1 // Copyright 2017 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "net/ntlm/ntlm.h"
6
7 #include <string.h>
8
9 #include "base/check_op.h"
10 #include "base/containers/span.h"
11 #include "base/notreached.h"
12 #include "base/strings/utf_string_conversions.h"
13 #include "net/base/net_string_util.h"
14 #include "net/ntlm/ntlm_buffer_writer.h"
15 #include "net/ntlm/ntlm_constants.h"
16 #include "third_party/boringssl/src/include/openssl/des.h"
17 #include "third_party/boringssl/src/include/openssl/hmac.h"
18 #include "third_party/boringssl/src/include/openssl/md4.h"
19 #include "third_party/boringssl/src/include/openssl/md5.h"
20
21 namespace net::ntlm {
22
23 namespace {
24
25 // Takes the parsed target info in |av_pairs| and performs the following
26 // actions.
27 //
28 // 1) If a |TargetInfoAvId::kTimestamp| AvPair exists, |server_timestamp|
29 // is set to the payload.
30 // 2) If |is_mic_enabled| is true, the existing |TargetInfoAvId::kFlags| AvPair
31 // will have the |TargetInfoAvFlags::kMicPresent| bit set. If an existing
32 // flags AvPair does not already exist, a new one is added with the value of
33 // |TargetInfoAvFlags::kMicPresent|.
34 // 3) If |is_epa_enabled| is true, two new AvPair entries will be added to
35 // |av_pairs|. The first will be of type |TargetInfoAvId::kChannelBindings|
36 // and contains MD5(|channel_bindings|) as the payload. The second will be
37 // of type |TargetInfoAvId::kTargetName| and contains |spn| as a little
38 // endian UTF16 string.
39 // 4) Sets |target_info_len| to the size of |av_pairs| when serialized into
40 // a payload.
UpdateTargetInfoAvPairs(bool is_mic_enabled,bool is_epa_enabled,const std::string & channel_bindings,const std::string & spn,std::vector<AvPair> * av_pairs,uint64_t * server_timestamp,size_t * target_info_len)41 void UpdateTargetInfoAvPairs(bool is_mic_enabled,
42 bool is_epa_enabled,
43 const std::string& channel_bindings,
44 const std::string& spn,
45 std::vector<AvPair>* av_pairs,
46 uint64_t* server_timestamp,
47 size_t* target_info_len) {
48 // Do a pass to update flags and calculate current length and
49 // pull out the server timestamp if it is there.
50 *server_timestamp = UINT64_MAX;
51 *target_info_len = 0;
52
53 bool need_flags_added = is_mic_enabled;
54 for (AvPair& pair : *av_pairs) {
55 *target_info_len += pair.avlen + kAvPairHeaderLen;
56 switch (pair.avid) {
57 case TargetInfoAvId::kFlags:
58 // The parsing phase already set the payload to the |flags| field.
59 if (is_mic_enabled) {
60 pair.flags = pair.flags | TargetInfoAvFlags::kMicPresent;
61 }
62
63 need_flags_added = false;
64 break;
65 case TargetInfoAvId::kTimestamp:
66 // The parsing phase already set the payload to the |timestamp| field.
67 *server_timestamp = pair.timestamp;
68 break;
69 case TargetInfoAvId::kEol:
70 case TargetInfoAvId::kChannelBindings:
71 case TargetInfoAvId::kTargetName:
72 // The terminator, |kEol|, should already have been removed from the
73 // end of the list and would have been rejected if it has been inside
74 // the list. Additionally |kChannelBindings| and |kTargetName| pairs
75 // would have been rejected during the initial parsing. See
76 // |NtlmBufferReader::ReadTargetInfo|.
77 NOTREACHED();
78 break;
79 default:
80 // Ignore entries we don't care about.
81 break;
82 }
83 }
84
85 if (need_flags_added) {
86 DCHECK(is_mic_enabled);
87 AvPair flags_pair(TargetInfoAvId::kFlags, sizeof(uint32_t));
88 flags_pair.flags = TargetInfoAvFlags::kMicPresent;
89
90 av_pairs->push_back(flags_pair);
91 *target_info_len += kAvPairHeaderLen + flags_pair.avlen;
92 }
93
94 if (is_epa_enabled) {
95 std::vector<uint8_t> channel_bindings_hash(kChannelBindingsHashLen, 0);
96
97 // Hash the channel bindings if they exist otherwise they remain zeros.
98 if (!channel_bindings.empty()) {
99 GenerateChannelBindingHashV2(
100 channel_bindings,
101 base::make_span<kChannelBindingsHashLen>(channel_bindings_hash));
102 }
103
104 av_pairs->emplace_back(TargetInfoAvId::kChannelBindings,
105 std::move(channel_bindings_hash));
106
107 // Convert the SPN to little endian unicode.
108 std::u16string spn16 = base::UTF8ToUTF16(spn);
109 NtlmBufferWriter spn_writer(spn16.length() * 2);
110 bool spn_writer_result =
111 spn_writer.WriteUtf16String(spn16) && spn_writer.IsEndOfBuffer();
112 DCHECK(spn_writer_result);
113
114 av_pairs->emplace_back(TargetInfoAvId::kTargetName, spn_writer.Pass());
115
116 // Add the length of the two new AV Pairs to the total length.
117 *target_info_len +=
118 (2 * kAvPairHeaderLen) + kChannelBindingsHashLen + (spn16.length() * 2);
119 }
120
121 // Add extra space for the terminator at the end.
122 *target_info_len += kAvPairHeaderLen;
123 }
124
WriteUpdatedTargetInfo(const std::vector<AvPair> & av_pairs,size_t updated_target_info_len)125 std::vector<uint8_t> WriteUpdatedTargetInfo(const std::vector<AvPair>& av_pairs,
126 size_t updated_target_info_len) {
127 bool result = true;
128 NtlmBufferWriter writer(updated_target_info_len);
129 for (const AvPair& pair : av_pairs) {
130 result = writer.WriteAvPair(pair);
131 DCHECK(result);
132 }
133
134 result = writer.WriteAvPairTerminator() && writer.IsEndOfBuffer();
135 DCHECK(result);
136 return writer.Pass();
137 }
138
139 // Reads 7 bytes (56 bits) from |key_56| and writes them into 8 bytes of
140 // |key_64| with 7 bits in every byte. The least significant bits are
141 // undefined and a subsequent operation will set those bits with a parity bit.
142 // |key_56| must contain 7 bytes.
143 // |key_64| must contain 8 bytes.
Splay56To64(const uint8_t * key_56,uint8_t * key_64)144 void Splay56To64(const uint8_t* key_56, uint8_t* key_64) {
145 key_64[0] = key_56[0];
146 key_64[1] = key_56[0] << 7 | key_56[1] >> 1;
147 key_64[2] = key_56[1] << 6 | key_56[2] >> 2;
148 key_64[3] = key_56[2] << 5 | key_56[3] >> 3;
149 key_64[4] = key_56[3] << 4 | key_56[4] >> 4;
150 key_64[5] = key_56[4] << 3 | key_56[5] >> 5;
151 key_64[6] = key_56[5] << 2 | key_56[6] >> 6;
152 key_64[7] = key_56[6] << 1;
153 }
154
155 } // namespace
156
Create3DesKeysFromNtlmHash(base::span<const uint8_t,kNtlmHashLen> ntlm_hash,base::span<uint8_t,24> keys)157 void Create3DesKeysFromNtlmHash(
158 base::span<const uint8_t, kNtlmHashLen> ntlm_hash,
159 base::span<uint8_t, 24> keys) {
160 // Put the first 112 bits from |ntlm_hash| into the first 16 bytes of
161 // |keys|.
162 Splay56To64(ntlm_hash.data(), keys.data());
163 Splay56To64(ntlm_hash.data() + 7, keys.data() + 8);
164
165 // Put the next 2x 7 bits in bytes 16 and 17 of |keys|, then
166 // the last 2 bits in byte 18, then zero pad the rest of the final key.
167 keys[16] = ntlm_hash[14];
168 keys[17] = ntlm_hash[14] << 7 | ntlm_hash[15] >> 1;
169 keys[18] = ntlm_hash[15] << 6;
170 memset(keys.data() + 19, 0, 5);
171 }
172
GenerateNtlmHashV1(const std::u16string & password,base::span<uint8_t,kNtlmHashLen> hash)173 void GenerateNtlmHashV1(const std::u16string& password,
174 base::span<uint8_t, kNtlmHashLen> hash) {
175 size_t length = password.length() * 2;
176 NtlmBufferWriter writer(length);
177
178 // The writer will handle the big endian case if necessary.
179 bool result = writer.WriteUtf16String(password) && writer.IsEndOfBuffer();
180 DCHECK(result);
181
182 MD4(writer.GetBuffer().data(), writer.GetLength(), hash.data());
183 }
184
GenerateResponseDesl(base::span<const uint8_t,kNtlmHashLen> hash,base::span<const uint8_t,kChallengeLen> challenge,base::span<uint8_t,kResponseLenV1> response)185 void GenerateResponseDesl(base::span<const uint8_t, kNtlmHashLen> hash,
186 base::span<const uint8_t, kChallengeLen> challenge,
187 base::span<uint8_t, kResponseLenV1> response) {
188 constexpr size_t block_count = 3;
189 constexpr size_t block_size = sizeof(DES_cblock);
190 static_assert(kChallengeLen == block_size,
191 "kChallengeLen must equal block_size");
192 static_assert(kResponseLenV1 == block_count * block_size,
193 "kResponseLenV1 must equal block_count * block_size");
194
195 const DES_cblock* challenge_block =
196 reinterpret_cast<const DES_cblock*>(challenge.data());
197 uint8_t keys[block_count * block_size];
198
199 // Map the NTLM hash to three 8 byte DES keys, with 7 bits of the key in each
200 // byte and the least significant bit set with odd parity. Then encrypt the
201 // 8 byte challenge with each of the three keys. This produces three 8 byte
202 // encrypted blocks into |response|.
203 Create3DesKeysFromNtlmHash(hash, keys);
204 for (size_t ix = 0; ix < block_count * block_size; ix += block_size) {
205 DES_cblock* key_block = reinterpret_cast<DES_cblock*>(keys + ix);
206 DES_cblock* response_block =
207 reinterpret_cast<DES_cblock*>(response.data() + ix);
208
209 DES_key_schedule key_schedule;
210 DES_set_odd_parity(key_block);
211 DES_set_key(key_block, &key_schedule);
212 DES_ecb_encrypt(challenge_block, response_block, &key_schedule,
213 DES_ENCRYPT);
214 }
215 }
216
GenerateNtlmResponseV1(const std::u16string & password,base::span<const uint8_t,kChallengeLen> server_challenge,base::span<uint8_t,kResponseLenV1> ntlm_response)217 void GenerateNtlmResponseV1(
218 const std::u16string& password,
219 base::span<const uint8_t, kChallengeLen> server_challenge,
220 base::span<uint8_t, kResponseLenV1> ntlm_response) {
221 uint8_t ntlm_hash[kNtlmHashLen];
222 GenerateNtlmHashV1(password, ntlm_hash);
223 GenerateResponseDesl(ntlm_hash, server_challenge, ntlm_response);
224 }
225
GenerateResponsesV1(const std::u16string & password,base::span<const uint8_t,kChallengeLen> server_challenge,base::span<uint8_t,kResponseLenV1> lm_response,base::span<uint8_t,kResponseLenV1> ntlm_response)226 void GenerateResponsesV1(
227 const std::u16string& password,
228 base::span<const uint8_t, kChallengeLen> server_challenge,
229 base::span<uint8_t, kResponseLenV1> lm_response,
230 base::span<uint8_t, kResponseLenV1> ntlm_response) {
231 GenerateNtlmResponseV1(password, server_challenge, ntlm_response);
232
233 // In NTLM v1 (with LMv1 disabled), the lm_response and ntlm_response are the
234 // same. So just copy the ntlm_response into the lm_response.
235 memcpy(lm_response.data(), ntlm_response.data(), kResponseLenV1);
236 }
237
GenerateLMResponseV1WithSessionSecurity(base::span<const uint8_t,kChallengeLen> client_challenge,base::span<uint8_t,kResponseLenV1> lm_response)238 void GenerateLMResponseV1WithSessionSecurity(
239 base::span<const uint8_t, kChallengeLen> client_challenge,
240 base::span<uint8_t, kResponseLenV1> lm_response) {
241 // In NTLM v1 with Session Security (aka NTLM2) the lm_response is 8 bytes of
242 // client challenge and 16 bytes of zeros. (See 3.3.1)
243 memcpy(lm_response.data(), client_challenge.data(), kChallengeLen);
244 memset(lm_response.data() + kChallengeLen, 0, kResponseLenV1 - kChallengeLen);
245 }
246
GenerateSessionHashV1WithSessionSecurity(base::span<const uint8_t,kChallengeLen> server_challenge,base::span<const uint8_t,kChallengeLen> client_challenge,base::span<uint8_t,kNtlmHashLen> session_hash)247 void GenerateSessionHashV1WithSessionSecurity(
248 base::span<const uint8_t, kChallengeLen> server_challenge,
249 base::span<const uint8_t, kChallengeLen> client_challenge,
250 base::span<uint8_t, kNtlmHashLen> session_hash) {
251 MD5_CTX ctx;
252 MD5_Init(&ctx);
253 MD5_Update(&ctx, server_challenge.data(), kChallengeLen);
254 MD5_Update(&ctx, client_challenge.data(), kChallengeLen);
255 MD5_Final(session_hash.data(), &ctx);
256 }
257
GenerateNtlmResponseV1WithSessionSecurity(const std::u16string & password,base::span<const uint8_t,kChallengeLen> server_challenge,base::span<const uint8_t,kChallengeLen> client_challenge,base::span<uint8_t,kResponseLenV1> ntlm_response)258 void GenerateNtlmResponseV1WithSessionSecurity(
259 const std::u16string& password,
260 base::span<const uint8_t, kChallengeLen> server_challenge,
261 base::span<const uint8_t, kChallengeLen> client_challenge,
262 base::span<uint8_t, kResponseLenV1> ntlm_response) {
263 // Generate the NTLMv1 Hash.
264 uint8_t ntlm_hash[kNtlmHashLen];
265 GenerateNtlmHashV1(password, ntlm_hash);
266
267 // Generate the NTLMv1 Session Hash.
268 uint8_t session_hash[kNtlmHashLen];
269 GenerateSessionHashV1WithSessionSecurity(server_challenge, client_challenge,
270 session_hash);
271
272 GenerateResponseDesl(
273 ntlm_hash, base::make_span(session_hash).subspan<0, kChallengeLen>(),
274 ntlm_response);
275 }
276
GenerateResponsesV1WithSessionSecurity(const std::u16string & password,base::span<const uint8_t,kChallengeLen> server_challenge,base::span<const uint8_t,kChallengeLen> client_challenge,base::span<uint8_t,kResponseLenV1> lm_response,base::span<uint8_t,kResponseLenV1> ntlm_response)277 void GenerateResponsesV1WithSessionSecurity(
278 const std::u16string& password,
279 base::span<const uint8_t, kChallengeLen> server_challenge,
280 base::span<const uint8_t, kChallengeLen> client_challenge,
281 base::span<uint8_t, kResponseLenV1> lm_response,
282 base::span<uint8_t, kResponseLenV1> ntlm_response) {
283 GenerateLMResponseV1WithSessionSecurity(client_challenge, lm_response);
284 GenerateNtlmResponseV1WithSessionSecurity(password, server_challenge,
285 client_challenge, ntlm_response);
286 }
287
GenerateNtlmHashV2(const std::u16string & domain,const std::u16string & username,const std::u16string & password,base::span<uint8_t,kNtlmHashLen> v2_hash)288 void GenerateNtlmHashV2(const std::u16string& domain,
289 const std::u16string& username,
290 const std::u16string& password,
291 base::span<uint8_t, kNtlmHashLen> v2_hash) {
292 // NOTE: According to [MS-NLMP] Section 3.3.2 only the username and not the
293 // domain is uppercased.
294
295 // TODO(https://crbug.com/1051924): Using a locale-sensitive upper casing
296 // algorithm is problematic. A more predictable approach would be to only
297 // uppercase ASCII characters, so the hash does not change depending on the
298 // user's locale.
299 std::u16string upper_username;
300 bool result = ToUpper(username, &upper_username);
301 DCHECK(result);
302
303 uint8_t v1_hash[kNtlmHashLen];
304 GenerateNtlmHashV1(password, v1_hash);
305 NtlmBufferWriter input_writer((upper_username.length() + domain.length()) *
306 2);
307 bool writer_result = input_writer.WriteUtf16String(upper_username) &&
308 input_writer.WriteUtf16String(domain) &&
309 input_writer.IsEndOfBuffer();
310 DCHECK(writer_result);
311
312 unsigned int outlen = kNtlmHashLen;
313 uint8_t* out_hash =
314 HMAC(EVP_md5(), v1_hash, sizeof(v1_hash), input_writer.GetBuffer().data(),
315 input_writer.GetLength(), v2_hash.data(), &outlen);
316 DCHECK_EQ(v2_hash.data(), out_hash);
317 DCHECK_EQ(sizeof(v1_hash), outlen);
318 }
319
GenerateProofInputV2(uint64_t timestamp,base::span<const uint8_t,kChallengeLen> client_challenge)320 std::vector<uint8_t> GenerateProofInputV2(
321 uint64_t timestamp,
322 base::span<const uint8_t, kChallengeLen> client_challenge) {
323 NtlmBufferWriter writer(kProofInputLenV2);
324 bool result = writer.WriteUInt16(kProofInputVersionV2) &&
325 writer.WriteZeros(6) && writer.WriteUInt64(timestamp) &&
326 writer.WriteBytes(client_challenge) && writer.WriteZeros(4) &&
327 writer.IsEndOfBuffer();
328
329 DCHECK(result);
330 return writer.Pass();
331 }
332
GenerateNtlmProofV2(base::span<const uint8_t,kNtlmHashLen> v2_hash,base::span<const uint8_t,kChallengeLen> server_challenge,base::span<const uint8_t,kProofInputLenV2> v2_input,base::span<const uint8_t> target_info,base::span<uint8_t,kNtlmProofLenV2> v2_proof)333 void GenerateNtlmProofV2(
334 base::span<const uint8_t, kNtlmHashLen> v2_hash,
335 base::span<const uint8_t, kChallengeLen> server_challenge,
336 base::span<const uint8_t, kProofInputLenV2> v2_input,
337 base::span<const uint8_t> target_info,
338 base::span<uint8_t, kNtlmProofLenV2> v2_proof) {
339 bssl::ScopedHMAC_CTX ctx;
340 HMAC_Init_ex(ctx.get(), v2_hash.data(), kNtlmHashLen, EVP_md5(), nullptr);
341 DCHECK_EQ(kNtlmProofLenV2, HMAC_size(ctx.get()));
342 HMAC_Update(ctx.get(), server_challenge.data(), kChallengeLen);
343 HMAC_Update(ctx.get(), v2_input.data(), kProofInputLenV2);
344 HMAC_Update(ctx.get(), target_info.data(), target_info.size());
345 const uint32_t zero = 0;
346 HMAC_Update(ctx.get(), reinterpret_cast<const uint8_t*>(&zero),
347 sizeof(uint32_t));
348 HMAC_Final(ctx.get(), v2_proof.data(), nullptr);
349 }
350
GenerateSessionBaseKeyV2(base::span<const uint8_t,kNtlmHashLen> v2_hash,base::span<const uint8_t,kNtlmProofLenV2> v2_proof,base::span<uint8_t,kSessionKeyLenV2> session_key)351 void GenerateSessionBaseKeyV2(
352 base::span<const uint8_t, kNtlmHashLen> v2_hash,
353 base::span<const uint8_t, kNtlmProofLenV2> v2_proof,
354 base::span<uint8_t, kSessionKeyLenV2> session_key) {
355 unsigned int outlen = kSessionKeyLenV2;
356 uint8_t* result =
357 HMAC(EVP_md5(), v2_hash.data(), kNtlmHashLen, v2_proof.data(),
358 kNtlmProofLenV2, session_key.data(), &outlen);
359 DCHECK_EQ(session_key.data(), result);
360 DCHECK_EQ(kSessionKeyLenV2, outlen);
361 }
362
GenerateChannelBindingHashV2(const std::string & channel_bindings,base::span<uint8_t,kNtlmHashLen> channel_bindings_hash)363 void GenerateChannelBindingHashV2(
364 const std::string& channel_bindings,
365 base::span<uint8_t, kNtlmHashLen> channel_bindings_hash) {
366 NtlmBufferWriter writer(kEpaUnhashedStructHeaderLen);
367 bool result = writer.WriteZeros(16) &&
368 writer.WriteUInt32(channel_bindings.length()) &&
369 writer.IsEndOfBuffer();
370 DCHECK(result);
371
372 MD5_CTX ctx;
373 MD5_Init(&ctx);
374 MD5_Update(&ctx, writer.GetBuffer().data(), writer.GetBuffer().size());
375 MD5_Update(&ctx, channel_bindings.data(), channel_bindings.size());
376 MD5_Final(channel_bindings_hash.data(), &ctx);
377 }
378
GenerateMicV2(base::span<const uint8_t,kSessionKeyLenV2> session_key,base::span<const uint8_t> negotiate_msg,base::span<const uint8_t> challenge_msg,base::span<const uint8_t> authenticate_msg,base::span<uint8_t,kMicLenV2> mic)379 void GenerateMicV2(base::span<const uint8_t, kSessionKeyLenV2> session_key,
380 base::span<const uint8_t> negotiate_msg,
381 base::span<const uint8_t> challenge_msg,
382 base::span<const uint8_t> authenticate_msg,
383 base::span<uint8_t, kMicLenV2> mic) {
384 bssl::ScopedHMAC_CTX ctx;
385 HMAC_Init_ex(ctx.get(), session_key.data(), kSessionKeyLenV2, EVP_md5(),
386 nullptr);
387 DCHECK_EQ(kMicLenV2, HMAC_size(ctx.get()));
388 HMAC_Update(ctx.get(), negotiate_msg.data(), negotiate_msg.size());
389 HMAC_Update(ctx.get(), challenge_msg.data(), challenge_msg.size());
390 HMAC_Update(ctx.get(), authenticate_msg.data(), authenticate_msg.size());
391 HMAC_Final(ctx.get(), mic.data(), nullptr);
392 }
393
GenerateUpdatedTargetInfo(bool is_mic_enabled,bool is_epa_enabled,const std::string & channel_bindings,const std::string & spn,const std::vector<AvPair> & av_pairs,uint64_t * server_timestamp)394 NET_EXPORT_PRIVATE std::vector<uint8_t> GenerateUpdatedTargetInfo(
395 bool is_mic_enabled,
396 bool is_epa_enabled,
397 const std::string& channel_bindings,
398 const std::string& spn,
399 const std::vector<AvPair>& av_pairs,
400 uint64_t* server_timestamp) {
401 size_t updated_target_info_len = 0;
402 std::vector<AvPair> updated_av_pairs(av_pairs);
403 UpdateTargetInfoAvPairs(is_mic_enabled, is_epa_enabled, channel_bindings, spn,
404 &updated_av_pairs, server_timestamp,
405 &updated_target_info_len);
406 return WriteUpdatedTargetInfo(updated_av_pairs, updated_target_info_len);
407 }
408
409 } // namespace net::ntlm
410