.store(next, std::memory_order_relaxed);
144 generated_code_ranges_storage_[i].start = nullptr;
145 generated_code_ranges_storage_[i].size = 0u;
146 }
147 free_generated_code_ranges_ = generated_code_ranges_storage_;
148 }
149
150 initialized_ = true;
151 } else if (InstallSigbusHandler()) {
152 struct sigaction act;
153 std::memset(&act, '\0', sizeof(act));
154 act.sa_flags = SA_SIGINFO | SA_RESTART;
155 act.sa_sigaction = [](int sig, siginfo_t* info, void* context) {
156 if (!art_sigbus_handler(sig, info, context)) {
157 std::ostringstream oss;
158 PrintSignalInfo(oss, info);
159 LOG(FATAL) << "Couldn't handle SIGBUS fault:"
160 << "\n"
161 << oss.str();
162 }
163 };
164 if (sigaction(SIGBUS, &act, nullptr)) {
165 LOG(FATAL) << "Fault handler for SIGBUS couldn't be setup: " << strerror(errno);
166 }
167 }
168 }
169
Release()170 void FaultManager::Release() {
171 if (initialized_) {
172 RemoveSpecialSignalHandlerFn(SIGSEGV, art_sigsegv_handler);
173 if (InstallSigbusHandler()) {
174 RemoveSpecialSignalHandlerFn(SIGBUS, art_sigbus_handler);
175 }
176 initialized_ = false;
177 }
178 }
179
Shutdown()180 void FaultManager::Shutdown() {
181 if (initialized_) {
182 Release();
183
184 // Free all handlers.
185 STLDeleteElements(&generated_code_handlers_);
186 STLDeleteElements(&other_handlers_);
187
188 // Delete remaining code ranges if any (such as nterp code or oat code from
189 // oat files that have not been unloaded, including boot image oat files).
190 MutexLock lock(Thread::Current(), generated_code_ranges_lock_);
191 GeneratedCodeRange* range = generated_code_ranges_.load(std::memory_order_acquire);
192 generated_code_ranges_.store(nullptr, std::memory_order_release);
193 while (range != nullptr) {
194 GeneratedCodeRange* next_range = range->next.load(std::memory_order_relaxed);
195 std::less<GeneratedCodeRange*> less;
196 if (!less(range, generated_code_ranges_storage_) &&
197 less(range, generated_code_ranges_storage_ + kNumLocalGeneratedCodeRanges)) {
198 // Nothing to do - not adding `range` to the `free_generated_code_ranges_` anymore.
199 } else {
200 // Range is not in the `generated_code_ranges_storage_`.
201 delete range;
202 }
203 range = next_range;
204 }
205 }
206 }
207
HandleFaultByOtherHandlers(int sig,siginfo_t * info,void * context)208 bool FaultManager::HandleFaultByOtherHandlers(int sig, siginfo_t* info, void* context) {
209 if (other_handlers_.empty()) {
210 return false;
211 }
212
213 Thread* self = Thread::Current();
214
215 DCHECK(self != nullptr);
216 DCHECK(Runtime::Current() != nullptr);
217 DCHECK(Runtime::Current()->IsStarted());
218 for (const auto& handler : other_handlers_) {
219 if (handler->Action(sig, info, context)) {
220 return true;
221 }
222 }
223 return false;
224 }
225
HandleSigbusFault(int sig,siginfo_t * info,void * context ATTRIBUTE_UNUSED)226 bool FaultManager::HandleSigbusFault(int sig, siginfo_t* info, void* context ATTRIBUTE_UNUSED) {
227 DCHECK_EQ(sig, SIGBUS);
228 if (VLOG_IS_ON(signals)) {
229 PrintSignalInfo(VLOG_STREAM(signals) << "Handling SIGBUS fault:\n", info);
230 }
231
232 #ifdef TEST_NESTED_SIGNAL
233 // Simulate a crash in a handler.
234 raise(SIGBUS);
235 #endif
236 return Runtime::Current()->GetHeap()->MarkCompactCollector()->SigbusHandler(info);
237 }
238
HandleSigsegvFault(int sig,siginfo_t * info,void * context)239 bool FaultManager::HandleSigsegvFault(int sig, siginfo_t* info, void* context) {
240 if (VLOG_IS_ON(signals)) {
241 PrintSignalInfo(VLOG_STREAM(signals) << "Handling SIGSEGV fault:\n", info);
242 }
243
244 #ifdef TEST_NESTED_SIGNAL
245 // Simulate a crash in a handler.
246 raise(SIGSEGV);
247 #endif
248
249 if (IsInGeneratedCode(info, context)) {
250 VLOG(signals) << "in generated code, looking for handler";
251 for (const auto& handler : generated_code_handlers_) {
252 VLOG(signals) << "invoking Action on handler " << handler;
253 if (handler->Action(sig, info, context)) {
254 // We have handled a signal so it's time to return from the
255 // signal handler to the appropriate place.
256 return true;
257 }
258 }
259 }
260
261 // We hit a signal we didn't handle. This might be something for which
262 // we can give more information about so call all registered handlers to
263 // see if it is.
264 if (HandleFaultByOtherHandlers(sig, info, context)) {
265 return true;
266 }
267
268 // Set a breakpoint in this function to catch unhandled signals.
269 art_sigsegv_fault();
270 return false;
271 }
272
AddHandler(FaultHandler * handler,bool generated_code)273 void FaultManager::AddHandler(FaultHandler* handler, bool generated_code) {
274 DCHECK(initialized_);
275 if (generated_code) {
276 generated_code_handlers_.push_back(handler);
277 } else {
278 other_handlers_.push_back(handler);
279 }
280 }
281
RemoveHandler(FaultHandler * handler)282 void FaultManager::RemoveHandler(FaultHandler* handler) {
283 auto it = std::find(generated_code_handlers_.begin(), generated_code_handlers_.end(), handler);
284 if (it != generated_code_handlers_.end()) {
285 generated_code_handlers_.erase(it);
286 return;
287 }
288 auto it2 = std::find(other_handlers_.begin(), other_handlers_.end(), handler);
289 if (it2 != other_handlers_.end()) {
290 other_handlers_.erase(it2);
291 return;
292 }
293 LOG(FATAL) << "Attempted to remove non existent handler " << handler;
294 }
295
CreateGeneratedCodeRange(const void * start,size_t size)296 inline FaultManager::GeneratedCodeRange* FaultManager::CreateGeneratedCodeRange(
297 const void* start, size_t size) {
298 GeneratedCodeRange* range = free_generated_code_ranges_;
299 if (range != nullptr) {
300 std::less<GeneratedCodeRange*> less;
301 DCHECK(!less(range, generated_code_ranges_storage_));
302 DCHECK(less(range, generated_code_ranges_storage_ + kNumLocalGeneratedCodeRanges));
303 range->start = start;
304 range->size = size;
305 free_generated_code_ranges_ = range->next.load(std::memory_order_relaxed);
306 range->next.store(nullptr, std::memory_order_relaxed);
307 return range;
308 } else {
309 return new GeneratedCodeRange{nullptr, start, size};
310 }
311 }
312
FreeGeneratedCodeRange(GeneratedCodeRange * range)313 inline void FaultManager::FreeGeneratedCodeRange(GeneratedCodeRange* range) {
314 std::less<GeneratedCodeRange*> less;
315 if (!less(range, generated_code_ranges_storage_) &&
316 less(range, generated_code_ranges_storage_ + kNumLocalGeneratedCodeRanges)) {
317 MutexLock lock(Thread::Current(), generated_code_ranges_lock_);
318 range->start = nullptr;
319 range->size = 0u;
320 range->next.store(free_generated_code_ranges_, std::memory_order_relaxed);
321 free_generated_code_ranges_ = range;
322 } else {
323 // Range is not in the `generated_code_ranges_storage_`.
324 delete range;
325 }
326 }
327
AddGeneratedCodeRange(const void * start,size_t size)328 void FaultManager::AddGeneratedCodeRange(const void* start, size_t size) {
329 GeneratedCodeRange* new_range = nullptr;
330 {
331 MutexLock lock(Thread::Current(), generated_code_ranges_lock_);
332 new_range = CreateGeneratedCodeRange(start, size);
333 GeneratedCodeRange* old_head = generated_code_ranges_.load(std::memory_order_relaxed);
334 new_range->next.store(old_head, std::memory_order_relaxed);
335 generated_code_ranges_.store(new_range, std::memory_order_release);
336 }
337
338 // The above release operation on `generated_code_ranges_` with an acquire operation
339 // on the same atomic object in `IsInGeneratedCode()` ensures the correct memory
340 // visibility for the contents of `*new_range` for any thread that loads the value
341 // written above (or a value written by a release sequence headed by that write).
342 //
343 // However, we also need to ensure that any thread that encounters a segmentation
344 // fault in the provided range shall actually see the written value. For JIT code
345 // cache and nterp, the registration happens while the process is single-threaded
346 // but the synchronization is more complicated for code in oat files.
347 //
348 // Threads that load classes register dex files under the `Locks::dex_lock_` and
349 // the first one to register a dex file with a given oat file shall add the oat
350 // code range; the memory visibility for these threads is guaranteed by the lock.
351 // However a thread that did not try to load a class with oat code can execute the
352 // code if a direct or indirect reference to such class escapes from one of the
353 // threads that loaded it. Use `membarrier()` for memory visibility in this case.
354 art::membarrier(MembarrierCommand::kPrivateExpedited);
355 }
356
RemoveGeneratedCodeRange(const void * start,size_t size)357 void FaultManager::RemoveGeneratedCodeRange(const void* start, size_t size) {
358 Thread* self = Thread::Current();
359 GeneratedCodeRange* range = nullptr;
360 {
361 MutexLock lock(self, generated_code_ranges_lock_);
362 std::atomic<GeneratedCodeRange*>* before = &generated_code_ranges_;
363 range = before->load(std::memory_order_relaxed);
364 while (range != nullptr && range->start != start) {
365 before = &range->next;
366 range = before->load(std::memory_order_relaxed);
367 }
368 if (range != nullptr) {
369 GeneratedCodeRange* next = range->next.load(std::memory_order_relaxed);
370 if (before == &generated_code_ranges_) {
371 // Relaxed store directly to `generated_code_ranges_` would not satisfy
372 // conditions for a release sequence, so we need to use store-release.
373 before->store(next, std::memory_order_release);
374 } else {
375 // In the middle of the list, we can use a relaxed store as we're not
376 // publishing any newly written memory to potential reader threads.
377 // Whether they see the removed node or not is unimportant as we should
378 // not execute that code anymore. We're keeping the `next` link of the
379 // removed node, so that concurrent walk can use it to reach remaining
380 // retained nodes, if any.
381 before->store(next, std::memory_order_relaxed);
382 }
383 }
384 }
385 CHECK(range != nullptr);
386 DCHECK_EQ(range->start, start);
387 CHECK_EQ(range->size, size);
388
389 Runtime* runtime = Runtime::Current();
390 CHECK(runtime != nullptr);
391 if (runtime->IsStarted() && runtime->GetThreadList() != nullptr) {
392 // Run a checkpoint before deleting the range to ensure that no thread holds a
393 // pointer to the removed range while walking the list in `IsInGeneratedCode()`.
394 // That walk is guarded by checking that the thread is `Runnable`, so any walk
395 // started before the removal shall be done when running the checkpoint and the
396 // checkpoint also ensures the correct memory visibility of `next` links,
397 // so the thread shall not see the pointer during future walks.
398
399 // This function is currently called in different mutex and thread states.
400 // Semi-space GC performs the cleanup during its `MarkingPhase()` while holding
401 // the mutator exclusively, so we do not need a checkpoint. All other GCs perform
402 // the cleanup in their `ReclaimPhase()` while holding the mutator lock as shared
403 // and it's safe to release and re-acquire the mutator lock. Despite holding the
404 // mutator lock as shared, the thread is not always marked as `Runnable`.
405 // TODO: Clean up state transitions in different GC implementations. b/259440389
406 if (Locks::mutator_lock_->IsExclusiveHeld(self)) {
407 // We do not need a checkpoint because no other thread is Runnable.
408 } else {
409 DCHECK(Locks::mutator_lock_->IsSharedHeld(self));
410 // Use explicit state transitions or unlock/lock.
411 bool runnable = (self->GetState() == ThreadState::kRunnable);
412 if (runnable) {
413 self->TransitionFromRunnableToSuspended(ThreadState::kNative);
414 } else {
415 Locks::mutator_lock_->SharedUnlock(self);
416 }
417 DCHECK(!Locks::mutator_lock_->IsSharedHeld(self));
418 runtime->GetThreadList()->RunEmptyCheckpoint();
419 if (runnable) {
420 self->TransitionFromSuspendedToRunnable();
421 } else {
422 Locks::mutator_lock_->SharedLock(self);
423 }
424 }
425 }
426 FreeGeneratedCodeRange(range);
427 }
428
429 // This function is called within the signal handler. It checks that the thread
430 // is `Runnable`, the `mutator_lock_` is held (shared) and the fault PC is in one
431 // of the registered generated code ranges. No annotalysis is done.
IsInGeneratedCode(siginfo_t * siginfo,void * context)432 bool FaultManager::IsInGeneratedCode(siginfo_t* siginfo, void* context) {
433 // We can only be running Java code in the current thread if it
434 // is in Runnable state.
435 VLOG(signals) << "Checking for generated code";
436 Thread* thread = Thread::Current();
437 if (thread == nullptr) {
438 VLOG(signals) << "no current thread";
439 return false;
440 }
441
442 ThreadState state = thread->GetState();
443 if (state != ThreadState::kRunnable) {
444 VLOG(signals) << "not runnable";
445 return false;
446 }
447
448 // Current thread is runnable.
449 // Make sure it has the mutator lock.
450 if (!Locks::mutator_lock_->IsSharedHeld(thread)) {
451 VLOG(signals) << "no lock";
452 return false;
453 }
454
455 uintptr_t fault_pc = GetFaultPc(siginfo, context);
456 if (fault_pc == 0u) {
457 VLOG(signals) << "no fault PC";
458 return false;
459 }
460
461 // Walk over the list of registered code ranges.
462 GeneratedCodeRange* range = generated_code_ranges_.load(std::memory_order_acquire);
463 while (range != nullptr) {
464 if (fault_pc - reinterpret_cast<uintptr_t>(range->start) < range->size) {
465 return true;
466 }
467 // We may or may not see ranges that were concurrently removed, depending
468 // on when the relaxed writes of the `next` links become visible. However,
469 // even if we're currently at a node that is being removed, we shall visit
470 // all remaining ranges that are not being removed as the removed nodes
471 // retain the `next` link at the time of removal (which may lead to other
472 // removed nodes before reaching remaining retained nodes, if any). Correct
473 // memory visibility of `start` and `size` fields of the visited ranges is
474 // ensured by the release and acquire operations on `generated_code_ranges_`.
475 range = range->next.load(std::memory_order_relaxed);
476 }
477 return false;
478 }
479
FaultHandler(FaultManager * manager)480 FaultHandler::FaultHandler(FaultManager* manager) : manager_(manager) {
481 }
482
483 //
484 // Null pointer fault handler
485 //
NullPointerHandler(FaultManager * manager)486 NullPointerHandler::NullPointerHandler(FaultManager* manager) : FaultHandler(manager) {
487 manager_->AddHandler(this, true);
488 }
489
IsValidMethod(ArtMethod * method)490 bool NullPointerHandler::IsValidMethod(ArtMethod* method) {
491 // At this point we know that the thread is `Runnable` and the PC is in one of
492 // the registered code ranges. The `method` was read from the top of the stack
493 // and should really point to an actual `ArtMethod`, unless we're crashing during
494 // prologue or epilogue, or somehow managed to jump to the compiled code by some
495 // unexpected path, other than method invoke or exception delivery. We do a few
496 // quick checks without guarding from another fault.
497 VLOG(signals) << "potential method: " << method;
498
499 static_assert(IsAligned<sizeof(void*)>(ArtMethod::Size(kRuntimePointerSize)));
500 if (method == nullptr || !IsAligned<sizeof(void*)>(method)) {
501 VLOG(signals) << ((method == nullptr) ? "null method" : "unaligned method");
502 return false;
503 }
504
505 // Check that the presumed method actually points to a class. Read barriers
506 // are not needed (and would be undesirable in a signal handler) when reading
507 // a chain of constant references to get to a non-movable `Class.class` object.
508
509 // Note: Allowing nested faults. Checking that the method is in one of the
510 // `LinearAlloc` spaces, or that objects we look at are in the `Heap` would be
511 // slow and require locking a mutex, which is undesirable in a signal handler.
512 // (Though we could register valid ranges similarly to the generated code ranges.)
513
514 mirror::Object* klass =
515 method->GetDeclaringClassAddressWithoutBarrier()->AsMirrorPtr();
516 if (klass == nullptr || !IsAligned<kObjectAlignment>(klass)) {
517 VLOG(signals) << ((klass == nullptr) ? "null class" : "unaligned class");
518 return false;
519 }
520
521 mirror::Class* class_class = klass->GetClass<kVerifyNone, kWithoutReadBarrier>();
522 if (class_class == nullptr || !IsAligned<kObjectAlignment>(class_class)) {
523 VLOG(signals) << ((klass == nullptr) ? "null class_class" : "unaligned class_class");
524 return false;
525 }
526
527 if (class_class != class_class->GetClass<kVerifyNone, kWithoutReadBarrier>()) {
528 VLOG(signals) << "invalid class_class";
529 return false;
530 }
531
532 return true;
533 }
534
IsValidReturnPc(ArtMethod ** sp,uintptr_t return_pc)535 bool NullPointerHandler::IsValidReturnPc(ArtMethod** sp, uintptr_t return_pc) {
536 // Check if we can associate a dex PC with the return PC, whether from Nterp,
537 // or with an existing stack map entry for a compiled method.
538 // Note: Allowing nested faults if `IsValidMethod()` returned a false positive.
539 // Note: The `ArtMethod::GetOatQuickMethodHeader()` can acquire locks (at least
540 // `Locks::jit_lock_`) and if the thread already held such a lock, the signal
541 // handler would deadlock. However, if a thread is holding one of the locks
542 // below the mutator lock, the PC should be somewhere in ART code and should
543 // not match any registered generated code range, so such as a deadlock is
544 // unlikely. If it happens anyway, the worst case is that an internal ART crash
545 // would be reported as ANR.
546 ArtMethod* method = *sp;
547 const OatQuickMethodHeader* method_header = method->GetOatQuickMethodHeader(return_pc);
548 if (method_header == nullptr) {
549 VLOG(signals) << "No method header.";
550 return false;
551 }
552 VLOG(signals) << "looking for dex pc for return pc 0x" << std::hex << return_pc
553 << " pc offset: 0x" << std::hex
554 << (return_pc - reinterpret_cast<uintptr_t>(method_header->GetEntryPoint()));
555 uint32_t dexpc = method_header->ToDexPc(reinterpret_cast<ArtMethod**>(sp), return_pc, false);
556 VLOG(signals) << "dexpc: " << dexpc;
557 return dexpc != dex::kDexNoIndex;
558 }
559
560 //
561 // Suspension fault handler
562 //
SuspensionHandler(FaultManager * manager)563 SuspensionHandler::SuspensionHandler(FaultManager* manager) : FaultHandler(manager) {
564 manager_->AddHandler(this, true);
565 }
566
567 //
568 // Stack overflow fault handler
569 //
StackOverflowHandler(FaultManager * manager)570 StackOverflowHandler::StackOverflowHandler(FaultManager* manager) : FaultHandler(manager) {
571 manager_->AddHandler(this, true);
572 }
573
574 //
575 // Stack trace handler, used to help get a stack trace from SIGSEGV inside of compiled code.
576 //
JavaStackTraceHandler(FaultManager * manager)577 JavaStackTraceHandler::JavaStackTraceHandler(FaultManager* manager) : FaultHandler(manager) {
578 manager_->AddHandler(this, false);
579 }
580
Action(int sig ATTRIBUTE_UNUSED,siginfo_t * siginfo,void * context)581 bool JavaStackTraceHandler::Action(int sig ATTRIBUTE_UNUSED, siginfo_t* siginfo, void* context) {
582 // Make sure that we are in the generated code, but we may not have a dex pc.
583 bool in_generated_code = manager_->IsInGeneratedCode(siginfo, context);
584 if (in_generated_code) {
585 LOG(ERROR) << "Dumping java stack trace for crash in generated code";
586 Thread* self = Thread::Current();
587
588 uintptr_t sp = FaultManager::GetFaultSp(context);
589 CHECK_NE(sp, 0u); // Otherwise we should not have reached this handler.
590 // Inside of generated code, sp[0] is the method, so sp is the frame.
591 self->SetTopOfStack(reinterpret_cast<ArtMethod**>(sp));
592 self->DumpJavaStack(LOG_STREAM(ERROR));
593 }
594
595 return false; // Return false since we want to propagate the fault to the main signal handler.
596 }
597
598 } // namespace art
599