1 /*
2 * Copyright (C) 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "code_generator_arm64.h"
18
19 #include "aarch64/assembler-aarch64.h"
20 #include "aarch64/registers-aarch64.h"
21 #include "arch/arm64/asm_support_arm64.h"
22 #include "arch/arm64/instruction_set_features_arm64.h"
23 #include "arch/arm64/jni_frame_arm64.h"
24 #include "art_method-inl.h"
25 #include "base/bit_utils.h"
26 #include "base/bit_utils_iterator.h"
27 #include "class_root-inl.h"
28 #include "class_table.h"
29 #include "code_generator_utils.h"
30 #include "entrypoints/quick/quick_entrypoints.h"
31 #include "entrypoints/quick/quick_entrypoints_enum.h"
32 #include "gc/accounting/card_table.h"
33 #include "gc/space/image_space.h"
34 #include "heap_poisoning.h"
35 #include "interpreter/mterp/nterp.h"
36 #include "intrinsics.h"
37 #include "intrinsics_arm64.h"
38 #include "intrinsics_utils.h"
39 #include "linker/linker_patch.h"
40 #include "lock_word.h"
41 #include "mirror/array-inl.h"
42 #include "mirror/class-inl.h"
43 #include "mirror/var_handle.h"
44 #include "offsets.h"
45 #include "optimizing/common_arm64.h"
46 #include "optimizing/nodes.h"
47 #include "thread.h"
48 #include "utils/arm64/assembler_arm64.h"
49 #include "utils/assembler.h"
50 #include "utils/stack_checks.h"
51
52 using namespace vixl::aarch64; // NOLINT(build/namespaces)
53 using vixl::ExactAssemblyScope;
54 using vixl::CodeBufferCheckScope;
55 using vixl::EmissionCheckScope;
56
57 #ifdef __
58 #error "ARM64 Codegen VIXL macro-assembler macro already defined."
59 #endif
60
61 namespace art HIDDEN {
62
63 template<class MirrorType>
64 class GcRoot;
65
66 namespace arm64 {
67
68 using helpers::ARM64EncodableConstantOrRegister;
69 using helpers::ArtVixlRegCodeCoherentForRegSet;
70 using helpers::CPURegisterFrom;
71 using helpers::DRegisterFrom;
72 using helpers::FPRegisterFrom;
73 using helpers::HeapOperand;
74 using helpers::HeapOperandFrom;
75 using helpers::InputCPURegisterOrZeroRegAt;
76 using helpers::InputFPRegisterAt;
77 using helpers::InputOperandAt;
78 using helpers::InputRegisterAt;
79 using helpers::Int64FromLocation;
80 using helpers::LocationFrom;
81 using helpers::OperandFromMemOperand;
82 using helpers::OutputCPURegister;
83 using helpers::OutputFPRegister;
84 using helpers::OutputRegister;
85 using helpers::RegisterFrom;
86 using helpers::StackOperandFrom;
87 using helpers::VIXLRegCodeFromART;
88 using helpers::WRegisterFrom;
89 using helpers::XRegisterFrom;
90
91 // The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
92 // table version generates 7 instructions and num_entries literals. Compare/jump sequence will
93 // generates less code/data with a small num_entries.
94 static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
95
96 // Reference load (except object array loads) is using LDR Wt, [Xn, #offset] which can handle
97 // offset < 16KiB. For offsets >= 16KiB, the load shall be emitted as two or more instructions.
98 // For the Baker read barrier implementation using link-time generated thunks we need to split
99 // the offset explicitly.
100 constexpr uint32_t kReferenceLoadMinFarOffset = 16 * KB;
101
ARM64Condition(IfCondition cond)102 inline Condition ARM64Condition(IfCondition cond) {
103 switch (cond) {
104 case kCondEQ: return eq;
105 case kCondNE: return ne;
106 case kCondLT: return lt;
107 case kCondLE: return le;
108 case kCondGT: return gt;
109 case kCondGE: return ge;
110 case kCondB: return lo;
111 case kCondBE: return ls;
112 case kCondA: return hi;
113 case kCondAE: return hs;
114 }
115 LOG(FATAL) << "Unreachable";
116 UNREACHABLE();
117 }
118
ARM64FPCondition(IfCondition cond,bool gt_bias)119 inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
120 // The ARM64 condition codes can express all the necessary branches, see the
121 // "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
122 // There is no dex instruction or HIR that would need the missing conditions
123 // "equal or unordered" or "not equal".
124 switch (cond) {
125 case kCondEQ: return eq;
126 case kCondNE: return ne /* unordered */;
127 case kCondLT: return gt_bias ? cc : lt /* unordered */;
128 case kCondLE: return gt_bias ? ls : le /* unordered */;
129 case kCondGT: return gt_bias ? hi /* unordered */ : gt;
130 case kCondGE: return gt_bias ? cs /* unordered */ : ge;
131 default:
132 LOG(FATAL) << "UNREACHABLE";
133 UNREACHABLE();
134 }
135 }
136
ARM64ReturnLocation(DataType::Type return_type)137 Location ARM64ReturnLocation(DataType::Type return_type) {
138 // Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
139 // same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
140 // but we use the exact registers for clarity.
141 if (return_type == DataType::Type::kFloat32) {
142 return LocationFrom(s0);
143 } else if (return_type == DataType::Type::kFloat64) {
144 return LocationFrom(d0);
145 } else if (return_type == DataType::Type::kInt64) {
146 return LocationFrom(x0);
147 } else if (return_type == DataType::Type::kVoid) {
148 return Location::NoLocation();
149 } else {
150 return LocationFrom(w0);
151 }
152 }
153
GetReturnLocation(DataType::Type return_type)154 Location InvokeRuntimeCallingConvention::GetReturnLocation(DataType::Type return_type) {
155 return ARM64ReturnLocation(return_type);
156 }
157
OneRegInReferenceOutSaveEverythingCallerSaves()158 static RegisterSet OneRegInReferenceOutSaveEverythingCallerSaves() {
159 InvokeRuntimeCallingConvention calling_convention;
160 RegisterSet caller_saves = RegisterSet::Empty();
161 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
162 DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(),
163 RegisterFrom(calling_convention.GetReturnLocation(DataType::Type::kReference),
164 DataType::Type::kReference).GetCode());
165 return caller_saves;
166 }
167
168 // NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
169 #define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()-> // NOLINT
170 #define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64PointerSize, x).Int32Value()
171
SaveLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)172 void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
173 size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
174 const uint32_t core_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ true);
175 for (uint32_t i : LowToHighBits(core_spills)) {
176 // If the register holds an object, update the stack mask.
177 if (locations->RegisterContainsObject(i)) {
178 locations->SetStackBit(stack_offset / kVRegSize);
179 }
180 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
181 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
182 saved_core_stack_offsets_[i] = stack_offset;
183 stack_offset += kXRegSizeInBytes;
184 }
185
186 const size_t fp_reg_size = codegen->GetSlowPathFPWidth();
187 const uint32_t fp_spills = codegen->GetSlowPathSpills(locations, /* core_registers= */ false);
188 for (uint32_t i : LowToHighBits(fp_spills)) {
189 DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
190 DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
191 saved_fpu_stack_offsets_[i] = stack_offset;
192 stack_offset += fp_reg_size;
193 }
194
195 InstructionCodeGeneratorARM64* visitor =
196 down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64();
197 visitor->SaveLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath());
198 }
199
RestoreLiveRegisters(CodeGenerator * codegen,LocationSummary * locations)200 void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
201 InstructionCodeGeneratorARM64* visitor =
202 down_cast<CodeGeneratorARM64*>(codegen)->GetInstructionCodeGeneratorArm64();
203 visitor->RestoreLiveRegistersHelper(locations, codegen->GetFirstRegisterSlotInSlowPath());
204 }
205
206 class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
207 public:
BoundsCheckSlowPathARM64(HBoundsCheck * instruction)208 explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {}
209
EmitNativeCode(CodeGenerator * codegen)210 void EmitNativeCode(CodeGenerator* codegen) override {
211 LocationSummary* locations = instruction_->GetLocations();
212 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
213
214 __ Bind(GetEntryLabel());
215 if (instruction_->CanThrowIntoCatchBlock()) {
216 // Live registers will be restored in the catch block if caught.
217 SaveLiveRegisters(codegen, instruction_->GetLocations());
218 }
219 // We're moving two locations to locations that could overlap, so we need a parallel
220 // move resolver.
221 InvokeRuntimeCallingConvention calling_convention;
222 codegen->EmitParallelMoves(locations->InAt(0),
223 LocationFrom(calling_convention.GetRegisterAt(0)),
224 DataType::Type::kInt32,
225 locations->InAt(1),
226 LocationFrom(calling_convention.GetRegisterAt(1)),
227 DataType::Type::kInt32);
228 QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
229 ? kQuickThrowStringBounds
230 : kQuickThrowArrayBounds;
231 arm64_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
232 CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
233 CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
234 }
235
IsFatal() const236 bool IsFatal() const override { return true; }
237
GetDescription() const238 const char* GetDescription() const override { return "BoundsCheckSlowPathARM64"; }
239
240 private:
241 DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
242 };
243
244 class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
245 public:
DivZeroCheckSlowPathARM64(HDivZeroCheck * instruction)246 explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {}
247
EmitNativeCode(CodeGenerator * codegen)248 void EmitNativeCode(CodeGenerator* codegen) override {
249 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
250 __ Bind(GetEntryLabel());
251 arm64_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
252 CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
253 }
254
IsFatal() const255 bool IsFatal() const override { return true; }
256
GetDescription() const257 const char* GetDescription() const override { return "DivZeroCheckSlowPathARM64"; }
258
259 private:
260 DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
261 };
262
263 class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
264 public:
LoadClassSlowPathARM64(HLoadClass * cls,HInstruction * at)265 LoadClassSlowPathARM64(HLoadClass* cls, HInstruction* at)
266 : SlowPathCodeARM64(at), cls_(cls) {
267 DCHECK(at->IsLoadClass() || at->IsClinitCheck());
268 DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
269 }
270
EmitNativeCode(CodeGenerator * codegen)271 void EmitNativeCode(CodeGenerator* codegen) override {
272 LocationSummary* locations = instruction_->GetLocations();
273 Location out = locations->Out();
274 const uint32_t dex_pc = instruction_->GetDexPc();
275 bool must_resolve_type = instruction_->IsLoadClass() && cls_->MustResolveTypeOnSlowPath();
276 bool must_do_clinit = instruction_->IsClinitCheck() || cls_->MustGenerateClinitCheck();
277
278 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
279 __ Bind(GetEntryLabel());
280 SaveLiveRegisters(codegen, locations);
281
282 InvokeRuntimeCallingConvention calling_convention;
283 if (must_resolve_type) {
284 DCHECK(IsSameDexFile(cls_->GetDexFile(), arm64_codegen->GetGraph()->GetDexFile()) ||
285 arm64_codegen->GetCompilerOptions().WithinOatFile(&cls_->GetDexFile()) ||
286 ContainsElement(Runtime::Current()->GetClassLinker()->GetBootClassPath(),
287 &cls_->GetDexFile()));
288 dex::TypeIndex type_index = cls_->GetTypeIndex();
289 __ Mov(calling_convention.GetRegisterAt(0).W(), type_index.index_);
290 if (cls_->NeedsAccessCheck()) {
291 CheckEntrypointTypes<kQuickResolveTypeAndVerifyAccess, void*, uint32_t>();
292 arm64_codegen->InvokeRuntime(kQuickResolveTypeAndVerifyAccess, instruction_, dex_pc, this);
293 } else {
294 CheckEntrypointTypes<kQuickResolveType, void*, uint32_t>();
295 arm64_codegen->InvokeRuntime(kQuickResolveType, instruction_, dex_pc, this);
296 }
297 // If we also must_do_clinit, the resolved type is now in the correct register.
298 } else {
299 DCHECK(must_do_clinit);
300 Location source = instruction_->IsLoadClass() ? out : locations->InAt(0);
301 arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)),
302 source,
303 cls_->GetType());
304 }
305 if (must_do_clinit) {
306 arm64_codegen->InvokeRuntime(kQuickInitializeStaticStorage, instruction_, dex_pc, this);
307 CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, mirror::Class*>();
308 }
309
310 // Move the class to the desired location.
311 if (out.IsValid()) {
312 DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
313 DataType::Type type = instruction_->GetType();
314 arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
315 }
316 RestoreLiveRegisters(codegen, locations);
317 __ B(GetExitLabel());
318 }
319
GetDescription() const320 const char* GetDescription() const override { return "LoadClassSlowPathARM64"; }
321
322 private:
323 // The class this slow path will load.
324 HLoadClass* const cls_;
325
326 DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
327 };
328
329 class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
330 public:
LoadStringSlowPathARM64(HLoadString * instruction)331 explicit LoadStringSlowPathARM64(HLoadString* instruction)
332 : SlowPathCodeARM64(instruction) {}
333
EmitNativeCode(CodeGenerator * codegen)334 void EmitNativeCode(CodeGenerator* codegen) override {
335 LocationSummary* locations = instruction_->GetLocations();
336 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
337 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
338
339 __ Bind(GetEntryLabel());
340 SaveLiveRegisters(codegen, locations);
341
342 InvokeRuntimeCallingConvention calling_convention;
343 const dex::StringIndex string_index = instruction_->AsLoadString()->GetStringIndex();
344 __ Mov(calling_convention.GetRegisterAt(0).W(), string_index.index_);
345 arm64_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
346 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
347 DataType::Type type = instruction_->GetType();
348 arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
349
350 RestoreLiveRegisters(codegen, locations);
351
352 __ B(GetExitLabel());
353 }
354
GetDescription() const355 const char* GetDescription() const override { return "LoadStringSlowPathARM64"; }
356
357 private:
358 DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
359 };
360
361 class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
362 public:
NullCheckSlowPathARM64(HNullCheck * instr)363 explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {}
364
EmitNativeCode(CodeGenerator * codegen)365 void EmitNativeCode(CodeGenerator* codegen) override {
366 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
367 __ Bind(GetEntryLabel());
368 if (instruction_->CanThrowIntoCatchBlock()) {
369 // Live registers will be restored in the catch block if caught.
370 SaveLiveRegisters(codegen, instruction_->GetLocations());
371 }
372 arm64_codegen->InvokeRuntime(kQuickThrowNullPointer,
373 instruction_,
374 instruction_->GetDexPc(),
375 this);
376 CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
377 }
378
IsFatal() const379 bool IsFatal() const override { return true; }
380
GetDescription() const381 const char* GetDescription() const override { return "NullCheckSlowPathARM64"; }
382
383 private:
384 DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
385 };
386
387 class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
388 public:
SuspendCheckSlowPathARM64(HSuspendCheck * instruction,HBasicBlock * successor)389 SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
390 : SlowPathCodeARM64(instruction), successor_(successor) {}
391
EmitNativeCode(CodeGenerator * codegen)392 void EmitNativeCode(CodeGenerator* codegen) override {
393 LocationSummary* locations = instruction_->GetLocations();
394 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
395 __ Bind(GetEntryLabel());
396 SaveLiveRegisters(codegen, locations); // Only saves live vector regs for SIMD.
397 arm64_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
398 CheckEntrypointTypes<kQuickTestSuspend, void, void>();
399 RestoreLiveRegisters(codegen, locations); // Only restores live vector regs for SIMD.
400 if (successor_ == nullptr) {
401 __ B(GetReturnLabel());
402 } else {
403 __ B(arm64_codegen->GetLabelOf(successor_));
404 }
405 }
406
GetReturnLabel()407 vixl::aarch64::Label* GetReturnLabel() {
408 DCHECK(successor_ == nullptr);
409 return &return_label_;
410 }
411
GetSuccessor() const412 HBasicBlock* GetSuccessor() const {
413 return successor_;
414 }
415
GetDescription() const416 const char* GetDescription() const override { return "SuspendCheckSlowPathARM64"; }
417
418 private:
419 // If not null, the block to branch to after the suspend check.
420 HBasicBlock* const successor_;
421
422 // If `successor_` is null, the label to branch to after the suspend check.
423 vixl::aarch64::Label return_label_;
424
425 DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
426 };
427
428 class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
429 public:
TypeCheckSlowPathARM64(HInstruction * instruction,bool is_fatal)430 TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
431 : SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {}
432
EmitNativeCode(CodeGenerator * codegen)433 void EmitNativeCode(CodeGenerator* codegen) override {
434 LocationSummary* locations = instruction_->GetLocations();
435
436 DCHECK(instruction_->IsCheckCast()
437 || !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
438 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
439 uint32_t dex_pc = instruction_->GetDexPc();
440
441 __ Bind(GetEntryLabel());
442
443 if (!is_fatal_ || instruction_->CanThrowIntoCatchBlock()) {
444 SaveLiveRegisters(codegen, locations);
445 }
446
447 // We're moving two locations to locations that could overlap, so we need a parallel
448 // move resolver.
449 InvokeRuntimeCallingConvention calling_convention;
450 codegen->EmitParallelMoves(locations->InAt(0),
451 LocationFrom(calling_convention.GetRegisterAt(0)),
452 DataType::Type::kReference,
453 locations->InAt(1),
454 LocationFrom(calling_convention.GetRegisterAt(1)),
455 DataType::Type::kReference);
456 if (instruction_->IsInstanceOf()) {
457 arm64_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
458 CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
459 DataType::Type ret_type = instruction_->GetType();
460 Location ret_loc = calling_convention.GetReturnLocation(ret_type);
461 arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
462 } else {
463 DCHECK(instruction_->IsCheckCast());
464 arm64_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this);
465 CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
466 }
467
468 if (!is_fatal_) {
469 RestoreLiveRegisters(codegen, locations);
470 __ B(GetExitLabel());
471 }
472 }
473
GetDescription() const474 const char* GetDescription() const override { return "TypeCheckSlowPathARM64"; }
IsFatal() const475 bool IsFatal() const override { return is_fatal_; }
476
477 private:
478 const bool is_fatal_;
479
480 DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
481 };
482
483 class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
484 public:
DeoptimizationSlowPathARM64(HDeoptimize * instruction)485 explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
486 : SlowPathCodeARM64(instruction) {}
487
EmitNativeCode(CodeGenerator * codegen)488 void EmitNativeCode(CodeGenerator* codegen) override {
489 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
490 __ Bind(GetEntryLabel());
491 LocationSummary* locations = instruction_->GetLocations();
492 SaveLiveRegisters(codegen, locations);
493 InvokeRuntimeCallingConvention calling_convention;
494 __ Mov(calling_convention.GetRegisterAt(0),
495 static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
496 arm64_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
497 CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
498 }
499
GetDescription() const500 const char* GetDescription() const override { return "DeoptimizationSlowPathARM64"; }
501
502 private:
503 DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
504 };
505
506 class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
507 public:
ArraySetSlowPathARM64(HInstruction * instruction)508 explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {}
509
EmitNativeCode(CodeGenerator * codegen)510 void EmitNativeCode(CodeGenerator* codegen) override {
511 LocationSummary* locations = instruction_->GetLocations();
512 __ Bind(GetEntryLabel());
513 SaveLiveRegisters(codegen, locations);
514
515 InvokeRuntimeCallingConvention calling_convention;
516 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
517 parallel_move.AddMove(
518 locations->InAt(0),
519 LocationFrom(calling_convention.GetRegisterAt(0)),
520 DataType::Type::kReference,
521 nullptr);
522 parallel_move.AddMove(
523 locations->InAt(1),
524 LocationFrom(calling_convention.GetRegisterAt(1)),
525 DataType::Type::kInt32,
526 nullptr);
527 parallel_move.AddMove(
528 locations->InAt(2),
529 LocationFrom(calling_convention.GetRegisterAt(2)),
530 DataType::Type::kReference,
531 nullptr);
532 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
533
534 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
535 arm64_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
536 CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
537 RestoreLiveRegisters(codegen, locations);
538 __ B(GetExitLabel());
539 }
540
GetDescription() const541 const char* GetDescription() const override { return "ArraySetSlowPathARM64"; }
542
543 private:
544 DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
545 };
546
EmitTable(CodeGeneratorARM64 * codegen)547 void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
548 uint32_t num_entries = switch_instr_->GetNumEntries();
549 DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
550
551 // We are about to use the assembler to place literals directly. Make sure we have enough
552 // underlying code buffer and we have generated the jump table with right size.
553 EmissionCheckScope scope(codegen->GetVIXLAssembler(),
554 num_entries * sizeof(int32_t),
555 CodeBufferCheckScope::kExactSize);
556
557 __ Bind(&table_start_);
558 const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
559 for (uint32_t i = 0; i < num_entries; i++) {
560 vixl::aarch64::Label* target_label = codegen->GetLabelOf(successors[i]);
561 DCHECK(target_label->IsBound());
562 ptrdiff_t jump_offset = target_label->GetLocation() - table_start_.GetLocation();
563 DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
564 DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
565 Literal<int32_t> literal(jump_offset);
566 __ place(&literal);
567 }
568 }
569
570 // Slow path generating a read barrier for a heap reference.
571 class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
572 public:
ReadBarrierForHeapReferenceSlowPathARM64(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)573 ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
574 Location out,
575 Location ref,
576 Location obj,
577 uint32_t offset,
578 Location index)
579 : SlowPathCodeARM64(instruction),
580 out_(out),
581 ref_(ref),
582 obj_(obj),
583 offset_(offset),
584 index_(index) {
585 DCHECK(gUseReadBarrier);
586 // If `obj` is equal to `out` or `ref`, it means the initial object
587 // has been overwritten by (or after) the heap object reference load
588 // to be instrumented, e.g.:
589 //
590 // __ Ldr(out, HeapOperand(out, class_offset);
591 // codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
592 //
593 // In that case, we have lost the information about the original
594 // object, and the emitted read barrier cannot work properly.
595 DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
596 DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
597 }
598
EmitNativeCode(CodeGenerator * codegen)599 void EmitNativeCode(CodeGenerator* codegen) override {
600 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
601 LocationSummary* locations = instruction_->GetLocations();
602 DataType::Type type = DataType::Type::kReference;
603 DCHECK(locations->CanCall());
604 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
605 DCHECK(instruction_->IsInstanceFieldGet() ||
606 instruction_->IsPredicatedInstanceFieldGet() ||
607 instruction_->IsStaticFieldGet() ||
608 instruction_->IsArrayGet() ||
609 instruction_->IsInstanceOf() ||
610 instruction_->IsCheckCast() ||
611 (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
612 << "Unexpected instruction in read barrier for heap reference slow path: "
613 << instruction_->DebugName();
614 // The read barrier instrumentation of object ArrayGet
615 // instructions does not support the HIntermediateAddress
616 // instruction.
617 DCHECK(!(instruction_->IsArrayGet() &&
618 instruction_->AsArrayGet()->GetArray()->IsIntermediateAddress()));
619
620 __ Bind(GetEntryLabel());
621
622 SaveLiveRegisters(codegen, locations);
623
624 // We may have to change the index's value, but as `index_` is a
625 // constant member (like other "inputs" of this slow path),
626 // introduce a copy of it, `index`.
627 Location index = index_;
628 if (index_.IsValid()) {
629 // Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
630 if (instruction_->IsArrayGet()) {
631 // Compute the actual memory offset and store it in `index`.
632 Register index_reg = RegisterFrom(index_, DataType::Type::kInt32);
633 DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
634 if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
635 // We are about to change the value of `index_reg` (see the
636 // calls to vixl::MacroAssembler::Lsl and
637 // vixl::MacroAssembler::Mov below), but it has
638 // not been saved by the previous call to
639 // art::SlowPathCode::SaveLiveRegisters, as it is a
640 // callee-save register --
641 // art::SlowPathCode::SaveLiveRegisters does not consider
642 // callee-save registers, as it has been designed with the
643 // assumption that callee-save registers are supposed to be
644 // handled by the called function. So, as a callee-save
645 // register, `index_reg` _would_ eventually be saved onto
646 // the stack, but it would be too late: we would have
647 // changed its value earlier. Therefore, we manually save
648 // it here into another freely available register,
649 // `free_reg`, chosen of course among the caller-save
650 // registers (as a callee-save `free_reg` register would
651 // exhibit the same problem).
652 //
653 // Note we could have requested a temporary register from
654 // the register allocator instead; but we prefer not to, as
655 // this is a slow path, and we know we can find a
656 // caller-save register that is available.
657 Register free_reg = FindAvailableCallerSaveRegister(codegen);
658 __ Mov(free_reg.W(), index_reg);
659 index_reg = free_reg;
660 index = LocationFrom(index_reg);
661 } else {
662 // The initial register stored in `index_` has already been
663 // saved in the call to art::SlowPathCode::SaveLiveRegisters
664 // (as it is not a callee-save register), so we can freely
665 // use it.
666 }
667 // Shifting the index value contained in `index_reg` by the scale
668 // factor (2) cannot overflow in practice, as the runtime is
669 // unable to allocate object arrays with a size larger than
670 // 2^26 - 1 (that is, 2^28 - 4 bytes).
671 __ Lsl(index_reg, index_reg, DataType::SizeShift(type));
672 static_assert(
673 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
674 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
675 __ Add(index_reg, index_reg, Operand(offset_));
676 } else {
677 // In the case of the following intrinsics `index_` is not shifted by a scale factor of 2
678 // (as in the case of ArrayGet), as it is actually an offset to an object field within an
679 // object.
680 DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
681 DCHECK(instruction_->GetLocations()->Intrinsified());
682 HInvoke* invoke = instruction_->AsInvoke();
683 DCHECK(IsUnsafeGetObject(invoke) ||
684 IsVarHandleGet(invoke) ||
685 IsUnsafeCASObject(invoke) ||
686 IsVarHandleCASFamily(invoke)) << invoke->GetIntrinsic();
687 DCHECK_EQ(offset_, 0u);
688 DCHECK(index_.IsRegister());
689 }
690 }
691
692 // We're moving two or three locations to locations that could
693 // overlap, so we need a parallel move resolver.
694 InvokeRuntimeCallingConvention calling_convention;
695 HParallelMove parallel_move(codegen->GetGraph()->GetAllocator());
696 parallel_move.AddMove(ref_,
697 LocationFrom(calling_convention.GetRegisterAt(0)),
698 type,
699 nullptr);
700 parallel_move.AddMove(obj_,
701 LocationFrom(calling_convention.GetRegisterAt(1)),
702 type,
703 nullptr);
704 if (index.IsValid()) {
705 parallel_move.AddMove(index,
706 LocationFrom(calling_convention.GetRegisterAt(2)),
707 DataType::Type::kInt32,
708 nullptr);
709 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
710 } else {
711 codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
712 arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
713 }
714 arm64_codegen->InvokeRuntime(kQuickReadBarrierSlow,
715 instruction_,
716 instruction_->GetDexPc(),
717 this);
718 CheckEntrypointTypes<
719 kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
720 arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
721
722 RestoreLiveRegisters(codegen, locations);
723
724 __ B(GetExitLabel());
725 }
726
GetDescription() const727 const char* GetDescription() const override { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
728
729 private:
FindAvailableCallerSaveRegister(CodeGenerator * codegen)730 Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
731 size_t ref = static_cast<int>(XRegisterFrom(ref_).GetCode());
732 size_t obj = static_cast<int>(XRegisterFrom(obj_).GetCode());
733 for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
734 if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
735 return Register(VIXLRegCodeFromART(i), kXRegSize);
736 }
737 }
738 // We shall never fail to find a free caller-save register, as
739 // there are more than two core caller-save registers on ARM64
740 // (meaning it is possible to find one which is different from
741 // `ref` and `obj`).
742 DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
743 LOG(FATAL) << "Could not find a free register";
744 UNREACHABLE();
745 }
746
747 const Location out_;
748 const Location ref_;
749 const Location obj_;
750 const uint32_t offset_;
751 // An additional location containing an index to an array.
752 // Only used for HArrayGet and the UnsafeGetObject &
753 // UnsafeGetObjectVolatile intrinsics.
754 const Location index_;
755
756 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
757 };
758
759 // Slow path generating a read barrier for a GC root.
760 class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
761 public:
ReadBarrierForRootSlowPathARM64(HInstruction * instruction,Location out,Location root)762 ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
763 : SlowPathCodeARM64(instruction), out_(out), root_(root) {
764 DCHECK(gUseReadBarrier);
765 }
766
EmitNativeCode(CodeGenerator * codegen)767 void EmitNativeCode(CodeGenerator* codegen) override {
768 LocationSummary* locations = instruction_->GetLocations();
769 DataType::Type type = DataType::Type::kReference;
770 DCHECK(locations->CanCall());
771 DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
772 DCHECK(instruction_->IsLoadClass() ||
773 instruction_->IsLoadString() ||
774 (instruction_->IsInvoke() && instruction_->GetLocations()->Intrinsified()))
775 << "Unexpected instruction in read barrier for GC root slow path: "
776 << instruction_->DebugName();
777
778 __ Bind(GetEntryLabel());
779 SaveLiveRegisters(codegen, locations);
780
781 InvokeRuntimeCallingConvention calling_convention;
782 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
783 // The argument of the ReadBarrierForRootSlow is not a managed
784 // reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
785 // thus we need a 64-bit move here, and we cannot use
786 //
787 // arm64_codegen->MoveLocation(
788 // LocationFrom(calling_convention.GetRegisterAt(0)),
789 // root_,
790 // type);
791 //
792 // which would emit a 32-bit move, as `type` is a (32-bit wide)
793 // reference type (`DataType::Type::kReference`).
794 __ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
795 arm64_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
796 instruction_,
797 instruction_->GetDexPc(),
798 this);
799 CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
800 arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
801
802 RestoreLiveRegisters(codegen, locations);
803 __ B(GetExitLabel());
804 }
805
GetDescription() const806 const char* GetDescription() const override { return "ReadBarrierForRootSlowPathARM64"; }
807
808 private:
809 const Location out_;
810 const Location root_;
811
812 DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
813 };
814
815 class MethodEntryExitHooksSlowPathARM64 : public SlowPathCodeARM64 {
816 public:
MethodEntryExitHooksSlowPathARM64(HInstruction * instruction)817 explicit MethodEntryExitHooksSlowPathARM64(HInstruction* instruction)
818 : SlowPathCodeARM64(instruction) {}
819
EmitNativeCode(CodeGenerator * codegen)820 void EmitNativeCode(CodeGenerator* codegen) override {
821 LocationSummary* locations = instruction_->GetLocations();
822 QuickEntrypointEnum entry_point =
823 (instruction_->IsMethodEntryHook()) ? kQuickMethodEntryHook : kQuickMethodExitHook;
824 CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
825 __ Bind(GetEntryLabel());
826 SaveLiveRegisters(codegen, locations);
827 if (instruction_->IsMethodExitHook()) {
828 __ Mov(vixl::aarch64::x4, arm64_codegen->GetFrameSize());
829 }
830 arm64_codegen->InvokeRuntime(entry_point, instruction_, instruction_->GetDexPc(), this);
831 RestoreLiveRegisters(codegen, locations);
832 __ B(GetExitLabel());
833 }
834
GetDescription() const835 const char* GetDescription() const override {
836 return "MethodEntryExitHooksSlowPath";
837 }
838
839 private:
840 DISALLOW_COPY_AND_ASSIGN(MethodEntryExitHooksSlowPathARM64);
841 };
842
843 class CompileOptimizedSlowPathARM64 : public SlowPathCodeARM64 {
844 public:
CompileOptimizedSlowPathARM64()845 CompileOptimizedSlowPathARM64() : SlowPathCodeARM64(/* instruction= */ nullptr) {}
846
EmitNativeCode(CodeGenerator * codegen)847 void EmitNativeCode(CodeGenerator* codegen) override {
848 uint32_t entrypoint_offset =
849 GetThreadOffset<kArm64PointerSize>(kQuickCompileOptimized).Int32Value();
850 __ Bind(GetEntryLabel());
851 __ Ldr(lr, MemOperand(tr, entrypoint_offset));
852 // Note: we don't record the call here (and therefore don't generate a stack
853 // map), as the entrypoint should never be suspended.
854 __ Blr(lr);
855 __ B(GetExitLabel());
856 }
857
GetDescription() const858 const char* GetDescription() const override {
859 return "CompileOptimizedSlowPath";
860 }
861
862 private:
863 DISALLOW_COPY_AND_ASSIGN(CompileOptimizedSlowPathARM64);
864 };
865
866 #undef __
867
GetNextLocation(DataType::Type type)868 Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
869 Location next_location;
870 if (type == DataType::Type::kVoid) {
871 LOG(FATAL) << "Unreachable type " << type;
872 }
873
874 if (DataType::IsFloatingPointType(type) &&
875 (float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
876 next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
877 } else if (!DataType::IsFloatingPointType(type) &&
878 (gp_index_ < calling_convention.GetNumberOfRegisters())) {
879 next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
880 } else {
881 size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
882 next_location = DataType::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
883 : Location::StackSlot(stack_offset);
884 }
885
886 // Space on the stack is reserved for all arguments.
887 stack_index_ += DataType::Is64BitType(type) ? 2 : 1;
888 return next_location;
889 }
890
GetMethodLocation() const891 Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
892 return LocationFrom(kArtMethodRegister);
893 }
894
GetNextLocation(DataType::Type type)895 Location CriticalNativeCallingConventionVisitorARM64::GetNextLocation(DataType::Type type) {
896 DCHECK_NE(type, DataType::Type::kReference);
897
898 Location location = Location::NoLocation();
899 if (DataType::IsFloatingPointType(type)) {
900 if (fpr_index_ < kParameterFPRegistersLength) {
901 location = LocationFrom(kParameterFPRegisters[fpr_index_]);
902 ++fpr_index_;
903 }
904 } else {
905 // Native ABI uses the same registers as managed, except that the method register x0
906 // is a normal argument.
907 if (gpr_index_ < 1u + kParameterCoreRegistersLength) {
908 location = LocationFrom(gpr_index_ == 0u ? x0 : kParameterCoreRegisters[gpr_index_ - 1u]);
909 ++gpr_index_;
910 }
911 }
912 if (location.IsInvalid()) {
913 if (DataType::Is64BitType(type)) {
914 location = Location::DoubleStackSlot(stack_offset_);
915 } else {
916 location = Location::StackSlot(stack_offset_);
917 }
918 stack_offset_ += kFramePointerSize;
919
920 if (for_register_allocation_) {
921 location = Location::Any();
922 }
923 }
924 return location;
925 }
926
GetReturnLocation(DataType::Type type) const927 Location CriticalNativeCallingConventionVisitorARM64::GetReturnLocation(DataType::Type type) const {
928 // We perform conversion to the managed ABI return register after the call if needed.
929 InvokeDexCallingConventionVisitorARM64 dex_calling_convention;
930 return dex_calling_convention.GetReturnLocation(type);
931 }
932
GetMethodLocation() const933 Location CriticalNativeCallingConventionVisitorARM64::GetMethodLocation() const {
934 // Pass the method in the hidden argument x15.
935 return Location::RegisterLocation(x15.GetCode());
936 }
937
938 namespace detail {
939 // Mark which intrinsics we don't have handcrafted code for.
940 template <Intrinsics T>
941 struct IsUnimplemented {
942 bool is_unimplemented = false;
943 };
944
945 #define TRUE_OVERRIDE(Name) \
946 template <> \
947 struct IsUnimplemented<Intrinsics::k##Name> { \
948 bool is_unimplemented = true; \
949 };
950 UNIMPLEMENTED_INTRINSIC_LIST_ARM64(TRUE_OVERRIDE)
951 #undef TRUE_OVERRIDE
952
953 #include "intrinsics_list.h"
954 static constexpr bool kIsIntrinsicUnimplemented[] = {
955 false, // kNone
956 #define IS_UNIMPLEMENTED(Intrinsic, ...) \
957 IsUnimplemented<Intrinsics::k##Intrinsic>().is_unimplemented,
958 INTRINSICS_LIST(IS_UNIMPLEMENTED)
959 #undef IS_UNIMPLEMENTED
960 };
961 #undef INTRINSICS_LIST
962
963 } // namespace detail
964
CodeGeneratorARM64(HGraph * graph,const CompilerOptions & compiler_options,OptimizingCompilerStats * stats)965 CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
966 const CompilerOptions& compiler_options,
967 OptimizingCompilerStats* stats)
968 : CodeGenerator(graph,
969 kNumberOfAllocatableRegisters,
970 kNumberOfAllocatableFPRegisters,
971 kNumberOfAllocatableRegisterPairs,
972 callee_saved_core_registers.GetList(),
973 callee_saved_fp_registers.GetList(),
974 compiler_options,
975 stats,
976 ArrayRef<const bool>(detail::kIsIntrinsicUnimplemented)),
977 block_labels_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
978 jump_tables_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
979 location_builder_neon_(graph, this),
980 instruction_visitor_neon_(graph, this),
981 location_builder_sve_(graph, this),
982 instruction_visitor_sve_(graph, this),
983 move_resolver_(graph->GetAllocator(), this),
984 assembler_(graph->GetAllocator(),
985 compiler_options.GetInstructionSetFeatures()->AsArm64InstructionSetFeatures()),
986 boot_image_method_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
987 method_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
988 boot_image_type_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
989 type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
990 public_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
991 package_type_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
992 boot_image_string_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
993 string_bss_entry_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
994 boot_image_jni_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
995 boot_image_other_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
996 call_entrypoint_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
997 baker_read_barrier_patches_(graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
998 uint32_literals_(std::less<uint32_t>(),
999 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1000 uint64_literals_(std::less<uint64_t>(),
1001 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1002 jit_string_patches_(StringReferenceValueComparator(),
1003 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1004 jit_class_patches_(TypeReferenceValueComparator(),
1005 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)),
1006 jit_baker_read_barrier_slow_paths_(std::less<uint32_t>(),
1007 graph->GetAllocator()->Adapter(kArenaAllocCodeGenerator)) {
1008 // Save the link register (containing the return address) to mimic Quick.
1009 AddAllocatedRegister(LocationFrom(lr));
1010
1011 bool use_sve = ShouldUseSVE();
1012 if (use_sve) {
1013 location_builder_ = &location_builder_sve_;
1014 instruction_visitor_ = &instruction_visitor_sve_;
1015 } else {
1016 location_builder_ = &location_builder_neon_;
1017 instruction_visitor_ = &instruction_visitor_neon_;
1018 }
1019 }
1020
ShouldUseSVE() const1021 bool CodeGeneratorARM64::ShouldUseSVE() const {
1022 return GetInstructionSetFeatures().HasSVE();
1023 }
1024
GetSIMDRegisterWidth() const1025 size_t CodeGeneratorARM64::GetSIMDRegisterWidth() const {
1026 return SupportsPredicatedSIMD()
1027 ? GetInstructionSetFeatures().GetSVEVectorLength() / kBitsPerByte
1028 : vixl::aarch64::kQRegSizeInBytes;
1029 }
1030
1031 #define __ GetVIXLAssembler()->
1032
EmitJumpTables()1033 void CodeGeneratorARM64::EmitJumpTables() {
1034 for (auto&& jump_table : jump_tables_) {
1035 jump_table->EmitTable(this);
1036 }
1037 }
1038
Finalize(CodeAllocator * allocator)1039 void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) {
1040 EmitJumpTables();
1041
1042 // Emit JIT baker read barrier slow paths.
1043 DCHECK(GetCompilerOptions().IsJitCompiler() || jit_baker_read_barrier_slow_paths_.empty());
1044 for (auto& entry : jit_baker_read_barrier_slow_paths_) {
1045 uint32_t encoded_data = entry.first;
1046 vixl::aarch64::Label* slow_path_entry = &entry.second.label;
1047 __ Bind(slow_path_entry);
1048 CompileBakerReadBarrierThunk(*GetAssembler(), encoded_data, /* debug_name= */ nullptr);
1049 }
1050
1051 // Ensure we emit the literal pool.
1052 __ FinalizeCode();
1053
1054 CodeGenerator::Finalize(allocator);
1055
1056 // Verify Baker read barrier linker patches.
1057 if (kIsDebugBuild) {
1058 ArrayRef<const uint8_t> code = allocator->GetMemory();
1059 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
1060 DCHECK(info.label.IsBound());
1061 uint32_t literal_offset = info.label.GetLocation();
1062 DCHECK_ALIGNED(literal_offset, 4u);
1063
1064 auto GetInsn = [&code](uint32_t offset) {
1065 DCHECK_ALIGNED(offset, 4u);
1066 return
1067 (static_cast<uint32_t>(code[offset + 0]) << 0) +
1068 (static_cast<uint32_t>(code[offset + 1]) << 8) +
1069 (static_cast<uint32_t>(code[offset + 2]) << 16)+
1070 (static_cast<uint32_t>(code[offset + 3]) << 24);
1071 };
1072
1073 const uint32_t encoded_data = info.custom_data;
1074 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
1075 // Check that the next instruction matches the expected LDR.
1076 switch (kind) {
1077 case BakerReadBarrierKind::kField:
1078 case BakerReadBarrierKind::kAcquire: {
1079 DCHECK_GE(code.size() - literal_offset, 8u);
1080 uint32_t next_insn = GetInsn(literal_offset + 4u);
1081 CheckValidReg(next_insn & 0x1fu); // Check destination register.
1082 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1083 if (kind == BakerReadBarrierKind::kField) {
1084 // LDR (immediate) with correct base_reg.
1085 CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5));
1086 } else {
1087 DCHECK(kind == BakerReadBarrierKind::kAcquire);
1088 // LDAR with correct base_reg.
1089 CHECK_EQ(next_insn & 0xffffffe0u, 0x88dffc00u | (base_reg << 5));
1090 }
1091 break;
1092 }
1093 case BakerReadBarrierKind::kArray: {
1094 DCHECK_GE(code.size() - literal_offset, 8u);
1095 uint32_t next_insn = GetInsn(literal_offset + 4u);
1096 // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL),
1097 // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2].
1098 CheckValidReg(next_insn & 0x1fu); // Check destination register.
1099 const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1100 CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5));
1101 CheckValidReg((next_insn >> 16) & 0x1f); // Check index register
1102 break;
1103 }
1104 case BakerReadBarrierKind::kGcRoot: {
1105 DCHECK_GE(literal_offset, 4u);
1106 uint32_t prev_insn = GetInsn(literal_offset - 4u);
1107 const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data);
1108 // Usually LDR (immediate) with correct root_reg but
1109 // we may have a "MOV marked, old_value" for intrinsic CAS.
1110 if ((prev_insn & 0xffe0ffff) != (0x2a0003e0 | root_reg)) { // MOV?
1111 CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg); // LDR?
1112 }
1113 break;
1114 }
1115 default:
1116 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
1117 UNREACHABLE();
1118 }
1119 }
1120 }
1121 }
1122
PrepareForEmitNativeCode()1123 void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
1124 // Note: There are 6 kinds of moves:
1125 // 1. constant -> GPR/FPR (non-cycle)
1126 // 2. constant -> stack (non-cycle)
1127 // 3. GPR/FPR -> GPR/FPR
1128 // 4. GPR/FPR -> stack
1129 // 5. stack -> GPR/FPR
1130 // 6. stack -> stack (non-cycle)
1131 // Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
1132 // VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
1133 // cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
1134 // dependency.
1135 vixl_temps_.Open(GetVIXLAssembler());
1136 }
1137
FinishEmitNativeCode()1138 void ParallelMoveResolverARM64::FinishEmitNativeCode() {
1139 vixl_temps_.Close();
1140 }
1141
AllocateScratchLocationFor(Location::Kind kind)1142 Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
1143 DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister
1144 || kind == Location::kStackSlot || kind == Location::kDoubleStackSlot
1145 || kind == Location::kSIMDStackSlot);
1146 kind = (kind == Location::kFpuRegister || kind == Location::kSIMDStackSlot)
1147 ? Location::kFpuRegister
1148 : Location::kRegister;
1149 Location scratch = GetScratchLocation(kind);
1150 if (!scratch.Equals(Location::NoLocation())) {
1151 return scratch;
1152 }
1153 // Allocate from VIXL temp registers.
1154 if (kind == Location::kRegister) {
1155 scratch = LocationFrom(vixl_temps_.AcquireX());
1156 } else {
1157 DCHECK_EQ(kind, Location::kFpuRegister);
1158 scratch = codegen_->GetGraph()->HasSIMD()
1159 ? codegen_->GetInstructionCodeGeneratorArm64()->AllocateSIMDScratchLocation(&vixl_temps_)
1160 : LocationFrom(vixl_temps_.AcquireD());
1161 }
1162 AddScratchLocation(scratch);
1163 return scratch;
1164 }
1165
FreeScratchLocation(Location loc)1166 void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
1167 if (loc.IsRegister()) {
1168 vixl_temps_.Release(XRegisterFrom(loc));
1169 } else {
1170 DCHECK(loc.IsFpuRegister());
1171 if (codegen_->GetGraph()->HasSIMD()) {
1172 codegen_->GetInstructionCodeGeneratorArm64()->FreeSIMDScratchLocation(loc, &vixl_temps_);
1173 } else {
1174 vixl_temps_.Release(DRegisterFrom(loc));
1175 }
1176 }
1177 RemoveScratchLocation(loc);
1178 }
1179
EmitMove(size_t index)1180 void ParallelMoveResolverARM64::EmitMove(size_t index) {
1181 MoveOperands* move = moves_[index];
1182 codegen_->MoveLocation(move->GetDestination(), move->GetSource(), DataType::Type::kVoid);
1183 }
1184
VisitMethodExitHook(HMethodExitHook * method_hook)1185 void LocationsBuilderARM64::VisitMethodExitHook(HMethodExitHook* method_hook) {
1186 LocationSummary* locations = new (GetGraph()->GetAllocator())
1187 LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
1188 DataType::Type return_type = method_hook->InputAt(0)->GetType();
1189 locations->SetInAt(0, ARM64ReturnLocation(return_type));
1190 }
1191
GenerateMethodEntryExitHook(HInstruction * instruction)1192 void InstructionCodeGeneratorARM64::GenerateMethodEntryExitHook(HInstruction* instruction) {
1193 MacroAssembler* masm = GetVIXLAssembler();
1194 UseScratchRegisterScope temps(masm);
1195 Register temp = temps.AcquireX();
1196 Register value = temps.AcquireW();
1197
1198 SlowPathCodeARM64* slow_path =
1199 new (codegen_->GetScopedAllocator()) MethodEntryExitHooksSlowPathARM64(instruction);
1200 codegen_->AddSlowPath(slow_path);
1201
1202 if (instruction->IsMethodExitHook()) {
1203 // Check if we are required to check if the caller needs a deoptimization. Strictly speaking it
1204 // would be sufficient to check if CheckCallerForDeopt bit is set. Though it is faster to check
1205 // if it is just non-zero. kCHA bit isn't used in debuggable runtimes as cha optimization is
1206 // disabled in debuggable runtime. The other bit is used when this method itself requires a
1207 // deoptimization due to redefinition. So it is safe to just check for non-zero value here.
1208 __ Ldr(value, MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
1209 __ Cbnz(value, slow_path->GetEntryLabel());
1210 }
1211
1212 uint64_t address = reinterpret_cast64<uint64_t>(Runtime::Current()->GetInstrumentation());
1213 MemberOffset offset = instruction->IsMethodExitHook() ?
1214 instrumentation::Instrumentation::HaveMethodExitListenersOffset() :
1215 instrumentation::Instrumentation::HaveMethodEntryListenersOffset();
1216 __ Mov(temp, address + offset.Int32Value());
1217 __ Ldrb(value, MemOperand(temp, 0));
1218 __ Cbnz(value, slow_path->GetEntryLabel());
1219 __ Bind(slow_path->GetExitLabel());
1220 }
1221
VisitMethodExitHook(HMethodExitHook * instruction)1222 void InstructionCodeGeneratorARM64::VisitMethodExitHook(HMethodExitHook* instruction) {
1223 DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
1224 DCHECK(codegen_->RequiresCurrentMethod());
1225 GenerateMethodEntryExitHook(instruction);
1226 }
1227
VisitMethodEntryHook(HMethodEntryHook * method_hook)1228 void LocationsBuilderARM64::VisitMethodEntryHook(HMethodEntryHook* method_hook) {
1229 new (GetGraph()->GetAllocator()) LocationSummary(method_hook, LocationSummary::kCallOnSlowPath);
1230 }
1231
VisitMethodEntryHook(HMethodEntryHook * instruction)1232 void InstructionCodeGeneratorARM64::VisitMethodEntryHook(HMethodEntryHook* instruction) {
1233 DCHECK(codegen_->GetCompilerOptions().IsJitCompiler() && GetGraph()->IsDebuggable());
1234 DCHECK(codegen_->RequiresCurrentMethod());
1235 GenerateMethodEntryExitHook(instruction);
1236 }
1237
MaybeIncrementHotness(bool is_frame_entry)1238 void CodeGeneratorARM64::MaybeIncrementHotness(bool is_frame_entry) {
1239 MacroAssembler* masm = GetVIXLAssembler();
1240 if (GetCompilerOptions().CountHotnessInCompiledCode()) {
1241 UseScratchRegisterScope temps(masm);
1242 Register counter = temps.AcquireX();
1243 Register method = is_frame_entry ? kArtMethodRegister : temps.AcquireX();
1244 if (!is_frame_entry) {
1245 __ Ldr(method, MemOperand(sp, 0));
1246 }
1247 __ Ldrh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
1248 vixl::aarch64::Label done;
1249 DCHECK_EQ(0u, interpreter::kNterpHotnessValue);
1250 __ Cbz(counter, &done);
1251 __ Add(counter, counter, -1);
1252 __ Strh(counter, MemOperand(method, ArtMethod::HotnessCountOffset().Int32Value()));
1253 __ Bind(&done);
1254 }
1255
1256 if (GetGraph()->IsCompilingBaseline() && !Runtime::Current()->IsAotCompiler()) {
1257 SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) CompileOptimizedSlowPathARM64();
1258 AddSlowPath(slow_path);
1259 ProfilingInfo* info = GetGraph()->GetProfilingInfo();
1260 DCHECK(info != nullptr);
1261 DCHECK(!HasEmptyFrame());
1262 uint64_t address = reinterpret_cast64<uint64_t>(info);
1263 vixl::aarch64::Label done;
1264 UseScratchRegisterScope temps(masm);
1265 Register temp = temps.AcquireX();
1266 Register counter = temps.AcquireW();
1267 __ Ldr(temp, DeduplicateUint64Literal(address));
1268 __ Ldrh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
1269 __ Cbz(counter, slow_path->GetEntryLabel());
1270 __ Add(counter, counter, -1);
1271 __ Strh(counter, MemOperand(temp, ProfilingInfo::BaselineHotnessCountOffset().Int32Value()));
1272 __ Bind(slow_path->GetExitLabel());
1273 }
1274 }
1275
GenerateFrameEntry()1276 void CodeGeneratorARM64::GenerateFrameEntry() {
1277 MacroAssembler* masm = GetVIXLAssembler();
1278
1279 // Check if we need to generate the clinit check. We will jump to the
1280 // resolution stub if the class is not initialized and the executing thread is
1281 // not the thread initializing it.
1282 // We do this before constructing the frame to get the correct stack trace if
1283 // an exception is thrown.
1284 if (GetCompilerOptions().ShouldCompileWithClinitCheck(GetGraph()->GetArtMethod())) {
1285 UseScratchRegisterScope temps(masm);
1286 vixl::aarch64::Label resolution;
1287 vixl::aarch64::Label memory_barrier;
1288
1289 Register temp1 = temps.AcquireW();
1290 Register temp2 = temps.AcquireW();
1291
1292 // Check if we're visibly initialized.
1293
1294 // We don't emit a read barrier here to save on code size. We rely on the
1295 // resolution trampoline to do a suspend check before re-entering this code.
1296 __ Ldr(temp1, MemOperand(kArtMethodRegister, ArtMethod::DeclaringClassOffset().Int32Value()));
1297 __ Ldrb(temp2, HeapOperand(temp1, status_byte_offset));
1298 __ Cmp(temp2, shifted_visibly_initialized_value);
1299 __ B(hs, &frame_entry_label_);
1300
1301 // Check if we're initialized and jump to code that does a memory barrier if
1302 // so.
1303 __ Cmp(temp2, shifted_initialized_value);
1304 __ B(hs, &memory_barrier);
1305
1306 // Check if we're initializing and the thread initializing is the one
1307 // executing the code.
1308 __ Cmp(temp2, shifted_initializing_value);
1309 __ B(lo, &resolution);
1310
1311 __ Ldr(temp1, HeapOperand(temp1, mirror::Class::ClinitThreadIdOffset().Int32Value()));
1312 __ Ldr(temp2, MemOperand(tr, Thread::TidOffset<kArm64PointerSize>().Int32Value()));
1313 __ Cmp(temp1, temp2);
1314 __ B(eq, &frame_entry_label_);
1315 __ Bind(&resolution);
1316
1317 // Jump to the resolution stub.
1318 ThreadOffset64 entrypoint_offset =
1319 GetThreadOffset<kArm64PointerSize>(kQuickQuickResolutionTrampoline);
1320 __ Ldr(temp1.X(), MemOperand(tr, entrypoint_offset.Int32Value()));
1321 __ Br(temp1.X());
1322
1323 __ Bind(&memory_barrier);
1324 GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
1325 }
1326 __ Bind(&frame_entry_label_);
1327
1328 bool do_overflow_check =
1329 FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kArm64) || !IsLeafMethod();
1330 if (do_overflow_check) {
1331 UseScratchRegisterScope temps(masm);
1332 Register temp = temps.AcquireX();
1333 DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
1334 __ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(InstructionSet::kArm64)));
1335 {
1336 // Ensure that between load and RecordPcInfo there are no pools emitted.
1337 ExactAssemblyScope eas(GetVIXLAssembler(),
1338 kInstructionSize,
1339 CodeBufferCheckScope::kExactSize);
1340 __ ldr(wzr, MemOperand(temp, 0));
1341 RecordPcInfo(nullptr, 0);
1342 }
1343 }
1344
1345 if (!HasEmptyFrame()) {
1346 // Stack layout:
1347 // sp[frame_size - 8] : lr.
1348 // ... : other preserved core registers.
1349 // ... : other preserved fp registers.
1350 // ... : reserved frame space.
1351 // sp[0] : current method.
1352 int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
1353 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
1354 CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
1355 DCHECK(!preserved_core_registers.IsEmpty());
1356 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
1357 CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
1358
1359 // Save the current method if we need it, or if using STP reduces code
1360 // size. Note that we do not do this in HCurrentMethod, as the
1361 // instruction might have been removed in the SSA graph.
1362 CPURegister lowest_spill;
1363 if (core_spills_offset == kXRegSizeInBytes) {
1364 // If there is no gap between the method and the lowest core spill, use
1365 // aligned STP pre-index to store both. Max difference is 512. We do
1366 // that to reduce code size even if we do not have to save the method.
1367 DCHECK_LE(frame_size, 512); // 32 core registers are only 256 bytes.
1368 lowest_spill = preserved_core_registers.PopLowestIndex();
1369 __ Stp(kArtMethodRegister, lowest_spill, MemOperand(sp, -frame_size, PreIndex));
1370 } else if (RequiresCurrentMethod()) {
1371 __ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
1372 } else {
1373 __ Claim(frame_size);
1374 }
1375 GetAssembler()->cfi().AdjustCFAOffset(frame_size);
1376 if (lowest_spill.IsValid()) {
1377 GetAssembler()->cfi().RelOffset(DWARFReg(lowest_spill), core_spills_offset);
1378 core_spills_offset += kXRegSizeInBytes;
1379 }
1380 GetAssembler()->SpillRegisters(preserved_core_registers, core_spills_offset);
1381 GetAssembler()->SpillRegisters(preserved_fp_registers, fp_spills_offset);
1382
1383 if (GetGraph()->HasShouldDeoptimizeFlag()) {
1384 // Initialize should_deoptimize flag to 0.
1385 Register wzr = Register(VIXLRegCodeFromART(WZR), kWRegSize);
1386 __ Str(wzr, MemOperand(sp, GetStackOffsetOfShouldDeoptimizeFlag()));
1387 }
1388 }
1389 MaybeIncrementHotness(/* is_frame_entry= */ true);
1390 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
1391 }
1392
GenerateFrameExit()1393 void CodeGeneratorARM64::GenerateFrameExit() {
1394 GetAssembler()->cfi().RememberState();
1395 if (!HasEmptyFrame()) {
1396 int32_t frame_size = dchecked_integral_cast<int32_t>(GetFrameSize());
1397 uint32_t core_spills_offset = frame_size - GetCoreSpillSize();
1398 CPURegList preserved_core_registers = GetFramePreservedCoreRegisters();
1399 DCHECK(!preserved_core_registers.IsEmpty());
1400 uint32_t fp_spills_offset = frame_size - FrameEntrySpillSize();
1401 CPURegList preserved_fp_registers = GetFramePreservedFPRegisters();
1402
1403 CPURegister lowest_spill;
1404 if (core_spills_offset == kXRegSizeInBytes) {
1405 // If there is no gap between the method and the lowest core spill, use
1406 // aligned LDP pre-index to pop both. Max difference is 504. We do
1407 // that to reduce code size even though the loaded method is unused.
1408 DCHECK_LE(frame_size, 504); // 32 core registers are only 256 bytes.
1409 lowest_spill = preserved_core_registers.PopLowestIndex();
1410 core_spills_offset += kXRegSizeInBytes;
1411 }
1412 GetAssembler()->UnspillRegisters(preserved_fp_registers, fp_spills_offset);
1413 GetAssembler()->UnspillRegisters(preserved_core_registers, core_spills_offset);
1414 if (lowest_spill.IsValid()) {
1415 __ Ldp(xzr, lowest_spill, MemOperand(sp, frame_size, PostIndex));
1416 GetAssembler()->cfi().Restore(DWARFReg(lowest_spill));
1417 } else {
1418 __ Drop(frame_size);
1419 }
1420 GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
1421 }
1422 __ Ret();
1423 GetAssembler()->cfi().RestoreState();
1424 GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
1425 }
1426
GetFramePreservedCoreRegisters() const1427 CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
1428 DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
1429 return CPURegList(CPURegister::kRegister, kXRegSize,
1430 core_spill_mask_);
1431 }
1432
GetFramePreservedFPRegisters() const1433 CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
1434 DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
1435 GetNumberOfFloatingPointRegisters()));
1436 return CPURegList(CPURegister::kVRegister, kDRegSize,
1437 fpu_spill_mask_);
1438 }
1439
Bind(HBasicBlock * block)1440 void CodeGeneratorARM64::Bind(HBasicBlock* block) {
1441 __ Bind(GetLabelOf(block));
1442 }
1443
MoveConstant(Location location,int32_t value)1444 void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
1445 DCHECK(location.IsRegister());
1446 __ Mov(RegisterFrom(location, DataType::Type::kInt32), value);
1447 }
1448
AddLocationAsTemp(Location location,LocationSummary * locations)1449 void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
1450 if (location.IsRegister()) {
1451 locations->AddTemp(location);
1452 } else {
1453 UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
1454 }
1455 }
1456
MarkGCCard(Register object,Register value,bool emit_null_check)1457 void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool emit_null_check) {
1458 UseScratchRegisterScope temps(GetVIXLAssembler());
1459 Register card = temps.AcquireX();
1460 Register temp = temps.AcquireW(); // Index within the CardTable - 32bit.
1461 vixl::aarch64::Label done;
1462 if (emit_null_check) {
1463 __ Cbz(value, &done);
1464 }
1465 // Load the address of the card table into `card`.
1466 __ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64PointerSize>().Int32Value()));
1467 // Calculate the offset (in the card table) of the card corresponding to
1468 // `object`.
1469 __ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
1470 // Write the `art::gc::accounting::CardTable::kCardDirty` value into the
1471 // `object`'s card.
1472 //
1473 // Register `card` contains the address of the card table. Note that the card
1474 // table's base is biased during its creation so that it always starts at an
1475 // address whose least-significant byte is equal to `kCardDirty` (see
1476 // art::gc::accounting::CardTable::Create). Therefore the STRB instruction
1477 // below writes the `kCardDirty` (byte) value into the `object`'s card
1478 // (located at `card + object >> kCardShift`).
1479 //
1480 // This dual use of the value in register `card` (1. to calculate the location
1481 // of the card to mark; and 2. to load the `kCardDirty` value) saves a load
1482 // (no need to explicitly load `kCardDirty` as an immediate value).
1483 __ Strb(card, MemOperand(card, temp.X()));
1484 if (emit_null_check) {
1485 __ Bind(&done);
1486 }
1487 }
1488
SetupBlockedRegisters() const1489 void CodeGeneratorARM64::SetupBlockedRegisters() const {
1490 // Blocked core registers:
1491 // lr : Runtime reserved.
1492 // tr : Runtime reserved.
1493 // mr : Runtime reserved.
1494 // ip1 : VIXL core temp.
1495 // ip0 : VIXL core temp.
1496 // x18 : Platform register.
1497 //
1498 // Blocked fp registers:
1499 // d31 : VIXL fp temp.
1500 CPURegList reserved_core_registers = vixl_reserved_core_registers;
1501 reserved_core_registers.Combine(runtime_reserved_core_registers);
1502 while (!reserved_core_registers.IsEmpty()) {
1503 blocked_core_registers_[reserved_core_registers.PopLowestIndex().GetCode()] = true;
1504 }
1505 blocked_core_registers_[X18] = true;
1506
1507 CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
1508 while (!reserved_fp_registers.IsEmpty()) {
1509 blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().GetCode()] = true;
1510 }
1511
1512 if (GetGraph()->IsDebuggable()) {
1513 // Stubs do not save callee-save floating point registers. If the graph
1514 // is debuggable, we need to deal with these registers differently. For
1515 // now, just block them.
1516 CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
1517 while (!reserved_fp_registers_debuggable.IsEmpty()) {
1518 blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().GetCode()] = true;
1519 }
1520 }
1521 }
1522
SaveCoreRegister(size_t stack_index,uint32_t reg_id)1523 size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
1524 Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1525 __ Str(reg, MemOperand(sp, stack_index));
1526 return kArm64WordSize;
1527 }
1528
RestoreCoreRegister(size_t stack_index,uint32_t reg_id)1529 size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
1530 Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
1531 __ Ldr(reg, MemOperand(sp, stack_index));
1532 return kArm64WordSize;
1533 }
1534
SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1535 size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1536 uint32_t reg_id ATTRIBUTE_UNUSED) {
1537 LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
1538 << "use SaveRestoreLiveRegistersHelper";
1539 UNREACHABLE();
1540 }
1541
RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,uint32_t reg_id ATTRIBUTE_UNUSED)1542 size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index ATTRIBUTE_UNUSED,
1543 uint32_t reg_id ATTRIBUTE_UNUSED) {
1544 LOG(FATAL) << "FP registers shouldn't be saved/restored individually, "
1545 << "use SaveRestoreLiveRegistersHelper";
1546 UNREACHABLE();
1547 }
1548
DumpCoreRegister(std::ostream & stream,int reg) const1549 void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
1550 stream << XRegister(reg);
1551 }
1552
DumpFloatingPointRegister(std::ostream & stream,int reg) const1553 void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
1554 stream << DRegister(reg);
1555 }
1556
GetInstructionSetFeatures() const1557 const Arm64InstructionSetFeatures& CodeGeneratorARM64::GetInstructionSetFeatures() const {
1558 return *GetCompilerOptions().GetInstructionSetFeatures()->AsArm64InstructionSetFeatures();
1559 }
1560
MoveConstant(CPURegister destination,HConstant * constant)1561 void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
1562 if (constant->IsIntConstant()) {
1563 __ Mov(Register(destination), constant->AsIntConstant()->GetValue());
1564 } else if (constant->IsLongConstant()) {
1565 __ Mov(Register(destination), constant->AsLongConstant()->GetValue());
1566 } else if (constant->IsNullConstant()) {
1567 __ Mov(Register(destination), 0);
1568 } else if (constant->IsFloatConstant()) {
1569 __ Fmov(VRegister(destination), constant->AsFloatConstant()->GetValue());
1570 } else {
1571 DCHECK(constant->IsDoubleConstant());
1572 __ Fmov(VRegister(destination), constant->AsDoubleConstant()->GetValue());
1573 }
1574 }
1575
1576
CoherentConstantAndType(Location constant,DataType::Type type)1577 static bool CoherentConstantAndType(Location constant, DataType::Type type) {
1578 DCHECK(constant.IsConstant());
1579 HConstant* cst = constant.GetConstant();
1580 return (cst->IsIntConstant() && type == DataType::Type::kInt32) ||
1581 // Null is mapped to a core W register, which we associate with kPrimInt.
1582 (cst->IsNullConstant() && type == DataType::Type::kInt32) ||
1583 (cst->IsLongConstant() && type == DataType::Type::kInt64) ||
1584 (cst->IsFloatConstant() && type == DataType::Type::kFloat32) ||
1585 (cst->IsDoubleConstant() && type == DataType::Type::kFloat64);
1586 }
1587
1588 // Allocate a scratch register from the VIXL pool, querying first
1589 // the floating-point register pool, and then the core register
1590 // pool. This is essentially a reimplementation of
1591 // vixl::aarch64::UseScratchRegisterScope::AcquireCPURegisterOfSize
1592 // using a different allocation strategy.
AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler * masm,vixl::aarch64::UseScratchRegisterScope * temps,int size_in_bits)1593 static CPURegister AcquireFPOrCoreCPURegisterOfSize(vixl::aarch64::MacroAssembler* masm,
1594 vixl::aarch64::UseScratchRegisterScope* temps,
1595 int size_in_bits) {
1596 return masm->GetScratchVRegisterList()->IsEmpty()
1597 ? CPURegister(temps->AcquireRegisterOfSize(size_in_bits))
1598 : CPURegister(temps->AcquireVRegisterOfSize(size_in_bits));
1599 }
1600
MoveLocation(Location destination,Location source,DataType::Type dst_type)1601 void CodeGeneratorARM64::MoveLocation(Location destination,
1602 Location source,
1603 DataType::Type dst_type) {
1604 if (source.Equals(destination)) {
1605 return;
1606 }
1607
1608 // A valid move can always be inferred from the destination and source
1609 // locations. When moving from and to a register, the argument type can be
1610 // used to generate 32bit instead of 64bit moves. In debug mode we also
1611 // checks the coherency of the locations and the type.
1612 bool unspecified_type = (dst_type == DataType::Type::kVoid);
1613
1614 if (destination.IsRegister() || destination.IsFpuRegister()) {
1615 if (unspecified_type) {
1616 HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
1617 if (source.IsStackSlot() ||
1618 (src_cst != nullptr && (src_cst->IsIntConstant()
1619 || src_cst->IsFloatConstant()
1620 || src_cst->IsNullConstant()))) {
1621 // For stack slots and 32bit constants, a 64bit type is appropriate.
1622 dst_type = destination.IsRegister() ? DataType::Type::kInt32 : DataType::Type::kFloat32;
1623 } else {
1624 // If the source is a double stack slot or a 64bit constant, a 64bit
1625 // type is appropriate. Else the source is a register, and since the
1626 // type has not been specified, we chose a 64bit type to force a 64bit
1627 // move.
1628 dst_type = destination.IsRegister() ? DataType::Type::kInt64 : DataType::Type::kFloat64;
1629 }
1630 }
1631 DCHECK((destination.IsFpuRegister() && DataType::IsFloatingPointType(dst_type)) ||
1632 (destination.IsRegister() && !DataType::IsFloatingPointType(dst_type)));
1633 CPURegister dst = CPURegisterFrom(destination, dst_type);
1634 if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
1635 DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
1636 __ Ldr(dst, StackOperandFrom(source));
1637 } else if (source.IsSIMDStackSlot()) {
1638 GetInstructionCodeGeneratorArm64()->LoadSIMDRegFromStack(destination, source);
1639 } else if (source.IsConstant()) {
1640 DCHECK(CoherentConstantAndType(source, dst_type));
1641 MoveConstant(dst, source.GetConstant());
1642 } else if (source.IsRegister()) {
1643 if (destination.IsRegister()) {
1644 __ Mov(Register(dst), RegisterFrom(source, dst_type));
1645 } else {
1646 DCHECK(destination.IsFpuRegister());
1647 DataType::Type source_type = DataType::Is64BitType(dst_type)
1648 ? DataType::Type::kInt64
1649 : DataType::Type::kInt32;
1650 __ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
1651 }
1652 } else {
1653 DCHECK(source.IsFpuRegister());
1654 if (destination.IsRegister()) {
1655 DataType::Type source_type = DataType::Is64BitType(dst_type)
1656 ? DataType::Type::kFloat64
1657 : DataType::Type::kFloat32;
1658 __ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
1659 } else {
1660 DCHECK(destination.IsFpuRegister());
1661 if (GetGraph()->HasSIMD()) {
1662 GetInstructionCodeGeneratorArm64()->MoveSIMDRegToSIMDReg(destination, source);
1663 } else {
1664 __ Fmov(VRegister(dst), FPRegisterFrom(source, dst_type));
1665 }
1666 }
1667 }
1668 } else if (destination.IsSIMDStackSlot()) {
1669 GetInstructionCodeGeneratorArm64()->MoveToSIMDStackSlot(destination, source);
1670 } else { // The destination is not a register. It must be a stack slot.
1671 DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
1672 if (source.IsRegister() || source.IsFpuRegister()) {
1673 if (unspecified_type) {
1674 if (source.IsRegister()) {
1675 dst_type = destination.IsStackSlot() ? DataType::Type::kInt32 : DataType::Type::kInt64;
1676 } else {
1677 dst_type =
1678 destination.IsStackSlot() ? DataType::Type::kFloat32 : DataType::Type::kFloat64;
1679 }
1680 }
1681 DCHECK((destination.IsDoubleStackSlot() == DataType::Is64BitType(dst_type)) &&
1682 (source.IsFpuRegister() == DataType::IsFloatingPointType(dst_type)));
1683 __ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
1684 } else if (source.IsConstant()) {
1685 DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
1686 << source << " " << dst_type;
1687 UseScratchRegisterScope temps(GetVIXLAssembler());
1688 HConstant* src_cst = source.GetConstant();
1689 CPURegister temp;
1690 if (src_cst->IsZeroBitPattern()) {
1691 temp = (src_cst->IsLongConstant() || src_cst->IsDoubleConstant())
1692 ? Register(xzr)
1693 : Register(wzr);
1694 } else {
1695 if (src_cst->IsIntConstant()) {
1696 temp = temps.AcquireW();
1697 } else if (src_cst->IsLongConstant()) {
1698 temp = temps.AcquireX();
1699 } else if (src_cst->IsFloatConstant()) {
1700 temp = temps.AcquireS();
1701 } else {
1702 DCHECK(src_cst->IsDoubleConstant());
1703 temp = temps.AcquireD();
1704 }
1705 MoveConstant(temp, src_cst);
1706 }
1707 __ Str(temp, StackOperandFrom(destination));
1708 } else {
1709 DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
1710 DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
1711 UseScratchRegisterScope temps(GetVIXLAssembler());
1712 // Use any scratch register (a core or a floating-point one)
1713 // from VIXL scratch register pools as a temporary.
1714 //
1715 // We used to only use the FP scratch register pool, but in some
1716 // rare cases the only register from this pool (D31) would
1717 // already be used (e.g. within a ParallelMove instruction, when
1718 // a move is blocked by a another move requiring a scratch FP
1719 // register, which would reserve D31). To prevent this issue, we
1720 // ask for a scratch register of any type (core or FP).
1721 //
1722 // Also, we start by asking for a FP scratch register first, as the
1723 // demand of scratch core registers is higher. This is why we
1724 // use AcquireFPOrCoreCPURegisterOfSize instead of
1725 // UseScratchRegisterScope::AcquireCPURegisterOfSize, which
1726 // allocates core scratch registers first.
1727 CPURegister temp = AcquireFPOrCoreCPURegisterOfSize(
1728 GetVIXLAssembler(),
1729 &temps,
1730 (destination.IsDoubleStackSlot() ? kXRegSize : kWRegSize));
1731 __ Ldr(temp, StackOperandFrom(source));
1732 __ Str(temp, StackOperandFrom(destination));
1733 }
1734 }
1735 }
1736
Load(DataType::Type type,CPURegister dst,const MemOperand & src)1737 void CodeGeneratorARM64::Load(DataType::Type type,
1738 CPURegister dst,
1739 const MemOperand& src) {
1740 switch (type) {
1741 case DataType::Type::kBool:
1742 case DataType::Type::kUint8:
1743 __ Ldrb(Register(dst), src);
1744 break;
1745 case DataType::Type::kInt8:
1746 __ Ldrsb(Register(dst), src);
1747 break;
1748 case DataType::Type::kUint16:
1749 __ Ldrh(Register(dst), src);
1750 break;
1751 case DataType::Type::kInt16:
1752 __ Ldrsh(Register(dst), src);
1753 break;
1754 case DataType::Type::kInt32:
1755 case DataType::Type::kReference:
1756 case DataType::Type::kInt64:
1757 case DataType::Type::kFloat32:
1758 case DataType::Type::kFloat64:
1759 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1760 __ Ldr(dst, src);
1761 break;
1762 case DataType::Type::kUint32:
1763 case DataType::Type::kUint64:
1764 case DataType::Type::kVoid:
1765 LOG(FATAL) << "Unreachable type " << type;
1766 }
1767 }
1768
LoadAcquire(HInstruction * instruction,DataType::Type type,CPURegister dst,const MemOperand & src,bool needs_null_check)1769 void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
1770 DataType::Type type,
1771 CPURegister dst,
1772 const MemOperand& src,
1773 bool needs_null_check) {
1774 MacroAssembler* masm = GetVIXLAssembler();
1775 UseScratchRegisterScope temps(masm);
1776 Register temp_base = temps.AcquireX();
1777
1778 DCHECK(!src.IsPreIndex());
1779 DCHECK(!src.IsPostIndex());
1780
1781 // TODO(vixl): Let the MacroAssembler handle MemOperand.
1782 __ Add(temp_base, src.GetBaseRegister(), OperandFromMemOperand(src));
1783 {
1784 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
1785 MemOperand base = MemOperand(temp_base);
1786 switch (type) {
1787 case DataType::Type::kBool:
1788 case DataType::Type::kUint8:
1789 case DataType::Type::kInt8:
1790 {
1791 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1792 __ ldarb(Register(dst), base);
1793 if (needs_null_check) {
1794 MaybeRecordImplicitNullCheck(instruction);
1795 }
1796 }
1797 if (type == DataType::Type::kInt8) {
1798 __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
1799 }
1800 break;
1801 case DataType::Type::kUint16:
1802 case DataType::Type::kInt16:
1803 {
1804 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1805 __ ldarh(Register(dst), base);
1806 if (needs_null_check) {
1807 MaybeRecordImplicitNullCheck(instruction);
1808 }
1809 }
1810 if (type == DataType::Type::kInt16) {
1811 __ Sbfx(Register(dst), Register(dst), 0, DataType::Size(type) * kBitsPerByte);
1812 }
1813 break;
1814 case DataType::Type::kInt32:
1815 case DataType::Type::kReference:
1816 case DataType::Type::kInt64:
1817 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1818 {
1819 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1820 __ ldar(Register(dst), base);
1821 if (needs_null_check) {
1822 MaybeRecordImplicitNullCheck(instruction);
1823 }
1824 }
1825 break;
1826 case DataType::Type::kFloat32:
1827 case DataType::Type::kFloat64: {
1828 DCHECK(dst.IsFPRegister());
1829 DCHECK_EQ(dst.Is64Bits(), DataType::Is64BitType(type));
1830
1831 Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1832 {
1833 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1834 __ ldar(temp, base);
1835 if (needs_null_check) {
1836 MaybeRecordImplicitNullCheck(instruction);
1837 }
1838 }
1839 __ Fmov(VRegister(dst), temp);
1840 break;
1841 }
1842 case DataType::Type::kUint32:
1843 case DataType::Type::kUint64:
1844 case DataType::Type::kVoid:
1845 LOG(FATAL) << "Unreachable type " << type;
1846 }
1847 }
1848 }
1849
Store(DataType::Type type,CPURegister src,const MemOperand & dst)1850 void CodeGeneratorARM64::Store(DataType::Type type,
1851 CPURegister src,
1852 const MemOperand& dst) {
1853 switch (type) {
1854 case DataType::Type::kBool:
1855 case DataType::Type::kUint8:
1856 case DataType::Type::kInt8:
1857 __ Strb(Register(src), dst);
1858 break;
1859 case DataType::Type::kUint16:
1860 case DataType::Type::kInt16:
1861 __ Strh(Register(src), dst);
1862 break;
1863 case DataType::Type::kInt32:
1864 case DataType::Type::kReference:
1865 case DataType::Type::kInt64:
1866 case DataType::Type::kFloat32:
1867 case DataType::Type::kFloat64:
1868 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
1869 __ Str(src, dst);
1870 break;
1871 case DataType::Type::kUint32:
1872 case DataType::Type::kUint64:
1873 case DataType::Type::kVoid:
1874 LOG(FATAL) << "Unreachable type " << type;
1875 }
1876 }
1877
StoreRelease(HInstruction * instruction,DataType::Type type,CPURegister src,const MemOperand & dst,bool needs_null_check)1878 void CodeGeneratorARM64::StoreRelease(HInstruction* instruction,
1879 DataType::Type type,
1880 CPURegister src,
1881 const MemOperand& dst,
1882 bool needs_null_check) {
1883 MacroAssembler* masm = GetVIXLAssembler();
1884 UseScratchRegisterScope temps(GetVIXLAssembler());
1885 Register temp_base = temps.AcquireX();
1886
1887 DCHECK(!dst.IsPreIndex());
1888 DCHECK(!dst.IsPostIndex());
1889
1890 // TODO(vixl): Let the MacroAssembler handle this.
1891 Operand op = OperandFromMemOperand(dst);
1892 __ Add(temp_base, dst.GetBaseRegister(), op);
1893 MemOperand base = MemOperand(temp_base);
1894 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
1895 switch (type) {
1896 case DataType::Type::kBool:
1897 case DataType::Type::kUint8:
1898 case DataType::Type::kInt8:
1899 {
1900 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1901 __ stlrb(Register(src), base);
1902 if (needs_null_check) {
1903 MaybeRecordImplicitNullCheck(instruction);
1904 }
1905 }
1906 break;
1907 case DataType::Type::kUint16:
1908 case DataType::Type::kInt16:
1909 {
1910 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1911 __ stlrh(Register(src), base);
1912 if (needs_null_check) {
1913 MaybeRecordImplicitNullCheck(instruction);
1914 }
1915 }
1916 break;
1917 case DataType::Type::kInt32:
1918 case DataType::Type::kReference:
1919 case DataType::Type::kInt64:
1920 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
1921 {
1922 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1923 __ stlr(Register(src), base);
1924 if (needs_null_check) {
1925 MaybeRecordImplicitNullCheck(instruction);
1926 }
1927 }
1928 break;
1929 case DataType::Type::kFloat32:
1930 case DataType::Type::kFloat64: {
1931 DCHECK_EQ(src.Is64Bits(), DataType::Is64BitType(type));
1932 Register temp_src;
1933 if (src.IsZero()) {
1934 // The zero register is used to avoid synthesizing zero constants.
1935 temp_src = Register(src);
1936 } else {
1937 DCHECK(src.IsFPRegister());
1938 temp_src = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
1939 __ Fmov(temp_src, VRegister(src));
1940 }
1941 {
1942 ExactAssemblyScope eas(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
1943 __ stlr(temp_src, base);
1944 if (needs_null_check) {
1945 MaybeRecordImplicitNullCheck(instruction);
1946 }
1947 }
1948 break;
1949 }
1950 case DataType::Type::kUint32:
1951 case DataType::Type::kUint64:
1952 case DataType::Type::kVoid:
1953 LOG(FATAL) << "Unreachable type " << type;
1954 }
1955 }
1956
InvokeRuntime(QuickEntrypointEnum entrypoint,HInstruction * instruction,uint32_t dex_pc,SlowPathCode * slow_path)1957 void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
1958 HInstruction* instruction,
1959 uint32_t dex_pc,
1960 SlowPathCode* slow_path) {
1961 ValidateInvokeRuntime(entrypoint, instruction, slow_path);
1962
1963 ThreadOffset64 entrypoint_offset = GetThreadOffset<kArm64PointerSize>(entrypoint);
1964 // Reduce code size for AOT by using shared trampolines for slow path runtime calls across the
1965 // entire oat file. This adds an extra branch and we do not want to slow down the main path.
1966 // For JIT, thunk sharing is per-method, so the gains would be smaller or even negative.
1967 if (slow_path == nullptr || GetCompilerOptions().IsJitCompiler()) {
1968 __ Ldr(lr, MemOperand(tr, entrypoint_offset.Int32Value()));
1969 // Ensure the pc position is recorded immediately after the `blr` instruction.
1970 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
1971 __ blr(lr);
1972 if (EntrypointRequiresStackMap(entrypoint)) {
1973 RecordPcInfo(instruction, dex_pc, slow_path);
1974 }
1975 } else {
1976 // Ensure the pc position is recorded immediately after the `bl` instruction.
1977 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
1978 EmitEntrypointThunkCall(entrypoint_offset);
1979 if (EntrypointRequiresStackMap(entrypoint)) {
1980 RecordPcInfo(instruction, dex_pc, slow_path);
1981 }
1982 }
1983 }
1984
InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,HInstruction * instruction,SlowPathCode * slow_path)1985 void CodeGeneratorARM64::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
1986 HInstruction* instruction,
1987 SlowPathCode* slow_path) {
1988 ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
1989 __ Ldr(lr, MemOperand(tr, entry_point_offset));
1990 __ Blr(lr);
1991 }
1992
GenerateClassInitializationCheck(SlowPathCodeARM64 * slow_path,Register class_reg)1993 void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
1994 Register class_reg) {
1995 UseScratchRegisterScope temps(GetVIXLAssembler());
1996 Register temp = temps.AcquireW();
1997
1998 // CMP (immediate) is limited to imm12 or imm12<<12, so we would need to materialize
1999 // the constant 0xf0000000 for comparison with the full 32-bit field. To reduce the code
2000 // size, load only the high byte of the field and compare with 0xf0.
2001 // Note: The same code size could be achieved with LDR+MNV(asr #24)+CBNZ but benchmarks
2002 // show that this pattern is slower (tested on little cores).
2003 __ Ldrb(temp, HeapOperand(class_reg, status_byte_offset));
2004 __ Cmp(temp, shifted_visibly_initialized_value);
2005 __ B(lo, slow_path->GetEntryLabel());
2006 __ Bind(slow_path->GetExitLabel());
2007 }
2008
GenerateBitstringTypeCheckCompare(HTypeCheckInstruction * check,vixl::aarch64::Register temp)2009 void InstructionCodeGeneratorARM64::GenerateBitstringTypeCheckCompare(
2010 HTypeCheckInstruction* check, vixl::aarch64::Register temp) {
2011 uint32_t path_to_root = check->GetBitstringPathToRoot();
2012 uint32_t mask = check->GetBitstringMask();
2013 DCHECK(IsPowerOfTwo(mask + 1));
2014 size_t mask_bits = WhichPowerOf2(mask + 1);
2015
2016 if (mask_bits == 16u) {
2017 // Load only the bitstring part of the status word.
2018 __ Ldrh(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
2019 } else {
2020 // /* uint32_t */ temp = temp->status_
2021 __ Ldr(temp, HeapOperand(temp, mirror::Class::StatusOffset()));
2022 // Extract the bitstring bits.
2023 __ Ubfx(temp, temp, 0, mask_bits);
2024 }
2025 // Compare the bitstring bits to `path_to_root`.
2026 __ Cmp(temp, path_to_root);
2027 }
2028
GenerateMemoryBarrier(MemBarrierKind kind)2029 void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
2030 BarrierType type = BarrierAll;
2031
2032 switch (kind) {
2033 case MemBarrierKind::kAnyAny:
2034 case MemBarrierKind::kAnyStore: {
2035 type = BarrierAll;
2036 break;
2037 }
2038 case MemBarrierKind::kLoadAny: {
2039 type = BarrierReads;
2040 break;
2041 }
2042 case MemBarrierKind::kStoreStore: {
2043 type = BarrierWrites;
2044 break;
2045 }
2046 default:
2047 LOG(FATAL) << "Unexpected memory barrier " << kind;
2048 }
2049 __ Dmb(InnerShareable, type);
2050 }
2051
CanUseImplicitSuspendCheck() const2052 bool CodeGeneratorARM64::CanUseImplicitSuspendCheck() const {
2053 // Use implicit suspend checks if requested in compiler options unless there are SIMD
2054 // instructions in the graph. The implicit suspend check saves all FP registers as
2055 // 64-bit (in line with the calling convention) but SIMD instructions can use 128-bit
2056 // registers, so they need to be saved in an explicit slow path.
2057 return GetCompilerOptions().GetImplicitSuspendChecks() && !GetGraph()->HasSIMD();
2058 }
2059
GenerateSuspendCheck(HSuspendCheck * instruction,HBasicBlock * successor)2060 void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
2061 HBasicBlock* successor) {
2062 if (instruction->IsNoOp()) {
2063 if (successor != nullptr) {
2064 __ B(codegen_->GetLabelOf(successor));
2065 }
2066 return;
2067 }
2068
2069 if (codegen_->CanUseImplicitSuspendCheck()) {
2070 __ Ldr(kImplicitSuspendCheckRegister, MemOperand(kImplicitSuspendCheckRegister));
2071 codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
2072 if (successor != nullptr) {
2073 __ B(codegen_->GetLabelOf(successor));
2074 }
2075 return;
2076 }
2077
2078 SuspendCheckSlowPathARM64* slow_path =
2079 down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
2080 if (slow_path == nullptr) {
2081 slow_path =
2082 new (codegen_->GetScopedAllocator()) SuspendCheckSlowPathARM64(instruction, successor);
2083 instruction->SetSlowPath(slow_path);
2084 codegen_->AddSlowPath(slow_path);
2085 if (successor != nullptr) {
2086 DCHECK(successor->IsLoopHeader());
2087 }
2088 } else {
2089 DCHECK_EQ(slow_path->GetSuccessor(), successor);
2090 }
2091
2092 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
2093 Register temp = temps.AcquireW();
2094
2095 __ Ldr(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64PointerSize>().SizeValue()));
2096 __ Tst(temp, Thread::SuspendOrCheckpointRequestFlags());
2097 if (successor == nullptr) {
2098 __ B(ne, slow_path->GetEntryLabel());
2099 __ Bind(slow_path->GetReturnLabel());
2100 } else {
2101 __ B(eq, codegen_->GetLabelOf(successor));
2102 __ B(slow_path->GetEntryLabel());
2103 // slow_path will return to GetLabelOf(successor).
2104 }
2105 }
2106
InstructionCodeGeneratorARM64(HGraph * graph,CodeGeneratorARM64 * codegen)2107 InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
2108 CodeGeneratorARM64* codegen)
2109 : InstructionCodeGenerator(graph, codegen),
2110 assembler_(codegen->GetAssembler()),
2111 codegen_(codegen) {}
2112
HandleBinaryOp(HBinaryOperation * instr)2113 void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
2114 DCHECK_EQ(instr->InputCount(), 2U);
2115 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2116 DataType::Type type = instr->GetResultType();
2117 switch (type) {
2118 case DataType::Type::kInt32:
2119 case DataType::Type::kInt64:
2120 locations->SetInAt(0, Location::RequiresRegister());
2121 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
2122 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2123 break;
2124
2125 case DataType::Type::kFloat32:
2126 case DataType::Type::kFloat64:
2127 locations->SetInAt(0, Location::RequiresFpuRegister());
2128 locations->SetInAt(1, Location::RequiresFpuRegister());
2129 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2130 break;
2131
2132 default:
2133 LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
2134 }
2135 }
2136
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)2137 void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction,
2138 const FieldInfo& field_info) {
2139 DCHECK(instruction->IsInstanceFieldGet() ||
2140 instruction->IsStaticFieldGet() ||
2141 instruction->IsPredicatedInstanceFieldGet());
2142
2143 bool is_predicated = instruction->IsPredicatedInstanceFieldGet();
2144
2145 bool object_field_get_with_read_barrier =
2146 gUseReadBarrier && (instruction->GetType() == DataType::Type::kReference);
2147 LocationSummary* locations =
2148 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
2149 object_field_get_with_read_barrier
2150 ? LocationSummary::kCallOnSlowPath
2151 : LocationSummary::kNoCall);
2152 if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
2153 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
2154 // We need a temporary register for the read barrier load in
2155 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
2156 // only if the field is volatile or the offset is too big.
2157 if (field_info.IsVolatile() ||
2158 field_info.GetFieldOffset().Uint32Value() >= kReferenceLoadMinFarOffset) {
2159 locations->AddTemp(FixedTempLocation());
2160 }
2161 }
2162 // Input for object receiver.
2163 locations->SetInAt(is_predicated ? 1 : 0, Location::RequiresRegister());
2164 if (DataType::IsFloatingPointType(instruction->GetType())) {
2165 if (is_predicated) {
2166 locations->SetInAt(0, Location::RequiresFpuRegister());
2167 locations->SetOut(Location::SameAsFirstInput());
2168 } else {
2169 locations->SetOut(Location::RequiresFpuRegister());
2170 }
2171 } else {
2172 if (is_predicated) {
2173 locations->SetInAt(0, Location::RequiresRegister());
2174 locations->SetOut(Location::SameAsFirstInput());
2175 } else {
2176 // The output overlaps for an object field get when read barriers
2177 // are enabled: we do not want the load to overwrite the object's
2178 // location, as we need it to emit the read barrier.
2179 locations->SetOut(Location::RequiresRegister(),
2180 object_field_get_with_read_barrier ? Location::kOutputOverlap
2181 : Location::kNoOutputOverlap);
2182 }
2183 }
2184 }
2185
HandleFieldGet(HInstruction * instruction,const FieldInfo & field_info)2186 void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
2187 const FieldInfo& field_info) {
2188 DCHECK(instruction->IsInstanceFieldGet() ||
2189 instruction->IsStaticFieldGet() ||
2190 instruction->IsPredicatedInstanceFieldGet());
2191 bool is_predicated = instruction->IsPredicatedInstanceFieldGet();
2192 LocationSummary* locations = instruction->GetLocations();
2193 uint32_t receiver_input = is_predicated ? 1 : 0;
2194 Location base_loc = locations->InAt(receiver_input);
2195 Location out = locations->Out();
2196 uint32_t offset = field_info.GetFieldOffset().Uint32Value();
2197 DCHECK_EQ(DataType::Size(field_info.GetFieldType()), DataType::Size(instruction->GetType()));
2198 DataType::Type load_type = instruction->GetType();
2199 MemOperand field =
2200 HeapOperand(InputRegisterAt(instruction, receiver_input), field_info.GetFieldOffset());
2201
2202 if (gUseReadBarrier && kUseBakerReadBarrier &&
2203 load_type == DataType::Type::kReference) {
2204 // Object FieldGet with Baker's read barrier case.
2205 // /* HeapReference<Object> */ out = *(base + offset)
2206 Register base = RegisterFrom(base_loc, DataType::Type::kReference);
2207 Location maybe_temp =
2208 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
2209 // Note that potential implicit null checks are handled in this
2210 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
2211 codegen_->GenerateFieldLoadWithBakerReadBarrier(
2212 instruction,
2213 out,
2214 base,
2215 offset,
2216 maybe_temp,
2217 /* needs_null_check= */ true,
2218 field_info.IsVolatile());
2219 } else {
2220 // General case.
2221 if (field_info.IsVolatile()) {
2222 // Note that a potential implicit null check is handled in this
2223 // CodeGeneratorARM64::LoadAcquire call.
2224 // NB: LoadAcquire will record the pc info if needed.
2225 codegen_->LoadAcquire(instruction,
2226 load_type,
2227 OutputCPURegister(instruction),
2228 field,
2229 /* needs_null_check= */ true);
2230 } else {
2231 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2232 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2233 codegen_->Load(load_type, OutputCPURegister(instruction), field);
2234 codegen_->MaybeRecordImplicitNullCheck(instruction);
2235 }
2236 if (load_type == DataType::Type::kReference) {
2237 // If read barriers are enabled, emit read barriers other than
2238 // Baker's using a slow path (and also unpoison the loaded
2239 // reference, if heap poisoning is enabled).
2240 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
2241 }
2242 }
2243 }
2244
HandleFieldSet(HInstruction * instruction)2245 void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
2246 LocationSummary* locations =
2247 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2248 locations->SetInAt(0, Location::RequiresRegister());
2249 HInstruction* value = instruction->InputAt(1);
2250 if (IsZeroBitPattern(value)) {
2251 locations->SetInAt(1, Location::ConstantLocation(value));
2252 } else if (DataType::IsFloatingPointType(value->GetType())) {
2253 locations->SetInAt(1, Location::RequiresFpuRegister());
2254 } else {
2255 locations->SetInAt(1, Location::RequiresRegister());
2256 }
2257 }
2258
HandleFieldSet(HInstruction * instruction,const FieldInfo & field_info,bool value_can_be_null,WriteBarrierKind write_barrier_kind)2259 void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
2260 const FieldInfo& field_info,
2261 bool value_can_be_null,
2262 WriteBarrierKind write_barrier_kind) {
2263 DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
2264 bool is_predicated =
2265 instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->GetIsPredicatedSet();
2266
2267 Register obj = InputRegisterAt(instruction, 0);
2268 CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 1);
2269 CPURegister source = value;
2270 Offset offset = field_info.GetFieldOffset();
2271 DataType::Type field_type = field_info.GetFieldType();
2272 std::optional<vixl::aarch64::Label> pred_is_null;
2273 if (is_predicated) {
2274 pred_is_null.emplace();
2275 __ Cbz(obj, &*pred_is_null);
2276 }
2277
2278 {
2279 // We use a block to end the scratch scope before the write barrier, thus
2280 // freeing the temporary registers so they can be used in `MarkGCCard`.
2281 UseScratchRegisterScope temps(GetVIXLAssembler());
2282
2283 if (kPoisonHeapReferences && field_type == DataType::Type::kReference) {
2284 DCHECK(value.IsW());
2285 Register temp = temps.AcquireW();
2286 __ Mov(temp, value.W());
2287 GetAssembler()->PoisonHeapReference(temp.W());
2288 source = temp;
2289 }
2290
2291 if (field_info.IsVolatile()) {
2292 codegen_->StoreRelease(
2293 instruction, field_type, source, HeapOperand(obj, offset), /* needs_null_check= */ true);
2294 } else {
2295 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2296 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2297 codegen_->Store(field_type, source, HeapOperand(obj, offset));
2298 codegen_->MaybeRecordImplicitNullCheck(instruction);
2299 }
2300 }
2301
2302 if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1)) &&
2303 write_barrier_kind != WriteBarrierKind::kDontEmit) {
2304 codegen_->MarkGCCard(
2305 obj,
2306 Register(value),
2307 value_can_be_null && write_barrier_kind == WriteBarrierKind::kEmitWithNullCheck);
2308 }
2309
2310 if (is_predicated) {
2311 __ Bind(&*pred_is_null);
2312 }
2313 }
2314
HandleBinaryOp(HBinaryOperation * instr)2315 void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
2316 DataType::Type type = instr->GetType();
2317
2318 switch (type) {
2319 case DataType::Type::kInt32:
2320 case DataType::Type::kInt64: {
2321 Register dst = OutputRegister(instr);
2322 Register lhs = InputRegisterAt(instr, 0);
2323 Operand rhs = InputOperandAt(instr, 1);
2324 if (instr->IsAdd()) {
2325 __ Add(dst, lhs, rhs);
2326 } else if (instr->IsAnd()) {
2327 __ And(dst, lhs, rhs);
2328 } else if (instr->IsOr()) {
2329 __ Orr(dst, lhs, rhs);
2330 } else if (instr->IsSub()) {
2331 __ Sub(dst, lhs, rhs);
2332 } else if (instr->IsRor()) {
2333 if (rhs.IsImmediate()) {
2334 uint32_t shift = rhs.GetImmediate() & (lhs.GetSizeInBits() - 1);
2335 __ Ror(dst, lhs, shift);
2336 } else {
2337 // Ensure shift distance is in the same size register as the result. If
2338 // we are rotating a long and the shift comes in a w register originally,
2339 // we don't need to sxtw for use as an x since the shift distances are
2340 // all & reg_bits - 1.
2341 __ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
2342 }
2343 } else if (instr->IsMin() || instr->IsMax()) {
2344 __ Cmp(lhs, rhs);
2345 __ Csel(dst, lhs, rhs, instr->IsMin() ? lt : gt);
2346 } else {
2347 DCHECK(instr->IsXor());
2348 __ Eor(dst, lhs, rhs);
2349 }
2350 break;
2351 }
2352 case DataType::Type::kFloat32:
2353 case DataType::Type::kFloat64: {
2354 VRegister dst = OutputFPRegister(instr);
2355 VRegister lhs = InputFPRegisterAt(instr, 0);
2356 VRegister rhs = InputFPRegisterAt(instr, 1);
2357 if (instr->IsAdd()) {
2358 __ Fadd(dst, lhs, rhs);
2359 } else if (instr->IsSub()) {
2360 __ Fsub(dst, lhs, rhs);
2361 } else if (instr->IsMin()) {
2362 __ Fmin(dst, lhs, rhs);
2363 } else if (instr->IsMax()) {
2364 __ Fmax(dst, lhs, rhs);
2365 } else {
2366 LOG(FATAL) << "Unexpected floating-point binary operation";
2367 }
2368 break;
2369 }
2370 default:
2371 LOG(FATAL) << "Unexpected binary operation type " << type;
2372 }
2373 }
2374
HandleShift(HBinaryOperation * instr)2375 void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
2376 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
2377
2378 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2379 DataType::Type type = instr->GetResultType();
2380 switch (type) {
2381 case DataType::Type::kInt32:
2382 case DataType::Type::kInt64: {
2383 locations->SetInAt(0, Location::RequiresRegister());
2384 locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
2385 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2386 break;
2387 }
2388 default:
2389 LOG(FATAL) << "Unexpected shift type " << type;
2390 }
2391 }
2392
HandleShift(HBinaryOperation * instr)2393 void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
2394 DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
2395
2396 DataType::Type type = instr->GetType();
2397 switch (type) {
2398 case DataType::Type::kInt32:
2399 case DataType::Type::kInt64: {
2400 Register dst = OutputRegister(instr);
2401 Register lhs = InputRegisterAt(instr, 0);
2402 Operand rhs = InputOperandAt(instr, 1);
2403 if (rhs.IsImmediate()) {
2404 uint32_t shift_value = rhs.GetImmediate() &
2405 (type == DataType::Type::kInt32 ? kMaxIntShiftDistance : kMaxLongShiftDistance);
2406 if (instr->IsShl()) {
2407 __ Lsl(dst, lhs, shift_value);
2408 } else if (instr->IsShr()) {
2409 __ Asr(dst, lhs, shift_value);
2410 } else {
2411 __ Lsr(dst, lhs, shift_value);
2412 }
2413 } else {
2414 Register rhs_reg = dst.IsX() ? rhs.GetRegister().X() : rhs.GetRegister().W();
2415
2416 if (instr->IsShl()) {
2417 __ Lsl(dst, lhs, rhs_reg);
2418 } else if (instr->IsShr()) {
2419 __ Asr(dst, lhs, rhs_reg);
2420 } else {
2421 __ Lsr(dst, lhs, rhs_reg);
2422 }
2423 }
2424 break;
2425 }
2426 default:
2427 LOG(FATAL) << "Unexpected shift operation type " << type;
2428 }
2429 }
2430
VisitAdd(HAdd * instruction)2431 void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
2432 HandleBinaryOp(instruction);
2433 }
2434
VisitAdd(HAdd * instruction)2435 void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
2436 HandleBinaryOp(instruction);
2437 }
2438
VisitAnd(HAnd * instruction)2439 void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
2440 HandleBinaryOp(instruction);
2441 }
2442
VisitAnd(HAnd * instruction)2443 void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
2444 HandleBinaryOp(instruction);
2445 }
2446
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)2447 void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
2448 DCHECK(DataType::IsIntegralType(instr->GetType())) << instr->GetType();
2449 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instr);
2450 locations->SetInAt(0, Location::RequiresRegister());
2451 // There is no immediate variant of negated bitwise instructions in AArch64.
2452 locations->SetInAt(1, Location::RequiresRegister());
2453 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2454 }
2455
VisitBitwiseNegatedRight(HBitwiseNegatedRight * instr)2456 void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
2457 Register dst = OutputRegister(instr);
2458 Register lhs = InputRegisterAt(instr, 0);
2459 Register rhs = InputRegisterAt(instr, 1);
2460
2461 switch (instr->GetOpKind()) {
2462 case HInstruction::kAnd:
2463 __ Bic(dst, lhs, rhs);
2464 break;
2465 case HInstruction::kOr:
2466 __ Orn(dst, lhs, rhs);
2467 break;
2468 case HInstruction::kXor:
2469 __ Eon(dst, lhs, rhs);
2470 break;
2471 default:
2472 LOG(FATAL) << "Unreachable";
2473 }
2474 }
2475
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)2476 void LocationsBuilderARM64::VisitDataProcWithShifterOp(
2477 HDataProcWithShifterOp* instruction) {
2478 DCHECK(instruction->GetType() == DataType::Type::kInt32 ||
2479 instruction->GetType() == DataType::Type::kInt64);
2480 LocationSummary* locations =
2481 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2482 if (instruction->GetInstrKind() == HInstruction::kNeg) {
2483 locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)));
2484 } else {
2485 locations->SetInAt(0, Location::RequiresRegister());
2486 }
2487 locations->SetInAt(1, Location::RequiresRegister());
2488 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2489 }
2490
VisitDataProcWithShifterOp(HDataProcWithShifterOp * instruction)2491 void InstructionCodeGeneratorARM64::VisitDataProcWithShifterOp(
2492 HDataProcWithShifterOp* instruction) {
2493 DataType::Type type = instruction->GetType();
2494 HInstruction::InstructionKind kind = instruction->GetInstrKind();
2495 DCHECK(type == DataType::Type::kInt32 || type == DataType::Type::kInt64);
2496 Register out = OutputRegister(instruction);
2497 Register left;
2498 if (kind != HInstruction::kNeg) {
2499 left = InputRegisterAt(instruction, 0);
2500 }
2501 // If this `HDataProcWithShifterOp` was created by merging a type conversion as the
2502 // shifter operand operation, the IR generating `right_reg` (input to the type
2503 // conversion) can have a different type from the current instruction's type,
2504 // so we manually indicate the type.
2505 Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
2506 Operand right_operand(0);
2507
2508 HDataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
2509 if (HDataProcWithShifterOp::IsExtensionOp(op_kind)) {
2510 right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
2511 } else {
2512 right_operand = Operand(right_reg,
2513 helpers::ShiftFromOpKind(op_kind),
2514 instruction->GetShiftAmount());
2515 }
2516
2517 // Logical binary operations do not support extension operations in the
2518 // operand. Note that VIXL would still manage if it was passed by generating
2519 // the extension as a separate instruction.
2520 // `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
2521 DCHECK_IMPLIES(right_operand.IsExtendedRegister(),
2522 kind != HInstruction::kAnd && kind != HInstruction::kOr &&
2523 kind != HInstruction::kXor && kind != HInstruction::kNeg);
2524 switch (kind) {
2525 case HInstruction::kAdd:
2526 __ Add(out, left, right_operand);
2527 break;
2528 case HInstruction::kAnd:
2529 __ And(out, left, right_operand);
2530 break;
2531 case HInstruction::kNeg:
2532 DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero());
2533 __ Neg(out, right_operand);
2534 break;
2535 case HInstruction::kOr:
2536 __ Orr(out, left, right_operand);
2537 break;
2538 case HInstruction::kSub:
2539 __ Sub(out, left, right_operand);
2540 break;
2541 case HInstruction::kXor:
2542 __ Eor(out, left, right_operand);
2543 break;
2544 default:
2545 LOG(FATAL) << "Unexpected operation kind: " << kind;
2546 UNREACHABLE();
2547 }
2548 }
2549
VisitIntermediateAddress(HIntermediateAddress * instruction)2550 void LocationsBuilderARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
2551 LocationSummary* locations =
2552 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2553 locations->SetInAt(0, Location::RequiresRegister());
2554 locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
2555 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2556 }
2557
VisitIntermediateAddress(HIntermediateAddress * instruction)2558 void InstructionCodeGeneratorARM64::VisitIntermediateAddress(HIntermediateAddress* instruction) {
2559 __ Add(OutputRegister(instruction),
2560 InputRegisterAt(instruction, 0),
2561 Operand(InputOperandAt(instruction, 1)));
2562 }
2563
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)2564 void LocationsBuilderARM64::VisitIntermediateAddressIndex(HIntermediateAddressIndex* instruction) {
2565 LocationSummary* locations =
2566 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
2567
2568 HIntConstant* shift = instruction->GetShift()->AsIntConstant();
2569
2570 locations->SetInAt(0, Location::RequiresRegister());
2571 // For byte case we don't need to shift the index variable so we can encode the data offset into
2572 // ADD instruction. For other cases we prefer the data_offset to be in register; that will hoist
2573 // data offset constant generation out of the loop and reduce the critical path length in the
2574 // loop.
2575 locations->SetInAt(1, shift->GetValue() == 0
2576 ? Location::ConstantLocation(instruction->GetOffset())
2577 : Location::RequiresRegister());
2578 locations->SetInAt(2, Location::ConstantLocation(shift));
2579 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2580 }
2581
VisitIntermediateAddressIndex(HIntermediateAddressIndex * instruction)2582 void InstructionCodeGeneratorARM64::VisitIntermediateAddressIndex(
2583 HIntermediateAddressIndex* instruction) {
2584 Register index_reg = InputRegisterAt(instruction, 0);
2585 uint32_t shift = Int64FromLocation(instruction->GetLocations()->InAt(2));
2586 uint32_t offset = instruction->GetOffset()->AsIntConstant()->GetValue();
2587
2588 if (shift == 0) {
2589 __ Add(OutputRegister(instruction), index_reg, offset);
2590 } else {
2591 Register offset_reg = InputRegisterAt(instruction, 1);
2592 __ Add(OutputRegister(instruction), offset_reg, Operand(index_reg, LSL, shift));
2593 }
2594 }
2595
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)2596 void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
2597 LocationSummary* locations =
2598 new (GetGraph()->GetAllocator()) LocationSummary(instr, LocationSummary::kNoCall);
2599 HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2600 if (instr->GetOpKind() == HInstruction::kSub &&
2601 accumulator->IsConstant() &&
2602 accumulator->AsConstant()->IsArithmeticZero()) {
2603 // Don't allocate register for Mneg instruction.
2604 } else {
2605 locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
2606 Location::RequiresRegister());
2607 }
2608 locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
2609 locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
2610 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2611 }
2612
VisitMultiplyAccumulate(HMultiplyAccumulate * instr)2613 void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
2614 Register res = OutputRegister(instr);
2615 Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
2616 Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
2617
2618 // Avoid emitting code that could trigger Cortex A53's erratum 835769.
2619 // This fixup should be carried out for all multiply-accumulate instructions:
2620 // madd, msub, smaddl, smsubl, umaddl and umsubl.
2621 if (instr->GetType() == DataType::Type::kInt64 &&
2622 codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
2623 MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
2624 ptrdiff_t off = masm->GetCursorOffset();
2625 if (off >= static_cast<ptrdiff_t>(kInstructionSize) &&
2626 masm->GetInstructionAt(off - static_cast<ptrdiff_t>(kInstructionSize))->IsLoadOrStore()) {
2627 // Make sure we emit only exactly one nop.
2628 ExactAssemblyScope scope(masm, kInstructionSize, CodeBufferCheckScope::kExactSize);
2629 __ nop();
2630 }
2631 }
2632
2633 if (instr->GetOpKind() == HInstruction::kAdd) {
2634 Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2635 __ Madd(res, mul_left, mul_right, accumulator);
2636 } else {
2637 DCHECK(instr->GetOpKind() == HInstruction::kSub);
2638 HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
2639 if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) {
2640 __ Mneg(res, mul_left, mul_right);
2641 } else {
2642 Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
2643 __ Msub(res, mul_left, mul_right, accumulator);
2644 }
2645 }
2646 }
2647
VisitArrayGet(HArrayGet * instruction)2648 void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
2649 bool object_array_get_with_read_barrier =
2650 gUseReadBarrier && (instruction->GetType() == DataType::Type::kReference);
2651 LocationSummary* locations =
2652 new (GetGraph()->GetAllocator()) LocationSummary(instruction,
2653 object_array_get_with_read_barrier
2654 ? LocationSummary::kCallOnSlowPath
2655 : LocationSummary::kNoCall);
2656 if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
2657 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
2658 if (instruction->GetIndex()->IsConstant()) {
2659 // Array loads with constant index are treated as field loads.
2660 // We need a temporary register for the read barrier load in
2661 // CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier()
2662 // only if the offset is too big.
2663 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
2664 uint32_t index = instruction->GetIndex()->AsIntConstant()->GetValue();
2665 offset += index << DataType::SizeShift(DataType::Type::kReference);
2666 if (offset >= kReferenceLoadMinFarOffset) {
2667 locations->AddTemp(FixedTempLocation());
2668 }
2669 } else if (!instruction->GetArray()->IsIntermediateAddress()) {
2670 // We need a non-scratch temporary for the array data pointer in
2671 // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier() for the case with no
2672 // intermediate address.
2673 locations->AddTemp(Location::RequiresRegister());
2674 }
2675 }
2676 locations->SetInAt(0, Location::RequiresRegister());
2677 locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
2678 if (DataType::IsFloatingPointType(instruction->GetType())) {
2679 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
2680 } else {
2681 // The output overlaps in the case of an object array get with
2682 // read barriers enabled: we do not want the move to overwrite the
2683 // array's location, as we need it to emit the read barrier.
2684 locations->SetOut(
2685 Location::RequiresRegister(),
2686 object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
2687 }
2688 }
2689
VisitArrayGet(HArrayGet * instruction)2690 void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
2691 DataType::Type type = instruction->GetType();
2692 Register obj = InputRegisterAt(instruction, 0);
2693 LocationSummary* locations = instruction->GetLocations();
2694 Location index = locations->InAt(1);
2695 Location out = locations->Out();
2696 uint32_t offset = CodeGenerator::GetArrayDataOffset(instruction);
2697 const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
2698 instruction->IsStringCharAt();
2699 MacroAssembler* masm = GetVIXLAssembler();
2700 UseScratchRegisterScope temps(masm);
2701
2702 // The non-Baker read barrier instrumentation of object ArrayGet instructions
2703 // does not support the HIntermediateAddress instruction.
2704 DCHECK(!((type == DataType::Type::kReference) &&
2705 instruction->GetArray()->IsIntermediateAddress() &&
2706 gUseReadBarrier &&
2707 !kUseBakerReadBarrier));
2708
2709 if (type == DataType::Type::kReference && gUseReadBarrier && kUseBakerReadBarrier) {
2710 // Object ArrayGet with Baker's read barrier case.
2711 // Note that a potential implicit null check is handled in the
2712 // CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
2713 DCHECK(!instruction->CanDoImplicitNullCheckOn(instruction->InputAt(0)));
2714 if (index.IsConstant()) {
2715 DCHECK(!instruction->GetArray()->IsIntermediateAddress());
2716 // Array load with a constant index can be treated as a field load.
2717 offset += Int64FromLocation(index) << DataType::SizeShift(type);
2718 Location maybe_temp =
2719 (locations->GetTempCount() != 0) ? locations->GetTemp(0) : Location::NoLocation();
2720 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
2721 out,
2722 obj.W(),
2723 offset,
2724 maybe_temp,
2725 /* needs_null_check= */ false,
2726 /* use_load_acquire= */ false);
2727 } else {
2728 codegen_->GenerateArrayLoadWithBakerReadBarrier(
2729 instruction, out, obj.W(), offset, index, /* needs_null_check= */ false);
2730 }
2731 } else {
2732 // General case.
2733 MemOperand source = HeapOperand(obj);
2734 Register length;
2735 if (maybe_compressed_char_at) {
2736 uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
2737 length = temps.AcquireW();
2738 {
2739 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2740 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2741
2742 if (instruction->GetArray()->IsIntermediateAddress()) {
2743 DCHECK_LT(count_offset, offset);
2744 int64_t adjusted_offset =
2745 static_cast<int64_t>(count_offset) - static_cast<int64_t>(offset);
2746 // Note that `adjusted_offset` is negative, so this will be a LDUR.
2747 __ Ldr(length, MemOperand(obj.X(), adjusted_offset));
2748 } else {
2749 __ Ldr(length, HeapOperand(obj, count_offset));
2750 }
2751 codegen_->MaybeRecordImplicitNullCheck(instruction);
2752 }
2753 }
2754 if (index.IsConstant()) {
2755 if (maybe_compressed_char_at) {
2756 vixl::aarch64::Label uncompressed_load, done;
2757 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2758 "Expecting 0=compressed, 1=uncompressed");
2759 __ Tbnz(length.W(), 0, &uncompressed_load);
2760 __ Ldrb(Register(OutputCPURegister(instruction)),
2761 HeapOperand(obj, offset + Int64FromLocation(index)));
2762 __ B(&done);
2763 __ Bind(&uncompressed_load);
2764 __ Ldrh(Register(OutputCPURegister(instruction)),
2765 HeapOperand(obj, offset + (Int64FromLocation(index) << 1)));
2766 __ Bind(&done);
2767 } else {
2768 offset += Int64FromLocation(index) << DataType::SizeShift(type);
2769 source = HeapOperand(obj, offset);
2770 }
2771 } else {
2772 Register temp = temps.AcquireSameSizeAs(obj);
2773 if (instruction->GetArray()->IsIntermediateAddress()) {
2774 // We do not need to compute the intermediate address from the array: the
2775 // input instruction has done it already. See the comment in
2776 // `TryExtractArrayAccessAddress()`.
2777 if (kIsDebugBuild) {
2778 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
2779 DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
2780 }
2781 temp = obj;
2782 } else {
2783 __ Add(temp, obj, offset);
2784 }
2785 if (maybe_compressed_char_at) {
2786 vixl::aarch64::Label uncompressed_load, done;
2787 static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
2788 "Expecting 0=compressed, 1=uncompressed");
2789 __ Tbnz(length.W(), 0, &uncompressed_load);
2790 __ Ldrb(Register(OutputCPURegister(instruction)),
2791 HeapOperand(temp, XRegisterFrom(index), LSL, 0));
2792 __ B(&done);
2793 __ Bind(&uncompressed_load);
2794 __ Ldrh(Register(OutputCPURegister(instruction)),
2795 HeapOperand(temp, XRegisterFrom(index), LSL, 1));
2796 __ Bind(&done);
2797 } else {
2798 source = HeapOperand(temp, XRegisterFrom(index), LSL, DataType::SizeShift(type));
2799 }
2800 }
2801 if (!maybe_compressed_char_at) {
2802 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2803 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2804 codegen_->Load(type, OutputCPURegister(instruction), source);
2805 codegen_->MaybeRecordImplicitNullCheck(instruction);
2806 }
2807
2808 if (type == DataType::Type::kReference) {
2809 static_assert(
2810 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
2811 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
2812 Location obj_loc = locations->InAt(0);
2813 if (index.IsConstant()) {
2814 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
2815 } else {
2816 codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
2817 }
2818 }
2819 }
2820 }
2821
VisitArrayLength(HArrayLength * instruction)2822 void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
2823 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
2824 locations->SetInAt(0, Location::RequiresRegister());
2825 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
2826 }
2827
VisitArrayLength(HArrayLength * instruction)2828 void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
2829 uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
2830 vixl::aarch64::Register out = OutputRegister(instruction);
2831 {
2832 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2833 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2834 __ Ldr(out, HeapOperand(InputRegisterAt(instruction, 0), offset));
2835 codegen_->MaybeRecordImplicitNullCheck(instruction);
2836 }
2837 // Mask out compression flag from String's array length.
2838 if (mirror::kUseStringCompression && instruction->IsStringLength()) {
2839 __ Lsr(out.W(), out.W(), 1u);
2840 }
2841 }
2842
VisitArraySet(HArraySet * instruction)2843 void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
2844 DataType::Type value_type = instruction->GetComponentType();
2845
2846 bool needs_type_check = instruction->NeedsTypeCheck();
2847 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
2848 instruction,
2849 needs_type_check ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall);
2850 locations->SetInAt(0, Location::RequiresRegister());
2851 locations->SetInAt(1, Location::RegisterOrConstant(instruction->GetIndex()));
2852 HInstruction* value = instruction->GetValue();
2853 if (IsZeroBitPattern(value)) {
2854 locations->SetInAt(2, Location::ConstantLocation(value));
2855 } else if (DataType::IsFloatingPointType(value_type)) {
2856 locations->SetInAt(2, Location::RequiresFpuRegister());
2857 } else {
2858 locations->SetInAt(2, Location::RequiresRegister());
2859 }
2860 }
2861
VisitArraySet(HArraySet * instruction)2862 void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
2863 DataType::Type value_type = instruction->GetComponentType();
2864 LocationSummary* locations = instruction->GetLocations();
2865 bool needs_type_check = instruction->NeedsTypeCheck();
2866 bool needs_write_barrier =
2867 CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
2868
2869 Register array = InputRegisterAt(instruction, 0);
2870 CPURegister value = InputCPURegisterOrZeroRegAt(instruction, 2);
2871 CPURegister source = value;
2872 Location index = locations->InAt(1);
2873 size_t offset = mirror::Array::DataOffset(DataType::Size(value_type)).Uint32Value();
2874 MemOperand destination = HeapOperand(array);
2875 MacroAssembler* masm = GetVIXLAssembler();
2876
2877 if (!needs_write_barrier) {
2878 DCHECK(!needs_type_check);
2879 if (index.IsConstant()) {
2880 offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
2881 destination = HeapOperand(array, offset);
2882 } else {
2883 UseScratchRegisterScope temps(masm);
2884 Register temp = temps.AcquireSameSizeAs(array);
2885 if (instruction->GetArray()->IsIntermediateAddress()) {
2886 // We do not need to compute the intermediate address from the array: the
2887 // input instruction has done it already. See the comment in
2888 // `TryExtractArrayAccessAddress()`.
2889 if (kIsDebugBuild) {
2890 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
2891 DCHECK(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
2892 }
2893 temp = array;
2894 } else {
2895 __ Add(temp, array, offset);
2896 }
2897 destination = HeapOperand(temp,
2898 XRegisterFrom(index),
2899 LSL,
2900 DataType::SizeShift(value_type));
2901 }
2902 {
2903 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
2904 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2905 codegen_->Store(value_type, value, destination);
2906 codegen_->MaybeRecordImplicitNullCheck(instruction);
2907 }
2908 } else {
2909 DCHECK(!instruction->GetArray()->IsIntermediateAddress());
2910
2911 bool can_value_be_null = instruction->GetValueCanBeNull();
2912 vixl::aarch64::Label do_store;
2913 if (can_value_be_null) {
2914 __ Cbz(Register(value), &do_store);
2915 }
2916
2917 SlowPathCodeARM64* slow_path = nullptr;
2918 if (needs_type_check) {
2919 slow_path = new (codegen_->GetScopedAllocator()) ArraySetSlowPathARM64(instruction);
2920 codegen_->AddSlowPath(slow_path);
2921
2922 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
2923 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
2924 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
2925
2926 UseScratchRegisterScope temps(masm);
2927 Register temp = temps.AcquireSameSizeAs(array);
2928 Register temp2 = temps.AcquireSameSizeAs(array);
2929
2930 // Note that when Baker read barriers are enabled, the type
2931 // checks are performed without read barriers. This is fine,
2932 // even in the case where a class object is in the from-space
2933 // after the flip, as a comparison involving such a type would
2934 // not produce a false positive; it may of course produce a
2935 // false negative, in which case we would take the ArraySet
2936 // slow path.
2937
2938 // /* HeapReference<Class> */ temp = array->klass_
2939 {
2940 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
2941 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
2942 __ Ldr(temp, HeapOperand(array, class_offset));
2943 codegen_->MaybeRecordImplicitNullCheck(instruction);
2944 }
2945 GetAssembler()->MaybeUnpoisonHeapReference(temp);
2946
2947 // /* HeapReference<Class> */ temp = temp->component_type_
2948 __ Ldr(temp, HeapOperand(temp, component_offset));
2949 // /* HeapReference<Class> */ temp2 = value->klass_
2950 __ Ldr(temp2, HeapOperand(Register(value), class_offset));
2951 // If heap poisoning is enabled, no need to unpoison `temp`
2952 // nor `temp2`, as we are comparing two poisoned references.
2953 __ Cmp(temp, temp2);
2954
2955 if (instruction->StaticTypeOfArrayIsObjectArray()) {
2956 vixl::aarch64::Label do_put;
2957 __ B(eq, &do_put);
2958 // If heap poisoning is enabled, the `temp` reference has
2959 // not been unpoisoned yet; unpoison it now.
2960 GetAssembler()->MaybeUnpoisonHeapReference(temp);
2961
2962 // /* HeapReference<Class> */ temp = temp->super_class_
2963 __ Ldr(temp, HeapOperand(temp, super_offset));
2964 // If heap poisoning is enabled, no need to unpoison
2965 // `temp`, as we are comparing against null below.
2966 __ Cbnz(temp, slow_path->GetEntryLabel());
2967 __ Bind(&do_put);
2968 } else {
2969 __ B(ne, slow_path->GetEntryLabel());
2970 }
2971 }
2972
2973 if (instruction->GetWriteBarrierKind() != WriteBarrierKind::kDontEmit) {
2974 DCHECK_EQ(instruction->GetWriteBarrierKind(), WriteBarrierKind::kEmitNoNullCheck)
2975 << " Already null checked so we shouldn't do it again.";
2976 codegen_->MarkGCCard(array, value.W(), /* emit_null_check= */ false);
2977 }
2978
2979 if (can_value_be_null) {
2980 DCHECK(do_store.IsLinked());
2981 __ Bind(&do_store);
2982 }
2983
2984 UseScratchRegisterScope temps(masm);
2985 if (kPoisonHeapReferences) {
2986 Register temp_source = temps.AcquireSameSizeAs(array);
2987 DCHECK(value.IsW());
2988 __ Mov(temp_source, value.W());
2989 GetAssembler()->PoisonHeapReference(temp_source);
2990 source = temp_source;
2991 }
2992
2993 if (index.IsConstant()) {
2994 offset += Int64FromLocation(index) << DataType::SizeShift(value_type);
2995 destination = HeapOperand(array, offset);
2996 } else {
2997 Register temp_base = temps.AcquireSameSizeAs(array);
2998 __ Add(temp_base, array, offset);
2999 destination = HeapOperand(temp_base,
3000 XRegisterFrom(index),
3001 LSL,
3002 DataType::SizeShift(value_type));
3003 }
3004
3005 {
3006 // Ensure that between store and MaybeRecordImplicitNullCheck there are no pools emitted.
3007 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
3008 __ Str(source, destination);
3009
3010 if (can_value_be_null || !needs_type_check) {
3011 codegen_->MaybeRecordImplicitNullCheck(instruction);
3012 }
3013 }
3014
3015 if (slow_path != nullptr) {
3016 __ Bind(slow_path->GetExitLabel());
3017 }
3018 }
3019 }
3020
VisitBoundsCheck(HBoundsCheck * instruction)3021 void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
3022 RegisterSet caller_saves = RegisterSet::Empty();
3023 InvokeRuntimeCallingConvention calling_convention;
3024 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
3025 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1).GetCode()));
3026 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
3027
3028 // If both index and length are constant, we can check the bounds statically and
3029 // generate code accordingly. We want to make sure we generate constant locations
3030 // in that case, regardless of whether they are encodable in the comparison or not.
3031 HInstruction* index = instruction->InputAt(0);
3032 HInstruction* length = instruction->InputAt(1);
3033 bool both_const = index->IsConstant() && length->IsConstant();
3034 locations->SetInAt(0, both_const
3035 ? Location::ConstantLocation(index)
3036 : ARM64EncodableConstantOrRegister(index, instruction));
3037 locations->SetInAt(1, both_const
3038 ? Location::ConstantLocation(length)
3039 : ARM64EncodableConstantOrRegister(length, instruction));
3040 }
3041
VisitBoundsCheck(HBoundsCheck * instruction)3042 void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
3043 LocationSummary* locations = instruction->GetLocations();
3044 Location index_loc = locations->InAt(0);
3045 Location length_loc = locations->InAt(1);
3046
3047 int cmp_first_input = 0;
3048 int cmp_second_input = 1;
3049 Condition cond = hs;
3050
3051 if (index_loc.IsConstant()) {
3052 int64_t index = Int64FromLocation(index_loc);
3053 if (length_loc.IsConstant()) {
3054 int64_t length = Int64FromLocation(length_loc);
3055 if (index < 0 || index >= length) {
3056 BoundsCheckSlowPathARM64* slow_path =
3057 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
3058 codegen_->AddSlowPath(slow_path);
3059 __ B(slow_path->GetEntryLabel());
3060 } else {
3061 // BCE will remove the bounds check if we are guaranteed to pass.
3062 // However, some optimization after BCE may have generated this, and we should not
3063 // generate a bounds check if it is a valid range.
3064 }
3065 return;
3066 }
3067 // Only the index is constant: change the order of the operands and commute the condition
3068 // so we can use an immediate constant for the index (only the second input to a cmp
3069 // instruction can be an immediate).
3070 cmp_first_input = 1;
3071 cmp_second_input = 0;
3072 cond = ls;
3073 }
3074 BoundsCheckSlowPathARM64* slow_path =
3075 new (codegen_->GetScopedAllocator()) BoundsCheckSlowPathARM64(instruction);
3076 __ Cmp(InputRegisterAt(instruction, cmp_first_input),
3077 InputOperandAt(instruction, cmp_second_input));
3078 codegen_->AddSlowPath(slow_path);
3079 __ B(slow_path->GetEntryLabel(), cond);
3080 }
3081
VisitClinitCheck(HClinitCheck * check)3082 void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
3083 LocationSummary* locations =
3084 new (GetGraph()->GetAllocator()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
3085 locations->SetInAt(0, Location::RequiresRegister());
3086 if (check->HasUses()) {
3087 locations->SetOut(Location::SameAsFirstInput());
3088 }
3089 // Rely on the type initialization to save everything we need.
3090 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
3091 }
3092
VisitClinitCheck(HClinitCheck * check)3093 void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
3094 // We assume the class is not null.
3095 SlowPathCodeARM64* slow_path =
3096 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(check->GetLoadClass(), check);
3097 codegen_->AddSlowPath(slow_path);
3098 GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
3099 }
3100
IsFloatingPointZeroConstant(HInstruction * inst)3101 static bool IsFloatingPointZeroConstant(HInstruction* inst) {
3102 return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero()))
3103 || (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero()));
3104 }
3105
GenerateFcmp(HInstruction * instruction)3106 void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) {
3107 VRegister lhs_reg = InputFPRegisterAt(instruction, 0);
3108 Location rhs_loc = instruction->GetLocations()->InAt(1);
3109 if (rhs_loc.IsConstant()) {
3110 // 0.0 is the only immediate that can be encoded directly in
3111 // an FCMP instruction.
3112 //
3113 // Both the JLS (section 15.20.1) and the JVMS (section 6.5)
3114 // specify that in a floating-point comparison, positive zero
3115 // and negative zero are considered equal, so we can use the
3116 // literal 0.0 for both cases here.
3117 //
3118 // Note however that some methods (Float.equal, Float.compare,
3119 // Float.compareTo, Double.equal, Double.compare,
3120 // Double.compareTo, Math.max, Math.min, StrictMath.max,
3121 // StrictMath.min) consider 0.0 to be (strictly) greater than
3122 // -0.0. So if we ever translate calls to these methods into a
3123 // HCompare instruction, we must handle the -0.0 case with
3124 // care here.
3125 DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant()));
3126 __ Fcmp(lhs_reg, 0.0);
3127 } else {
3128 __ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1));
3129 }
3130 }
3131
VisitCompare(HCompare * compare)3132 void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
3133 LocationSummary* locations =
3134 new (GetGraph()->GetAllocator()) LocationSummary(compare, LocationSummary::kNoCall);
3135 DataType::Type in_type = compare->InputAt(0)->GetType();
3136 HInstruction* rhs = compare->InputAt(1);
3137 switch (in_type) {
3138 case DataType::Type::kBool:
3139 case DataType::Type::kUint8:
3140 case DataType::Type::kInt8:
3141 case DataType::Type::kUint16:
3142 case DataType::Type::kInt16:
3143 case DataType::Type::kInt32:
3144 case DataType::Type::kInt64: {
3145 locations->SetInAt(0, Location::RequiresRegister());
3146 locations->SetInAt(1, ARM64EncodableConstantOrRegister(rhs, compare));
3147 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3148 break;
3149 }
3150 case DataType::Type::kFloat32:
3151 case DataType::Type::kFloat64: {
3152 locations->SetInAt(0, Location::RequiresFpuRegister());
3153 locations->SetInAt(1,
3154 IsFloatingPointZeroConstant(rhs)
3155 ? Location::ConstantLocation(rhs)
3156 : Location::RequiresFpuRegister());
3157 locations->SetOut(Location::RequiresRegister());
3158 break;
3159 }
3160 default:
3161 LOG(FATAL) << "Unexpected type for compare operation " << in_type;
3162 }
3163 }
3164
VisitCompare(HCompare * compare)3165 void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
3166 DataType::Type in_type = compare->InputAt(0)->GetType();
3167
3168 // 0 if: left == right
3169 // 1 if: left > right
3170 // -1 if: left < right
3171 switch (in_type) {
3172 case DataType::Type::kBool:
3173 case DataType::Type::kUint8:
3174 case DataType::Type::kInt8:
3175 case DataType::Type::kUint16:
3176 case DataType::Type::kInt16:
3177 case DataType::Type::kInt32:
3178 case DataType::Type::kInt64: {
3179 Register result = OutputRegister(compare);
3180 Register left = InputRegisterAt(compare, 0);
3181 Operand right = InputOperandAt(compare, 1);
3182 __ Cmp(left, right);
3183 __ Cset(result, ne); // result == +1 if NE or 0 otherwise
3184 __ Cneg(result, result, lt); // result == -1 if LT or unchanged otherwise
3185 break;
3186 }
3187 case DataType::Type::kFloat32:
3188 case DataType::Type::kFloat64: {
3189 Register result = OutputRegister(compare);
3190 GenerateFcmp(compare);
3191 __ Cset(result, ne);
3192 __ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
3193 break;
3194 }
3195 default:
3196 LOG(FATAL) << "Unimplemented compare type " << in_type;
3197 }
3198 }
3199
HandleCondition(HCondition * instruction)3200 void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
3201 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
3202
3203 HInstruction* rhs = instruction->InputAt(1);
3204 if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
3205 locations->SetInAt(0, Location::RequiresFpuRegister());
3206 locations->SetInAt(1,
3207 IsFloatingPointZeroConstant(rhs)
3208 ? Location::ConstantLocation(rhs)
3209 : Location::RequiresFpuRegister());
3210 } else {
3211 // Integer cases.
3212 locations->SetInAt(0, Location::RequiresRegister());
3213 locations->SetInAt(1, ARM64EncodableConstantOrRegister(rhs, instruction));
3214 }
3215
3216 if (!instruction->IsEmittedAtUseSite()) {
3217 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3218 }
3219 }
3220
HandleCondition(HCondition * instruction)3221 void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
3222 if (instruction->IsEmittedAtUseSite()) {
3223 return;
3224 }
3225
3226 LocationSummary* locations = instruction->GetLocations();
3227 Register res = RegisterFrom(locations->Out(), instruction->GetType());
3228 IfCondition if_cond = instruction->GetCondition();
3229
3230 if (DataType::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
3231 GenerateFcmp(instruction);
3232 __ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
3233 } else {
3234 // Integer cases.
3235 Register lhs = InputRegisterAt(instruction, 0);
3236 Operand rhs = InputOperandAt(instruction, 1);
3237 __ Cmp(lhs, rhs);
3238 __ Cset(res, ARM64Condition(if_cond));
3239 }
3240 }
3241
3242 #define FOR_EACH_CONDITION_INSTRUCTION(M) \
3243 M(Equal) \
3244 M(NotEqual) \
3245 M(LessThan) \
3246 M(LessThanOrEqual) \
3247 M(GreaterThan) \
3248 M(GreaterThanOrEqual) \
3249 M(Below) \
3250 M(BelowOrEqual) \
3251 M(Above) \
3252 M(AboveOrEqual)
3253 #define DEFINE_CONDITION_VISITORS(Name) \
3254 void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } \
3255 void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)3256 FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
3257 #undef DEFINE_CONDITION_VISITORS
3258 #undef FOR_EACH_CONDITION_INSTRUCTION
3259
3260 void InstructionCodeGeneratorARM64::GenerateIntDivForPower2Denom(HDiv* instruction) {
3261 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
3262 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
3263 DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
3264
3265 Register out = OutputRegister(instruction);
3266 Register dividend = InputRegisterAt(instruction, 0);
3267
3268 Register final_dividend;
3269 if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
3270 // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends.
3271 // NOTE: The generated code for HDiv correctly works for the INT32_MIN/INT64_MIN dividends:
3272 // imm == 2
3273 // add out, dividend(0x80000000), dividend(0x80000000), lsr #31 => out = 0x80000001
3274 // asr out, out(0x80000001), #1 => out = 0xc0000000
3275 // This is the same as 'asr out, 0x80000000, #1'
3276 //
3277 // imm > 2
3278 // add temp, dividend(0x80000000), imm - 1 => temp = 0b10..01..1, where the number
3279 // of the rightmost 1s is ctz_imm.
3280 // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true)
3281 // csel out, temp(0b10..01..1), dividend(0x80000000), lt => out = 0b10..01..1
3282 // asr out, out(0b10..01..1), #ctz_imm => out = 0b1..10..0, where the number of the
3283 // leftmost 1s is ctz_imm + 1.
3284 // This is the same as 'asr out, dividend(0x80000000), #ctz_imm'.
3285 //
3286 // imm == INT32_MIN
3287 // add tmp, dividend(0x80000000), #0x7fffffff => tmp = -1
3288 // cmp dividend(0x80000000), 0 => N = 1, V = 0 (lt is true)
3289 // csel out, temp(-1), dividend(0x80000000), lt => out = -1
3290 // neg out, out(-1), asr #31 => out = 1
3291 // This is the same as 'neg out, dividend(0x80000000), asr #31'.
3292 final_dividend = dividend;
3293 } else {
3294 if (abs_imm == 2) {
3295 int bits = DataType::Size(instruction->GetResultType()) * kBitsPerByte;
3296 __ Add(out, dividend, Operand(dividend, LSR, bits - 1));
3297 } else {
3298 UseScratchRegisterScope temps(GetVIXLAssembler());
3299 Register temp = temps.AcquireSameSizeAs(out);
3300 __ Add(temp, dividend, abs_imm - 1);
3301 __ Cmp(dividend, 0);
3302 __ Csel(out, temp, dividend, lt);
3303 }
3304 final_dividend = out;
3305 }
3306
3307 int ctz_imm = CTZ(abs_imm);
3308 if (imm > 0) {
3309 __ Asr(out, final_dividend, ctz_imm);
3310 } else {
3311 __ Neg(out, Operand(final_dividend, ASR, ctz_imm));
3312 }
3313 }
3314
3315 // Return true if the magic number was modified by subtracting 2^32(Int32 div) or 2^64(Int64 div).
3316 // So dividend needs to be added.
NeedToAddDividend(int64_t magic_number,int64_t divisor)3317 static inline bool NeedToAddDividend(int64_t magic_number, int64_t divisor) {
3318 return divisor > 0 && magic_number < 0;
3319 }
3320
3321 // Return true if the magic number was modified by adding 2^32(Int32 div) or 2^64(Int64 div).
3322 // So dividend needs to be subtracted.
NeedToSubDividend(int64_t magic_number,int64_t divisor)3323 static inline bool NeedToSubDividend(int64_t magic_number, int64_t divisor) {
3324 return divisor < 0 && magic_number > 0;
3325 }
3326
3327 // Generate code which increments the value in register 'in' by 1 if the value is negative.
3328 // It is done with 'add out, in, in, lsr #31 or #63'.
3329 // If the value is a result of an operation setting the N flag, CINC MI can be used
3330 // instead of ADD. 'use_cond_inc' controls this.
GenerateIncrementNegativeByOne(Register out,Register in,bool use_cond_inc)3331 void InstructionCodeGeneratorARM64::GenerateIncrementNegativeByOne(
3332 Register out,
3333 Register in,
3334 bool use_cond_inc) {
3335 if (use_cond_inc) {
3336 __ Cinc(out, in, mi);
3337 } else {
3338 __ Add(out, in, Operand(in, LSR, in.GetSizeInBits() - 1));
3339 }
3340 }
3341
3342 // Helper to generate code producing the result of HRem with a constant divisor.
GenerateResultRemWithAnyConstant(Register out,Register dividend,Register quotient,int64_t divisor,UseScratchRegisterScope * temps_scope)3343 void InstructionCodeGeneratorARM64::GenerateResultRemWithAnyConstant(
3344 Register out,
3345 Register dividend,
3346 Register quotient,
3347 int64_t divisor,
3348 UseScratchRegisterScope* temps_scope) {
3349 Register temp_imm = temps_scope->AcquireSameSizeAs(out);
3350 __ Mov(temp_imm, divisor);
3351 __ Msub(out, quotient, temp_imm, dividend);
3352 }
3353
3354 // Helper to generate code for HDiv/HRem instructions when a dividend is non-negative and
3355 // a divisor is a positive constant, not power of 2.
GenerateInt64UnsignedDivRemWithAnyPositiveConstant(HBinaryOperation * instruction)3356 void InstructionCodeGeneratorARM64::GenerateInt64UnsignedDivRemWithAnyPositiveConstant(
3357 HBinaryOperation* instruction) {
3358 DCHECK(instruction->IsDiv() || instruction->IsRem());
3359 DCHECK(instruction->GetResultType() == DataType::Type::kInt64);
3360
3361 LocationSummary* locations = instruction->GetLocations();
3362 Location second = locations->InAt(1);
3363 DCHECK(second.IsConstant());
3364
3365 Register out = OutputRegister(instruction);
3366 Register dividend = InputRegisterAt(instruction, 0);
3367 int64_t imm = Int64FromConstant(second.GetConstant());
3368 DCHECK_GT(imm, 0);
3369
3370 int64_t magic;
3371 int shift;
3372 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift);
3373
3374 UseScratchRegisterScope temps(GetVIXLAssembler());
3375 Register temp = temps.AcquireSameSizeAs(out);
3376
3377 auto generate_unsigned_div_code = [this, magic, shift](Register out,
3378 Register dividend,
3379 Register temp) {
3380 // temp = get_high(dividend * magic)
3381 __ Mov(temp, magic);
3382 if (magic > 0 && shift == 0) {
3383 __ Smulh(out, dividend, temp);
3384 } else {
3385 __ Smulh(temp, dividend, temp);
3386 if (magic < 0) {
3387 // The negative magic means that the multiplier m is greater than INT64_MAX.
3388 // In such a case shift is never 0. See the proof in
3389 // InstructionCodeGeneratorARMVIXL::GenerateDivRemWithAnyConstant.
3390 __ Add(temp, temp, dividend);
3391 }
3392 DCHECK_NE(shift, 0);
3393 __ Lsr(out, temp, shift);
3394 }
3395 };
3396
3397 if (instruction->IsDiv()) {
3398 generate_unsigned_div_code(out, dividend, temp);
3399 } else {
3400 generate_unsigned_div_code(temp, dividend, temp);
3401 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3402 }
3403 }
3404
3405 // Helper to generate code for HDiv/HRem instructions for any dividend and a constant divisor
3406 // (not power of 2).
GenerateInt64DivRemWithAnyConstant(HBinaryOperation * instruction)3407 void InstructionCodeGeneratorARM64::GenerateInt64DivRemWithAnyConstant(
3408 HBinaryOperation* instruction) {
3409 DCHECK(instruction->IsDiv() || instruction->IsRem());
3410 DCHECK(instruction->GetResultType() == DataType::Type::kInt64);
3411
3412 LocationSummary* locations = instruction->GetLocations();
3413 Location second = locations->InAt(1);
3414 DCHECK(second.IsConstant());
3415
3416 Register out = OutputRegister(instruction);
3417 Register dividend = InputRegisterAt(instruction, 0);
3418 int64_t imm = Int64FromConstant(second.GetConstant());
3419
3420 int64_t magic;
3421 int shift;
3422 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ true, &magic, &shift);
3423
3424 UseScratchRegisterScope temps(GetVIXLAssembler());
3425 Register temp = temps.AcquireSameSizeAs(out);
3426
3427 // temp = get_high(dividend * magic)
3428 __ Mov(temp, magic);
3429 __ Smulh(temp, dividend, temp);
3430
3431 // The multiplication result might need some corrections to be finalized.
3432 // The last correction is to increment by 1, if the result is negative.
3433 // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'.
3434 // Such ADD usually has latency 2, e.g. on Cortex-A55.
3435 // However if one of the corrections is ADD or SUB, the sign can be detected
3436 // with ADDS/SUBS. They set the N flag if the result is negative.
3437 // This allows to use CINC MI which has latency 1.
3438 bool use_cond_inc = false;
3439
3440 // Some combinations of magic_number and the divisor require to correct the result.
3441 // Check whether the correction is needed.
3442 if (NeedToAddDividend(magic, imm)) {
3443 __ Adds(temp, temp, dividend);
3444 use_cond_inc = true;
3445 } else if (NeedToSubDividend(magic, imm)) {
3446 __ Subs(temp, temp, dividend);
3447 use_cond_inc = true;
3448 }
3449
3450 if (shift != 0) {
3451 __ Asr(temp, temp, shift);
3452 }
3453
3454 if (instruction->IsRem()) {
3455 GenerateIncrementNegativeByOne(temp, temp, use_cond_inc);
3456 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3457 } else {
3458 GenerateIncrementNegativeByOne(out, temp, use_cond_inc);
3459 }
3460 }
3461
GenerateInt32DivRemWithAnyConstant(HBinaryOperation * instruction)3462 void InstructionCodeGeneratorARM64::GenerateInt32DivRemWithAnyConstant(
3463 HBinaryOperation* instruction) {
3464 DCHECK(instruction->IsDiv() || instruction->IsRem());
3465 DCHECK(instruction->GetResultType() == DataType::Type::kInt32);
3466
3467 LocationSummary* locations = instruction->GetLocations();
3468 Location second = locations->InAt(1);
3469 DCHECK(second.IsConstant());
3470
3471 Register out = OutputRegister(instruction);
3472 Register dividend = InputRegisterAt(instruction, 0);
3473 int64_t imm = Int64FromConstant(second.GetConstant());
3474
3475 int64_t magic;
3476 int shift;
3477 CalculateMagicAndShiftForDivRem(imm, /* is_long= */ false, &magic, &shift);
3478 UseScratchRegisterScope temps(GetVIXLAssembler());
3479 Register temp = temps.AcquireSameSizeAs(out);
3480
3481 // temp = get_high(dividend * magic)
3482 __ Mov(temp, magic);
3483 __ Smull(temp.X(), dividend, temp);
3484
3485 // The multiplication result might need some corrections to be finalized.
3486 // The last correction is to increment by 1, if the result is negative.
3487 // Currently it is done with 'add result, temp_result, temp_result, lsr #31 or #63'.
3488 // Such ADD usually has latency 2, e.g. on Cortex-A55.
3489 // However if one of the corrections is ADD or SUB, the sign can be detected
3490 // with ADDS/SUBS. They set the N flag if the result is negative.
3491 // This allows to use CINC MI which has latency 1.
3492 bool use_cond_inc = false;
3493
3494 // ADD/SUB correction is performed in the high 32 bits
3495 // as high 32 bits are ignored because type are kInt32.
3496 if (NeedToAddDividend(magic, imm)) {
3497 __ Adds(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32));
3498 use_cond_inc = true;
3499 } else if (NeedToSubDividend(magic, imm)) {
3500 __ Subs(temp.X(), temp.X(), Operand(dividend.X(), LSL, 32));
3501 use_cond_inc = true;
3502 }
3503
3504 // Extract the result from the high 32 bits and apply the final right shift.
3505 DCHECK_LT(shift, 32);
3506 if (imm > 0 && HasNonNegativeInputAt(instruction, 0)) {
3507 // No need to adjust the result for a non-negative dividend and a positive divisor.
3508 if (instruction->IsDiv()) {
3509 __ Lsr(out.X(), temp.X(), 32 + shift);
3510 } else {
3511 __ Lsr(temp.X(), temp.X(), 32 + shift);
3512 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3513 }
3514 } else {
3515 __ Asr(temp.X(), temp.X(), 32 + shift);
3516
3517 if (instruction->IsRem()) {
3518 GenerateIncrementNegativeByOne(temp, temp, use_cond_inc);
3519 GenerateResultRemWithAnyConstant(out, dividend, temp, imm, &temps);
3520 } else {
3521 GenerateIncrementNegativeByOne(out, temp, use_cond_inc);
3522 }
3523 }
3524 }
3525
GenerateDivRemWithAnyConstant(HBinaryOperation * instruction,int64_t divisor)3526 void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction,
3527 int64_t divisor) {
3528 DCHECK(instruction->IsDiv() || instruction->IsRem());
3529 if (instruction->GetResultType() == DataType::Type::kInt64) {
3530 if (divisor > 0 && HasNonNegativeInputAt(instruction, 0)) {
3531 GenerateInt64UnsignedDivRemWithAnyPositiveConstant(instruction);
3532 } else {
3533 GenerateInt64DivRemWithAnyConstant(instruction);
3534 }
3535 } else {
3536 GenerateInt32DivRemWithAnyConstant(instruction);
3537 }
3538 }
3539
GenerateIntDivForConstDenom(HDiv * instruction)3540 void InstructionCodeGeneratorARM64::GenerateIntDivForConstDenom(HDiv *instruction) {
3541 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
3542
3543 if (imm == 0) {
3544 // Do not generate anything. DivZeroCheck would prevent any code to be executed.
3545 return;
3546 }
3547
3548 if (IsPowerOfTwo(AbsOrMin(imm))) {
3549 GenerateIntDivForPower2Denom(instruction);
3550 } else {
3551 // Cases imm == -1 or imm == 1 are handled by InstructionSimplifier.
3552 DCHECK(imm < -2 || imm > 2) << imm;
3553 GenerateDivRemWithAnyConstant(instruction, imm);
3554 }
3555 }
3556
GenerateIntDiv(HDiv * instruction)3557 void InstructionCodeGeneratorARM64::GenerateIntDiv(HDiv *instruction) {
3558 DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
3559 << instruction->GetResultType();
3560
3561 if (instruction->GetLocations()->InAt(1).IsConstant()) {
3562 GenerateIntDivForConstDenom(instruction);
3563 } else {
3564 Register out = OutputRegister(instruction);
3565 Register dividend = InputRegisterAt(instruction, 0);
3566 Register divisor = InputRegisterAt(instruction, 1);
3567 __ Sdiv(out, dividend, divisor);
3568 }
3569 }
3570
VisitDiv(HDiv * div)3571 void LocationsBuilderARM64::VisitDiv(HDiv* div) {
3572 LocationSummary* locations =
3573 new (GetGraph()->GetAllocator()) LocationSummary(div, LocationSummary::kNoCall);
3574 switch (div->GetResultType()) {
3575 case DataType::Type::kInt32:
3576 case DataType::Type::kInt64:
3577 locations->SetInAt(0, Location::RequiresRegister());
3578 locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
3579 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3580 break;
3581
3582 case DataType::Type::kFloat32:
3583 case DataType::Type::kFloat64:
3584 locations->SetInAt(0, Location::RequiresFpuRegister());
3585 locations->SetInAt(1, Location::RequiresFpuRegister());
3586 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3587 break;
3588
3589 default:
3590 LOG(FATAL) << "Unexpected div type " << div->GetResultType();
3591 }
3592 }
3593
VisitDiv(HDiv * div)3594 void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
3595 DataType::Type type = div->GetResultType();
3596 switch (type) {
3597 case DataType::Type::kInt32:
3598 case DataType::Type::kInt64:
3599 GenerateIntDiv(div);
3600 break;
3601
3602 case DataType::Type::kFloat32:
3603 case DataType::Type::kFloat64:
3604 __ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
3605 break;
3606
3607 default:
3608 LOG(FATAL) << "Unexpected div type " << type;
3609 }
3610 }
3611
VisitDivZeroCheck(HDivZeroCheck * instruction)3612 void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3613 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
3614 locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
3615 }
3616
VisitDivZeroCheck(HDivZeroCheck * instruction)3617 void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
3618 SlowPathCodeARM64* slow_path =
3619 new (codegen_->GetScopedAllocator()) DivZeroCheckSlowPathARM64(instruction);
3620 codegen_->AddSlowPath(slow_path);
3621 Location value = instruction->GetLocations()->InAt(0);
3622
3623 DataType::Type type = instruction->GetType();
3624
3625 if (!DataType::IsIntegralType(type)) {
3626 LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
3627 UNREACHABLE();
3628 }
3629
3630 if (value.IsConstant()) {
3631 int64_t divisor = Int64FromLocation(value);
3632 if (divisor == 0) {
3633 __ B(slow_path->GetEntryLabel());
3634 } else {
3635 // A division by a non-null constant is valid. We don't need to perform
3636 // any check, so simply fall through.
3637 }
3638 } else {
3639 __ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
3640 }
3641 }
3642
VisitDoubleConstant(HDoubleConstant * constant)3643 void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
3644 LocationSummary* locations =
3645 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3646 locations->SetOut(Location::ConstantLocation(constant));
3647 }
3648
VisitDoubleConstant(HDoubleConstant * constant ATTRIBUTE_UNUSED)3649 void InstructionCodeGeneratorARM64::VisitDoubleConstant(
3650 HDoubleConstant* constant ATTRIBUTE_UNUSED) {
3651 // Will be generated at use site.
3652 }
3653
VisitExit(HExit * exit)3654 void LocationsBuilderARM64::VisitExit(HExit* exit) {
3655 exit->SetLocations(nullptr);
3656 }
3657
VisitExit(HExit * exit ATTRIBUTE_UNUSED)3658 void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
3659 }
3660
VisitFloatConstant(HFloatConstant * constant)3661 void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
3662 LocationSummary* locations =
3663 new (GetGraph()->GetAllocator()) LocationSummary(constant, LocationSummary::kNoCall);
3664 locations->SetOut(Location::ConstantLocation(constant));
3665 }
3666
VisitFloatConstant(HFloatConstant * constant ATTRIBUTE_UNUSED)3667 void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
3668 // Will be generated at use site.
3669 }
3670
HandleGoto(HInstruction * got,HBasicBlock * successor)3671 void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
3672 if (successor->IsExitBlock()) {
3673 DCHECK(got->GetPrevious()->AlwaysThrows());
3674 return; // no code needed
3675 }
3676
3677 HBasicBlock* block = got->GetBlock();
3678 HInstruction* previous = got->GetPrevious();
3679 HLoopInformation* info = block->GetLoopInformation();
3680
3681 if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
3682 codegen_->MaybeIncrementHotness(/* is_frame_entry= */ false);
3683 GenerateSuspendCheck(info->GetSuspendCheck(), successor);
3684 return; // `GenerateSuspendCheck()` emitted the jump.
3685 }
3686 if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
3687 GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
3688 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
3689 }
3690 if (!codegen_->GoesToNextBlock(block, successor)) {
3691 __ B(codegen_->GetLabelOf(successor));
3692 }
3693 }
3694
VisitGoto(HGoto * got)3695 void LocationsBuilderARM64::VisitGoto(HGoto* got) {
3696 got->SetLocations(nullptr);
3697 }
3698
VisitGoto(HGoto * got)3699 void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
3700 HandleGoto(got, got->GetSuccessor());
3701 }
3702
VisitTryBoundary(HTryBoundary * try_boundary)3703 void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
3704 try_boundary->SetLocations(nullptr);
3705 }
3706
VisitTryBoundary(HTryBoundary * try_boundary)3707 void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
3708 HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
3709 if (!successor->IsExitBlock()) {
3710 HandleGoto(try_boundary, successor);
3711 }
3712 }
3713
GenerateTestAndBranch(HInstruction * instruction,size_t condition_input_index,vixl::aarch64::Label * true_target,vixl::aarch64::Label * false_target)3714 void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
3715 size_t condition_input_index,
3716 vixl::aarch64::Label* true_target,
3717 vixl::aarch64::Label* false_target) {
3718 HInstruction* cond = instruction->InputAt(condition_input_index);
3719
3720 if (true_target == nullptr && false_target == nullptr) {
3721 // Nothing to do. The code always falls through.
3722 return;
3723 } else if (cond->IsIntConstant()) {
3724 // Constant condition, statically compared against "true" (integer value 1).
3725 if (cond->AsIntConstant()->IsTrue()) {
3726 if (true_target != nullptr) {
3727 __ B(true_target);
3728 }
3729 } else {
3730 DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
3731 if (false_target != nullptr) {
3732 __ B(false_target);
3733 }
3734 }
3735 return;
3736 }
3737
3738 // The following code generates these patterns:
3739 // (1) true_target == nullptr && false_target != nullptr
3740 // - opposite condition true => branch to false_target
3741 // (2) true_target != nullptr && false_target == nullptr
3742 // - condition true => branch to true_target
3743 // (3) true_target != nullptr && false_target != nullptr
3744 // - condition true => branch to true_target
3745 // - branch to false_target
3746 if (IsBooleanValueOrMaterializedCondition(cond)) {
3747 // The condition instruction has been materialized, compare the output to 0.
3748 Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
3749 DCHECK(cond_val.IsRegister());
3750 if (true_target == nullptr) {
3751 __ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
3752 } else {
3753 __ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
3754 }
3755 } else {
3756 // The condition instruction has not been materialized, use its inputs as
3757 // the comparison and its condition as the branch condition.
3758 HCondition* condition = cond->AsCondition();
3759
3760 DataType::Type type = condition->InputAt(0)->GetType();
3761 if (DataType::IsFloatingPointType(type)) {
3762 GenerateFcmp(condition);
3763 if (true_target == nullptr) {
3764 IfCondition opposite_condition = condition->GetOppositeCondition();
3765 __ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
3766 } else {
3767 __ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
3768 }
3769 } else {
3770 // Integer cases.
3771 Register lhs = InputRegisterAt(condition, 0);
3772 Operand rhs = InputOperandAt(condition, 1);
3773
3774 Condition arm64_cond;
3775 vixl::aarch64::Label* non_fallthrough_target;
3776 if (true_target == nullptr) {
3777 arm64_cond = ARM64Condition(condition->GetOppositeCondition());
3778 non_fallthrough_target = false_target;
3779 } else {
3780 arm64_cond = ARM64Condition(condition->GetCondition());
3781 non_fallthrough_target = true_target;
3782 }
3783
3784 if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
3785 rhs.IsImmediate() && (rhs.GetImmediate() == 0)) {
3786 switch (arm64_cond) {
3787 case eq:
3788 __ Cbz(lhs, non_fallthrough_target);
3789 break;
3790 case ne:
3791 __ Cbnz(lhs, non_fallthrough_target);
3792 break;
3793 case lt:
3794 // Test the sign bit and branch accordingly.
3795 __ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
3796 break;
3797 case ge:
3798 // Test the sign bit and branch accordingly.
3799 __ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
3800 break;
3801 default:
3802 // Without the `static_cast` the compiler throws an error for
3803 // `-Werror=sign-promo`.
3804 LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
3805 }
3806 } else {
3807 __ Cmp(lhs, rhs);
3808 __ B(arm64_cond, non_fallthrough_target);
3809 }
3810 }
3811 }
3812
3813 // If neither branch falls through (case 3), the conditional branch to `true_target`
3814 // was already emitted (case 2) and we need to emit a jump to `false_target`.
3815 if (true_target != nullptr && false_target != nullptr) {
3816 __ B(false_target);
3817 }
3818 }
3819
VisitIf(HIf * if_instr)3820 void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
3821 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(if_instr);
3822 if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
3823 locations->SetInAt(0, Location::RequiresRegister());
3824 }
3825 }
3826
VisitIf(HIf * if_instr)3827 void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
3828 HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
3829 HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
3830 vixl::aarch64::Label* true_target = codegen_->GetLabelOf(true_successor);
3831 if (codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor)) {
3832 true_target = nullptr;
3833 }
3834 vixl::aarch64::Label* false_target = codegen_->GetLabelOf(false_successor);
3835 if (codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor)) {
3836 false_target = nullptr;
3837 }
3838 GenerateTestAndBranch(if_instr, /* condition_input_index= */ 0, true_target, false_target);
3839 }
3840
VisitDeoptimize(HDeoptimize * deoptimize)3841 void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
3842 LocationSummary* locations = new (GetGraph()->GetAllocator())
3843 LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
3844 InvokeRuntimeCallingConvention calling_convention;
3845 RegisterSet caller_saves = RegisterSet::Empty();
3846 caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
3847 locations->SetCustomSlowPathCallerSaves(caller_saves);
3848 if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
3849 locations->SetInAt(0, Location::RequiresRegister());
3850 }
3851 }
3852
VisitDeoptimize(HDeoptimize * deoptimize)3853 void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
3854 SlowPathCodeARM64* slow_path =
3855 deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
3856 GenerateTestAndBranch(deoptimize,
3857 /* condition_input_index= */ 0,
3858 slow_path->GetEntryLabel(),
3859 /* false_target= */ nullptr);
3860 }
3861
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)3862 void LocationsBuilderARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
3863 LocationSummary* locations = new (GetGraph()->GetAllocator())
3864 LocationSummary(flag, LocationSummary::kNoCall);
3865 locations->SetOut(Location::RequiresRegister());
3866 }
3867
VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag * flag)3868 void InstructionCodeGeneratorARM64::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
3869 __ Ldr(OutputRegister(flag),
3870 MemOperand(sp, codegen_->GetStackOffsetOfShouldDeoptimizeFlag()));
3871 }
3872
IsConditionOnFloatingPointValues(HInstruction * condition)3873 static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) {
3874 return condition->IsCondition() &&
3875 DataType::IsFloatingPointType(condition->InputAt(0)->GetType());
3876 }
3877
GetConditionForSelect(HCondition * condition)3878 static inline Condition GetConditionForSelect(HCondition* condition) {
3879 IfCondition cond = condition->AsCondition()->GetCondition();
3880 return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias())
3881 : ARM64Condition(cond);
3882 }
3883
VisitSelect(HSelect * select)3884 void LocationsBuilderARM64::VisitSelect(HSelect* select) {
3885 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(select);
3886 if (DataType::IsFloatingPointType(select->GetType())) {
3887 locations->SetInAt(0, Location::RequiresFpuRegister());
3888 locations->SetInAt(1, Location::RequiresFpuRegister());
3889 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
3890 } else {
3891 HConstant* cst_true_value = select->GetTrueValue()->AsConstant();
3892 HConstant* cst_false_value = select->GetFalseValue()->AsConstant();
3893 bool is_true_value_constant = cst_true_value != nullptr;
3894 bool is_false_value_constant = cst_false_value != nullptr;
3895 // Ask VIXL whether we should synthesize constants in registers.
3896 // We give an arbitrary register to VIXL when dealing with non-constant inputs.
3897 Operand true_op = is_true_value_constant ?
3898 Operand(Int64FromConstant(cst_true_value)) : Operand(x1);
3899 Operand false_op = is_false_value_constant ?
3900 Operand(Int64FromConstant(cst_false_value)) : Operand(x2);
3901 bool true_value_in_register = false;
3902 bool false_value_in_register = false;
3903 MacroAssembler::GetCselSynthesisInformation(
3904 x0, true_op, false_op, &true_value_in_register, &false_value_in_register);
3905 true_value_in_register |= !is_true_value_constant;
3906 false_value_in_register |= !is_false_value_constant;
3907
3908 locations->SetInAt(1, true_value_in_register ? Location::RequiresRegister()
3909 : Location::ConstantLocation(cst_true_value));
3910 locations->SetInAt(0, false_value_in_register ? Location::RequiresRegister()
3911 : Location::ConstantLocation(cst_false_value));
3912 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
3913 }
3914
3915 if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
3916 locations->SetInAt(2, Location::RequiresRegister());
3917 }
3918 }
3919
VisitSelect(HSelect * select)3920 void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
3921 HInstruction* cond = select->GetCondition();
3922 Condition csel_cond;
3923
3924 if (IsBooleanValueOrMaterializedCondition(cond)) {
3925 if (cond->IsCondition() && cond->GetNext() == select) {
3926 // Use the condition flags set by the previous instruction.
3927 csel_cond = GetConditionForSelect(cond->AsCondition());
3928 } else {
3929 __ Cmp(InputRegisterAt(select, 2), 0);
3930 csel_cond = ne;
3931 }
3932 } else if (IsConditionOnFloatingPointValues(cond)) {
3933 GenerateFcmp(cond);
3934 csel_cond = GetConditionForSelect(cond->AsCondition());
3935 } else {
3936 __ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1));
3937 csel_cond = GetConditionForSelect(cond->AsCondition());
3938 }
3939
3940 if (DataType::IsFloatingPointType(select->GetType())) {
3941 __ Fcsel(OutputFPRegister(select),
3942 InputFPRegisterAt(select, 1),
3943 InputFPRegisterAt(select, 0),
3944 csel_cond);
3945 } else {
3946 __ Csel(OutputRegister(select),
3947 InputOperandAt(select, 1),
3948 InputOperandAt(select, 0),
3949 csel_cond);
3950 }
3951 }
3952
VisitNop(HNop * nop)3953 void LocationsBuilderARM64::VisitNop(HNop* nop) {
3954 new (GetGraph()->GetAllocator()) LocationSummary(nop);
3955 }
3956
VisitNop(HNop *)3957 void InstructionCodeGeneratorARM64::VisitNop(HNop*) {
3958 // The environment recording already happened in CodeGenerator::Compile.
3959 }
3960
IncreaseFrame(size_t adjustment)3961 void CodeGeneratorARM64::IncreaseFrame(size_t adjustment) {
3962 __ Claim(adjustment);
3963 GetAssembler()->cfi().AdjustCFAOffset(adjustment);
3964 }
3965
DecreaseFrame(size_t adjustment)3966 void CodeGeneratorARM64::DecreaseFrame(size_t adjustment) {
3967 __ Drop(adjustment);
3968 GetAssembler()->cfi().AdjustCFAOffset(-adjustment);
3969 }
3970
GenerateNop()3971 void CodeGeneratorARM64::GenerateNop() {
3972 __ Nop();
3973 }
3974
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)3975 void LocationsBuilderARM64::VisitPredicatedInstanceFieldGet(
3976 HPredicatedInstanceFieldGet* instruction) {
3977 HandleFieldGet(instruction, instruction->GetFieldInfo());
3978 }
3979
VisitInstanceFieldGet(HInstanceFieldGet * instruction)3980 void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3981 HandleFieldGet(instruction, instruction->GetFieldInfo());
3982 }
3983
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)3984 void InstructionCodeGeneratorARM64::VisitPredicatedInstanceFieldGet(
3985 HPredicatedInstanceFieldGet* instruction) {
3986 vixl::aarch64::Label finish;
3987 __ Cbz(InputRegisterAt(instruction, 1), &finish);
3988 HandleFieldGet(instruction, instruction->GetFieldInfo());
3989 __ Bind(&finish);
3990 }
3991
VisitInstanceFieldGet(HInstanceFieldGet * instruction)3992 void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
3993 HandleFieldGet(instruction, instruction->GetFieldInfo());
3994 }
3995
VisitInstanceFieldSet(HInstanceFieldSet * instruction)3996 void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
3997 HandleFieldSet(instruction);
3998 }
3999
VisitInstanceFieldSet(HInstanceFieldSet * instruction)4000 void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
4001 HandleFieldSet(instruction,
4002 instruction->GetFieldInfo(),
4003 instruction->GetValueCanBeNull(),
4004 instruction->GetWriteBarrierKind());
4005 }
4006
4007 // Temp is used for read barrier.
NumberOfInstanceOfTemps(TypeCheckKind type_check_kind)4008 static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
4009 if (gUseReadBarrier &&
4010 (kUseBakerReadBarrier ||
4011 type_check_kind == TypeCheckKind::kAbstractClassCheck ||
4012 type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
4013 type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
4014 return 1;
4015 }
4016 return 0;
4017 }
4018
4019 // Interface case has 3 temps, one for holding the number of interfaces, one for the current
4020 // interface pointer, one for loading the current interface.
4021 // The other checks have one temp for loading the object's class.
NumberOfCheckCastTemps(TypeCheckKind type_check_kind)4022 static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
4023 if (type_check_kind == TypeCheckKind::kInterfaceCheck) {
4024 return 3;
4025 }
4026 return 1 + NumberOfInstanceOfTemps(type_check_kind);
4027 }
4028
VisitInstanceOf(HInstanceOf * instruction)4029 void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
4030 LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
4031 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4032 bool baker_read_barrier_slow_path = false;
4033 switch (type_check_kind) {
4034 case TypeCheckKind::kExactCheck:
4035 case TypeCheckKind::kAbstractClassCheck:
4036 case TypeCheckKind::kClassHierarchyCheck:
4037 case TypeCheckKind::kArrayObjectCheck: {
4038 bool needs_read_barrier = CodeGenerator::InstanceOfNeedsReadBarrier(instruction);
4039 call_kind = needs_read_barrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
4040 baker_read_barrier_slow_path = kUseBakerReadBarrier && needs_read_barrier;
4041 break;
4042 }
4043 case TypeCheckKind::kArrayCheck:
4044 case TypeCheckKind::kUnresolvedCheck:
4045 case TypeCheckKind::kInterfaceCheck:
4046 call_kind = LocationSummary::kCallOnSlowPath;
4047 break;
4048 case TypeCheckKind::kBitstringCheck:
4049 break;
4050 }
4051
4052 LocationSummary* locations =
4053 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
4054 if (baker_read_barrier_slow_path) {
4055 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
4056 }
4057 locations->SetInAt(0, Location::RequiresRegister());
4058 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
4059 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
4060 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)));
4061 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)));
4062 } else {
4063 locations->SetInAt(1, Location::RequiresRegister());
4064 }
4065 // The "out" register is used as a temporary, so it overlaps with the inputs.
4066 // Note that TypeCheckSlowPathARM64 uses this register too.
4067 locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
4068 // Add temps if necessary for read barriers.
4069 locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
4070 }
4071
VisitInstanceOf(HInstanceOf * instruction)4072 void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
4073 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4074 LocationSummary* locations = instruction->GetLocations();
4075 Location obj_loc = locations->InAt(0);
4076 Register obj = InputRegisterAt(instruction, 0);
4077 Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
4078 ? Register()
4079 : InputRegisterAt(instruction, 1);
4080 Location out_loc = locations->Out();
4081 Register out = OutputRegister(instruction);
4082 const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
4083 DCHECK_LE(num_temps, 1u);
4084 Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
4085 uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4086 uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
4087 uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
4088 uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
4089
4090 vixl::aarch64::Label done, zero;
4091 SlowPathCodeARM64* slow_path = nullptr;
4092
4093 // Return 0 if `obj` is null.
4094 // Avoid null check if we know `obj` is not null.
4095 if (instruction->MustDoNullCheck()) {
4096 __ Cbz(obj, &zero);
4097 }
4098
4099 switch (type_check_kind) {
4100 case TypeCheckKind::kExactCheck: {
4101 ReadBarrierOption read_barrier_option =
4102 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
4103 // /* HeapReference<Class> */ out = obj->klass_
4104 GenerateReferenceLoadTwoRegisters(instruction,
4105 out_loc,
4106 obj_loc,
4107 class_offset,
4108 maybe_temp_loc,
4109 read_barrier_option);
4110 __ Cmp(out, cls);
4111 __ Cset(out, eq);
4112 if (zero.IsLinked()) {
4113 __ B(&done);
4114 }
4115 break;
4116 }
4117
4118 case TypeCheckKind::kAbstractClassCheck: {
4119 ReadBarrierOption read_barrier_option =
4120 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
4121 // /* HeapReference<Class> */ out = obj->klass_
4122 GenerateReferenceLoadTwoRegisters(instruction,
4123 out_loc,
4124 obj_loc,
4125 class_offset,
4126 maybe_temp_loc,
4127 read_barrier_option);
4128 // If the class is abstract, we eagerly fetch the super class of the
4129 // object to avoid doing a comparison we know will fail.
4130 vixl::aarch64::Label loop, success;
4131 __ Bind(&loop);
4132 // /* HeapReference<Class> */ out = out->super_class_
4133 GenerateReferenceLoadOneRegister(instruction,
4134 out_loc,
4135 super_offset,
4136 maybe_temp_loc,
4137 read_barrier_option);
4138 // If `out` is null, we use it for the result, and jump to `done`.
4139 __ Cbz(out, &done);
4140 __ Cmp(out, cls);
4141 __ B(ne, &loop);
4142 __ Mov(out, 1);
4143 if (zero.IsLinked()) {
4144 __ B(&done);
4145 }
4146 break;
4147 }
4148
4149 case TypeCheckKind::kClassHierarchyCheck: {
4150 ReadBarrierOption read_barrier_option =
4151 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
4152 // /* HeapReference<Class> */ out = obj->klass_
4153 GenerateReferenceLoadTwoRegisters(instruction,
4154 out_loc,
4155 obj_loc,
4156 class_offset,
4157 maybe_temp_loc,
4158 read_barrier_option);
4159 // Walk over the class hierarchy to find a match.
4160 vixl::aarch64::Label loop, success;
4161 __ Bind(&loop);
4162 __ Cmp(out, cls);
4163 __ B(eq, &success);
4164 // /* HeapReference<Class> */ out = out->super_class_
4165 GenerateReferenceLoadOneRegister(instruction,
4166 out_loc,
4167 super_offset,
4168 maybe_temp_loc,
4169 read_barrier_option);
4170 __ Cbnz(out, &loop);
4171 // If `out` is null, we use it for the result, and jump to `done`.
4172 __ B(&done);
4173 __ Bind(&success);
4174 __ Mov(out, 1);
4175 if (zero.IsLinked()) {
4176 __ B(&done);
4177 }
4178 break;
4179 }
4180
4181 case TypeCheckKind::kArrayObjectCheck: {
4182 ReadBarrierOption read_barrier_option =
4183 CodeGenerator::ReadBarrierOptionForInstanceOf(instruction);
4184 // /* HeapReference<Class> */ out = obj->klass_
4185 GenerateReferenceLoadTwoRegisters(instruction,
4186 out_loc,
4187 obj_loc,
4188 class_offset,
4189 maybe_temp_loc,
4190 read_barrier_option);
4191 // Do an exact check.
4192 vixl::aarch64::Label exact_check;
4193 __ Cmp(out, cls);
4194 __ B(eq, &exact_check);
4195 // Otherwise, we need to check that the object's class is a non-primitive array.
4196 // /* HeapReference<Class> */ out = out->component_type_
4197 GenerateReferenceLoadOneRegister(instruction,
4198 out_loc,
4199 component_offset,
4200 maybe_temp_loc,
4201 read_barrier_option);
4202 // If `out` is null, we use it for the result, and jump to `done`.
4203 __ Cbz(out, &done);
4204 __ Ldrh(out, HeapOperand(out, primitive_offset));
4205 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
4206 __ Cbnz(out, &zero);
4207 __ Bind(&exact_check);
4208 __ Mov(out, 1);
4209 __ B(&done);
4210 break;
4211 }
4212
4213 case TypeCheckKind::kArrayCheck: {
4214 // No read barrier since the slow path will retry upon failure.
4215 // /* HeapReference<Class> */ out = obj->klass_
4216 GenerateReferenceLoadTwoRegisters(instruction,
4217 out_loc,
4218 obj_loc,
4219 class_offset,
4220 maybe_temp_loc,
4221 kWithoutReadBarrier);
4222 __ Cmp(out, cls);
4223 DCHECK(locations->OnlyCallsOnSlowPath());
4224 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4225 instruction, /* is_fatal= */ false);
4226 codegen_->AddSlowPath(slow_path);
4227 __ B(ne, slow_path->GetEntryLabel());
4228 __ Mov(out, 1);
4229 if (zero.IsLinked()) {
4230 __ B(&done);
4231 }
4232 break;
4233 }
4234
4235 case TypeCheckKind::kUnresolvedCheck:
4236 case TypeCheckKind::kInterfaceCheck: {
4237 // Note that we indeed only call on slow path, but we always go
4238 // into the slow path for the unresolved and interface check
4239 // cases.
4240 //
4241 // We cannot directly call the InstanceofNonTrivial runtime
4242 // entry point without resorting to a type checking slow path
4243 // here (i.e. by calling InvokeRuntime directly), as it would
4244 // require to assign fixed registers for the inputs of this
4245 // HInstanceOf instruction (following the runtime calling
4246 // convention), which might be cluttered by the potential first
4247 // read barrier emission at the beginning of this method.
4248 //
4249 // TODO: Introduce a new runtime entry point taking the object
4250 // to test (instead of its class) as argument, and let it deal
4251 // with the read barrier issues. This will let us refactor this
4252 // case of the `switch` code as it was previously (with a direct
4253 // call to the runtime not using a type checking slow path).
4254 // This should also be beneficial for the other cases above.
4255 DCHECK(locations->OnlyCallsOnSlowPath());
4256 slow_path = new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4257 instruction, /* is_fatal= */ false);
4258 codegen_->AddSlowPath(slow_path);
4259 __ B(slow_path->GetEntryLabel());
4260 if (zero.IsLinked()) {
4261 __ B(&done);
4262 }
4263 break;
4264 }
4265
4266 case TypeCheckKind::kBitstringCheck: {
4267 // /* HeapReference<Class> */ temp = obj->klass_
4268 GenerateReferenceLoadTwoRegisters(instruction,
4269 out_loc,
4270 obj_loc,
4271 class_offset,
4272 maybe_temp_loc,
4273 kWithoutReadBarrier);
4274
4275 GenerateBitstringTypeCheckCompare(instruction, out);
4276 __ Cset(out, eq);
4277 if (zero.IsLinked()) {
4278 __ B(&done);
4279 }
4280 break;
4281 }
4282 }
4283
4284 if (zero.IsLinked()) {
4285 __ Bind(&zero);
4286 __ Mov(out, 0);
4287 }
4288
4289 if (done.IsLinked()) {
4290 __ Bind(&done);
4291 }
4292
4293 if (slow_path != nullptr) {
4294 __ Bind(slow_path->GetExitLabel());
4295 }
4296 }
4297
VisitCheckCast(HCheckCast * instruction)4298 void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
4299 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4300 LocationSummary::CallKind call_kind = CodeGenerator::GetCheckCastCallKind(instruction);
4301 LocationSummary* locations =
4302 new (GetGraph()->GetAllocator()) LocationSummary(instruction, call_kind);
4303 locations->SetInAt(0, Location::RequiresRegister());
4304 if (type_check_kind == TypeCheckKind::kBitstringCheck) {
4305 locations->SetInAt(1, Location::ConstantLocation(instruction->InputAt(1)));
4306 locations->SetInAt(2, Location::ConstantLocation(instruction->InputAt(2)));
4307 locations->SetInAt(3, Location::ConstantLocation(instruction->InputAt(3)));
4308 } else {
4309 locations->SetInAt(1, Location::RequiresRegister());
4310 }
4311 // Add temps for read barriers and other uses. One is used by TypeCheckSlowPathARM64.
4312 locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
4313 }
4314
VisitCheckCast(HCheckCast * instruction)4315 void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
4316 TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
4317 LocationSummary* locations = instruction->GetLocations();
4318 Location obj_loc = locations->InAt(0);
4319 Register obj = InputRegisterAt(instruction, 0);
4320 Register cls = (type_check_kind == TypeCheckKind::kBitstringCheck)
4321 ? Register()
4322 : InputRegisterAt(instruction, 1);
4323 const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
4324 DCHECK_GE(num_temps, 1u);
4325 DCHECK_LE(num_temps, 3u);
4326 Location temp_loc = locations->GetTemp(0);
4327 Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
4328 Location maybe_temp3_loc = (num_temps >= 3) ? locations->GetTemp(2) : Location::NoLocation();
4329 Register temp = WRegisterFrom(temp_loc);
4330 const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
4331 const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
4332 const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
4333 const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
4334 const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
4335 const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
4336 const uint32_t object_array_data_offset =
4337 mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
4338
4339 bool is_type_check_slow_path_fatal = CodeGenerator::IsTypeCheckSlowPathFatal(instruction);
4340 SlowPathCodeARM64* type_check_slow_path =
4341 new (codegen_->GetScopedAllocator()) TypeCheckSlowPathARM64(
4342 instruction, is_type_check_slow_path_fatal);
4343 codegen_->AddSlowPath(type_check_slow_path);
4344
4345 vixl::aarch64::Label done;
4346 // Avoid null check if we know obj is not null.
4347 if (instruction->MustDoNullCheck()) {
4348 __ Cbz(obj, &done);
4349 }
4350
4351 switch (type_check_kind) {
4352 case TypeCheckKind::kExactCheck:
4353 case TypeCheckKind::kArrayCheck: {
4354 // /* HeapReference<Class> */ temp = obj->klass_
4355 GenerateReferenceLoadTwoRegisters(instruction,
4356 temp_loc,
4357 obj_loc,
4358 class_offset,
4359 maybe_temp2_loc,
4360 kWithoutReadBarrier);
4361
4362 __ Cmp(temp, cls);
4363 // Jump to slow path for throwing the exception or doing a
4364 // more involved array check.
4365 __ B(ne, type_check_slow_path->GetEntryLabel());
4366 break;
4367 }
4368
4369 case TypeCheckKind::kAbstractClassCheck: {
4370 // /* HeapReference<Class> */ temp = obj->klass_
4371 GenerateReferenceLoadTwoRegisters(instruction,
4372 temp_loc,
4373 obj_loc,
4374 class_offset,
4375 maybe_temp2_loc,
4376 kWithoutReadBarrier);
4377
4378 // If the class is abstract, we eagerly fetch the super class of the
4379 // object to avoid doing a comparison we know will fail.
4380 vixl::aarch64::Label loop;
4381 __ Bind(&loop);
4382 // /* HeapReference<Class> */ temp = temp->super_class_
4383 GenerateReferenceLoadOneRegister(instruction,
4384 temp_loc,
4385 super_offset,
4386 maybe_temp2_loc,
4387 kWithoutReadBarrier);
4388
4389 // If the class reference currently in `temp` is null, jump to the slow path to throw the
4390 // exception.
4391 __ Cbz(temp, type_check_slow_path->GetEntryLabel());
4392 // Otherwise, compare classes.
4393 __ Cmp(temp, cls);
4394 __ B(ne, &loop);
4395 break;
4396 }
4397
4398 case TypeCheckKind::kClassHierarchyCheck: {
4399 // /* HeapReference<Class> */ temp = obj->klass_
4400 GenerateReferenceLoadTwoRegisters(instruction,
4401 temp_loc,
4402 obj_loc,
4403 class_offset,
4404 maybe_temp2_loc,
4405 kWithoutReadBarrier);
4406
4407 // Walk over the class hierarchy to find a match.
4408 vixl::aarch64::Label loop;
4409 __ Bind(&loop);
4410 __ Cmp(temp, cls);
4411 __ B(eq, &done);
4412
4413 // /* HeapReference<Class> */ temp = temp->super_class_
4414 GenerateReferenceLoadOneRegister(instruction,
4415 temp_loc,
4416 super_offset,
4417 maybe_temp2_loc,
4418 kWithoutReadBarrier);
4419
4420 // If the class reference currently in `temp` is not null, jump
4421 // back at the beginning of the loop.
4422 __ Cbnz(temp, &loop);
4423 // Otherwise, jump to the slow path to throw the exception.
4424 __ B(type_check_slow_path->GetEntryLabel());
4425 break;
4426 }
4427
4428 case TypeCheckKind::kArrayObjectCheck: {
4429 // /* HeapReference<Class> */ temp = obj->klass_
4430 GenerateReferenceLoadTwoRegisters(instruction,
4431 temp_loc,
4432 obj_loc,
4433 class_offset,
4434 maybe_temp2_loc,
4435 kWithoutReadBarrier);
4436
4437 // Do an exact check.
4438 __ Cmp(temp, cls);
4439 __ B(eq, &done);
4440
4441 // Otherwise, we need to check that the object's class is a non-primitive array.
4442 // /* HeapReference<Class> */ temp = temp->component_type_
4443 GenerateReferenceLoadOneRegister(instruction,
4444 temp_loc,
4445 component_offset,
4446 maybe_temp2_loc,
4447 kWithoutReadBarrier);
4448
4449 // If the component type is null, jump to the slow path to throw the exception.
4450 __ Cbz(temp, type_check_slow_path->GetEntryLabel());
4451 // Otherwise, the object is indeed an array. Further check that this component type is not a
4452 // primitive type.
4453 __ Ldrh(temp, HeapOperand(temp, primitive_offset));
4454 static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
4455 __ Cbnz(temp, type_check_slow_path->GetEntryLabel());
4456 break;
4457 }
4458
4459 case TypeCheckKind::kUnresolvedCheck:
4460 // We always go into the type check slow path for the unresolved check cases.
4461 //
4462 // We cannot directly call the CheckCast runtime entry point
4463 // without resorting to a type checking slow path here (i.e. by
4464 // calling InvokeRuntime directly), as it would require to
4465 // assign fixed registers for the inputs of this HInstanceOf
4466 // instruction (following the runtime calling convention), which
4467 // might be cluttered by the potential first read barrier
4468 // emission at the beginning of this method.
4469 __ B(type_check_slow_path->GetEntryLabel());
4470 break;
4471 case TypeCheckKind::kInterfaceCheck: {
4472 // /* HeapReference<Class> */ temp = obj->klass_
4473 GenerateReferenceLoadTwoRegisters(instruction,
4474 temp_loc,
4475 obj_loc,
4476 class_offset,
4477 maybe_temp2_loc,
4478 kWithoutReadBarrier);
4479
4480 // /* HeapReference<Class> */ temp = temp->iftable_
4481 GenerateReferenceLoadTwoRegisters(instruction,
4482 temp_loc,
4483 temp_loc,
4484 iftable_offset,
4485 maybe_temp2_loc,
4486 kWithoutReadBarrier);
4487 // Iftable is never null.
4488 __ Ldr(WRegisterFrom(maybe_temp2_loc), HeapOperand(temp.W(), array_length_offset));
4489 // Loop through the iftable and check if any class matches.
4490 vixl::aarch64::Label start_loop;
4491 __ Bind(&start_loop);
4492 __ Cbz(WRegisterFrom(maybe_temp2_loc), type_check_slow_path->GetEntryLabel());
4493 __ Ldr(WRegisterFrom(maybe_temp3_loc), HeapOperand(temp.W(), object_array_data_offset));
4494 GetAssembler()->MaybeUnpoisonHeapReference(WRegisterFrom(maybe_temp3_loc));
4495 // Go to next interface.
4496 __ Add(temp, temp, 2 * kHeapReferenceSize);
4497 __ Sub(WRegisterFrom(maybe_temp2_loc), WRegisterFrom(maybe_temp2_loc), 2);
4498 // Compare the classes and continue the loop if they do not match.
4499 __ Cmp(cls, WRegisterFrom(maybe_temp3_loc));
4500 __ B(ne, &start_loop);
4501 break;
4502 }
4503
4504 case TypeCheckKind::kBitstringCheck: {
4505 // /* HeapReference<Class> */ temp = obj->klass_
4506 GenerateReferenceLoadTwoRegisters(instruction,
4507 temp_loc,
4508 obj_loc,
4509 class_offset,
4510 maybe_temp2_loc,
4511 kWithoutReadBarrier);
4512
4513 GenerateBitstringTypeCheckCompare(instruction, temp);
4514 __ B(ne, type_check_slow_path->GetEntryLabel());
4515 break;
4516 }
4517 }
4518 __ Bind(&done);
4519
4520 __ Bind(type_check_slow_path->GetExitLabel());
4521 }
4522
VisitIntConstant(HIntConstant * constant)4523 void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
4524 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
4525 locations->SetOut(Location::ConstantLocation(constant));
4526 }
4527
VisitIntConstant(HIntConstant * constant ATTRIBUTE_UNUSED)4528 void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
4529 // Will be generated at use site.
4530 }
4531
VisitNullConstant(HNullConstant * constant)4532 void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
4533 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
4534 locations->SetOut(Location::ConstantLocation(constant));
4535 }
4536
VisitNullConstant(HNullConstant * constant ATTRIBUTE_UNUSED)4537 void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
4538 // Will be generated at use site.
4539 }
4540
VisitInvokeUnresolved(HInvokeUnresolved * invoke)4541 void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
4542 // The trampoline uses the same calling convention as dex calling conventions,
4543 // except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
4544 // the method_idx.
4545 HandleInvoke(invoke);
4546 }
4547
VisitInvokeUnresolved(HInvokeUnresolved * invoke)4548 void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
4549 codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
4550 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4551 }
4552
HandleInvoke(HInvoke * invoke)4553 void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
4554 InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
4555 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
4556 }
4557
VisitInvokeInterface(HInvokeInterface * invoke)4558 void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
4559 HandleInvoke(invoke);
4560 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
4561 // We cannot request ip1 as it's blocked by the register allocator.
4562 invoke->GetLocations()->SetInAt(invoke->GetNumberOfArguments() - 1, Location::Any());
4563 }
4564 }
4565
MaybeGenerateInlineCacheCheck(HInstruction * instruction,Register klass)4566 void CodeGeneratorARM64::MaybeGenerateInlineCacheCheck(HInstruction* instruction,
4567 Register klass) {
4568 DCHECK_EQ(klass.GetCode(), 0u);
4569 // We know the destination of an intrinsic, so no need to record inline
4570 // caches.
4571 if (!instruction->GetLocations()->Intrinsified() &&
4572 GetGraph()->IsCompilingBaseline() &&
4573 !Runtime::Current()->IsAotCompiler()) {
4574 DCHECK(!instruction->GetEnvironment()->IsFromInlinedInvoke());
4575 ProfilingInfo* info = GetGraph()->GetProfilingInfo();
4576 DCHECK(info != nullptr);
4577 InlineCache* cache = info->GetInlineCache(instruction->GetDexPc());
4578 uint64_t address = reinterpret_cast64<uint64_t>(cache);
4579 vixl::aarch64::Label done;
4580 __ Mov(x8, address);
4581 __ Ldr(x9, MemOperand(x8, InlineCache::ClassesOffset().Int32Value()));
4582 // Fast path for a monomorphic cache.
4583 __ Cmp(klass, x9);
4584 __ B(eq, &done);
4585 InvokeRuntime(kQuickUpdateInlineCache, instruction, instruction->GetDexPc());
4586 __ Bind(&done);
4587 }
4588 }
4589
VisitInvokeInterface(HInvokeInterface * invoke)4590 void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
4591 // TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
4592 LocationSummary* locations = invoke->GetLocations();
4593 Register temp = XRegisterFrom(locations->GetTemp(0));
4594 Location receiver = locations->InAt(0);
4595 Offset class_offset = mirror::Object::ClassOffset();
4596 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
4597
4598 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
4599 if (receiver.IsStackSlot()) {
4600 __ Ldr(temp.W(), StackOperandFrom(receiver));
4601 {
4602 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4603 // /* HeapReference<Class> */ temp = temp->klass_
4604 __ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
4605 codegen_->MaybeRecordImplicitNullCheck(invoke);
4606 }
4607 } else {
4608 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4609 // /* HeapReference<Class> */ temp = receiver->klass_
4610 __ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
4611 codegen_->MaybeRecordImplicitNullCheck(invoke);
4612 }
4613
4614 // Instead of simply (possibly) unpoisoning `temp` here, we should
4615 // emit a read barrier for the previous class reference load.
4616 // However this is not required in practice, as this is an
4617 // intermediate/temporary reference and because the current
4618 // concurrent copying collector keeps the from-space memory
4619 // intact/accessible until the end of the marking phase (the
4620 // concurrent copying collector may not in the future).
4621 GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
4622
4623 // If we're compiling baseline, update the inline cache.
4624 codegen_->MaybeGenerateInlineCacheCheck(invoke, temp);
4625
4626 // The register ip1 is required to be used for the hidden argument in
4627 // art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
4628 MacroAssembler* masm = GetVIXLAssembler();
4629 UseScratchRegisterScope scratch_scope(masm);
4630 scratch_scope.Exclude(ip1);
4631 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRecursive) {
4632 Location interface_method = locations->InAt(invoke->GetNumberOfArguments() - 1);
4633 if (interface_method.IsStackSlot()) {
4634 __ Ldr(ip1, StackOperandFrom(interface_method));
4635 } else {
4636 __ Mov(ip1, XRegisterFrom(interface_method));
4637 }
4638 // If the load kind is through a runtime call, we will pass the method we
4639 // fetch the IMT, which will either be a no-op if we don't hit the conflict
4640 // stub, or will make us always go through the trampoline when there is a
4641 // conflict.
4642 } else if (invoke->GetHiddenArgumentLoadKind() != MethodLoadKind::kRuntimeCall) {
4643 codegen_->LoadMethod(
4644 invoke->GetHiddenArgumentLoadKind(), Location::RegisterLocation(ip1.GetCode()), invoke);
4645 }
4646
4647 __ Ldr(temp,
4648 MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
4649 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
4650 invoke->GetImtIndex(), kArm64PointerSize));
4651 // temp = temp->GetImtEntryAt(method_offset);
4652 __ Ldr(temp, MemOperand(temp, method_offset));
4653 if (invoke->GetHiddenArgumentLoadKind() == MethodLoadKind::kRuntimeCall) {
4654 // We pass the method from the IMT in case of a conflict. This will ensure
4655 // we go into the runtime to resolve the actual method.
4656 __ Mov(ip1, temp);
4657 }
4658 // lr = temp->GetEntryPoint();
4659 __ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
4660
4661 {
4662 // Ensure the pc position is recorded immediately after the `blr` instruction.
4663 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
4664
4665 // lr();
4666 __ blr(lr);
4667 DCHECK(!codegen_->IsLeafMethod());
4668 codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
4669 }
4670
4671 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4672 }
4673
VisitInvokeVirtual(HInvokeVirtual * invoke)4674 void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
4675 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4676 if (intrinsic.TryDispatch(invoke)) {
4677 return;
4678 }
4679
4680 HandleInvoke(invoke);
4681 }
4682
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)4683 void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
4684 // Explicit clinit checks triggered by static invokes must have been pruned by
4685 // art::PrepareForRegisterAllocation.
4686 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
4687
4688 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4689 if (intrinsic.TryDispatch(invoke)) {
4690 return;
4691 }
4692
4693 if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
4694 CriticalNativeCallingConventionVisitorARM64 calling_convention_visitor(
4695 /*for_register_allocation=*/ true);
4696 CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
4697 } else {
4698 HandleInvoke(invoke);
4699 }
4700 }
4701
TryGenerateIntrinsicCode(HInvoke * invoke,CodeGeneratorARM64 * codegen)4702 static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
4703 if (invoke->GetLocations()->Intrinsified()) {
4704 IntrinsicCodeGeneratorARM64 intrinsic(codegen);
4705 intrinsic.Dispatch(invoke);
4706 return true;
4707 }
4708 return false;
4709 }
4710
GetSupportedInvokeStaticOrDirectDispatch(const HInvokeStaticOrDirect::DispatchInfo & desired_dispatch_info,ArtMethod * method ATTRIBUTE_UNUSED)4711 HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
4712 const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
4713 ArtMethod* method ATTRIBUTE_UNUSED) {
4714 // On ARM64 we support all dispatch types.
4715 return desired_dispatch_info;
4716 }
4717
LoadMethod(MethodLoadKind load_kind,Location temp,HInvoke * invoke)4718 void CodeGeneratorARM64::LoadMethod(MethodLoadKind load_kind, Location temp, HInvoke* invoke) {
4719 switch (load_kind) {
4720 case MethodLoadKind::kBootImageLinkTimePcRelative: {
4721 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
4722 // Add ADRP with its PC-relative method patch.
4723 vixl::aarch64::Label* adrp_label =
4724 NewBootImageMethodPatch(invoke->GetResolvedMethodReference());
4725 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
4726 // Add ADD with its PC-relative method patch.
4727 vixl::aarch64::Label* add_label =
4728 NewBootImageMethodPatch(invoke->GetResolvedMethodReference(), adrp_label);
4729 EmitAddPlaceholder(add_label, XRegisterFrom(temp), XRegisterFrom(temp));
4730 break;
4731 }
4732 case MethodLoadKind::kBootImageRelRo: {
4733 // Note: Boot image is in the low 4GiB and the entry is 32-bit, so emit a 32-bit load.
4734 uint32_t boot_image_offset = GetBootImageOffset(invoke);
4735 LoadBootImageRelRoEntry(WRegisterFrom(temp), boot_image_offset);
4736 break;
4737 }
4738 case MethodLoadKind::kBssEntry: {
4739 // Add ADRP with its PC-relative .bss entry patch.
4740 vixl::aarch64::Label* adrp_label = NewMethodBssEntryPatch(invoke->GetMethodReference());
4741 EmitAdrpPlaceholder(adrp_label, XRegisterFrom(temp));
4742 // Add LDR with its PC-relative .bss entry patch.
4743 vixl::aarch64::Label* ldr_label =
4744 NewMethodBssEntryPatch(invoke->GetMethodReference(), adrp_label);
4745 // All aligned loads are implicitly atomic consume operations on ARM64.
4746 EmitLdrOffsetPlaceholder(ldr_label, XRegisterFrom(temp), XRegisterFrom(temp));
4747 break;
4748 }
4749 case MethodLoadKind::kJitDirectAddress: {
4750 // Load method address from literal pool.
4751 __ Ldr(XRegisterFrom(temp),
4752 DeduplicateUint64Literal(reinterpret_cast<uint64_t>(invoke->GetResolvedMethod())));
4753 break;
4754 }
4755 case MethodLoadKind::kRuntimeCall: {
4756 // Test situation, don't do anything.
4757 break;
4758 }
4759 default: {
4760 LOG(FATAL) << "Load kind should have already been handled " << load_kind;
4761 UNREACHABLE();
4762 }
4763 }
4764 }
4765
GenerateStaticOrDirectCall(HInvokeStaticOrDirect * invoke,Location temp,SlowPathCode * slow_path)4766 void CodeGeneratorARM64::GenerateStaticOrDirectCall(
4767 HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
4768 // Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
4769 Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
4770 switch (invoke->GetMethodLoadKind()) {
4771 case MethodLoadKind::kStringInit: {
4772 uint32_t offset =
4773 GetThreadOffset<kArm64PointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
4774 // temp = thread->string_init_entrypoint
4775 __ Ldr(XRegisterFrom(temp), MemOperand(tr, offset));
4776 break;
4777 }
4778 case MethodLoadKind::kRecursive: {
4779 callee_method = invoke->GetLocations()->InAt(invoke->GetCurrentMethodIndex());
4780 break;
4781 }
4782 case MethodLoadKind::kRuntimeCall: {
4783 GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
4784 return; // No code pointer retrieval; the runtime performs the call directly.
4785 }
4786 case MethodLoadKind::kBootImageLinkTimePcRelative:
4787 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
4788 if (invoke->GetCodePtrLocation() == CodePtrLocation::kCallCriticalNative) {
4789 // Do not materialize the method pointer, load directly the entrypoint.
4790 // Add ADRP with its PC-relative JNI entrypoint patch.
4791 vixl::aarch64::Label* adrp_label =
4792 NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference());
4793 EmitAdrpPlaceholder(adrp_label, lr);
4794 // Add the LDR with its PC-relative method patch.
4795 vixl::aarch64::Label* add_label =
4796 NewBootImageJniEntrypointPatch(invoke->GetResolvedMethodReference(), adrp_label);
4797 EmitLdrOffsetPlaceholder(add_label, lr, lr);
4798 break;
4799 }
4800 FALLTHROUGH_INTENDED;
4801 default: {
4802 LoadMethod(invoke->GetMethodLoadKind(), temp, invoke);
4803 break;
4804 }
4805 }
4806
4807 auto call_lr = [&]() {
4808 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
4809 ExactAssemblyScope eas(GetVIXLAssembler(),
4810 kInstructionSize,
4811 CodeBufferCheckScope::kExactSize);
4812 // lr()
4813 __ blr(lr);
4814 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4815 };
4816 switch (invoke->GetCodePtrLocation()) {
4817 case CodePtrLocation::kCallSelf:
4818 {
4819 DCHECK(!GetGraph()->HasShouldDeoptimizeFlag());
4820 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
4821 ExactAssemblyScope eas(GetVIXLAssembler(),
4822 kInstructionSize,
4823 CodeBufferCheckScope::kExactSize);
4824 __ bl(&frame_entry_label_);
4825 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4826 }
4827 break;
4828 case CodePtrLocation::kCallCriticalNative: {
4829 size_t out_frame_size =
4830 PrepareCriticalNativeCall<CriticalNativeCallingConventionVisitorARM64,
4831 kAapcs64StackAlignment,
4832 GetCriticalNativeDirectCallFrameSize>(invoke);
4833 if (invoke->GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative) {
4834 call_lr();
4835 } else {
4836 // LR = callee_method->ptr_sized_fields_.data_; // EntryPointFromJni
4837 MemberOffset offset = ArtMethod::EntryPointFromJniOffset(kArm64PointerSize);
4838 __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value()));
4839 // lr()
4840 call_lr();
4841 }
4842 // Zero-/sign-extend the result when needed due to native and managed ABI mismatch.
4843 switch (invoke->GetType()) {
4844 case DataType::Type::kBool:
4845 __ Ubfx(w0, w0, 0, 8);
4846 break;
4847 case DataType::Type::kInt8:
4848 __ Sbfx(w0, w0, 0, 8);
4849 break;
4850 case DataType::Type::kUint16:
4851 __ Ubfx(w0, w0, 0, 16);
4852 break;
4853 case DataType::Type::kInt16:
4854 __ Sbfx(w0, w0, 0, 16);
4855 break;
4856 case DataType::Type::kInt32:
4857 case DataType::Type::kInt64:
4858 case DataType::Type::kFloat32:
4859 case DataType::Type::kFloat64:
4860 case DataType::Type::kVoid:
4861 break;
4862 default:
4863 DCHECK(false) << invoke->GetType();
4864 break;
4865 }
4866 if (out_frame_size != 0u) {
4867 DecreaseFrame(out_frame_size);
4868 }
4869 break;
4870 }
4871 case CodePtrLocation::kCallArtMethod: {
4872 // LR = callee_method->ptr_sized_fields_.entry_point_from_quick_compiled_code_;
4873 MemberOffset offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
4874 __ Ldr(lr, MemOperand(XRegisterFrom(callee_method), offset.Int32Value()));
4875 // lr()
4876 call_lr();
4877 break;
4878 }
4879 }
4880
4881 DCHECK(!IsLeafMethod());
4882 }
4883
GenerateVirtualCall(HInvokeVirtual * invoke,Location temp_in,SlowPathCode * slow_path)4884 void CodeGeneratorARM64::GenerateVirtualCall(
4885 HInvokeVirtual* invoke, Location temp_in, SlowPathCode* slow_path) {
4886 // Use the calling convention instead of the location of the receiver, as
4887 // intrinsics may have put the receiver in a different register. In the intrinsics
4888 // slow path, the arguments have been moved to the right place, so here we are
4889 // guaranteed that the receiver is the first register of the calling convention.
4890 InvokeDexCallingConvention calling_convention;
4891 Register receiver = calling_convention.GetRegisterAt(0);
4892 Register temp = XRegisterFrom(temp_in);
4893 size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
4894 invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
4895 Offset class_offset = mirror::Object::ClassOffset();
4896 Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64PointerSize);
4897
4898 DCHECK(receiver.IsRegister());
4899
4900 {
4901 // Ensure that between load and MaybeRecordImplicitNullCheck there are no pools emitted.
4902 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
4903 // /* HeapReference<Class> */ temp = receiver->klass_
4904 __ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
4905 MaybeRecordImplicitNullCheck(invoke);
4906 }
4907 // Instead of simply (possibly) unpoisoning `temp` here, we should
4908 // emit a read barrier for the previous class reference load.
4909 // intermediate/temporary reference and because the current
4910 // concurrent copying collector keeps the from-space memory
4911 // intact/accessible until the end of the marking phase (the
4912 // concurrent copying collector may not in the future).
4913 GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
4914
4915 // If we're compiling baseline, update the inline cache.
4916 MaybeGenerateInlineCacheCheck(invoke, temp);
4917
4918 // temp = temp->GetMethodAt(method_offset);
4919 __ Ldr(temp, MemOperand(temp, method_offset));
4920 // lr = temp->GetEntryPoint();
4921 __ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
4922 {
4923 // Use a scope to help guarantee that `RecordPcInfo()` records the correct pc.
4924 ExactAssemblyScope eas(GetVIXLAssembler(), kInstructionSize, CodeBufferCheckScope::kExactSize);
4925 // lr();
4926 __ blr(lr);
4927 RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
4928 }
4929 }
4930
MoveFromReturnRegister(Location trg,DataType::Type type)4931 void CodeGeneratorARM64::MoveFromReturnRegister(Location trg, DataType::Type type) {
4932 if (!trg.IsValid()) {
4933 DCHECK(type == DataType::Type::kVoid);
4934 return;
4935 }
4936
4937 DCHECK_NE(type, DataType::Type::kVoid);
4938
4939 if (DataType::IsIntegralType(type) || type == DataType::Type::kReference) {
4940 Register trg_reg = RegisterFrom(trg, type);
4941 Register res_reg = RegisterFrom(ARM64ReturnLocation(type), type);
4942 __ Mov(trg_reg, res_reg, kDiscardForSameWReg);
4943 } else {
4944 VRegister trg_reg = FPRegisterFrom(trg, type);
4945 VRegister res_reg = FPRegisterFrom(ARM64ReturnLocation(type), type);
4946 __ Fmov(trg_reg, res_reg);
4947 }
4948 }
4949
VisitInvokePolymorphic(HInvokePolymorphic * invoke)4950 void LocationsBuilderARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
4951 IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetAllocator(), codegen_);
4952 if (intrinsic.TryDispatch(invoke)) {
4953 return;
4954 }
4955 HandleInvoke(invoke);
4956 }
4957
VisitInvokePolymorphic(HInvokePolymorphic * invoke)4958 void InstructionCodeGeneratorARM64::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
4959 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
4960 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4961 return;
4962 }
4963 codegen_->GenerateInvokePolymorphicCall(invoke);
4964 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4965 }
4966
VisitInvokeCustom(HInvokeCustom * invoke)4967 void LocationsBuilderARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
4968 HandleInvoke(invoke);
4969 }
4970
VisitInvokeCustom(HInvokeCustom * invoke)4971 void InstructionCodeGeneratorARM64::VisitInvokeCustom(HInvokeCustom* invoke) {
4972 codegen_->GenerateInvokeCustomCall(invoke);
4973 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
4974 }
4975
NewBootImageIntrinsicPatch(uint32_t intrinsic_data,vixl::aarch64::Label * adrp_label)4976 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageIntrinsicPatch(
4977 uint32_t intrinsic_data,
4978 vixl::aarch64::Label* adrp_label) {
4979 return NewPcRelativePatch(
4980 /* dex_file= */ nullptr, intrinsic_data, adrp_label, &boot_image_other_patches_);
4981 }
4982
NewBootImageRelRoPatch(uint32_t boot_image_offset,vixl::aarch64::Label * adrp_label)4983 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageRelRoPatch(
4984 uint32_t boot_image_offset,
4985 vixl::aarch64::Label* adrp_label) {
4986 return NewPcRelativePatch(
4987 /* dex_file= */ nullptr, boot_image_offset, adrp_label, &boot_image_other_patches_);
4988 }
4989
NewBootImageMethodPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)4990 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageMethodPatch(
4991 MethodReference target_method,
4992 vixl::aarch64::Label* adrp_label) {
4993 return NewPcRelativePatch(
4994 target_method.dex_file, target_method.index, adrp_label, &boot_image_method_patches_);
4995 }
4996
NewMethodBssEntryPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)4997 vixl::aarch64::Label* CodeGeneratorARM64::NewMethodBssEntryPatch(
4998 MethodReference target_method,
4999 vixl::aarch64::Label* adrp_label) {
5000 return NewPcRelativePatch(
5001 target_method.dex_file, target_method.index, adrp_label, &method_bss_entry_patches_);
5002 }
5003
NewBootImageTypePatch(const DexFile & dex_file,dex::TypeIndex type_index,vixl::aarch64::Label * adrp_label)5004 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageTypePatch(
5005 const DexFile& dex_file,
5006 dex::TypeIndex type_index,
5007 vixl::aarch64::Label* adrp_label) {
5008 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, &boot_image_type_patches_);
5009 }
5010
NewBssEntryTypePatch(HLoadClass * load_class,vixl::aarch64::Label * adrp_label)5011 vixl::aarch64::Label* CodeGeneratorARM64::NewBssEntryTypePatch(
5012 HLoadClass* load_class,
5013 vixl::aarch64::Label* adrp_label) {
5014 const DexFile& dex_file = load_class->GetDexFile();
5015 dex::TypeIndex type_index = load_class->GetTypeIndex();
5016 ArenaDeque<PcRelativePatchInfo>* patches = nullptr;
5017 switch (load_class->GetLoadKind()) {
5018 case HLoadClass::LoadKind::kBssEntry:
5019 patches = &type_bss_entry_patches_;
5020 break;
5021 case HLoadClass::LoadKind::kBssEntryPublic:
5022 patches = &public_type_bss_entry_patches_;
5023 break;
5024 case HLoadClass::LoadKind::kBssEntryPackage:
5025 patches = &package_type_bss_entry_patches_;
5026 break;
5027 default:
5028 LOG(FATAL) << "Unexpected load kind: " << load_class->GetLoadKind();
5029 UNREACHABLE();
5030 }
5031 return NewPcRelativePatch(&dex_file, type_index.index_, adrp_label, patches);
5032 }
5033
NewBootImageStringPatch(const DexFile & dex_file,dex::StringIndex string_index,vixl::aarch64::Label * adrp_label)5034 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageStringPatch(
5035 const DexFile& dex_file,
5036 dex::StringIndex string_index,
5037 vixl::aarch64::Label* adrp_label) {
5038 return NewPcRelativePatch(
5039 &dex_file, string_index.index_, adrp_label, &boot_image_string_patches_);
5040 }
5041
NewStringBssEntryPatch(const DexFile & dex_file,dex::StringIndex string_index,vixl::aarch64::Label * adrp_label)5042 vixl::aarch64::Label* CodeGeneratorARM64::NewStringBssEntryPatch(
5043 const DexFile& dex_file,
5044 dex::StringIndex string_index,
5045 vixl::aarch64::Label* adrp_label) {
5046 return NewPcRelativePatch(&dex_file, string_index.index_, adrp_label, &string_bss_entry_patches_);
5047 }
5048
NewBootImageJniEntrypointPatch(MethodReference target_method,vixl::aarch64::Label * adrp_label)5049 vixl::aarch64::Label* CodeGeneratorARM64::NewBootImageJniEntrypointPatch(
5050 MethodReference target_method,
5051 vixl::aarch64::Label* adrp_label) {
5052 return NewPcRelativePatch(
5053 target_method.dex_file, target_method.index, adrp_label, &boot_image_jni_entrypoint_patches_);
5054 }
5055
EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset)5056 void CodeGeneratorARM64::EmitEntrypointThunkCall(ThreadOffset64 entrypoint_offset) {
5057 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
5058 DCHECK(!GetCompilerOptions().IsJitCompiler());
5059 call_entrypoint_patches_.emplace_back(/*dex_file*/ nullptr, entrypoint_offset.Uint32Value());
5060 vixl::aarch64::Label* bl_label = &call_entrypoint_patches_.back().label;
5061 __ bind(bl_label);
5062 __ bl(static_cast<int64_t>(0)); // Placeholder, patched at link-time.
5063 }
5064
EmitBakerReadBarrierCbnz(uint32_t custom_data)5065 void CodeGeneratorARM64::EmitBakerReadBarrierCbnz(uint32_t custom_data) {
5066 DCHECK(!__ AllowMacroInstructions()); // In ExactAssemblyScope.
5067 if (GetCompilerOptions().IsJitCompiler()) {
5068 auto it = jit_baker_read_barrier_slow_paths_.FindOrAdd(custom_data);
5069 vixl::aarch64::Label* slow_path_entry = &it->second.label;
5070 __ cbnz(mr, slow_path_entry);
5071 } else {
5072 baker_read_barrier_patches_.emplace_back(custom_data);
5073 vixl::aarch64::Label* cbnz_label = &baker_read_barrier_patches_.back().label;
5074 __ bind(cbnz_label);
5075 __ cbnz(mr, static_cast<int64_t>(0)); // Placeholder, patched at link-time.
5076 }
5077 }
5078
NewPcRelativePatch(const DexFile * dex_file,uint32_t offset_or_index,vixl::aarch64::Label * adrp_label,ArenaDeque<PcRelativePatchInfo> * patches)5079 vixl::aarch64::Label* CodeGeneratorARM64::NewPcRelativePatch(
5080 const DexFile* dex_file,
5081 uint32_t offset_or_index,
5082 vixl::aarch64::Label* adrp_label,
5083 ArenaDeque<PcRelativePatchInfo>* patches) {
5084 // Add a patch entry and return the label.
5085 patches->emplace_back(dex_file, offset_or_index);
5086 PcRelativePatchInfo* info = &patches->back();
5087 vixl::aarch64::Label* label = &info->label;
5088 // If adrp_label is null, this is the ADRP patch and needs to point to its own label.
5089 info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label;
5090 return label;
5091 }
5092
DeduplicateBootImageAddressLiteral(uint64_t address)5093 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral(
5094 uint64_t address) {
5095 return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address));
5096 }
5097
DeduplicateJitStringLiteral(const DexFile & dex_file,dex::StringIndex string_index,Handle<mirror::String> handle)5098 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitStringLiteral(
5099 const DexFile& dex_file, dex::StringIndex string_index, Handle<mirror::String> handle) {
5100 ReserveJitStringRoot(StringReference(&dex_file, string_index), handle);
5101 return jit_string_patches_.GetOrCreate(
5102 StringReference(&dex_file, string_index),
5103 [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); });
5104 }
5105
DeduplicateJitClassLiteral(const DexFile & dex_file,dex::TypeIndex type_index,Handle<mirror::Class> handle)5106 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateJitClassLiteral(
5107 const DexFile& dex_file, dex::TypeIndex type_index, Handle<mirror::Class> handle) {
5108 ReserveJitClassRoot(TypeReference(&dex_file, type_index), handle);
5109 return jit_class_patches_.GetOrCreate(
5110 TypeReference(&dex_file, type_index),
5111 [this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* value= */ 0u); });
5112 }
5113
EmitAdrpPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register reg)5114 void CodeGeneratorARM64::EmitAdrpPlaceholder(vixl::aarch64::Label* fixup_label,
5115 vixl::aarch64::Register reg) {
5116 DCHECK(reg.IsX());
5117 SingleEmissionCheckScope guard(GetVIXLAssembler());
5118 __ Bind(fixup_label);
5119 __ adrp(reg, /* offset placeholder */ static_cast<int64_t>(0));
5120 }
5121
EmitAddPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register out,vixl::aarch64::Register base)5122 void CodeGeneratorARM64::EmitAddPlaceholder(vixl::aarch64::Label* fixup_label,
5123 vixl::aarch64::Register out,
5124 vixl::aarch64::Register base) {
5125 DCHECK(out.IsX());
5126 DCHECK(base.IsX());
5127 SingleEmissionCheckScope guard(GetVIXLAssembler());
5128 __ Bind(fixup_label);
5129 __ add(out, base, Operand(/* offset placeholder */ 0));
5130 }
5131
EmitLdrOffsetPlaceholder(vixl::aarch64::Label * fixup_label,vixl::aarch64::Register out,vixl::aarch64::Register base)5132 void CodeGeneratorARM64::EmitLdrOffsetPlaceholder(vixl::aarch64::Label* fixup_label,
5133 vixl::aarch64::Register out,
5134 vixl::aarch64::Register base) {
5135 DCHECK(base.IsX());
5136 SingleEmissionCheckScope guard(GetVIXLAssembler());
5137 __ Bind(fixup_label);
5138 __ ldr(out, MemOperand(base, /* offset placeholder */ 0));
5139 }
5140
LoadBootImageRelRoEntry(vixl::aarch64::Register reg,uint32_t boot_image_offset)5141 void CodeGeneratorARM64::LoadBootImageRelRoEntry(vixl::aarch64::Register reg,
5142 uint32_t boot_image_offset) {
5143 DCHECK(reg.IsW());
5144 // Add ADRP with its PC-relative .data.bimg.rel.ro patch.
5145 vixl::aarch64::Label* adrp_label = NewBootImageRelRoPatch(boot_image_offset);
5146 EmitAdrpPlaceholder(adrp_label, reg.X());
5147 // Add LDR with its PC-relative .data.bimg.rel.ro patch.
5148 vixl::aarch64::Label* ldr_label = NewBootImageRelRoPatch(boot_image_offset, adrp_label);
5149 EmitLdrOffsetPlaceholder(ldr_label, reg.W(), reg.X());
5150 }
5151
LoadBootImageAddress(vixl::aarch64::Register reg,uint32_t boot_image_reference)5152 void CodeGeneratorARM64::LoadBootImageAddress(vixl::aarch64::Register reg,
5153 uint32_t boot_image_reference) {
5154 if (GetCompilerOptions().IsBootImage()) {
5155 // Add ADRP with its PC-relative type patch.
5156 vixl::aarch64::Label* adrp_label = NewBootImageIntrinsicPatch(boot_image_reference);
5157 EmitAdrpPlaceholder(adrp_label, reg.X());
5158 // Add ADD with its PC-relative type patch.
5159 vixl::aarch64::Label* add_label = NewBootImageIntrinsicPatch(boot_image_reference, adrp_label);
5160 EmitAddPlaceholder(add_label, reg.X(), reg.X());
5161 } else if (GetCompilerOptions().GetCompilePic()) {
5162 LoadBootImageRelRoEntry(reg, boot_image_reference);
5163 } else {
5164 DCHECK(GetCompilerOptions().IsJitCompiler());
5165 gc::Heap* heap = Runtime::Current()->GetHeap();
5166 DCHECK(!heap->GetBootImageSpaces().empty());
5167 const uint8_t* address = heap->GetBootImageSpaces()[0]->Begin() + boot_image_reference;
5168 __ Ldr(reg.W(), DeduplicateBootImageAddressLiteral(reinterpret_cast<uintptr_t>(address)));
5169 }
5170 }
5171
LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg,TypeReference target_type)5172 void CodeGeneratorARM64::LoadTypeForBootImageIntrinsic(vixl::aarch64::Register reg,
5173 TypeReference target_type) {
5174 // Load the class the same way as for HLoadClass::LoadKind::kBootImageLinkTimePcRelative.
5175 DCHECK(GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension());
5176 // Add ADRP with its PC-relative type patch.
5177 vixl::aarch64::Label* adrp_label =
5178 NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex());
5179 EmitAdrpPlaceholder(adrp_label, reg.X());
5180 // Add ADD with its PC-relative type patch.
5181 vixl::aarch64::Label* add_label =
5182 NewBootImageTypePatch(*target_type.dex_file, target_type.TypeIndex(), adrp_label);
5183 EmitAddPlaceholder(add_label, reg.X(), reg.X());
5184 }
5185
LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg,HInvoke * invoke)5186 void CodeGeneratorARM64::LoadIntrinsicDeclaringClass(vixl::aarch64::Register reg, HInvoke* invoke) {
5187 DCHECK_NE(invoke->GetIntrinsic(), Intrinsics::kNone);
5188 if (GetCompilerOptions().IsBootImage()) {
5189 MethodReference target_method = invoke->GetResolvedMethodReference();
5190 dex::TypeIndex type_idx = target_method.dex_file->GetMethodId(target_method.index).class_idx_;
5191 LoadTypeForBootImageIntrinsic(reg, TypeReference(target_method.dex_file, type_idx));
5192 } else {
5193 uint32_t boot_image_offset = GetBootImageOffsetOfIntrinsicDeclaringClass(invoke);
5194 LoadBootImageAddress(reg, boot_image_offset);
5195 }
5196 }
5197
LoadClassRootForIntrinsic(vixl::aarch64::Register reg,ClassRoot class_root)5198 void CodeGeneratorARM64::LoadClassRootForIntrinsic(vixl::aarch64::Register reg,
5199 ClassRoot class_root) {
5200 if (GetCompilerOptions().IsBootImage()) {
5201 ScopedObjectAccess soa(Thread::Current());
5202 ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
5203 TypeReference target_type(&klass->GetDexFile(), klass->GetDexTypeIndex());
5204 LoadTypeForBootImageIntrinsic(reg, target_type);
5205 } else {
5206 uint32_t boot_image_offset = GetBootImageOffset(class_root);
5207 LoadBootImageAddress(reg, boot_image_offset);
5208 }
5209 }
5210
5211 template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo> & infos,ArenaVector<linker::LinkerPatch> * linker_patches)5212 inline void CodeGeneratorARM64::EmitPcRelativeLinkerPatches(
5213 const ArenaDeque<PcRelativePatchInfo>& infos,
5214 ArenaVector<linker::LinkerPatch>* linker_patches) {
5215 for (const PcRelativePatchInfo& info : infos) {
5216 linker_patches->push_back(Factory(info.label.GetLocation(),
5217 info.target_dex_file,
5218 info.pc_insn_label->GetLocation(),
5219 info.offset_or_index));
5220 }
5221 }
5222
5223 template <linker::LinkerPatch (*Factory)(size_t, uint32_t, uint32_t)>
NoDexFileAdapter(size_t literal_offset,const DexFile * target_dex_file,uint32_t pc_insn_offset,uint32_t boot_image_offset)5224 linker::LinkerPatch NoDexFileAdapter(size_t literal_offset,
5225 const DexFile* target_dex_file,
5226 uint32_t pc_insn_offset,
5227 uint32_t boot_image_offset) {
5228 DCHECK(target_dex_file == nullptr); // Unused for these patches, should be null.
5229 return Factory(literal_offset, pc_insn_offset, boot_image_offset);
5230 }
5231
EmitLinkerPatches(ArenaVector<linker::LinkerPatch> * linker_patches)5232 void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) {
5233 DCHECK(linker_patches->empty());
5234 size_t size =
5235 boot_image_method_patches_.size() +
5236 method_bss_entry_patches_.size() +
5237 boot_image_type_patches_.size() +
5238 type_bss_entry_patches_.size() +
5239 public_type_bss_entry_patches_.size() +
5240 package_type_bss_entry_patches_.size() +
5241 boot_image_string_patches_.size() +
5242 string_bss_entry_patches_.size() +
5243 boot_image_jni_entrypoint_patches_.size() +
5244 boot_image_other_patches_.size() +
5245 call_entrypoint_patches_.size() +
5246 baker_read_barrier_patches_.size();
5247 linker_patches->reserve(size);
5248 if (GetCompilerOptions().IsBootImage() || GetCompilerOptions().IsBootImageExtension()) {
5249 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeMethodPatch>(
5250 boot_image_method_patches_, linker_patches);
5251 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeTypePatch>(
5252 boot_image_type_patches_, linker_patches);
5253 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeStringPatch>(
5254 boot_image_string_patches_, linker_patches);
5255 } else {
5256 DCHECK(boot_image_method_patches_.empty());
5257 DCHECK(boot_image_type_patches_.empty());
5258 DCHECK(boot_image_string_patches_.empty());
5259 }
5260 if (GetCompilerOptions().IsBootImage()) {
5261 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::IntrinsicReferencePatch>>(
5262 boot_image_other_patches_, linker_patches);
5263 } else {
5264 EmitPcRelativeLinkerPatches<NoDexFileAdapter<linker::LinkerPatch::DataBimgRelRoPatch>>(
5265 boot_image_other_patches_, linker_patches);
5266 }
5267 EmitPcRelativeLinkerPatches<linker::LinkerPatch::MethodBssEntryPatch>(
5268 method_bss_entry_patches_, linker_patches);
5269 EmitPcRelativeLinkerPatches<linker::LinkerPatch::TypeBssEntryPatch>(
5270 type_bss_entry_patches_, linker_patches);
5271 EmitPcRelativeLinkerPatches<linker::LinkerPatch::PublicTypeBssEntryPatch>(
5272 public_type_bss_entry_patches_, linker_patches);
5273 EmitPcRelativeLinkerPatches<linker::LinkerPatch::PackageTypeBssEntryPatch>(
5274 package_type_bss_entry_patches_, linker_patches);
5275 EmitPcRelativeLinkerPatches<linker::LinkerPatch::StringBssEntryPatch>(
5276 string_bss_entry_patches_, linker_patches);
5277 EmitPcRelativeLinkerPatches<linker::LinkerPatch::RelativeJniEntrypointPatch>(
5278 boot_image_jni_entrypoint_patches_, linker_patches);
5279 for (const PatchInfo<vixl::aarch64::Label>& info : call_entrypoint_patches_) {
5280 DCHECK(info.target_dex_file == nullptr);
5281 linker_patches->push_back(linker::LinkerPatch::CallEntrypointPatch(
5282 info.label.GetLocation(), info.offset_or_index));
5283 }
5284 for (const BakerReadBarrierPatchInfo& info : baker_read_barrier_patches_) {
5285 linker_patches->push_back(linker::LinkerPatch::BakerReadBarrierBranchPatch(
5286 info.label.GetLocation(), info.custom_data));
5287 }
5288 DCHECK_EQ(size, linker_patches->size());
5289 }
5290
NeedsThunkCode(const linker::LinkerPatch & patch) const5291 bool CodeGeneratorARM64::NeedsThunkCode(const linker::LinkerPatch& patch) const {
5292 return patch.GetType() == linker::LinkerPatch::Type::kCallEntrypoint ||
5293 patch.GetType() == linker::LinkerPatch::Type::kBakerReadBarrierBranch ||
5294 patch.GetType() == linker::LinkerPatch::Type::kCallRelative;
5295 }
5296
EmitThunkCode(const linker::LinkerPatch & patch,ArenaVector<uint8_t> * code,std::string * debug_name)5297 void CodeGeneratorARM64::EmitThunkCode(const linker::LinkerPatch& patch,
5298 /*out*/ ArenaVector<uint8_t>* code,
5299 /*out*/ std::string* debug_name) {
5300 Arm64Assembler assembler(GetGraph()->GetAllocator());
5301 switch (patch.GetType()) {
5302 case linker::LinkerPatch::Type::kCallRelative: {
5303 // The thunk just uses the entry point in the ArtMethod. This works even for calls
5304 // to the generic JNI and interpreter trampolines.
5305 Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset(
5306 kArm64PointerSize).Int32Value());
5307 assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0));
5308 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
5309 *debug_name = "MethodCallThunk";
5310 }
5311 break;
5312 }
5313 case linker::LinkerPatch::Type::kCallEntrypoint: {
5314 Offset offset(patch.EntrypointOffset());
5315 assembler.JumpTo(ManagedRegister(arm64::TR), offset, ManagedRegister(arm64::IP0));
5316 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
5317 *debug_name = "EntrypointCallThunk_" + std::to_string(offset.Uint32Value());
5318 }
5319 break;
5320 }
5321 case linker::LinkerPatch::Type::kBakerReadBarrierBranch: {
5322 DCHECK_EQ(patch.GetBakerCustomValue2(), 0u);
5323 CompileBakerReadBarrierThunk(assembler, patch.GetBakerCustomValue1(), debug_name);
5324 break;
5325 }
5326 default:
5327 LOG(FATAL) << "Unexpected patch type " << patch.GetType();
5328 UNREACHABLE();
5329 }
5330
5331 // Ensure we emit the literal pool if any.
5332 assembler.FinalizeCode();
5333 code->resize(assembler.CodeSize());
5334 MemoryRegion code_region(code->data(), code->size());
5335 assembler.FinalizeInstructions(code_region);
5336 }
5337
DeduplicateUint32Literal(uint32_t value)5338 vixl::aarch64::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value) {
5339 return uint32_literals_.GetOrCreate(
5340 value,
5341 [this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); });
5342 }
5343
DeduplicateUint64Literal(uint64_t value)5344 vixl::aarch64::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) {
5345 return uint64_literals_.GetOrCreate(
5346 value,
5347 [this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); });
5348 }
5349
VisitInvokeStaticOrDirect(HInvokeStaticOrDirect * invoke)5350 void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
5351 // Explicit clinit checks triggered by static invokes must have been pruned by
5352 // art::PrepareForRegisterAllocation.
5353 DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
5354
5355 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
5356 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5357 return;
5358 }
5359
5360 LocationSummary* locations = invoke->GetLocations();
5361 codegen_->GenerateStaticOrDirectCall(
5362 invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
5363
5364 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5365 }
5366
VisitInvokeVirtual(HInvokeVirtual * invoke)5367 void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
5368 if (TryGenerateIntrinsicCode(invoke, codegen_)) {
5369 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5370 return;
5371 }
5372
5373 {
5374 // Ensure that between the BLR (emitted by GenerateVirtualCall) and RecordPcInfo there
5375 // are no pools emitted.
5376 EmissionCheckScope guard(GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes);
5377 codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
5378 DCHECK(!codegen_->IsLeafMethod());
5379 }
5380
5381 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5382 }
5383
GetSupportedLoadClassKind(HLoadClass::LoadKind desired_class_load_kind)5384 HLoadClass::LoadKind CodeGeneratorARM64::GetSupportedLoadClassKind(
5385 HLoadClass::LoadKind desired_class_load_kind) {
5386 switch (desired_class_load_kind) {
5387 case HLoadClass::LoadKind::kInvalid:
5388 LOG(FATAL) << "UNREACHABLE";
5389 UNREACHABLE();
5390 case HLoadClass::LoadKind::kReferrersClass:
5391 break;
5392 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
5393 case HLoadClass::LoadKind::kBootImageRelRo:
5394 case HLoadClass::LoadKind::kBssEntry:
5395 case HLoadClass::LoadKind::kBssEntryPublic:
5396 case HLoadClass::LoadKind::kBssEntryPackage:
5397 DCHECK(!GetCompilerOptions().IsJitCompiler());
5398 break;
5399 case HLoadClass::LoadKind::kJitBootImageAddress:
5400 case HLoadClass::LoadKind::kJitTableAddress:
5401 DCHECK(GetCompilerOptions().IsJitCompiler());
5402 break;
5403 case HLoadClass::LoadKind::kRuntimeCall:
5404 break;
5405 }
5406 return desired_class_load_kind;
5407 }
5408
VisitLoadClass(HLoadClass * cls)5409 void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
5410 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5411 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
5412 InvokeRuntimeCallingConvention calling_convention;
5413 CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(
5414 cls,
5415 LocationFrom(calling_convention.GetRegisterAt(0)),
5416 LocationFrom(vixl::aarch64::x0));
5417 DCHECK(calling_convention.GetRegisterAt(0).Is(vixl::aarch64::x0));
5418 return;
5419 }
5420 DCHECK_EQ(cls->NeedsAccessCheck(),
5421 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
5422 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
5423
5424 const bool requires_read_barrier = gUseReadBarrier && !cls->IsInBootImage();
5425 LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
5426 ? LocationSummary::kCallOnSlowPath
5427 : LocationSummary::kNoCall;
5428 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(cls, call_kind);
5429 if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
5430 locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
5431 }
5432
5433 if (load_kind == HLoadClass::LoadKind::kReferrersClass) {
5434 locations->SetInAt(0, Location::RequiresRegister());
5435 }
5436 locations->SetOut(Location::RequiresRegister());
5437 if (cls->GetLoadKind() == HLoadClass::LoadKind::kBssEntry) {
5438 if (!gUseReadBarrier || kUseBakerReadBarrier) {
5439 // Rely on the type resolution or initialization and marking to save everything we need.
5440 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
5441 } else {
5442 // For non-Baker read barrier we have a temp-clobbering call.
5443 }
5444 }
5445 }
5446
5447 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
5448 // move.
VisitLoadClass(HLoadClass * cls)5449 void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
5450 HLoadClass::LoadKind load_kind = cls->GetLoadKind();
5451 if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
5452 codegen_->GenerateLoadClassRuntimeCall(cls);
5453 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5454 return;
5455 }
5456 DCHECK_EQ(cls->NeedsAccessCheck(),
5457 load_kind == HLoadClass::LoadKind::kBssEntryPublic ||
5458 load_kind == HLoadClass::LoadKind::kBssEntryPackage);
5459
5460 Location out_loc = cls->GetLocations()->Out();
5461 Register out = OutputRegister(cls);
5462
5463 const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
5464 ? kWithoutReadBarrier
5465 : gCompilerReadBarrierOption;
5466 bool generate_null_check = false;
5467 switch (load_kind) {
5468 case HLoadClass::LoadKind::kReferrersClass: {
5469 DCHECK(!cls->CanCallRuntime());
5470 DCHECK(!cls->MustGenerateClinitCheck());
5471 // /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
5472 Register current_method = InputRegisterAt(cls, 0);
5473 codegen_->GenerateGcRootFieldLoad(cls,
5474 out_loc,
5475 current_method,
5476 ArtMethod::DeclaringClassOffset().Int32Value(),
5477 /* fixup_label= */ nullptr,
5478 read_barrier_option);
5479 break;
5480 }
5481 case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
5482 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
5483 codegen_->GetCompilerOptions().IsBootImageExtension());
5484 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5485 // Add ADRP with its PC-relative type patch.
5486 const DexFile& dex_file = cls->GetDexFile();
5487 dex::TypeIndex type_index = cls->GetTypeIndex();
5488 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageTypePatch(dex_file, type_index);
5489 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5490 // Add ADD with its PC-relative type patch.
5491 vixl::aarch64::Label* add_label =
5492 codegen_->NewBootImageTypePatch(dex_file, type_index, adrp_label);
5493 codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
5494 break;
5495 }
5496 case HLoadClass::LoadKind::kBootImageRelRo: {
5497 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
5498 uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(cls);
5499 codegen_->LoadBootImageRelRoEntry(out.W(), boot_image_offset);
5500 break;
5501 }
5502 case HLoadClass::LoadKind::kBssEntry:
5503 case HLoadClass::LoadKind::kBssEntryPublic:
5504 case HLoadClass::LoadKind::kBssEntryPackage: {
5505 // Add ADRP with its PC-relative Class .bss entry patch.
5506 vixl::aarch64::Register temp = XRegisterFrom(out_loc);
5507 vixl::aarch64::Label* adrp_label = codegen_->NewBssEntryTypePatch(cls);
5508 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
5509 // Add LDR with its PC-relative Class .bss entry patch.
5510 vixl::aarch64::Label* ldr_label = codegen_->NewBssEntryTypePatch(cls, adrp_label);
5511 // /* GcRoot<mirror::Class> */ out = *(base_address + offset) /* PC-relative */
5512 // All aligned loads are implicitly atomic consume operations on ARM64.
5513 codegen_->GenerateGcRootFieldLoad(cls,
5514 out_loc,
5515 temp,
5516 /* offset placeholder */ 0u,
5517 ldr_label,
5518 read_barrier_option);
5519 generate_null_check = true;
5520 break;
5521 }
5522 case HLoadClass::LoadKind::kJitBootImageAddress: {
5523 DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
5524 uint32_t address = reinterpret_cast32<uint32_t>(cls->GetClass().Get());
5525 DCHECK_NE(address, 0u);
5526 __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
5527 break;
5528 }
5529 case HLoadClass::LoadKind::kJitTableAddress: {
5530 __ Ldr(out, codegen_->DeduplicateJitClassLiteral(cls->GetDexFile(),
5531 cls->GetTypeIndex(),
5532 cls->GetClass()));
5533 codegen_->GenerateGcRootFieldLoad(cls,
5534 out_loc,
5535 out.X(),
5536 /* offset= */ 0,
5537 /* fixup_label= */ nullptr,
5538 read_barrier_option);
5539 break;
5540 }
5541 case HLoadClass::LoadKind::kRuntimeCall:
5542 case HLoadClass::LoadKind::kInvalid:
5543 LOG(FATAL) << "UNREACHABLE";
5544 UNREACHABLE();
5545 }
5546
5547 bool do_clinit = cls->MustGenerateClinitCheck();
5548 if (generate_null_check || do_clinit) {
5549 DCHECK(cls->CanCallRuntime());
5550 SlowPathCodeARM64* slow_path =
5551 new (codegen_->GetScopedAllocator()) LoadClassSlowPathARM64(cls, cls);
5552 codegen_->AddSlowPath(slow_path);
5553 if (generate_null_check) {
5554 __ Cbz(out, slow_path->GetEntryLabel());
5555 }
5556 if (cls->MustGenerateClinitCheck()) {
5557 GenerateClassInitializationCheck(slow_path, out);
5558 } else {
5559 __ Bind(slow_path->GetExitLabel());
5560 }
5561 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5562 }
5563 }
5564
VisitLoadMethodHandle(HLoadMethodHandle * load)5565 void LocationsBuilderARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
5566 InvokeRuntimeCallingConvention calling_convention;
5567 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
5568 CodeGenerator::CreateLoadMethodHandleRuntimeCallLocationSummary(load, location, location);
5569 }
5570
VisitLoadMethodHandle(HLoadMethodHandle * load)5571 void InstructionCodeGeneratorARM64::VisitLoadMethodHandle(HLoadMethodHandle* load) {
5572 codegen_->GenerateLoadMethodHandleRuntimeCall(load);
5573 }
5574
VisitLoadMethodType(HLoadMethodType * load)5575 void LocationsBuilderARM64::VisitLoadMethodType(HLoadMethodType* load) {
5576 InvokeRuntimeCallingConvention calling_convention;
5577 Location location = LocationFrom(calling_convention.GetRegisterAt(0));
5578 CodeGenerator::CreateLoadMethodTypeRuntimeCallLocationSummary(load, location, location);
5579 }
5580
VisitLoadMethodType(HLoadMethodType * load)5581 void InstructionCodeGeneratorARM64::VisitLoadMethodType(HLoadMethodType* load) {
5582 codegen_->GenerateLoadMethodTypeRuntimeCall(load);
5583 }
5584
GetExceptionTlsAddress()5585 static MemOperand GetExceptionTlsAddress() {
5586 return MemOperand(tr, Thread::ExceptionOffset<kArm64PointerSize>().Int32Value());
5587 }
5588
VisitLoadException(HLoadException * load)5589 void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
5590 LocationSummary* locations =
5591 new (GetGraph()->GetAllocator()) LocationSummary(load, LocationSummary::kNoCall);
5592 locations->SetOut(Location::RequiresRegister());
5593 }
5594
VisitLoadException(HLoadException * instruction)5595 void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
5596 __ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
5597 }
5598
VisitClearException(HClearException * clear)5599 void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
5600 new (GetGraph()->GetAllocator()) LocationSummary(clear, LocationSummary::kNoCall);
5601 }
5602
VisitClearException(HClearException * clear ATTRIBUTE_UNUSED)5603 void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
5604 __ Str(wzr, GetExceptionTlsAddress());
5605 }
5606
GetSupportedLoadStringKind(HLoadString::LoadKind desired_string_load_kind)5607 HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind(
5608 HLoadString::LoadKind desired_string_load_kind) {
5609 switch (desired_string_load_kind) {
5610 case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
5611 case HLoadString::LoadKind::kBootImageRelRo:
5612 case HLoadString::LoadKind::kBssEntry:
5613 DCHECK(!GetCompilerOptions().IsJitCompiler());
5614 break;
5615 case HLoadString::LoadKind::kJitBootImageAddress:
5616 case HLoadString::LoadKind::kJitTableAddress:
5617 DCHECK(GetCompilerOptions().IsJitCompiler());
5618 break;
5619 case HLoadString::LoadKind::kRuntimeCall:
5620 break;
5621 }
5622 return desired_string_load_kind;
5623 }
5624
VisitLoadString(HLoadString * load)5625 void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
5626 LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
5627 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(load, call_kind);
5628 if (load->GetLoadKind() == HLoadString::LoadKind::kRuntimeCall) {
5629 InvokeRuntimeCallingConvention calling_convention;
5630 locations->SetOut(calling_convention.GetReturnLocation(load->GetType()));
5631 } else {
5632 locations->SetOut(Location::RequiresRegister());
5633 if (load->GetLoadKind() == HLoadString::LoadKind::kBssEntry) {
5634 if (!gUseReadBarrier || kUseBakerReadBarrier) {
5635 // Rely on the pResolveString and marking to save everything we need.
5636 locations->SetCustomSlowPathCallerSaves(OneRegInReferenceOutSaveEverythingCallerSaves());
5637 } else {
5638 // For non-Baker read barrier we have a temp-clobbering call.
5639 }
5640 }
5641 }
5642 }
5643
5644 // NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
5645 // move.
VisitLoadString(HLoadString * load)5646 void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
5647 Register out = OutputRegister(load);
5648 Location out_loc = load->GetLocations()->Out();
5649
5650 switch (load->GetLoadKind()) {
5651 case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
5652 DCHECK(codegen_->GetCompilerOptions().IsBootImage() ||
5653 codegen_->GetCompilerOptions().IsBootImageExtension());
5654 // Add ADRP with its PC-relative String patch.
5655 const DexFile& dex_file = load->GetDexFile();
5656 const dex::StringIndex string_index = load->GetStringIndex();
5657 vixl::aarch64::Label* adrp_label = codegen_->NewBootImageStringPatch(dex_file, string_index);
5658 codegen_->EmitAdrpPlaceholder(adrp_label, out.X());
5659 // Add ADD with its PC-relative String patch.
5660 vixl::aarch64::Label* add_label =
5661 codegen_->NewBootImageStringPatch(dex_file, string_index, adrp_label);
5662 codegen_->EmitAddPlaceholder(add_label, out.X(), out.X());
5663 return;
5664 }
5665 case HLoadString::LoadKind::kBootImageRelRo: {
5666 DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
5667 uint32_t boot_image_offset = CodeGenerator::GetBootImageOffset(load);
5668 codegen_->LoadBootImageRelRoEntry(out.W(), boot_image_offset);
5669 return;
5670 }
5671 case HLoadString::LoadKind::kBssEntry: {
5672 // Add ADRP with its PC-relative String .bss entry patch.
5673 const DexFile& dex_file = load->GetDexFile();
5674 const dex::StringIndex string_index = load->GetStringIndex();
5675 Register temp = XRegisterFrom(out_loc);
5676 vixl::aarch64::Label* adrp_label = codegen_->NewStringBssEntryPatch(dex_file, string_index);
5677 codegen_->EmitAdrpPlaceholder(adrp_label, temp);
5678 // Add LDR with its PC-relative String .bss entry patch.
5679 vixl::aarch64::Label* ldr_label =
5680 codegen_->NewStringBssEntryPatch(dex_file, string_index, adrp_label);
5681 // /* GcRoot<mirror::String> */ out = *(base_address + offset) /* PC-relative */
5682 // All aligned loads are implicitly atomic consume operations on ARM64.
5683 codegen_->GenerateGcRootFieldLoad(load,
5684 out_loc,
5685 temp,
5686 /* offset placeholder */ 0u,
5687 ldr_label,
5688 gCompilerReadBarrierOption);
5689 SlowPathCodeARM64* slow_path =
5690 new (codegen_->GetScopedAllocator()) LoadStringSlowPathARM64(load);
5691 codegen_->AddSlowPath(slow_path);
5692 __ Cbz(out.X(), slow_path->GetEntryLabel());
5693 __ Bind(slow_path->GetExitLabel());
5694 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5695 return;
5696 }
5697 case HLoadString::LoadKind::kJitBootImageAddress: {
5698 uint32_t address = reinterpret_cast32<uint32_t>(load->GetString().Get());
5699 DCHECK_NE(address, 0u);
5700 __ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
5701 return;
5702 }
5703 case HLoadString::LoadKind::kJitTableAddress: {
5704 __ Ldr(out, codegen_->DeduplicateJitStringLiteral(load->GetDexFile(),
5705 load->GetStringIndex(),
5706 load->GetString()));
5707 codegen_->GenerateGcRootFieldLoad(load,
5708 out_loc,
5709 out.X(),
5710 /* offset= */ 0,
5711 /* fixup_label= */ nullptr,
5712 gCompilerReadBarrierOption);
5713 return;
5714 }
5715 default:
5716 break;
5717 }
5718
5719 // TODO: Re-add the compiler code to do string dex cache lookup again.
5720 InvokeRuntimeCallingConvention calling_convention;
5721 DCHECK_EQ(calling_convention.GetRegisterAt(0).GetCode(), out.GetCode());
5722 __ Mov(calling_convention.GetRegisterAt(0).W(), load->GetStringIndex().index_);
5723 codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
5724 CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
5725 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5726 }
5727
VisitLongConstant(HLongConstant * constant)5728 void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
5729 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(constant);
5730 locations->SetOut(Location::ConstantLocation(constant));
5731 }
5732
VisitLongConstant(HLongConstant * constant ATTRIBUTE_UNUSED)5733 void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
5734 // Will be generated at use site.
5735 }
5736
VisitMonitorOperation(HMonitorOperation * instruction)5737 void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
5738 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5739 instruction, LocationSummary::kCallOnMainOnly);
5740 InvokeRuntimeCallingConvention calling_convention;
5741 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5742 }
5743
VisitMonitorOperation(HMonitorOperation * instruction)5744 void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
5745 codegen_->InvokeRuntime(instruction->IsEnter() ? kQuickLockObject : kQuickUnlockObject,
5746 instruction,
5747 instruction->GetDexPc());
5748 if (instruction->IsEnter()) {
5749 CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
5750 } else {
5751 CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
5752 }
5753 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5754 }
5755
VisitMul(HMul * mul)5756 void LocationsBuilderARM64::VisitMul(HMul* mul) {
5757 LocationSummary* locations =
5758 new (GetGraph()->GetAllocator()) LocationSummary(mul, LocationSummary::kNoCall);
5759 switch (mul->GetResultType()) {
5760 case DataType::Type::kInt32:
5761 case DataType::Type::kInt64:
5762 locations->SetInAt(0, Location::RequiresRegister());
5763 locations->SetInAt(1, Location::RequiresRegister());
5764 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5765 break;
5766
5767 case DataType::Type::kFloat32:
5768 case DataType::Type::kFloat64:
5769 locations->SetInAt(0, Location::RequiresFpuRegister());
5770 locations->SetInAt(1, Location::RequiresFpuRegister());
5771 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5772 break;
5773
5774 default:
5775 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
5776 }
5777 }
5778
VisitMul(HMul * mul)5779 void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
5780 switch (mul->GetResultType()) {
5781 case DataType::Type::kInt32:
5782 case DataType::Type::kInt64:
5783 __ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
5784 break;
5785
5786 case DataType::Type::kFloat32:
5787 case DataType::Type::kFloat64:
5788 __ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
5789 break;
5790
5791 default:
5792 LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
5793 }
5794 }
5795
VisitNeg(HNeg * neg)5796 void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
5797 LocationSummary* locations =
5798 new (GetGraph()->GetAllocator()) LocationSummary(neg, LocationSummary::kNoCall);
5799 switch (neg->GetResultType()) {
5800 case DataType::Type::kInt32:
5801 case DataType::Type::kInt64:
5802 locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
5803 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5804 break;
5805
5806 case DataType::Type::kFloat32:
5807 case DataType::Type::kFloat64:
5808 locations->SetInAt(0, Location::RequiresFpuRegister());
5809 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
5810 break;
5811
5812 default:
5813 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
5814 }
5815 }
5816
VisitNeg(HNeg * neg)5817 void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
5818 switch (neg->GetResultType()) {
5819 case DataType::Type::kInt32:
5820 case DataType::Type::kInt64:
5821 __ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
5822 break;
5823
5824 case DataType::Type::kFloat32:
5825 case DataType::Type::kFloat64:
5826 __ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
5827 break;
5828
5829 default:
5830 LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
5831 }
5832 }
5833
VisitNewArray(HNewArray * instruction)5834 void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
5835 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5836 instruction, LocationSummary::kCallOnMainOnly);
5837 InvokeRuntimeCallingConvention calling_convention;
5838 locations->SetOut(LocationFrom(x0));
5839 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5840 locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
5841 }
5842
VisitNewArray(HNewArray * instruction)5843 void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
5844 // Note: if heap poisoning is enabled, the entry point takes care of poisoning the reference.
5845 QuickEntrypointEnum entrypoint = CodeGenerator::GetArrayAllocationEntrypoint(instruction);
5846 codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
5847 CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
5848 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5849 }
5850
VisitNewInstance(HNewInstance * instruction)5851 void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
5852 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
5853 instruction, LocationSummary::kCallOnMainOnly);
5854 InvokeRuntimeCallingConvention calling_convention;
5855 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
5856 locations->SetOut(calling_convention.GetReturnLocation(DataType::Type::kReference));
5857 }
5858
VisitNewInstance(HNewInstance * instruction)5859 void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
5860 codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
5861 CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
5862 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
5863 }
5864
VisitNot(HNot * instruction)5865 void LocationsBuilderARM64::VisitNot(HNot* instruction) {
5866 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5867 locations->SetInAt(0, Location::RequiresRegister());
5868 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5869 }
5870
VisitNot(HNot * instruction)5871 void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
5872 switch (instruction->GetResultType()) {
5873 case DataType::Type::kInt32:
5874 case DataType::Type::kInt64:
5875 __ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
5876 break;
5877
5878 default:
5879 LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
5880 }
5881 }
5882
VisitBooleanNot(HBooleanNot * instruction)5883 void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
5884 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5885 locations->SetInAt(0, Location::RequiresRegister());
5886 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
5887 }
5888
VisitBooleanNot(HBooleanNot * instruction)5889 void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
5890 __ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::aarch64::Operand(1));
5891 }
5892
VisitNullCheck(HNullCheck * instruction)5893 void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
5894 LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
5895 locations->SetInAt(0, Location::RequiresRegister());
5896 }
5897
GenerateImplicitNullCheck(HNullCheck * instruction)5898 void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
5899 if (CanMoveNullCheckToUser(instruction)) {
5900 return;
5901 }
5902 {
5903 // Ensure that between load and RecordPcInfo there are no pools emitted.
5904 EmissionCheckScope guard(GetVIXLAssembler(), kMaxMacroInstructionSizeInBytes);
5905 Location obj = instruction->GetLocations()->InAt(0);
5906 __ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
5907 RecordPcInfo(instruction, instruction->GetDexPc());
5908 }
5909 }
5910
GenerateExplicitNullCheck(HNullCheck * instruction)5911 void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
5912 SlowPathCodeARM64* slow_path = new (GetScopedAllocator()) NullCheckSlowPathARM64(instruction);
5913 AddSlowPath(slow_path);
5914
5915 LocationSummary* locations = instruction->GetLocations();
5916 Location obj = locations->InAt(0);
5917
5918 __ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
5919 }
5920
VisitNullCheck(HNullCheck * instruction)5921 void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
5922 codegen_->GenerateNullCheck(instruction);
5923 }
5924
VisitOr(HOr * instruction)5925 void LocationsBuilderARM64::VisitOr(HOr* instruction) {
5926 HandleBinaryOp(instruction);
5927 }
5928
VisitOr(HOr * instruction)5929 void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
5930 HandleBinaryOp(instruction);
5931 }
5932
VisitParallelMove(HParallelMove * instruction ATTRIBUTE_UNUSED)5933 void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
5934 LOG(FATAL) << "Unreachable";
5935 }
5936
VisitParallelMove(HParallelMove * instruction)5937 void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
5938 if (instruction->GetNext()->IsSuspendCheck() &&
5939 instruction->GetBlock()->GetLoopInformation() != nullptr) {
5940 HSuspendCheck* suspend_check = instruction->GetNext()->AsSuspendCheck();
5941 // The back edge will generate the suspend check.
5942 codegen_->ClearSpillSlotsFromLoopPhisInStackMap(suspend_check, instruction);
5943 }
5944
5945 codegen_->GetMoveResolver()->EmitNativeCode(instruction);
5946 }
5947
VisitParameterValue(HParameterValue * instruction)5948 void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
5949 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5950 Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
5951 if (location.IsStackSlot()) {
5952 location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5953 } else if (location.IsDoubleStackSlot()) {
5954 location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
5955 }
5956 locations->SetOut(location);
5957 }
5958
VisitParameterValue(HParameterValue * instruction ATTRIBUTE_UNUSED)5959 void InstructionCodeGeneratorARM64::VisitParameterValue(
5960 HParameterValue* instruction ATTRIBUTE_UNUSED) {
5961 // Nothing to do, the parameter is already at its location.
5962 }
5963
VisitCurrentMethod(HCurrentMethod * instruction)5964 void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
5965 LocationSummary* locations =
5966 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
5967 locations->SetOut(LocationFrom(kArtMethodRegister));
5968 }
5969
VisitCurrentMethod(HCurrentMethod * instruction ATTRIBUTE_UNUSED)5970 void InstructionCodeGeneratorARM64::VisitCurrentMethod(
5971 HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
5972 // Nothing to do, the method is already at its location.
5973 }
5974
VisitPhi(HPhi * instruction)5975 void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
5976 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
5977 for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
5978 locations->SetInAt(i, Location::Any());
5979 }
5980 locations->SetOut(Location::Any());
5981 }
5982
VisitPhi(HPhi * instruction ATTRIBUTE_UNUSED)5983 void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
5984 LOG(FATAL) << "Unreachable";
5985 }
5986
VisitRem(HRem * rem)5987 void LocationsBuilderARM64::VisitRem(HRem* rem) {
5988 DataType::Type type = rem->GetResultType();
5989 LocationSummary::CallKind call_kind =
5990 DataType::IsFloatingPointType(type) ? LocationSummary::kCallOnMainOnly
5991 : LocationSummary::kNoCall;
5992 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(rem, call_kind);
5993
5994 switch (type) {
5995 case DataType::Type::kInt32:
5996 case DataType::Type::kInt64:
5997 locations->SetInAt(0, Location::RequiresRegister());
5998 locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
5999 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6000 break;
6001
6002 case DataType::Type::kFloat32:
6003 case DataType::Type::kFloat64: {
6004 InvokeRuntimeCallingConvention calling_convention;
6005 locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
6006 locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
6007 locations->SetOut(calling_convention.GetReturnLocation(type));
6008
6009 break;
6010 }
6011
6012 default:
6013 LOG(FATAL) << "Unexpected rem type " << type;
6014 }
6015 }
6016
GenerateIntRemForPower2Denom(HRem * instruction)6017 void InstructionCodeGeneratorARM64::GenerateIntRemForPower2Denom(HRem *instruction) {
6018 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
6019 uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
6020 DCHECK(IsPowerOfTwo(abs_imm)) << abs_imm;
6021
6022 Register out = OutputRegister(instruction);
6023 Register dividend = InputRegisterAt(instruction, 0);
6024
6025 if (HasNonNegativeOrMinIntInputAt(instruction, 0)) {
6026 // No need to adjust the result for non-negative dividends or the INT32_MIN/INT64_MIN dividends.
6027 // NOTE: The generated code for HRem correctly works for the INT32_MIN/INT64_MIN dividends.
6028 // INT*_MIN % imm must be 0 for any imm of power 2. 'and' works only with bits
6029 // 0..30 (Int32 case)/0..62 (Int64 case) of a dividend. For INT32_MIN/INT64_MIN they are zeros.
6030 // So 'and' always produces zero.
6031 __ And(out, dividend, abs_imm - 1);
6032 } else {
6033 if (abs_imm == 2) {
6034 __ Cmp(dividend, 0);
6035 __ And(out, dividend, 1);
6036 __ Csneg(out, out, out, ge);
6037 } else {
6038 UseScratchRegisterScope temps(GetVIXLAssembler());
6039 Register temp = temps.AcquireSameSizeAs(out);
6040
6041 __ Negs(temp, dividend);
6042 __ And(out, dividend, abs_imm - 1);
6043 __ And(temp, temp, abs_imm - 1);
6044 __ Csneg(out, out, temp, mi);
6045 }
6046 }
6047 }
6048
GenerateIntRemForConstDenom(HRem * instruction)6049 void InstructionCodeGeneratorARM64::GenerateIntRemForConstDenom(HRem *instruction) {
6050 int64_t imm = Int64FromLocation(instruction->GetLocations()->InAt(1));
6051
6052 if (imm == 0) {
6053 // Do not generate anything.
6054 // DivZeroCheck would prevent any code to be executed.
6055 return;
6056 }
6057
6058 if (IsPowerOfTwo(AbsOrMin(imm))) {
6059 // Cases imm == -1 or imm == 1 are handled in constant folding by
6060 // InstructionWithAbsorbingInputSimplifier.
6061 // If the cases have survided till code generation they are handled in
6062 // GenerateIntRemForPower2Denom becauses -1 and 1 are the power of 2 (2^0).
6063 // The correct code is generated for them, just more instructions.
6064 GenerateIntRemForPower2Denom(instruction);
6065 } else {
6066 DCHECK(imm < -2 || imm > 2) << imm;
6067 GenerateDivRemWithAnyConstant(instruction, imm);
6068 }
6069 }
6070
GenerateIntRem(HRem * instruction)6071 void InstructionCodeGeneratorARM64::GenerateIntRem(HRem* instruction) {
6072 DCHECK(DataType::IsIntOrLongType(instruction->GetResultType()))
6073 << instruction->GetResultType();
6074
6075 if (instruction->GetLocations()->InAt(1).IsConstant()) {
6076 GenerateIntRemForConstDenom(instruction);
6077 } else {
6078 Register out = OutputRegister(instruction);
6079 Register dividend = InputRegisterAt(instruction, 0);
6080 Register divisor = InputRegisterAt(instruction, 1);
6081 UseScratchRegisterScope temps(GetVIXLAssembler());
6082 Register temp = temps.AcquireSameSizeAs(out);
6083 __ Sdiv(temp, dividend, divisor);
6084 __ Msub(out, temp, divisor, dividend);
6085 }
6086 }
6087
VisitRem(HRem * rem)6088 void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
6089 DataType::Type type = rem->GetResultType();
6090
6091 switch (type) {
6092 case DataType::Type::kInt32:
6093 case DataType::Type::kInt64: {
6094 GenerateIntRem(rem);
6095 break;
6096 }
6097
6098 case DataType::Type::kFloat32:
6099 case DataType::Type::kFloat64: {
6100 QuickEntrypointEnum entrypoint =
6101 (type == DataType::Type::kFloat32) ? kQuickFmodf : kQuickFmod;
6102 codegen_->InvokeRuntime(entrypoint, rem, rem->GetDexPc());
6103 if (type == DataType::Type::kFloat32) {
6104 CheckEntrypointTypes<kQuickFmodf, float, float, float>();
6105 } else {
6106 CheckEntrypointTypes<kQuickFmod, double, double, double>();
6107 }
6108 break;
6109 }
6110
6111 default:
6112 LOG(FATAL) << "Unexpected rem type " << type;
6113 UNREACHABLE();
6114 }
6115 }
6116
VisitMin(HMin * min)6117 void LocationsBuilderARM64::VisitMin(HMin* min) {
6118 HandleBinaryOp(min);
6119 }
6120
VisitMin(HMin * min)6121 void InstructionCodeGeneratorARM64::VisitMin(HMin* min) {
6122 HandleBinaryOp(min);
6123 }
6124
VisitMax(HMax * max)6125 void LocationsBuilderARM64::VisitMax(HMax* max) {
6126 HandleBinaryOp(max);
6127 }
6128
VisitMax(HMax * max)6129 void InstructionCodeGeneratorARM64::VisitMax(HMax* max) {
6130 HandleBinaryOp(max);
6131 }
6132
VisitAbs(HAbs * abs)6133 void LocationsBuilderARM64::VisitAbs(HAbs* abs) {
6134 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(abs);
6135 switch (abs->GetResultType()) {
6136 case DataType::Type::kInt32:
6137 case DataType::Type::kInt64:
6138 locations->SetInAt(0, Location::RequiresRegister());
6139 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6140 break;
6141 case DataType::Type::kFloat32:
6142 case DataType::Type::kFloat64:
6143 locations->SetInAt(0, Location::RequiresFpuRegister());
6144 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6145 break;
6146 default:
6147 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
6148 }
6149 }
6150
VisitAbs(HAbs * abs)6151 void InstructionCodeGeneratorARM64::VisitAbs(HAbs* abs) {
6152 switch (abs->GetResultType()) {
6153 case DataType::Type::kInt32:
6154 case DataType::Type::kInt64: {
6155 Register in_reg = InputRegisterAt(abs, 0);
6156 Register out_reg = OutputRegister(abs);
6157 __ Cmp(in_reg, Operand(0));
6158 __ Cneg(out_reg, in_reg, lt);
6159 break;
6160 }
6161 case DataType::Type::kFloat32:
6162 case DataType::Type::kFloat64: {
6163 VRegister in_reg = InputFPRegisterAt(abs, 0);
6164 VRegister out_reg = OutputFPRegister(abs);
6165 __ Fabs(out_reg, in_reg);
6166 break;
6167 }
6168 default:
6169 LOG(FATAL) << "Unexpected type for abs operation " << abs->GetResultType();
6170 }
6171 }
6172
VisitConstructorFence(HConstructorFence * constructor_fence)6173 void LocationsBuilderARM64::VisitConstructorFence(HConstructorFence* constructor_fence) {
6174 constructor_fence->SetLocations(nullptr);
6175 }
6176
VisitConstructorFence(HConstructorFence * constructor_fence ATTRIBUTE_UNUSED)6177 void InstructionCodeGeneratorARM64::VisitConstructorFence(
6178 HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
6179 codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
6180 }
6181
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)6182 void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
6183 memory_barrier->SetLocations(nullptr);
6184 }
6185
VisitMemoryBarrier(HMemoryBarrier * memory_barrier)6186 void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
6187 codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
6188 }
6189
VisitReturn(HReturn * instruction)6190 void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
6191 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(instruction);
6192 DataType::Type return_type = instruction->InputAt(0)->GetType();
6193 locations->SetInAt(0, ARM64ReturnLocation(return_type));
6194 }
6195
VisitReturn(HReturn * ret)6196 void InstructionCodeGeneratorARM64::VisitReturn(HReturn* ret) {
6197 if (GetGraph()->IsCompilingOsr()) {
6198 // To simplify callers of an OSR method, we put the return value in both
6199 // floating point and core register.
6200 switch (ret->InputAt(0)->GetType()) {
6201 case DataType::Type::kFloat32:
6202 __ Fmov(w0, s0);
6203 break;
6204 case DataType::Type::kFloat64:
6205 __ Fmov(x0, d0);
6206 break;
6207 default:
6208 break;
6209 }
6210 }
6211 codegen_->GenerateFrameExit();
6212 }
6213
VisitReturnVoid(HReturnVoid * instruction)6214 void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
6215 instruction->SetLocations(nullptr);
6216 }
6217
VisitReturnVoid(HReturnVoid * instruction ATTRIBUTE_UNUSED)6218 void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) {
6219 codegen_->GenerateFrameExit();
6220 }
6221
VisitRor(HRor * ror)6222 void LocationsBuilderARM64::VisitRor(HRor* ror) {
6223 HandleBinaryOp(ror);
6224 }
6225
VisitRor(HRor * ror)6226 void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
6227 HandleBinaryOp(ror);
6228 }
6229
VisitShl(HShl * shl)6230 void LocationsBuilderARM64::VisitShl(HShl* shl) {
6231 HandleShift(shl);
6232 }
6233
VisitShl(HShl * shl)6234 void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
6235 HandleShift(shl);
6236 }
6237
VisitShr(HShr * shr)6238 void LocationsBuilderARM64::VisitShr(HShr* shr) {
6239 HandleShift(shr);
6240 }
6241
VisitShr(HShr * shr)6242 void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
6243 HandleShift(shr);
6244 }
6245
VisitSub(HSub * instruction)6246 void LocationsBuilderARM64::VisitSub(HSub* instruction) {
6247 HandleBinaryOp(instruction);
6248 }
6249
VisitSub(HSub * instruction)6250 void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
6251 HandleBinaryOp(instruction);
6252 }
6253
VisitStaticFieldGet(HStaticFieldGet * instruction)6254 void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6255 HandleFieldGet(instruction, instruction->GetFieldInfo());
6256 }
6257
VisitStaticFieldGet(HStaticFieldGet * instruction)6258 void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
6259 HandleFieldGet(instruction, instruction->GetFieldInfo());
6260 }
6261
VisitStaticFieldSet(HStaticFieldSet * instruction)6262 void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6263 HandleFieldSet(instruction);
6264 }
6265
VisitStaticFieldSet(HStaticFieldSet * instruction)6266 void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
6267 HandleFieldSet(instruction,
6268 instruction->GetFieldInfo(),
6269 instruction->GetValueCanBeNull(),
6270 instruction->GetWriteBarrierKind());
6271 }
6272
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6273 void LocationsBuilderARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6274 codegen_->CreateStringBuilderAppendLocations(instruction, LocationFrom(x0));
6275 }
6276
VisitStringBuilderAppend(HStringBuilderAppend * instruction)6277 void InstructionCodeGeneratorARM64::VisitStringBuilderAppend(HStringBuilderAppend* instruction) {
6278 __ Mov(w0, instruction->GetFormat()->GetValue());
6279 codegen_->InvokeRuntime(kQuickStringBuilderAppend, instruction, instruction->GetDexPc());
6280 }
6281
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6282 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
6283 HUnresolvedInstanceFieldGet* instruction) {
6284 FieldAccessCallingConventionARM64 calling_convention;
6285 codegen_->CreateUnresolvedFieldLocationSummary(
6286 instruction, instruction->GetFieldType(), calling_convention);
6287 }
6288
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)6289 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
6290 HUnresolvedInstanceFieldGet* instruction) {
6291 FieldAccessCallingConventionARM64 calling_convention;
6292 codegen_->GenerateUnresolvedFieldAccess(instruction,
6293 instruction->GetFieldType(),
6294 instruction->GetFieldIndex(),
6295 instruction->GetDexPc(),
6296 calling_convention);
6297 }
6298
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6299 void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
6300 HUnresolvedInstanceFieldSet* instruction) {
6301 FieldAccessCallingConventionARM64 calling_convention;
6302 codegen_->CreateUnresolvedFieldLocationSummary(
6303 instruction, instruction->GetFieldType(), calling_convention);
6304 }
6305
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)6306 void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
6307 HUnresolvedInstanceFieldSet* instruction) {
6308 FieldAccessCallingConventionARM64 calling_convention;
6309 codegen_->GenerateUnresolvedFieldAccess(instruction,
6310 instruction->GetFieldType(),
6311 instruction->GetFieldIndex(),
6312 instruction->GetDexPc(),
6313 calling_convention);
6314 }
6315
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6316 void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
6317 HUnresolvedStaticFieldGet* instruction) {
6318 FieldAccessCallingConventionARM64 calling_convention;
6319 codegen_->CreateUnresolvedFieldLocationSummary(
6320 instruction, instruction->GetFieldType(), calling_convention);
6321 }
6322
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)6323 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
6324 HUnresolvedStaticFieldGet* instruction) {
6325 FieldAccessCallingConventionARM64 calling_convention;
6326 codegen_->GenerateUnresolvedFieldAccess(instruction,
6327 instruction->GetFieldType(),
6328 instruction->GetFieldIndex(),
6329 instruction->GetDexPc(),
6330 calling_convention);
6331 }
6332
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6333 void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
6334 HUnresolvedStaticFieldSet* instruction) {
6335 FieldAccessCallingConventionARM64 calling_convention;
6336 codegen_->CreateUnresolvedFieldLocationSummary(
6337 instruction, instruction->GetFieldType(), calling_convention);
6338 }
6339
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)6340 void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
6341 HUnresolvedStaticFieldSet* instruction) {
6342 FieldAccessCallingConventionARM64 calling_convention;
6343 codegen_->GenerateUnresolvedFieldAccess(instruction,
6344 instruction->GetFieldType(),
6345 instruction->GetFieldIndex(),
6346 instruction->GetDexPc(),
6347 calling_convention);
6348 }
6349
VisitSuspendCheck(HSuspendCheck * instruction)6350 void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
6351 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6352 instruction, LocationSummary::kCallOnSlowPath);
6353 // In suspend check slow path, usually there are no caller-save registers at all.
6354 // If SIMD instructions are present, however, we force spilling all live SIMD
6355 // registers in full width (since the runtime only saves/restores lower part).
6356 locations->SetCustomSlowPathCallerSaves(
6357 GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
6358 }
6359
VisitSuspendCheck(HSuspendCheck * instruction)6360 void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
6361 HBasicBlock* block = instruction->GetBlock();
6362 if (block->GetLoopInformation() != nullptr) {
6363 DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
6364 // The back edge will generate the suspend check.
6365 return;
6366 }
6367 if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
6368 // The goto will generate the suspend check.
6369 return;
6370 }
6371 GenerateSuspendCheck(instruction, nullptr);
6372 codegen_->MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6373 }
6374
VisitThrow(HThrow * instruction)6375 void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
6376 LocationSummary* locations = new (GetGraph()->GetAllocator()) LocationSummary(
6377 instruction, LocationSummary::kCallOnMainOnly);
6378 InvokeRuntimeCallingConvention calling_convention;
6379 locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
6380 }
6381
VisitThrow(HThrow * instruction)6382 void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
6383 codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
6384 CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
6385 }
6386
VisitTypeConversion(HTypeConversion * conversion)6387 void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
6388 LocationSummary* locations =
6389 new (GetGraph()->GetAllocator()) LocationSummary(conversion, LocationSummary::kNoCall);
6390 DataType::Type input_type = conversion->GetInputType();
6391 DataType::Type result_type = conversion->GetResultType();
6392 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
6393 << input_type << " -> " << result_type;
6394 if ((input_type == DataType::Type::kReference) || (input_type == DataType::Type::kVoid) ||
6395 (result_type == DataType::Type::kReference) || (result_type == DataType::Type::kVoid)) {
6396 LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
6397 }
6398
6399 if (DataType::IsFloatingPointType(input_type)) {
6400 locations->SetInAt(0, Location::RequiresFpuRegister());
6401 } else {
6402 locations->SetInAt(0, Location::RequiresRegister());
6403 }
6404
6405 if (DataType::IsFloatingPointType(result_type)) {
6406 locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
6407 } else {
6408 locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
6409 }
6410 }
6411
VisitTypeConversion(HTypeConversion * conversion)6412 void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
6413 DataType::Type result_type = conversion->GetResultType();
6414 DataType::Type input_type = conversion->GetInputType();
6415
6416 DCHECK(!DataType::IsTypeConversionImplicit(input_type, result_type))
6417 << input_type << " -> " << result_type;
6418
6419 if (DataType::IsIntegralType(result_type) && DataType::IsIntegralType(input_type)) {
6420 int result_size = DataType::Size(result_type);
6421 int input_size = DataType::Size(input_type);
6422 int min_size = std::min(result_size, input_size);
6423 Register output = OutputRegister(conversion);
6424 Register source = InputRegisterAt(conversion, 0);
6425 if (result_type == DataType::Type::kInt32 && input_type == DataType::Type::kInt64) {
6426 // 'int' values are used directly as W registers, discarding the top
6427 // bits, so we don't need to sign-extend and can just perform a move.
6428 // We do not pass the `kDiscardForSameWReg` argument to force clearing the
6429 // top 32 bits of the target register. We theoretically could leave those
6430 // bits unchanged, but we would have to make sure that no code uses a
6431 // 32bit input value as a 64bit value assuming that the top 32 bits are
6432 // zero.
6433 __ Mov(output.W(), source.W());
6434 } else if (DataType::IsUnsignedType(result_type) ||
6435 (DataType::IsUnsignedType(input_type) && input_size < result_size)) {
6436 __ Ubfx(output, output.IsX() ? source.X() : source.W(), 0, result_size * kBitsPerByte);
6437 } else {
6438 __ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
6439 }
6440 } else if (DataType::IsFloatingPointType(result_type) && DataType::IsIntegralType(input_type)) {
6441 __ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
6442 } else if (DataType::IsIntegralType(result_type) && DataType::IsFloatingPointType(input_type)) {
6443 CHECK(result_type == DataType::Type::kInt32 || result_type == DataType::Type::kInt64);
6444 __ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
6445 } else if (DataType::IsFloatingPointType(result_type) &&
6446 DataType::IsFloatingPointType(input_type)) {
6447 __ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
6448 } else {
6449 LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
6450 << " to " << result_type;
6451 }
6452 }
6453
VisitUShr(HUShr * ushr)6454 void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
6455 HandleShift(ushr);
6456 }
6457
VisitUShr(HUShr * ushr)6458 void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
6459 HandleShift(ushr);
6460 }
6461
VisitXor(HXor * instruction)6462 void LocationsBuilderARM64::VisitXor(HXor* instruction) {
6463 HandleBinaryOp(instruction);
6464 }
6465
VisitXor(HXor * instruction)6466 void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
6467 HandleBinaryOp(instruction);
6468 }
6469
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)6470 void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
6471 // Nothing to do, this should be removed during prepare for register allocator.
6472 LOG(FATAL) << "Unreachable";
6473 }
6474
VisitBoundType(HBoundType * instruction ATTRIBUTE_UNUSED)6475 void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
6476 // Nothing to do, this should be removed during prepare for register allocator.
6477 LOG(FATAL) << "Unreachable";
6478 }
6479
6480 // Simple implementation of packed switch - generate cascaded compare/jumps.
VisitPackedSwitch(HPackedSwitch * switch_instr)6481 void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
6482 LocationSummary* locations =
6483 new (GetGraph()->GetAllocator()) LocationSummary(switch_instr, LocationSummary::kNoCall);
6484 locations->SetInAt(0, Location::RequiresRegister());
6485 }
6486
VisitPackedSwitch(HPackedSwitch * switch_instr)6487 void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
6488 int32_t lower_bound = switch_instr->GetStartValue();
6489 uint32_t num_entries = switch_instr->GetNumEntries();
6490 Register value_reg = InputRegisterAt(switch_instr, 0);
6491 HBasicBlock* default_block = switch_instr->GetDefaultBlock();
6492
6493 // Roughly set 16 as max average assemblies generated per HIR in a graph.
6494 static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * kInstructionSize;
6495 // ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to
6496 // make sure we don't emit it if the target may run out of range.
6497 // TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR
6498 // ranges and emit the tables only as required.
6499 static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction;
6500
6501 if (num_entries <= kPackedSwitchCompareJumpThreshold ||
6502 // Current instruction id is an upper bound of the number of HIRs in the graph.
6503 GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) {
6504 // Create a series of compare/jumps.
6505 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
6506 Register temp = temps.AcquireW();
6507 __ Subs(temp, value_reg, Operand(lower_bound));
6508
6509 const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
6510 // Jump to successors[0] if value == lower_bound.
6511 __ B(eq, codegen_->GetLabelOf(successors[0]));
6512 int32_t last_index = 0;
6513 for (; num_entries - last_index > 2; last_index += 2) {
6514 __ Subs(temp, temp, Operand(2));
6515 // Jump to successors[last_index + 1] if value < case_value[last_index + 2].
6516 __ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
6517 // Jump to successors[last_index + 2] if value == case_value[last_index + 2].
6518 __ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
6519 }
6520 if (num_entries - last_index == 2) {
6521 // The last missing case_value.
6522 __ Cmp(temp, Operand(1));
6523 __ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
6524 }
6525
6526 // And the default for any other value.
6527 if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
6528 __ B(codegen_->GetLabelOf(default_block));
6529 }
6530 } else {
6531 JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr);
6532
6533 UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
6534
6535 // Below instructions should use at most one blocked register. Since there are two blocked
6536 // registers, we are free to block one.
6537 Register temp_w = temps.AcquireW();
6538 Register index;
6539 // Remove the bias.
6540 if (lower_bound != 0) {
6541 index = temp_w;
6542 __ Sub(index, value_reg, Operand(lower_bound));
6543 } else {
6544 index = value_reg;
6545 }
6546
6547 // Jump to default block if index is out of the range.
6548 __ Cmp(index, Operand(num_entries));
6549 __ B(hs, codegen_->GetLabelOf(default_block));
6550
6551 // In current VIXL implementation, it won't require any blocked registers to encode the
6552 // immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
6553 // register pressure.
6554 Register table_base = temps.AcquireX();
6555 // Load jump offset from the table.
6556 __ Adr(table_base, jump_table->GetTableStartLabel());
6557 Register jump_offset = temp_w;
6558 __ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
6559
6560 // Jump to target block by branching to table_base(pc related) + offset.
6561 Register target_address = table_base;
6562 __ Add(target_address, table_base, Operand(jump_offset, SXTW));
6563 __ Br(target_address);
6564 }
6565 }
6566
GenerateReferenceLoadOneRegister(HInstruction * instruction,Location out,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)6567 void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(
6568 HInstruction* instruction,
6569 Location out,
6570 uint32_t offset,
6571 Location maybe_temp,
6572 ReadBarrierOption read_barrier_option) {
6573 DataType::Type type = DataType::Type::kReference;
6574 Register out_reg = RegisterFrom(out, type);
6575 if (read_barrier_option == kWithReadBarrier) {
6576 CHECK(gUseReadBarrier);
6577 if (kUseBakerReadBarrier) {
6578 // Load with fast path based Baker's read barrier.
6579 // /* HeapReference<Object> */ out = *(out + offset)
6580 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6581 out,
6582 out_reg,
6583 offset,
6584 maybe_temp,
6585 /* needs_null_check= */ false,
6586 /* use_load_acquire= */ false);
6587 } else {
6588 // Load with slow path based read barrier.
6589 // Save the value of `out` into `maybe_temp` before overwriting it
6590 // in the following move operation, as we will need it for the
6591 // read barrier below.
6592 Register temp_reg = RegisterFrom(maybe_temp, type);
6593 __ Mov(temp_reg, out_reg);
6594 // /* HeapReference<Object> */ out = *(out + offset)
6595 __ Ldr(out_reg, HeapOperand(out_reg, offset));
6596 codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
6597 }
6598 } else {
6599 // Plain load with no read barrier.
6600 // /* HeapReference<Object> */ out = *(out + offset)
6601 __ Ldr(out_reg, HeapOperand(out_reg, offset));
6602 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
6603 }
6604 }
6605
GenerateReferenceLoadTwoRegisters(HInstruction * instruction,Location out,Location obj,uint32_t offset,Location maybe_temp,ReadBarrierOption read_barrier_option)6606 void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(
6607 HInstruction* instruction,
6608 Location out,
6609 Location obj,
6610 uint32_t offset,
6611 Location maybe_temp,
6612 ReadBarrierOption read_barrier_option) {
6613 DataType::Type type = DataType::Type::kReference;
6614 Register out_reg = RegisterFrom(out, type);
6615 Register obj_reg = RegisterFrom(obj, type);
6616 if (read_barrier_option == kWithReadBarrier) {
6617 CHECK(gUseReadBarrier);
6618 if (kUseBakerReadBarrier) {
6619 // Load with fast path based Baker's read barrier.
6620 // /* HeapReference<Object> */ out = *(obj + offset)
6621 codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
6622 out,
6623 obj_reg,
6624 offset,
6625 maybe_temp,
6626 /* needs_null_check= */ false,
6627 /* use_load_acquire= */ false);
6628 } else {
6629 // Load with slow path based read barrier.
6630 // /* HeapReference<Object> */ out = *(obj + offset)
6631 __ Ldr(out_reg, HeapOperand(obj_reg, offset));
6632 codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
6633 }
6634 } else {
6635 // Plain load with no read barrier.
6636 // /* HeapReference<Object> */ out = *(obj + offset)
6637 __ Ldr(out_reg, HeapOperand(obj_reg, offset));
6638 GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
6639 }
6640 }
6641
GenerateGcRootFieldLoad(HInstruction * instruction,Location root,Register obj,uint32_t offset,vixl::aarch64::Label * fixup_label,ReadBarrierOption read_barrier_option)6642 void CodeGeneratorARM64::GenerateGcRootFieldLoad(
6643 HInstruction* instruction,
6644 Location root,
6645 Register obj,
6646 uint32_t offset,
6647 vixl::aarch64::Label* fixup_label,
6648 ReadBarrierOption read_barrier_option) {
6649 DCHECK(fixup_label == nullptr || offset == 0u);
6650 Register root_reg = RegisterFrom(root, DataType::Type::kReference);
6651 if (read_barrier_option == kWithReadBarrier) {
6652 DCHECK(gUseReadBarrier);
6653 if (kUseBakerReadBarrier) {
6654 // Fast path implementation of art::ReadBarrier::BarrierForRoot when
6655 // Baker's read barrier are used.
6656
6657 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in
6658 // the Marking Register) to decide whether we need to enter
6659 // the slow path to mark the GC root.
6660 //
6661 // We use shared thunks for the slow path; shared within the method
6662 // for JIT, across methods for AOT. That thunk checks the reference
6663 // and jumps to the entrypoint if needed.
6664 //
6665 // lr = &return_address;
6666 // GcRoot<mirror::Object> root = *(obj+offset); // Original reference load.
6667 // if (mr) { // Thread::Current()->GetIsGcMarking()
6668 // goto gc_root_thunk<root_reg>(lr)
6669 // }
6670 // return_address:
6671
6672 UseScratchRegisterScope temps(GetVIXLAssembler());
6673 DCHECK(temps.IsAvailable(ip0));
6674 DCHECK(temps.IsAvailable(ip1));
6675 temps.Exclude(ip0, ip1);
6676 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(root_reg.GetCode());
6677
6678 ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
6679 vixl::aarch64::Label return_address;
6680 __ adr(lr, &return_address);
6681 if (fixup_label != nullptr) {
6682 __ bind(fixup_label);
6683 }
6684 static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
6685 "GC root LDR must be 2 instructions (8B) before the return address label.");
6686 __ ldr(root_reg, MemOperand(obj.X(), offset));
6687 EmitBakerReadBarrierCbnz(custom_data);
6688 __ bind(&return_address);
6689 } else {
6690 // GC root loaded through a slow path for read barriers other
6691 // than Baker's.
6692 // /* GcRoot<mirror::Object>* */ root = obj + offset
6693 if (fixup_label == nullptr) {
6694 __ Add(root_reg.X(), obj.X(), offset);
6695 } else {
6696 EmitAddPlaceholder(fixup_label, root_reg.X(), obj.X());
6697 }
6698 // /* mirror::Object* */ root = root->Read()
6699 GenerateReadBarrierForRootSlow(instruction, root, root);
6700 }
6701 } else {
6702 // Plain GC root load with no read barrier.
6703 // /* GcRoot<mirror::Object> */ root = *(obj + offset)
6704 if (fixup_label == nullptr) {
6705 __ Ldr(root_reg, MemOperand(obj, offset));
6706 } else {
6707 EmitLdrOffsetPlaceholder(fixup_label, root_reg, obj.X());
6708 }
6709 // Note that GC roots are not affected by heap poisoning, thus we
6710 // do not have to unpoison `root_reg` here.
6711 }
6712 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__);
6713 }
6714
GenerateIntrinsicCasMoveWithBakerReadBarrier(vixl::aarch64::Register marked_old_value,vixl::aarch64::Register old_value)6715 void CodeGeneratorARM64::GenerateIntrinsicCasMoveWithBakerReadBarrier(
6716 vixl::aarch64::Register marked_old_value,
6717 vixl::aarch64::Register old_value) {
6718 DCHECK(gUseReadBarrier);
6719 DCHECK(kUseBakerReadBarrier);
6720
6721 // Similar to the Baker RB path in GenerateGcRootFieldLoad(), with a MOV instead of LDR.
6722 uint32_t custom_data = EncodeBakerReadBarrierGcRootData(marked_old_value.GetCode());
6723
6724 ExactAssemblyScope guard(GetVIXLAssembler(), 3 * vixl::aarch64::kInstructionSize);
6725 vixl::aarch64::Label return_address;
6726 __ adr(lr, &return_address);
6727 static_assert(BAKER_MARK_INTROSPECTION_GC_ROOT_LDR_OFFSET == -8,
6728 "GC root LDR must be 2 instructions (8B) before the return address label.");
6729 __ mov(marked_old_value, old_value);
6730 EmitBakerReadBarrierCbnz(custom_data);
6731 __ bind(&return_address);
6732 }
6733
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,vixl::aarch64::Register obj,const vixl::aarch64::MemOperand & src,bool needs_null_check,bool use_load_acquire)6734 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6735 Location ref,
6736 vixl::aarch64::Register obj,
6737 const vixl::aarch64::MemOperand& src,
6738 bool needs_null_check,
6739 bool use_load_acquire) {
6740 DCHECK(gUseReadBarrier);
6741 DCHECK(kUseBakerReadBarrier);
6742
6743 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
6744 // Marking Register) to decide whether we need to enter the slow
6745 // path to mark the reference. Then, in the slow path, check the
6746 // gray bit in the lock word of the reference's holder (`obj`) to
6747 // decide whether to mark `ref` or not.
6748 //
6749 // We use shared thunks for the slow path; shared within the method
6750 // for JIT, across methods for AOT. That thunk checks the holder
6751 // and jumps to the entrypoint if needed. If the holder is not gray,
6752 // it creates a fake dependency and returns to the LDR instruction.
6753 //
6754 // lr = &gray_return_address;
6755 // if (mr) { // Thread::Current()->GetIsGcMarking()
6756 // goto field_thunk<holder_reg, base_reg, use_load_acquire>(lr)
6757 // }
6758 // not_gray_return_address:
6759 // // Original reference load. If the offset is too large to fit
6760 // // into LDR, we use an adjusted base register here.
6761 // HeapReference<mirror::Object> reference = *(obj+offset);
6762 // gray_return_address:
6763
6764 DCHECK(src.GetAddrMode() == vixl::aarch64::Offset);
6765 DCHECK_ALIGNED(src.GetOffset(), sizeof(mirror::HeapReference<mirror::Object>));
6766
6767 UseScratchRegisterScope temps(GetVIXLAssembler());
6768 DCHECK(temps.IsAvailable(ip0));
6769 DCHECK(temps.IsAvailable(ip1));
6770 temps.Exclude(ip0, ip1);
6771 uint32_t custom_data = use_load_acquire
6772 ? EncodeBakerReadBarrierAcquireData(src.GetBaseRegister().GetCode(), obj.GetCode())
6773 : EncodeBakerReadBarrierFieldData(src.GetBaseRegister().GetCode(), obj.GetCode());
6774
6775 {
6776 ExactAssemblyScope guard(GetVIXLAssembler(),
6777 (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
6778 vixl::aarch64::Label return_address;
6779 __ adr(lr, &return_address);
6780 EmitBakerReadBarrierCbnz(custom_data);
6781 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
6782 "Field LDR must be 1 instruction (4B) before the return address label; "
6783 " 2 instructions (8B) for heap poisoning.");
6784 Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
6785 if (use_load_acquire) {
6786 DCHECK_EQ(src.GetOffset(), 0);
6787 __ ldar(ref_reg, src);
6788 } else {
6789 __ ldr(ref_reg, src);
6790 }
6791 if (needs_null_check) {
6792 MaybeRecordImplicitNullCheck(instruction);
6793 }
6794 // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
6795 // macro instructions disallowed in ExactAssemblyScope.
6796 if (kPoisonHeapReferences) {
6797 __ neg(ref_reg, Operand(ref_reg));
6798 }
6799 __ bind(&return_address);
6800 }
6801 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
6802 }
6803
GenerateFieldLoadWithBakerReadBarrier(HInstruction * instruction,Location ref,Register obj,uint32_t offset,Location maybe_temp,bool needs_null_check,bool use_load_acquire)6804 void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
6805 Location ref,
6806 Register obj,
6807 uint32_t offset,
6808 Location maybe_temp,
6809 bool needs_null_check,
6810 bool use_load_acquire) {
6811 DCHECK_ALIGNED(offset, sizeof(mirror::HeapReference<mirror::Object>));
6812 Register base = obj;
6813 if (use_load_acquire) {
6814 DCHECK(maybe_temp.IsRegister());
6815 base = WRegisterFrom(maybe_temp);
6816 __ Add(base, obj, offset);
6817 offset = 0u;
6818 } else if (offset >= kReferenceLoadMinFarOffset) {
6819 DCHECK(maybe_temp.IsRegister());
6820 base = WRegisterFrom(maybe_temp);
6821 static_assert(IsPowerOfTwo(kReferenceLoadMinFarOffset), "Expecting a power of 2.");
6822 __ Add(base, obj, Operand(offset & ~(kReferenceLoadMinFarOffset - 1u)));
6823 offset &= (kReferenceLoadMinFarOffset - 1u);
6824 }
6825 MemOperand src(base.X(), offset);
6826 GenerateFieldLoadWithBakerReadBarrier(
6827 instruction, ref, obj, src, needs_null_check, use_load_acquire);
6828 }
6829
GenerateArrayLoadWithBakerReadBarrier(HArrayGet * instruction,Location ref,Register obj,uint32_t data_offset,Location index,bool needs_null_check)6830 void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HArrayGet* instruction,
6831 Location ref,
6832 Register obj,
6833 uint32_t data_offset,
6834 Location index,
6835 bool needs_null_check) {
6836 DCHECK(gUseReadBarrier);
6837 DCHECK(kUseBakerReadBarrier);
6838
6839 static_assert(
6840 sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
6841 "art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
6842 size_t scale_factor = DataType::SizeShift(DataType::Type::kReference);
6843
6844 // Query `art::Thread::Current()->GetIsGcMarking()` (stored in the
6845 // Marking Register) to decide whether we need to enter the slow
6846 // path to mark the reference. Then, in the slow path, check the
6847 // gray bit in the lock word of the reference's holder (`obj`) to
6848 // decide whether to mark `ref` or not.
6849 //
6850 // We use shared thunks for the slow path; shared within the method
6851 // for JIT, across methods for AOT. That thunk checks the holder
6852 // and jumps to the entrypoint if needed. If the holder is not gray,
6853 // it creates a fake dependency and returns to the LDR instruction.
6854 //
6855 // lr = &gray_return_address;
6856 // if (mr) { // Thread::Current()->GetIsGcMarking()
6857 // goto array_thunk<base_reg>(lr)
6858 // }
6859 // not_gray_return_address:
6860 // // Original reference load. If the offset is too large to fit
6861 // // into LDR, we use an adjusted base register here.
6862 // HeapReference<mirror::Object> reference = data[index];
6863 // gray_return_address:
6864
6865 DCHECK(index.IsValid());
6866 Register index_reg = RegisterFrom(index, DataType::Type::kInt32);
6867 Register ref_reg = RegisterFrom(ref, DataType::Type::kReference);
6868
6869 UseScratchRegisterScope temps(GetVIXLAssembler());
6870 DCHECK(temps.IsAvailable(ip0));
6871 DCHECK(temps.IsAvailable(ip1));
6872 temps.Exclude(ip0, ip1);
6873
6874 Register temp;
6875 if (instruction->GetArray()->IsIntermediateAddress()) {
6876 // We do not need to compute the intermediate address from the array: the
6877 // input instruction has done it already. See the comment in
6878 // `TryExtractArrayAccessAddress()`.
6879 if (kIsDebugBuild) {
6880 HIntermediateAddress* interm_addr = instruction->GetArray()->AsIntermediateAddress();
6881 DCHECK_EQ(interm_addr->GetOffset()->AsIntConstant()->GetValueAsUint64(), data_offset);
6882 }
6883 temp = obj;
6884 } else {
6885 temp = WRegisterFrom(instruction->GetLocations()->GetTemp(0));
6886 __ Add(temp.X(), obj.X(), Operand(data_offset));
6887 }
6888
6889 uint32_t custom_data = EncodeBakerReadBarrierArrayData(temp.GetCode());
6890
6891 {
6892 ExactAssemblyScope guard(GetVIXLAssembler(),
6893 (kPoisonHeapReferences ? 4u : 3u) * vixl::aarch64::kInstructionSize);
6894 vixl::aarch64::Label return_address;
6895 __ adr(lr, &return_address);
6896 EmitBakerReadBarrierCbnz(custom_data);
6897 static_assert(BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
6898 "Array LDR must be 1 instruction (4B) before the return address label; "
6899 " 2 instructions (8B) for heap poisoning.");
6900 __ ldr(ref_reg, MemOperand(temp.X(), index_reg.X(), LSL, scale_factor));
6901 DCHECK(!needs_null_check); // The thunk cannot handle the null check.
6902 // Unpoison the reference explicitly if needed. MaybeUnpoisonHeapReference() uses
6903 // macro instructions disallowed in ExactAssemblyScope.
6904 if (kPoisonHeapReferences) {
6905 __ neg(ref_reg, Operand(ref_reg));
6906 }
6907 __ bind(&return_address);
6908 }
6909 MaybeGenerateMarkingRegisterCheck(/* code= */ __LINE__, /* temp_loc= */ LocationFrom(ip1));
6910 }
6911
MaybeGenerateMarkingRegisterCheck(int code,Location temp_loc)6912 void CodeGeneratorARM64::MaybeGenerateMarkingRegisterCheck(int code, Location temp_loc) {
6913 // The following condition is a compile-time one, so it does not have a run-time cost.
6914 if (kIsDebugBuild && gUseReadBarrier && kUseBakerReadBarrier) {
6915 // The following condition is a run-time one; it is executed after the
6916 // previous compile-time test, to avoid penalizing non-debug builds.
6917 if (GetCompilerOptions().EmitRunTimeChecksInDebugMode()) {
6918 UseScratchRegisterScope temps(GetVIXLAssembler());
6919 Register temp = temp_loc.IsValid() ? WRegisterFrom(temp_loc) : temps.AcquireW();
6920 GetAssembler()->GenerateMarkingRegisterCheck(temp, code);
6921 }
6922 }
6923 }
6924
AddReadBarrierSlowPath(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6925 SlowPathCodeARM64* CodeGeneratorARM64::AddReadBarrierSlowPath(HInstruction* instruction,
6926 Location out,
6927 Location ref,
6928 Location obj,
6929 uint32_t offset,
6930 Location index) {
6931 SlowPathCodeARM64* slow_path = new (GetScopedAllocator())
6932 ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
6933 AddSlowPath(slow_path);
6934 return slow_path;
6935 }
6936
GenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6937 void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
6938 Location out,
6939 Location ref,
6940 Location obj,
6941 uint32_t offset,
6942 Location index) {
6943 DCHECK(gUseReadBarrier);
6944
6945 // Insert a slow path based read barrier *after* the reference load.
6946 //
6947 // If heap poisoning is enabled, the unpoisoning of the loaded
6948 // reference will be carried out by the runtime within the slow
6949 // path.
6950 //
6951 // Note that `ref` currently does not get unpoisoned (when heap
6952 // poisoning is enabled), which is alright as the `ref` argument is
6953 // not used by the artReadBarrierSlow entry point.
6954 //
6955 // TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
6956 SlowPathCodeARM64* slow_path = AddReadBarrierSlowPath(instruction, out, ref, obj, offset, index);
6957
6958 __ B(slow_path->GetEntryLabel());
6959 __ Bind(slow_path->GetExitLabel());
6960 }
6961
MaybeGenerateReadBarrierSlow(HInstruction * instruction,Location out,Location ref,Location obj,uint32_t offset,Location index)6962 void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
6963 Location out,
6964 Location ref,
6965 Location obj,
6966 uint32_t offset,
6967 Location index) {
6968 if (gUseReadBarrier) {
6969 // Baker's read barriers shall be handled by the fast path
6970 // (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
6971 DCHECK(!kUseBakerReadBarrier);
6972 // If heap poisoning is enabled, unpoisoning will be taken care of
6973 // by the runtime within the slow path.
6974 GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
6975 } else if (kPoisonHeapReferences) {
6976 GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
6977 }
6978 }
6979
GenerateReadBarrierForRootSlow(HInstruction * instruction,Location out,Location root)6980 void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
6981 Location out,
6982 Location root) {
6983 DCHECK(gUseReadBarrier);
6984
6985 // Insert a slow path based read barrier *after* the GC root load.
6986 //
6987 // Note that GC roots are not affected by heap poisoning, so we do
6988 // not need to do anything special for this here.
6989 SlowPathCodeARM64* slow_path =
6990 new (GetScopedAllocator()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
6991 AddSlowPath(slow_path);
6992
6993 __ B(slow_path->GetEntryLabel());
6994 __ Bind(slow_path->GetExitLabel());
6995 }
6996
VisitClassTableGet(HClassTableGet * instruction)6997 void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) {
6998 LocationSummary* locations =
6999 new (GetGraph()->GetAllocator()) LocationSummary(instruction, LocationSummary::kNoCall);
7000 locations->SetInAt(0, Location::RequiresRegister());
7001 locations->SetOut(Location::RequiresRegister());
7002 }
7003
VisitClassTableGet(HClassTableGet * instruction)7004 void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) {
7005 LocationSummary* locations = instruction->GetLocations();
7006 if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
7007 uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
7008 instruction->GetIndex(), kArm64PointerSize).SizeValue();
7009 __ Ldr(XRegisterFrom(locations->Out()),
7010 MemOperand(XRegisterFrom(locations->InAt(0)), method_offset));
7011 } else {
7012 uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
7013 instruction->GetIndex(), kArm64PointerSize));
7014 __ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)),
7015 mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
7016 __ Ldr(XRegisterFrom(locations->Out()),
7017 MemOperand(XRegisterFrom(locations->Out()), method_offset));
7018 }
7019 }
7020
PatchJitRootUse(uint8_t * code,const uint8_t * roots_data,vixl::aarch64::Literal<uint32_t> * literal,uint64_t index_in_table)7021 static void PatchJitRootUse(uint8_t* code,
7022 const uint8_t* roots_data,
7023 vixl::aarch64::Literal<uint32_t>* literal,
7024 uint64_t index_in_table) {
7025 uint32_t literal_offset = literal->GetOffset();
7026 uintptr_t address =
7027 reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
7028 uint8_t* data = code + literal_offset;
7029 reinterpret_cast<uint32_t*>(data)[0] = dchecked_integral_cast<uint32_t>(address);
7030 }
7031
EmitJitRootPatches(uint8_t * code,const uint8_t * roots_data)7032 void CodeGeneratorARM64::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
7033 for (const auto& entry : jit_string_patches_) {
7034 const StringReference& string_reference = entry.first;
7035 vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second;
7036 uint64_t index_in_table = GetJitStringRootIndex(string_reference);
7037 PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
7038 }
7039 for (const auto& entry : jit_class_patches_) {
7040 const TypeReference& type_reference = entry.first;
7041 vixl::aarch64::Literal<uint32_t>* table_entry_literal = entry.second;
7042 uint64_t index_in_table = GetJitClassRootIndex(type_reference);
7043 PatchJitRootUse(code, roots_data, table_entry_literal, index_in_table);
7044 }
7045 }
7046
VecNEONAddress(HVecMemoryOperation * instruction,UseScratchRegisterScope * temps_scope,size_t size,bool is_string_char_at,Register * scratch)7047 MemOperand InstructionCodeGeneratorARM64::VecNEONAddress(
7048 HVecMemoryOperation* instruction,
7049 UseScratchRegisterScope* temps_scope,
7050 size_t size,
7051 bool is_string_char_at,
7052 /*out*/ Register* scratch) {
7053 LocationSummary* locations = instruction->GetLocations();
7054 Register base = InputRegisterAt(instruction, 0);
7055
7056 if (instruction->InputAt(1)->IsIntermediateAddressIndex()) {
7057 DCHECK(!is_string_char_at);
7058 return MemOperand(base.X(), InputRegisterAt(instruction, 1).X());
7059 }
7060
7061 Location index = locations->InAt(1);
7062 uint32_t offset = is_string_char_at
7063 ? mirror::String::ValueOffset().Uint32Value()
7064 : mirror::Array::DataOffset(size).Uint32Value();
7065 size_t shift = ComponentSizeShiftWidth(size);
7066
7067 // HIntermediateAddress optimization is only applied for scalar ArrayGet and ArraySet.
7068 DCHECK(!instruction->InputAt(0)->IsIntermediateAddress());
7069
7070 if (index.IsConstant()) {
7071 offset += Int64FromLocation(index) << shift;
7072 return HeapOperand(base, offset);
7073 } else {
7074 *scratch = temps_scope->AcquireSameSizeAs(base);
7075 __ Add(*scratch, base, Operand(WRegisterFrom(index), LSL, shift));
7076 return HeapOperand(*scratch, offset);
7077 }
7078 }
7079
VecSVEAddress(HVecMemoryOperation * instruction,UseScratchRegisterScope * temps_scope,size_t size,bool is_string_char_at,Register * scratch)7080 SVEMemOperand InstructionCodeGeneratorARM64::VecSVEAddress(
7081 HVecMemoryOperation* instruction,
7082 UseScratchRegisterScope* temps_scope,
7083 size_t size,
7084 bool is_string_char_at,
7085 /*out*/ Register* scratch) {
7086 LocationSummary* locations = instruction->GetLocations();
7087 Register base = InputRegisterAt(instruction, 0);
7088 Location index = locations->InAt(1);
7089
7090 DCHECK(!instruction->InputAt(1)->IsIntermediateAddressIndex());
7091 DCHECK(!index.IsConstant());
7092
7093 uint32_t offset = is_string_char_at
7094 ? mirror::String::ValueOffset().Uint32Value()
7095 : mirror::Array::DataOffset(size).Uint32Value();
7096 size_t shift = ComponentSizeShiftWidth(size);
7097
7098 if (instruction->InputAt(0)->IsIntermediateAddress()) {
7099 return SVEMemOperand(base.X(), XRegisterFrom(index), LSL, shift);
7100 }
7101
7102 *scratch = temps_scope->AcquireSameSizeAs(base);
7103 __ Add(*scratch, base, offset);
7104 return SVEMemOperand(scratch->X(), XRegisterFrom(index), LSL, shift);
7105 }
7106
7107 #undef __
7108 #undef QUICK_ENTRY_POINT
7109
7110 #define __ assembler.GetVIXLAssembler()->
7111
EmitGrayCheckAndFastPath(arm64::Arm64Assembler & assembler,vixl::aarch64::Register base_reg,vixl::aarch64::MemOperand & lock_word,vixl::aarch64::Label * slow_path,vixl::aarch64::Label * throw_npe=nullptr)7112 static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler,
7113 vixl::aarch64::Register base_reg,
7114 vixl::aarch64::MemOperand& lock_word,
7115 vixl::aarch64::Label* slow_path,
7116 vixl::aarch64::Label* throw_npe = nullptr) {
7117 vixl::aarch64::Label throw_npe_cont;
7118 // Load the lock word containing the rb_state.
7119 __ Ldr(ip0.W(), lock_word);
7120 // Given the numeric representation, it's enough to check the low bit of the rb_state.
7121 static_assert(ReadBarrier::NonGrayState() == 0, "Expecting non-gray to have value 0");
7122 static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
7123 __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path);
7124 static_assert(
7125 BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET,
7126 "Field and array LDR offsets must be the same to reuse the same code.");
7127 // To throw NPE, we return to the fast path; the artificial dependence below does not matter.
7128 if (throw_npe != nullptr) {
7129 __ Bind(&throw_npe_cont);
7130 }
7131 // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning).
7132 static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4),
7133 "Field LDR must be 1 instruction (4B) before the return address label; "
7134 " 2 instructions (8B) for heap poisoning.");
7135 __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
7136 // Introduce a dependency on the lock_word including rb_state,
7137 // to prevent load-load reordering, and without using
7138 // a memory barrier (which would be more expensive).
7139 __ Add(base_reg, base_reg, Operand(ip0, LSR, 32));
7140 __ Br(lr); // And return back to the function.
7141 if (throw_npe != nullptr) {
7142 // Clear IP0 before returning to the fast path.
7143 __ Bind(throw_npe);
7144 __ Mov(ip0.X(), xzr);
7145 __ B(&throw_npe_cont);
7146 }
7147 // Note: The fake dependency is unnecessary for the slow path.
7148 }
7149
7150 // Load the read barrier introspection entrypoint in register `entrypoint`.
LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler & assembler,vixl::aarch64::Register entrypoint)7151 static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler,
7152 vixl::aarch64::Register entrypoint) {
7153 // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection.
7154 DCHECK_EQ(ip0.GetCode(), 16u);
7155 const int32_t entry_point_offset =
7156 Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(ip0.GetCode());
7157 __ Ldr(entrypoint, MemOperand(tr, entry_point_offset));
7158 }
7159
CompileBakerReadBarrierThunk(Arm64Assembler & assembler,uint32_t encoded_data,std::string * debug_name)7160 void CodeGeneratorARM64::CompileBakerReadBarrierThunk(Arm64Assembler& assembler,
7161 uint32_t encoded_data,
7162 /*out*/ std::string* debug_name) {
7163 BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data);
7164 switch (kind) {
7165 case BakerReadBarrierKind::kField:
7166 case BakerReadBarrierKind::kAcquire: {
7167 Register base_reg =
7168 vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
7169 CheckValidReg(base_reg.GetCode());
7170 Register holder_reg =
7171 vixl::aarch64::XRegister(BakerReadBarrierSecondRegField::Decode(encoded_data));
7172 CheckValidReg(holder_reg.GetCode());
7173 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
7174 temps.Exclude(ip0, ip1);
7175 // In the case of a field load (with relaxed semantic), if `base_reg` differs from
7176 // `holder_reg`, the offset was too large and we must have emitted (during the construction
7177 // of the HIR graph, see `art::HInstructionBuilder::BuildInstanceFieldAccess`) and preserved
7178 // (see `art::PrepareForRegisterAllocation::VisitNullCheck`) an explicit null check before
7179 // the load. Otherwise, for implicit null checks, we need to null-check the holder as we do
7180 // not necessarily do that check before going to the thunk.
7181 //
7182 // In the case of a field load with load-acquire semantics (where `base_reg` always differs
7183 // from `holder_reg`), we also need an explicit null check when implicit null checks are
7184 // allowed, as we do not emit one before going to the thunk.
7185 vixl::aarch64::Label throw_npe_label;
7186 vixl::aarch64::Label* throw_npe = nullptr;
7187 if (GetCompilerOptions().GetImplicitNullChecks() &&
7188 (holder_reg.Is(base_reg) || (kind == BakerReadBarrierKind::kAcquire))) {
7189 throw_npe = &throw_npe_label;
7190 __ Cbz(holder_reg.W(), throw_npe);
7191 }
7192 // Check if the holder is gray and, if not, add fake dependency to the base register
7193 // and return to the LDR instruction to load the reference. Otherwise, use introspection
7194 // to load the reference and call the entrypoint that performs further checks on the
7195 // reference and marks it if needed.
7196 vixl::aarch64::Label slow_path;
7197 MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value());
7198 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path, throw_npe);
7199 __ Bind(&slow_path);
7200 if (kind == BakerReadBarrierKind::kField) {
7201 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET);
7202 __ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset.
7203 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7204 __ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset.
7205 __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference.
7206 } else {
7207 DCHECK(kind == BakerReadBarrierKind::kAcquire);
7208 DCHECK(!base_reg.Is(holder_reg));
7209 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7210 __ Ldar(ip0.W(), MemOperand(base_reg));
7211 }
7212 // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference.
7213 __ Br(ip1); // Jump to the entrypoint.
7214 break;
7215 }
7216 case BakerReadBarrierKind::kArray: {
7217 Register base_reg =
7218 vixl::aarch64::XRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
7219 CheckValidReg(base_reg.GetCode());
7220 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7221 BakerReadBarrierSecondRegField::Decode(encoded_data));
7222 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
7223 temps.Exclude(ip0, ip1);
7224 vixl::aarch64::Label slow_path;
7225 int32_t data_offset =
7226 mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value();
7227 MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset);
7228 DCHECK_LT(lock_word.GetOffset(), 0);
7229 EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path);
7230 __ Bind(&slow_path);
7231 MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET);
7232 __ Ldr(ip0.W(), ldr_address); // Load the LDR (register) unsigned offset.
7233 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7234 __ Ubfx(ip0, ip0, 16, 6); // Extract the index register, plus 32 (bit 21 is set).
7235 __ Bfi(ip1, ip0, 3, 6); // Insert ip0 to the entrypoint address to create
7236 // a switch case target based on the index register.
7237 __ Mov(ip0, base_reg); // Move the base register to ip0.
7238 __ Br(ip1); // Jump to the entrypoint's array switch case.
7239 break;
7240 }
7241 case BakerReadBarrierKind::kGcRoot: {
7242 // Check if the reference needs to be marked and if so (i.e. not null, not marked yet
7243 // and it does not have a forwarding address), call the correct introspection entrypoint;
7244 // otherwise return the reference (or the extracted forwarding address).
7245 // There is no gray bit check for GC roots.
7246 Register root_reg =
7247 vixl::aarch64::WRegister(BakerReadBarrierFirstRegField::Decode(encoded_data));
7248 CheckValidReg(root_reg.GetCode());
7249 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7250 BakerReadBarrierSecondRegField::Decode(encoded_data));
7251 UseScratchRegisterScope temps(assembler.GetVIXLAssembler());
7252 temps.Exclude(ip0, ip1);
7253 vixl::aarch64::Label return_label, not_marked, forwarding_address;
7254 __ Cbz(root_reg, &return_label);
7255 MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value());
7256 __ Ldr(ip0.W(), lock_word);
7257 __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked);
7258 __ Bind(&return_label);
7259 __ Br(lr);
7260 __ Bind(¬_marked);
7261 __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1));
7262 __ B(&forwarding_address, mi);
7263 LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1);
7264 // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to
7265 // art_quick_read_barrier_mark_introspection_gc_roots.
7266 __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET));
7267 __ Mov(ip0.W(), root_reg);
7268 __ Br(ip1);
7269 __ Bind(&forwarding_address);
7270 __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift);
7271 __ Br(lr);
7272 break;
7273 }
7274 default:
7275 LOG(FATAL) << "Unexpected kind: " << static_cast<uint32_t>(kind);
7276 UNREACHABLE();
7277 }
7278
7279 // For JIT, the slow path is considered part of the compiled method,
7280 // so JIT should pass null as `debug_name`.
7281 DCHECK_IMPLIES(GetCompilerOptions().IsJitCompiler(), debug_name == nullptr);
7282 if (debug_name != nullptr && GetCompilerOptions().GenerateAnyDebugInfo()) {
7283 std::ostringstream oss;
7284 oss << "BakerReadBarrierThunk";
7285 switch (kind) {
7286 case BakerReadBarrierKind::kField:
7287 oss << "Field_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
7288 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
7289 break;
7290 case BakerReadBarrierKind::kAcquire:
7291 oss << "Acquire_r" << BakerReadBarrierFirstRegField::Decode(encoded_data)
7292 << "_r" << BakerReadBarrierSecondRegField::Decode(encoded_data);
7293 break;
7294 case BakerReadBarrierKind::kArray:
7295 oss << "Array_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
7296 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7297 BakerReadBarrierSecondRegField::Decode(encoded_data));
7298 break;
7299 case BakerReadBarrierKind::kGcRoot:
7300 oss << "GcRoot_r" << BakerReadBarrierFirstRegField::Decode(encoded_data);
7301 DCHECK_EQ(kBakerReadBarrierInvalidEncodedReg,
7302 BakerReadBarrierSecondRegField::Decode(encoded_data));
7303 break;
7304 }
7305 *debug_name = oss.str();
7306 }
7307 }
7308
7309 #undef __
7310
7311 } // namespace arm64
7312 } // namespace art
7313