1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "reference_type_propagation.h"
18
19 #include "art_field-inl.h"
20 #include "art_method-inl.h"
21 #include "base/arena_allocator.h"
22 #include "base/enums.h"
23 #include "base/scoped_arena_allocator.h"
24 #include "base/scoped_arena_containers.h"
25 #include "class_linker-inl.h"
26 #include "class_root-inl.h"
27 #include "handle_scope-inl.h"
28 #include "mirror/class-inl.h"
29 #include "mirror/dex_cache.h"
30 #include "scoped_thread_state_change-inl.h"
31
32 namespace art HIDDEN {
33
FindDexCacheWithHint(Thread * self,const DexFile & dex_file,Handle<mirror::DexCache> hint_dex_cache)34 static inline ObjPtr<mirror::DexCache> FindDexCacheWithHint(
35 Thread* self, const DexFile& dex_file, Handle<mirror::DexCache> hint_dex_cache)
36 REQUIRES_SHARED(Locks::mutator_lock_) {
37 if (LIKELY(hint_dex_cache->GetDexFile() == &dex_file)) {
38 return hint_dex_cache.Get();
39 } else {
40 return Runtime::Current()->GetClassLinker()->FindDexCache(self, dex_file);
41 }
42 }
43
44 class ReferenceTypePropagation::RTPVisitor final : public HGraphDelegateVisitor {
45 public:
RTPVisitor(HGraph * graph,Handle<mirror::DexCache> hint_dex_cache,bool is_first_run)46 RTPVisitor(HGraph* graph, Handle<mirror::DexCache> hint_dex_cache, bool is_first_run)
47 : HGraphDelegateVisitor(graph),
48 hint_dex_cache_(hint_dex_cache),
49 allocator_(graph->GetArenaStack()),
50 worklist_(allocator_.Adapter(kArenaAllocReferenceTypePropagation)),
51 is_first_run_(is_first_run) {
52 worklist_.reserve(kDefaultWorklistSize);
53 }
54
55 void VisitDeoptimize(HDeoptimize* deopt) override;
56 void VisitNewInstance(HNewInstance* new_instance) override;
57 void VisitLoadClass(HLoadClass* load_class) override;
58 void VisitInstanceOf(HInstanceOf* load_class) override;
59 void VisitClinitCheck(HClinitCheck* clinit_check) override;
60 void VisitLoadMethodHandle(HLoadMethodHandle* instr) override;
61 void VisitLoadMethodType(HLoadMethodType* instr) override;
62 void VisitLoadString(HLoadString* instr) override;
63 void VisitLoadException(HLoadException* instr) override;
64 void VisitNewArray(HNewArray* instr) override;
65 void VisitParameterValue(HParameterValue* instr) override;
66 void VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet* instr) override;
67 void VisitInstanceFieldGet(HInstanceFieldGet* instr) override;
68 void VisitStaticFieldGet(HStaticFieldGet* instr) override;
69 void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instr) override;
70 void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instr) override;
71 void VisitInvoke(HInvoke* instr) override;
72 void VisitArrayGet(HArrayGet* instr) override;
73 void VisitCheckCast(HCheckCast* instr) override;
74 void VisitBoundType(HBoundType* instr) override;
75 void VisitNullCheck(HNullCheck* instr) override;
76 void VisitPhi(HPhi* phi) override;
77
78 void VisitBasicBlock(HBasicBlock* block) override;
79 void ProcessWorklist();
80
81 private:
82 void UpdateFieldAccessTypeInfo(HInstruction* instr, const FieldInfo& info);
83 void SetClassAsTypeInfo(HInstruction* instr, ObjPtr<mirror::Class> klass, bool is_exact)
84 REQUIRES_SHARED(Locks::mutator_lock_);
85 void BoundTypeForIfNotNull(HBasicBlock* block);
86 static void BoundTypeForIfInstanceOf(HBasicBlock* block);
87 static bool UpdateNullability(HInstruction* instr);
88 static void UpdateBoundType(HBoundType* bound_type) REQUIRES_SHARED(Locks::mutator_lock_);
89 void UpdateArrayGet(HArrayGet* instr) REQUIRES_SHARED(Locks::mutator_lock_);
90 void UpdatePhi(HPhi* phi) REQUIRES_SHARED(Locks::mutator_lock_);
91 bool UpdateReferenceTypeInfo(HInstruction* instr);
92 void UpdateReferenceTypeInfo(HInstruction* instr,
93 dex::TypeIndex type_idx,
94 const DexFile& dex_file,
95 bool is_exact);
96
97 // Returns true if this is an instruction we might need to recursively update.
98 // The types are (live) Phi, BoundType, ArrayGet, and NullCheck
99 static constexpr bool IsUpdateable(const HInstruction* instr);
100 void AddToWorklist(HInstruction* instruction);
101 void AddDependentInstructionsToWorklist(HInstruction* instruction);
102
GetHandleCache()103 HandleCache* GetHandleCache() {
104 return GetGraph()->GetHandleCache();
105 }
106
107 static constexpr size_t kDefaultWorklistSize = 8;
108
109 Handle<mirror::DexCache> hint_dex_cache_;
110
111 // Use local allocator for allocating memory.
112 ScopedArenaAllocator allocator_;
113 ScopedArenaVector<HInstruction*> worklist_;
114 const bool is_first_run_;
115
116 friend class ReferenceTypePropagation;
117 };
118
ReferenceTypePropagation(HGraph * graph,Handle<mirror::DexCache> hint_dex_cache,bool is_first_run,const char * name)119 ReferenceTypePropagation::ReferenceTypePropagation(HGraph* graph,
120 Handle<mirror::DexCache> hint_dex_cache,
121 bool is_first_run,
122 const char* name)
123 : HOptimization(graph, name), hint_dex_cache_(hint_dex_cache), is_first_run_(is_first_run) {}
124
Visit(HInstruction * instruction)125 void ReferenceTypePropagation::Visit(HInstruction* instruction) {
126 RTPVisitor visitor(graph_, hint_dex_cache_, is_first_run_);
127 instruction->Accept(&visitor);
128 }
129
Visit(ArrayRef<HInstruction * const> instructions)130 void ReferenceTypePropagation::Visit(ArrayRef<HInstruction* const> instructions) {
131 RTPVisitor visitor(graph_, hint_dex_cache_, is_first_run_);
132 for (HInstruction* instruction : instructions) {
133 if (instruction->IsPhi()) {
134 // Need to force phis to recalculate null-ness.
135 instruction->AsPhi()->SetCanBeNull(false);
136 }
137 }
138 for (HInstruction* instruction : instructions) {
139 instruction->Accept(&visitor);
140 // We don't know if the instruction list is ordered in the same way normal
141 // visiting would be so we need to process every instruction manually.
142 if (RTPVisitor::IsUpdateable(instruction)) {
143 visitor.AddToWorklist(instruction);
144 }
145 }
146 visitor.ProcessWorklist();
147 }
148
149 // Check if we should create a bound type for the given object at the specified
150 // position. Because of inlining and the fact we run RTP more than once and we
151 // might have a HBoundType already. If we do, we should not create a new one.
152 // In this case we also assert that there are no other uses of the object (except
153 // the bound type) dominated by the specified dominator_instr or dominator_block.
ShouldCreateBoundType(HInstruction * position,HInstruction * obj,ReferenceTypeInfo upper_bound,HInstruction * dominator_instr,HBasicBlock * dominator_block)154 static bool ShouldCreateBoundType(HInstruction* position,
155 HInstruction* obj,
156 ReferenceTypeInfo upper_bound,
157 HInstruction* dominator_instr,
158 HBasicBlock* dominator_block)
159 REQUIRES_SHARED(Locks::mutator_lock_) {
160 // If the position where we should insert the bound type is not already a
161 // a bound type then we need to create one.
162 if (position == nullptr || !position->IsBoundType()) {
163 return true;
164 }
165
166 HBoundType* existing_bound_type = position->AsBoundType();
167 if (existing_bound_type->GetUpperBound().IsSupertypeOf(upper_bound)) {
168 if (kIsDebugBuild) {
169 // Check that the existing HBoundType dominates all the uses.
170 for (const HUseListNode<HInstruction*>& use : obj->GetUses()) {
171 HInstruction* user = use.GetUser();
172 if (dominator_instr != nullptr) {
173 DCHECK(!dominator_instr->StrictlyDominates(user)
174 || user == existing_bound_type
175 || existing_bound_type->StrictlyDominates(user));
176 } else if (dominator_block != nullptr) {
177 DCHECK(!dominator_block->Dominates(user->GetBlock())
178 || user == existing_bound_type
179 || existing_bound_type->StrictlyDominates(user));
180 }
181 }
182 }
183 } else {
184 // TODO: if the current bound type is a refinement we could update the
185 // existing_bound_type with the a new upper limit. However, we also need to
186 // update its users and have access to the work list.
187 }
188 return false;
189 }
190
191 // Helper method to bound the type of `receiver` for all instructions dominated
192 // by `start_block`, or `start_instruction` if `start_block` is null. The new
193 // bound type will have its upper bound be `class_rti`.
BoundTypeIn(HInstruction * receiver,HBasicBlock * start_block,HInstruction * start_instruction,const ReferenceTypeInfo & class_rti)194 static void BoundTypeIn(HInstruction* receiver,
195 HBasicBlock* start_block,
196 HInstruction* start_instruction,
197 const ReferenceTypeInfo& class_rti) {
198 // We only need to bound the type if we have uses in the relevant block.
199 // So start with null and create the HBoundType lazily, only if it's needed.
200 HBoundType* bound_type = nullptr;
201 DCHECK(!receiver->IsLoadClass()) << "We should not replace HLoadClass instructions";
202 const HUseList<HInstruction*>& uses = receiver->GetUses();
203 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
204 HInstruction* user = it->GetUser();
205 size_t index = it->GetIndex();
206 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
207 ++it;
208 bool dominates = (start_instruction != nullptr)
209 ? start_instruction->StrictlyDominates(user)
210 : start_block->Dominates(user->GetBlock());
211 if (!dominates) {
212 continue;
213 }
214 if (bound_type == nullptr) {
215 ScopedObjectAccess soa(Thread::Current());
216 HInstruction* insert_point = (start_instruction != nullptr)
217 ? start_instruction->GetNext()
218 : start_block->GetFirstInstruction();
219 if (ShouldCreateBoundType(
220 insert_point, receiver, class_rti, start_instruction, start_block)) {
221 bound_type = new (receiver->GetBlock()->GetGraph()->GetAllocator()) HBoundType(receiver);
222 bound_type->SetUpperBound(class_rti, /* can_be_null= */ false);
223 start_block->InsertInstructionBefore(bound_type, insert_point);
224 // To comply with the RTP algorithm, don't type the bound type just yet, it will
225 // be handled in RTPVisitor::VisitBoundType.
226 } else {
227 // We already have a bound type on the position we would need to insert
228 // the new one. The existing bound type should dominate all the users
229 // (dchecked) so there's no need to continue.
230 break;
231 }
232 }
233 user->ReplaceInput(bound_type, index);
234 }
235 // If the receiver is a null check, also bound the type of the actual
236 // receiver.
237 if (receiver->IsNullCheck()) {
238 BoundTypeIn(receiver->InputAt(0), start_block, start_instruction, class_rti);
239 }
240 }
241
242 // Recognize the patterns:
243 // if (obj.shadow$_klass_ == Foo.class) ...
244 // deoptimize if (obj.shadow$_klass_ == Foo.class)
BoundTypeForClassCheck(HInstruction * check)245 static void BoundTypeForClassCheck(HInstruction* check) {
246 if (!check->IsIf() && !check->IsDeoptimize()) {
247 return;
248 }
249 HInstruction* compare = check->InputAt(0);
250 if (!compare->IsEqual() && !compare->IsNotEqual()) {
251 return;
252 }
253 HInstruction* input_one = compare->InputAt(0);
254 HInstruction* input_two = compare->InputAt(1);
255 HLoadClass* load_class = input_one->IsLoadClass()
256 ? input_one->AsLoadClass()
257 : input_two->AsLoadClass();
258 if (load_class == nullptr) {
259 return;
260 }
261
262 ReferenceTypeInfo class_rti = load_class->GetLoadedClassRTI();
263 if (!class_rti.IsValid()) {
264 // We have loaded an unresolved class. Don't bother bounding the type.
265 return;
266 }
267
268 HInstruction* field_get = (load_class == input_one) ? input_two : input_one;
269 if (!field_get->IsInstanceFieldGet() && !field_get->IsPredicatedInstanceFieldGet()) {
270 return;
271 }
272 HInstruction* receiver = field_get->InputAt(0);
273 ReferenceTypeInfo receiver_type = receiver->GetReferenceTypeInfo();
274 if (receiver_type.IsExact()) {
275 // If we already know the receiver type, don't bother updating its users.
276 return;
277 }
278
279 {
280 ScopedObjectAccess soa(Thread::Current());
281 ArtField* field = GetClassRoot<mirror::Object>()->GetInstanceField(0);
282 DCHECK_EQ(std::string(field->GetName()), "shadow$_klass_");
283 if (field_get->GetFieldInfo().GetField() != field) {
284 return;
285 }
286 }
287
288 if (check->IsIf()) {
289 HBasicBlock* trueBlock = compare->IsEqual()
290 ? check->AsIf()->IfTrueSuccessor()
291 : check->AsIf()->IfFalseSuccessor();
292 BoundTypeIn(receiver, trueBlock, /* start_instruction= */ nullptr, class_rti);
293 } else {
294 DCHECK(check->IsDeoptimize());
295 if (compare->IsEqual() && check->AsDeoptimize()->GuardsAnInput()) {
296 check->SetReferenceTypeInfo(class_rti);
297 }
298 }
299 }
300
Run()301 bool ReferenceTypePropagation::Run() {
302 DCHECK(Thread::Current() != nullptr)
303 << "ReferenceTypePropagation requires the use of Thread::Current(). Make sure you have a "
304 << "Runtime initialized before calling this optimization pass";
305 RTPVisitor visitor(graph_, hint_dex_cache_, is_first_run_);
306
307 // To properly propagate type info we need to visit in the dominator-based order.
308 // Reverse post order guarantees a node's dominators are visited first.
309 // We take advantage of this order in `VisitBasicBlock`.
310 for (HBasicBlock* block : graph_->GetReversePostOrder()) {
311 visitor.VisitBasicBlock(block);
312 }
313
314 visitor.ProcessWorklist();
315 return true;
316 }
317
VisitBasicBlock(HBasicBlock * block)318 void ReferenceTypePropagation::RTPVisitor::VisitBasicBlock(HBasicBlock* block) {
319 // Handle Phis first as there might be instructions in the same block who depend on them.
320 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
321 VisitPhi(it.Current()->AsPhi());
322 }
323
324 // Handle instructions. Since RTP may add HBoundType instructions just after the
325 // last visited instruction, use `HInstructionIteratorHandleChanges` iterator.
326 for (HInstructionIteratorHandleChanges it(block->GetInstructions()); !it.Done(); it.Advance()) {
327 HInstruction* instr = it.Current();
328 instr->Accept(this);
329 }
330
331 // Add extra nodes to bound types.
332 BoundTypeForIfNotNull(block);
333 BoundTypeForIfInstanceOf(block);
334 BoundTypeForClassCheck(block->GetLastInstruction());
335 }
336
BoundTypeForIfNotNull(HBasicBlock * block)337 void ReferenceTypePropagation::RTPVisitor::BoundTypeForIfNotNull(HBasicBlock* block) {
338 HIf* ifInstruction = block->GetLastInstruction()->AsIf();
339 if (ifInstruction == nullptr) {
340 return;
341 }
342 HInstruction* ifInput = ifInstruction->InputAt(0);
343 if (!ifInput->IsNotEqual() && !ifInput->IsEqual()) {
344 return;
345 }
346 HInstruction* input0 = ifInput->InputAt(0);
347 HInstruction* input1 = ifInput->InputAt(1);
348 HInstruction* obj = nullptr;
349
350 if (input1->IsNullConstant()) {
351 obj = input0;
352 } else if (input0->IsNullConstant()) {
353 obj = input1;
354 } else {
355 return;
356 }
357
358 if (!obj->CanBeNull() || obj->IsNullConstant()) {
359 // Null check is dead code and will be removed by DCE.
360 return;
361 }
362 DCHECK(!obj->IsLoadClass()) << "We should not replace HLoadClass instructions";
363
364 // We only need to bound the type if we have uses in the relevant block.
365 // So start with null and create the HBoundType lazily, only if it's needed.
366 HBasicBlock* notNullBlock = ifInput->IsNotEqual()
367 ? ifInstruction->IfTrueSuccessor()
368 : ifInstruction->IfFalseSuccessor();
369
370 ReferenceTypeInfo object_rti =
371 ReferenceTypeInfo::Create(GetHandleCache()->GetObjectClassHandle(), /* is_exact= */ false);
372
373 BoundTypeIn(obj, notNullBlock, /* start_instruction= */ nullptr, object_rti);
374 }
375
376 // Returns true if one of the patterns below has been recognized. If so, the
377 // InstanceOf instruction together with the true branch of `ifInstruction` will
378 // be returned using the out parameters.
379 // Recognized patterns:
380 // (1) patterns equivalent to `if (obj instanceof X)`
381 // (a) InstanceOf -> Equal to 1 -> If
382 // (b) InstanceOf -> NotEqual to 0 -> If
383 // (c) InstanceOf -> If
384 // (2) patterns equivalent to `if (!(obj instanceof X))`
385 // (a) InstanceOf -> Equal to 0 -> If
386 // (b) InstanceOf -> NotEqual to 1 -> If
387 // (c) InstanceOf -> BooleanNot -> If
MatchIfInstanceOf(HIf * ifInstruction,HInstanceOf ** instanceOf,HBasicBlock ** trueBranch)388 static bool MatchIfInstanceOf(HIf* ifInstruction,
389 /* out */ HInstanceOf** instanceOf,
390 /* out */ HBasicBlock** trueBranch) {
391 HInstruction* input = ifInstruction->InputAt(0);
392
393 if (input->IsEqual()) {
394 HInstruction* rhs = input->AsEqual()->GetConstantRight();
395 if (rhs != nullptr) {
396 HInstruction* lhs = input->AsEqual()->GetLeastConstantLeft();
397 if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
398 if (rhs->AsIntConstant()->IsTrue()) {
399 // Case (1a)
400 *trueBranch = ifInstruction->IfTrueSuccessor();
401 } else if (rhs->AsIntConstant()->IsFalse()) {
402 // Case (2a)
403 *trueBranch = ifInstruction->IfFalseSuccessor();
404 } else {
405 // Sometimes we see a comparison of instance-of with a constant which is neither 0 nor 1.
406 // In those cases, we cannot do the match if+instance-of.
407 return false;
408 }
409 *instanceOf = lhs->AsInstanceOf();
410 return true;
411 }
412 }
413 } else if (input->IsNotEqual()) {
414 HInstruction* rhs = input->AsNotEqual()->GetConstantRight();
415 if (rhs != nullptr) {
416 HInstruction* lhs = input->AsNotEqual()->GetLeastConstantLeft();
417 if (lhs->IsInstanceOf() && rhs->IsIntConstant()) {
418 if (rhs->AsIntConstant()->IsFalse()) {
419 // Case (1b)
420 *trueBranch = ifInstruction->IfTrueSuccessor();
421 } else if (rhs->AsIntConstant()->IsTrue()) {
422 // Case (2b)
423 *trueBranch = ifInstruction->IfFalseSuccessor();
424 } else {
425 // Sometimes we see a comparison of instance-of with a constant which is neither 0 nor 1.
426 // In those cases, we cannot do the match if+instance-of.
427 return false;
428 }
429 *instanceOf = lhs->AsInstanceOf();
430 return true;
431 }
432 }
433 } else if (input->IsInstanceOf()) {
434 // Case (1c)
435 *instanceOf = input->AsInstanceOf();
436 *trueBranch = ifInstruction->IfTrueSuccessor();
437 return true;
438 } else if (input->IsBooleanNot()) {
439 HInstruction* not_input = input->InputAt(0);
440 if (not_input->IsInstanceOf()) {
441 // Case (2c)
442 *instanceOf = not_input->AsInstanceOf();
443 *trueBranch = ifInstruction->IfFalseSuccessor();
444 return true;
445 }
446 }
447
448 return false;
449 }
450
451 // Detects if `block` is the True block for the pattern
452 // `if (x instanceof ClassX) { }`
453 // If that's the case insert an HBoundType instruction to bound the type of `x`
454 // to `ClassX` in the scope of the dominated blocks.
BoundTypeForIfInstanceOf(HBasicBlock * block)455 void ReferenceTypePropagation::RTPVisitor::BoundTypeForIfInstanceOf(HBasicBlock* block) {
456 HIf* ifInstruction = block->GetLastInstruction()->AsIf();
457 if (ifInstruction == nullptr) {
458 return;
459 }
460
461 // Try to recognize common `if (instanceof)` and `if (!instanceof)` patterns.
462 HInstanceOf* instanceOf = nullptr;
463 HBasicBlock* instanceOfTrueBlock = nullptr;
464 if (!MatchIfInstanceOf(ifInstruction, &instanceOf, &instanceOfTrueBlock)) {
465 return;
466 }
467
468 ReferenceTypeInfo class_rti = instanceOf->GetTargetClassRTI();
469 if (!class_rti.IsValid()) {
470 // We have loaded an unresolved class. Don't bother bounding the type.
471 return;
472 }
473
474 HInstruction* obj = instanceOf->InputAt(0);
475 if (obj->GetReferenceTypeInfo().IsExact() && !obj->IsPhi()) {
476 // This method is being called while doing a fixed-point calculation
477 // over phis. Non-phis instruction whose type is already known do
478 // not need to be bound to another type.
479 // Not that this also prevents replacing `HLoadClass` with a `HBoundType`.
480 // `HCheckCast` and `HInstanceOf` expect a `HLoadClass` as a second
481 // input.
482 return;
483 }
484
485 {
486 ScopedObjectAccess soa(Thread::Current());
487 if (!class_rti.GetTypeHandle()->CannotBeAssignedFromOtherTypes()) {
488 class_rti = ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact= */ false);
489 }
490 }
491 BoundTypeIn(obj, instanceOfTrueBlock, /* start_instruction= */ nullptr, class_rti);
492 }
493
SetClassAsTypeInfo(HInstruction * instr,ObjPtr<mirror::Class> klass,bool is_exact)494 void ReferenceTypePropagation::RTPVisitor::SetClassAsTypeInfo(HInstruction* instr,
495 ObjPtr<mirror::Class> klass,
496 bool is_exact) {
497 if (instr->IsInvokeStaticOrDirect() && instr->AsInvokeStaticOrDirect()->IsStringInit()) {
498 // Calls to String.<init> are replaced with a StringFactory.
499 if (kIsDebugBuild) {
500 HInvokeStaticOrDirect* invoke = instr->AsInvokeStaticOrDirect();
501 ClassLinker* cl = Runtime::Current()->GetClassLinker();
502 Thread* self = Thread::Current();
503 StackHandleScope<2> hs(self);
504 const DexFile& dex_file = *invoke->GetResolvedMethodReference().dex_file;
505 uint32_t dex_method_index = invoke->GetResolvedMethodReference().index;
506 Handle<mirror::DexCache> dex_cache(
507 hs.NewHandle(FindDexCacheWithHint(self, dex_file, hint_dex_cache_)));
508 // Use a null loader, the target method is in a boot classpath dex file.
509 Handle<mirror::ClassLoader> loader(hs.NewHandle<mirror::ClassLoader>(nullptr));
510 ArtMethod* method = cl->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
511 dex_method_index, dex_cache, loader, /* referrer= */ nullptr, kDirect);
512 DCHECK(method != nullptr);
513 ObjPtr<mirror::Class> declaring_class = method->GetDeclaringClass();
514 DCHECK(declaring_class != nullptr);
515 DCHECK(declaring_class->IsStringClass())
516 << "Expected String class: " << declaring_class->PrettyDescriptor();
517 DCHECK(method->IsConstructor())
518 << "Expected String.<init>: " << method->PrettyMethod();
519 }
520 instr->SetReferenceTypeInfo(
521 ReferenceTypeInfo::Create(GetHandleCache()->GetStringClassHandle(), /* is_exact= */ true));
522 } else if (IsAdmissible(klass)) {
523 ReferenceTypeInfo::TypeHandle handle = GetHandleCache()->NewHandle(klass);
524 is_exact = is_exact || handle->CannotBeAssignedFromOtherTypes();
525 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(handle, is_exact));
526 } else {
527 instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
528 }
529 }
530
VisitDeoptimize(HDeoptimize * instr)531 void ReferenceTypePropagation::RTPVisitor::VisitDeoptimize(HDeoptimize* instr) {
532 BoundTypeForClassCheck(instr);
533 }
534
UpdateReferenceTypeInfo(HInstruction * instr,dex::TypeIndex type_idx,const DexFile & dex_file,bool is_exact)535 void ReferenceTypePropagation::RTPVisitor::UpdateReferenceTypeInfo(HInstruction* instr,
536 dex::TypeIndex type_idx,
537 const DexFile& dex_file,
538 bool is_exact) {
539 DCHECK_EQ(instr->GetType(), DataType::Type::kReference);
540
541 ScopedObjectAccess soa(Thread::Current());
542 ObjPtr<mirror::DexCache> dex_cache = FindDexCacheWithHint(soa.Self(), dex_file, hint_dex_cache_);
543 ObjPtr<mirror::Class> klass = Runtime::Current()->GetClassLinker()->LookupResolvedType(
544 type_idx, dex_cache, dex_cache->GetClassLoader());
545 SetClassAsTypeInfo(instr, klass, is_exact);
546 }
547
VisitNewInstance(HNewInstance * instr)548 void ReferenceTypePropagation::RTPVisitor::VisitNewInstance(HNewInstance* instr) {
549 ScopedObjectAccess soa(Thread::Current());
550 SetClassAsTypeInfo(instr, instr->GetLoadClass()->GetClass().Get(), /* is_exact= */ true);
551 }
552
VisitNewArray(HNewArray * instr)553 void ReferenceTypePropagation::RTPVisitor::VisitNewArray(HNewArray* instr) {
554 ScopedObjectAccess soa(Thread::Current());
555 SetClassAsTypeInfo(instr, instr->GetLoadClass()->GetClass().Get(), /* is_exact= */ true);
556 }
557
VisitParameterValue(HParameterValue * instr)558 void ReferenceTypePropagation::RTPVisitor::VisitParameterValue(HParameterValue* instr) {
559 // We check if the existing type is valid: the inliner may have set it.
560 if (instr->GetType() == DataType::Type::kReference && !instr->GetReferenceTypeInfo().IsValid()) {
561 UpdateReferenceTypeInfo(instr,
562 instr->GetTypeIndex(),
563 instr->GetDexFile(),
564 /* is_exact= */ false);
565 }
566 }
567
UpdateFieldAccessTypeInfo(HInstruction * instr,const FieldInfo & info)568 void ReferenceTypePropagation::RTPVisitor::UpdateFieldAccessTypeInfo(HInstruction* instr,
569 const FieldInfo& info) {
570 if (instr->GetType() != DataType::Type::kReference) {
571 return;
572 }
573
574 ScopedObjectAccess soa(Thread::Current());
575 ObjPtr<mirror::Class> klass;
576
577 // The field is unknown only during tests.
578 if (info.GetField() != nullptr) {
579 klass = info.GetField()->LookupResolvedType();
580 }
581
582 SetClassAsTypeInfo(instr, klass, /* is_exact= */ false);
583 }
584
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instr)585 void ReferenceTypePropagation::RTPVisitor::VisitPredicatedInstanceFieldGet(
586 HPredicatedInstanceFieldGet* instr) {
587 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
588 }
589
VisitInstanceFieldGet(HInstanceFieldGet * instr)590 void ReferenceTypePropagation::RTPVisitor::VisitInstanceFieldGet(HInstanceFieldGet* instr) {
591 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
592 }
593
VisitStaticFieldGet(HStaticFieldGet * instr)594 void ReferenceTypePropagation::RTPVisitor::VisitStaticFieldGet(HStaticFieldGet* instr) {
595 UpdateFieldAccessTypeInfo(instr, instr->GetFieldInfo());
596 }
597
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instr)598 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedInstanceFieldGet(
599 HUnresolvedInstanceFieldGet* instr) {
600 // TODO: Use descriptor to get the actual type.
601 if (instr->GetFieldType() == DataType::Type::kReference) {
602 instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
603 }
604 }
605
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instr)606 void ReferenceTypePropagation::RTPVisitor::VisitUnresolvedStaticFieldGet(
607 HUnresolvedStaticFieldGet* instr) {
608 // TODO: Use descriptor to get the actual type.
609 if (instr->GetFieldType() == DataType::Type::kReference) {
610 instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
611 }
612 }
613
VisitLoadClass(HLoadClass * instr)614 void ReferenceTypePropagation::RTPVisitor::VisitLoadClass(HLoadClass* instr) {
615 ScopedObjectAccess soa(Thread::Current());
616 if (IsAdmissible(instr->GetClass().Get())) {
617 instr->SetValidLoadedClassRTI();
618 }
619 instr->SetReferenceTypeInfo(
620 ReferenceTypeInfo::Create(GetHandleCache()->GetClassClassHandle(), /* is_exact= */ true));
621 }
622
VisitInstanceOf(HInstanceOf * instr)623 void ReferenceTypePropagation::RTPVisitor::VisitInstanceOf(HInstanceOf* instr) {
624 ScopedObjectAccess soa(Thread::Current());
625 if (IsAdmissible(instr->GetClass().Get())) {
626 instr->SetValidTargetClassRTI();
627 }
628 }
629
VisitClinitCheck(HClinitCheck * instr)630 void ReferenceTypePropagation::RTPVisitor::VisitClinitCheck(HClinitCheck* instr) {
631 instr->SetReferenceTypeInfo(instr->InputAt(0)->GetReferenceTypeInfo());
632 }
633
VisitLoadMethodHandle(HLoadMethodHandle * instr)634 void ReferenceTypePropagation::RTPVisitor::VisitLoadMethodHandle(HLoadMethodHandle* instr) {
635 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
636 GetHandleCache()->GetMethodHandleClassHandle(), /* is_exact= */ true));
637 }
638
VisitLoadMethodType(HLoadMethodType * instr)639 void ReferenceTypePropagation::RTPVisitor::VisitLoadMethodType(HLoadMethodType* instr) {
640 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
641 GetHandleCache()->GetMethodTypeClassHandle(), /* is_exact= */ true));
642 }
643
VisitLoadString(HLoadString * instr)644 void ReferenceTypePropagation::RTPVisitor::VisitLoadString(HLoadString* instr) {
645 instr->SetReferenceTypeInfo(
646 ReferenceTypeInfo::Create(GetHandleCache()->GetStringClassHandle(), /* is_exact= */ true));
647 }
648
VisitLoadException(HLoadException * instr)649 void ReferenceTypePropagation::RTPVisitor::VisitLoadException(HLoadException* instr) {
650 DCHECK(instr->GetBlock()->IsCatchBlock());
651 TryCatchInformation* catch_info = instr->GetBlock()->GetTryCatchInformation();
652
653 if (catch_info->IsValidTypeIndex()) {
654 UpdateReferenceTypeInfo(instr,
655 catch_info->GetCatchTypeIndex(),
656 catch_info->GetCatchDexFile(),
657 /* is_exact= */ false);
658 } else {
659 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(
660 GetHandleCache()->GetThrowableClassHandle(), /* is_exact= */ false));
661 }
662 }
663
VisitNullCheck(HNullCheck * instr)664 void ReferenceTypePropagation::RTPVisitor::VisitNullCheck(HNullCheck* instr) {
665 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
666 if (parent_rti.IsValid()) {
667 instr->SetReferenceTypeInfo(parent_rti);
668 }
669 }
670
VisitBoundType(HBoundType * instr)671 void ReferenceTypePropagation::RTPVisitor::VisitBoundType(HBoundType* instr) {
672 ReferenceTypeInfo class_rti = instr->GetUpperBound();
673 if (class_rti.IsValid()) {
674 ScopedObjectAccess soa(Thread::Current());
675 // Narrow the type as much as possible.
676 HInstruction* obj = instr->InputAt(0);
677 ReferenceTypeInfo obj_rti = obj->GetReferenceTypeInfo();
678 if (class_rti.IsExact()) {
679 instr->SetReferenceTypeInfo(class_rti);
680 } else if (obj_rti.IsValid()) {
681 if (class_rti.IsSupertypeOf(obj_rti)) {
682 // Object type is more specific.
683 instr->SetReferenceTypeInfo(obj_rti);
684 } else {
685 // Upper bound is more specific, or unrelated to the object's type.
686 // Note that the object might then be exact, and we know the code dominated by this
687 // bound type is dead. To not confuse potential other optimizations, we mark
688 // the bound as non-exact.
689 instr->SetReferenceTypeInfo(
690 ReferenceTypeInfo::Create(class_rti.GetTypeHandle(), /* is_exact= */ false));
691 }
692 } else {
693 // Object not typed yet. Leave BoundType untyped for now rather than
694 // assign the type conservatively.
695 }
696 instr->SetCanBeNull(obj->CanBeNull() && instr->GetUpperCanBeNull());
697 } else {
698 // The owner of the BoundType was already visited. If the class is unresolved,
699 // the BoundType should have been removed from the data flow and this method
700 // should remove it from the graph.
701 DCHECK(!instr->HasUses());
702 instr->GetBlock()->RemoveInstruction(instr);
703 }
704 }
705
VisitCheckCast(HCheckCast * check_cast)706 void ReferenceTypePropagation::RTPVisitor::VisitCheckCast(HCheckCast* check_cast) {
707 HBoundType* bound_type = check_cast->GetNext()->AsBoundType();
708 if (bound_type == nullptr || bound_type->GetUpperBound().IsValid()) {
709 // The next instruction is not an uninitialized BoundType. This must be
710 // an RTP pass after SsaBuilder and we do not need to do anything.
711 return;
712 }
713 DCHECK_EQ(bound_type->InputAt(0), check_cast->InputAt(0));
714
715 ScopedObjectAccess soa(Thread::Current());
716 Handle<mirror::Class> klass = check_cast->GetClass();
717 if (IsAdmissible(klass.Get())) {
718 DCHECK(is_first_run_);
719 check_cast->SetValidTargetClassRTI();
720 // This is the first run of RTP and class is resolved.
721 bool is_exact = klass->CannotBeAssignedFromOtherTypes();
722 bound_type->SetUpperBound(ReferenceTypeInfo::Create(klass, is_exact),
723 /* CheckCast succeeds for nulls. */ true);
724 } else {
725 // This is the first run of RTP and class is unresolved. Remove the binding.
726 // The instruction itself is removed in VisitBoundType so as to not
727 // invalidate HInstructionIterator.
728 bound_type->ReplaceWith(bound_type->InputAt(0));
729 }
730 }
731
VisitPhi(HPhi * phi)732 void ReferenceTypePropagation::RTPVisitor::VisitPhi(HPhi* phi) {
733 if (phi->IsDead() || phi->GetType() != DataType::Type::kReference) {
734 return;
735 }
736
737 if (phi->GetBlock()->IsLoopHeader()) {
738 // Set the initial type for the phi. Use the non back edge input for reaching
739 // a fixed point faster.
740 HInstruction* first_input = phi->InputAt(0);
741 ReferenceTypeInfo first_input_rti = first_input->GetReferenceTypeInfo();
742 if (first_input_rti.IsValid() && !first_input->IsNullConstant()) {
743 phi->SetCanBeNull(first_input->CanBeNull());
744 phi->SetReferenceTypeInfo(first_input_rti);
745 }
746 AddToWorklist(phi);
747 } else {
748 // Eagerly compute the type of the phi, for quicker convergence. Note
749 // that we don't need to add users to the worklist because we are
750 // doing a reverse post-order visit, therefore either the phi users are
751 // non-loop phi and will be visited later in the visit, or are loop-phis,
752 // and they are already in the work list.
753 UpdateNullability(phi);
754 UpdateReferenceTypeInfo(phi);
755 }
756 }
757
FixUpInstructionType(HInstruction * instruction,HandleCache * handle_cache)758 void ReferenceTypePropagation::FixUpInstructionType(HInstruction* instruction,
759 HandleCache* handle_cache) {
760 if (instruction->IsSelect()) {
761 ScopedObjectAccess soa(Thread::Current());
762 HSelect* select = instruction->AsSelect();
763 ReferenceTypeInfo false_rti = select->GetFalseValue()->GetReferenceTypeInfo();
764 ReferenceTypeInfo true_rti = select->GetTrueValue()->GetReferenceTypeInfo();
765 select->SetReferenceTypeInfo(MergeTypes(false_rti, true_rti, handle_cache));
766 } else {
767 LOG(FATAL) << "Invalid instruction in FixUpInstructionType";
768 }
769 }
770
MergeTypes(const ReferenceTypeInfo & a,const ReferenceTypeInfo & b,HandleCache * handle_cache)771 ReferenceTypeInfo ReferenceTypePropagation::MergeTypes(const ReferenceTypeInfo& a,
772 const ReferenceTypeInfo& b,
773 HandleCache* handle_cache) {
774 if (!b.IsValid()) {
775 return a;
776 }
777 if (!a.IsValid()) {
778 return b;
779 }
780
781 bool is_exact = a.IsExact() && b.IsExact();
782 ReferenceTypeInfo::TypeHandle result_type_handle;
783 ReferenceTypeInfo::TypeHandle a_type_handle = a.GetTypeHandle();
784 ReferenceTypeInfo::TypeHandle b_type_handle = b.GetTypeHandle();
785 bool a_is_interface = a_type_handle->IsInterface();
786 bool b_is_interface = b_type_handle->IsInterface();
787
788 if (a.GetTypeHandle().Get() == b.GetTypeHandle().Get()) {
789 result_type_handle = a_type_handle;
790 } else if (a.IsSupertypeOf(b)) {
791 result_type_handle = a_type_handle;
792 is_exact = false;
793 } else if (b.IsSupertypeOf(a)) {
794 result_type_handle = b_type_handle;
795 is_exact = false;
796 } else if (!a_is_interface && !b_is_interface) {
797 result_type_handle =
798 handle_cache->NewHandle(a_type_handle->GetCommonSuperClass(b_type_handle));
799 is_exact = false;
800 } else {
801 // This can happen if:
802 // - both types are interfaces. TODO(calin): implement
803 // - one is an interface, the other a class, and the type does not implement the interface
804 // e.g:
805 // void foo(Interface i, boolean cond) {
806 // Object o = cond ? i : new Object();
807 // }
808 result_type_handle = handle_cache->GetObjectClassHandle();
809 is_exact = false;
810 }
811
812 return ReferenceTypeInfo::Create(result_type_handle, is_exact);
813 }
814
UpdateArrayGet(HArrayGet * instr)815 void ReferenceTypePropagation::RTPVisitor::UpdateArrayGet(HArrayGet* instr) {
816 DCHECK_EQ(DataType::Type::kReference, instr->GetType());
817
818 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
819 if (!parent_rti.IsValid()) {
820 return;
821 }
822
823 Handle<mirror::Class> handle = parent_rti.GetTypeHandle();
824 if (handle->IsObjectArrayClass() && IsAdmissible(handle->GetComponentType())) {
825 ReferenceTypeInfo::TypeHandle component_handle =
826 GetHandleCache()->NewHandle(handle->GetComponentType());
827 bool is_exact = component_handle->CannotBeAssignedFromOtherTypes();
828 instr->SetReferenceTypeInfo(ReferenceTypeInfo::Create(component_handle, is_exact));
829 } else {
830 // We don't know what the parent actually is, so we fallback to object.
831 instr->SetReferenceTypeInfo(GetGraph()->GetInexactObjectRti());
832 }
833 }
834
UpdateReferenceTypeInfo(HInstruction * instr)835 bool ReferenceTypePropagation::RTPVisitor::UpdateReferenceTypeInfo(HInstruction* instr) {
836 ScopedObjectAccess soa(Thread::Current());
837
838 ReferenceTypeInfo previous_rti = instr->GetReferenceTypeInfo();
839 if (instr->IsBoundType()) {
840 UpdateBoundType(instr->AsBoundType());
841 } else if (instr->IsPhi()) {
842 UpdatePhi(instr->AsPhi());
843 } else if (instr->IsNullCheck()) {
844 ReferenceTypeInfo parent_rti = instr->InputAt(0)->GetReferenceTypeInfo();
845 if (parent_rti.IsValid()) {
846 instr->SetReferenceTypeInfo(parent_rti);
847 }
848 } else if (instr->IsArrayGet()) {
849 // TODO: consider if it's worth "looking back" and binding the input object
850 // to an array type.
851 UpdateArrayGet(instr->AsArrayGet());
852 } else {
853 LOG(FATAL) << "Invalid instruction (should not get here)";
854 }
855
856 return !previous_rti.IsEqual(instr->GetReferenceTypeInfo());
857 }
858
VisitInvoke(HInvoke * instr)859 void ReferenceTypePropagation::RTPVisitor::VisitInvoke(HInvoke* instr) {
860 if (instr->GetType() != DataType::Type::kReference) {
861 return;
862 }
863
864 ScopedObjectAccess soa(Thread::Current());
865 // FIXME: Treat InvokePolymorphic separately, as we can get a more specific return type from
866 // protoId than the one obtained from the resolved method.
867 ArtMethod* method = instr->GetResolvedMethod();
868 ObjPtr<mirror::Class> klass = (method == nullptr) ? nullptr : method->LookupResolvedReturnType();
869 SetClassAsTypeInfo(instr, klass, /* is_exact= */ false);
870 }
871
VisitArrayGet(HArrayGet * instr)872 void ReferenceTypePropagation::RTPVisitor::VisitArrayGet(HArrayGet* instr) {
873 if (instr->GetType() != DataType::Type::kReference) {
874 return;
875 }
876
877 ScopedObjectAccess soa(Thread::Current());
878 UpdateArrayGet(instr);
879 if (!instr->GetReferenceTypeInfo().IsValid()) {
880 worklist_.push_back(instr);
881 }
882 }
883
UpdateBoundType(HBoundType * instr)884 void ReferenceTypePropagation::RTPVisitor::UpdateBoundType(HBoundType* instr) {
885 ReferenceTypeInfo input_rti = instr->InputAt(0)->GetReferenceTypeInfo();
886 if (!input_rti.IsValid()) {
887 return; // No new info yet.
888 }
889
890 ReferenceTypeInfo upper_bound_rti = instr->GetUpperBound();
891 if (upper_bound_rti.IsExact()) {
892 instr->SetReferenceTypeInfo(upper_bound_rti);
893 } else if (upper_bound_rti.IsSupertypeOf(input_rti)) {
894 // input is more specific.
895 instr->SetReferenceTypeInfo(input_rti);
896 } else {
897 // upper_bound is more specific or unrelated.
898 // Note that the object might then be exact, and we know the code dominated by this
899 // bound type is dead. To not confuse potential other optimizations, we mark
900 // the bound as non-exact.
901 instr->SetReferenceTypeInfo(
902 ReferenceTypeInfo::Create(upper_bound_rti.GetTypeHandle(), /* is_exact= */ false));
903 }
904 }
905
906 // NullConstant inputs are ignored during merging as they do not provide any useful information.
907 // If all the inputs are NullConstants then the type of the phi will be set to Object.
UpdatePhi(HPhi * instr)908 void ReferenceTypePropagation::RTPVisitor::UpdatePhi(HPhi* instr) {
909 DCHECK(instr->IsLive());
910
911 HInputsRef inputs = instr->GetInputs();
912 size_t first_input_index_not_null = 0;
913 while (first_input_index_not_null < inputs.size() &&
914 inputs[first_input_index_not_null]->IsNullConstant()) {
915 first_input_index_not_null++;
916 }
917 if (first_input_index_not_null == inputs.size()) {
918 // All inputs are NullConstants, set the type to object.
919 // This may happen in the presence of inlining.
920 instr->SetReferenceTypeInfo(instr->GetBlock()->GetGraph()->GetInexactObjectRti());
921 return;
922 }
923
924 ReferenceTypeInfo new_rti = instr->InputAt(first_input_index_not_null)->GetReferenceTypeInfo();
925
926 if (new_rti.IsValid() && new_rti.IsObjectClass() && !new_rti.IsExact()) {
927 // Early return if we are Object and inexact.
928 instr->SetReferenceTypeInfo(new_rti);
929 return;
930 }
931
932 for (size_t i = first_input_index_not_null + 1; i < inputs.size(); i++) {
933 if (inputs[i]->IsNullConstant()) {
934 continue;
935 }
936 new_rti = MergeTypes(new_rti, inputs[i]->GetReferenceTypeInfo(), GetHandleCache());
937 if (new_rti.IsValid() && new_rti.IsObjectClass()) {
938 if (!new_rti.IsExact()) {
939 break;
940 } else {
941 continue;
942 }
943 }
944 }
945
946 if (new_rti.IsValid()) {
947 instr->SetReferenceTypeInfo(new_rti);
948 }
949 }
950
IsUpdateable(const HInstruction * instr)951 constexpr bool ReferenceTypePropagation::RTPVisitor::IsUpdateable(const HInstruction* instr) {
952 return (instr->IsPhi() && instr->AsPhi()->IsLive()) ||
953 instr->IsBoundType() ||
954 instr->IsNullCheck() ||
955 instr->IsArrayGet();
956 }
957
958 // Re-computes and updates the nullability of the instruction. Returns whether or
959 // not the nullability was changed.
UpdateNullability(HInstruction * instr)960 bool ReferenceTypePropagation::RTPVisitor::UpdateNullability(HInstruction* instr) {
961 DCHECK(IsUpdateable(instr));
962
963 if (!instr->IsPhi() && !instr->IsBoundType()) {
964 return false;
965 }
966
967 bool existing_can_be_null = instr->CanBeNull();
968 if (instr->IsPhi()) {
969 HPhi* phi = instr->AsPhi();
970 bool new_can_be_null = false;
971 for (HInstruction* input : phi->GetInputs()) {
972 if (input->CanBeNull()) {
973 new_can_be_null = true;
974 break;
975 }
976 }
977 phi->SetCanBeNull(new_can_be_null);
978 } else if (instr->IsBoundType()) {
979 HBoundType* bound_type = instr->AsBoundType();
980 bound_type->SetCanBeNull(instr->InputAt(0)->CanBeNull() && bound_type->GetUpperCanBeNull());
981 }
982 return existing_can_be_null != instr->CanBeNull();
983 }
984
ProcessWorklist()985 void ReferenceTypePropagation::RTPVisitor::ProcessWorklist() {
986 while (!worklist_.empty()) {
987 HInstruction* instruction = worklist_.back();
988 worklist_.pop_back();
989 bool updated_nullability = UpdateNullability(instruction);
990 bool updated_reference_type = UpdateReferenceTypeInfo(instruction);
991 if (updated_nullability || updated_reference_type) {
992 AddDependentInstructionsToWorklist(instruction);
993 }
994 }
995 }
996
AddToWorklist(HInstruction * instruction)997 void ReferenceTypePropagation::RTPVisitor::AddToWorklist(HInstruction* instruction) {
998 DCHECK_EQ(instruction->GetType(), DataType::Type::kReference)
999 << instruction->DebugName() << ":" << instruction->GetType();
1000 worklist_.push_back(instruction);
1001 }
1002
AddDependentInstructionsToWorklist(HInstruction * instruction)1003 void ReferenceTypePropagation::RTPVisitor::AddDependentInstructionsToWorklist(
1004 HInstruction* instruction) {
1005 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
1006 HInstruction* user = use.GetUser();
1007 if ((user->IsPhi() && user->AsPhi()->IsLive())
1008 || user->IsBoundType()
1009 || user->IsNullCheck()
1010 || (user->IsArrayGet() && (user->GetType() == DataType::Type::kReference))) {
1011 AddToWorklist(user);
1012 }
1013 }
1014 }
1015
1016 } // namespace art
1017