• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "thread.h"
18 
19 #include <limits.h>  // for INT_MAX
20 #include <pthread.h>
21 #include <signal.h>
22 #include <stdlib.h>
23 #include <sys/resource.h>
24 #include <sys/time.h>
25 
26 #include <algorithm>
27 #include <atomic>
28 #include <bitset>
29 #include <cerrno>
30 #include <iostream>
31 #include <list>
32 #include <sstream>
33 
34 #include "android-base/file.h"
35 #include "android-base/stringprintf.h"
36 #include "android-base/strings.h"
37 
38 #include "unwindstack/AndroidUnwinder.h"
39 
40 #include "arch/context-inl.h"
41 #include "arch/context.h"
42 #include "art_field-inl.h"
43 #include "art_method-inl.h"
44 #include "base/atomic.h"
45 #include "base/bit_utils.h"
46 #include "base/casts.h"
47 #include "base/file_utils.h"
48 #include "base/memory_tool.h"
49 #include "base/mutex.h"
50 #include "base/stl_util.h"
51 #include "base/systrace.h"
52 #include "base/time_utils.h"
53 #include "base/timing_logger.h"
54 #include "base/to_str.h"
55 #include "base/utils.h"
56 #include "class_linker-inl.h"
57 #include "class_root-inl.h"
58 #include "debugger.h"
59 #include "dex/descriptors_names.h"
60 #include "dex/dex_file-inl.h"
61 #include "dex/dex_file_annotations.h"
62 #include "dex/dex_file_types.h"
63 #include "entrypoints/entrypoint_utils.h"
64 #include "entrypoints/quick/quick_alloc_entrypoints.h"
65 #include "gc/accounting/card_table-inl.h"
66 #include "gc/accounting/heap_bitmap-inl.h"
67 #include "gc/allocator/rosalloc.h"
68 #include "gc/heap.h"
69 #include "gc/space/space-inl.h"
70 #include "gc_root.h"
71 #include "handle_scope-inl.h"
72 #include "indirect_reference_table-inl.h"
73 #include "instrumentation.h"
74 #include "intern_table.h"
75 #include "interpreter/interpreter.h"
76 #include "interpreter/shadow_frame-inl.h"
77 #include "java_frame_root_info.h"
78 #include "jni/java_vm_ext.h"
79 #include "jni/jni_internal.h"
80 #include "mirror/class-alloc-inl.h"
81 #include "mirror/class_loader.h"
82 #include "mirror/object_array-alloc-inl.h"
83 #include "mirror/object_array-inl.h"
84 #include "mirror/stack_frame_info.h"
85 #include "mirror/stack_trace_element.h"
86 #include "monitor.h"
87 #include "monitor_objects_stack_visitor.h"
88 #include "native_stack_dump.h"
89 #include "nativehelper/scoped_local_ref.h"
90 #include "nativehelper/scoped_utf_chars.h"
91 #include "nterp_helpers.h"
92 #include "nth_caller_visitor.h"
93 #include "oat_quick_method_header.h"
94 #include "obj_ptr-inl.h"
95 #include "object_lock.h"
96 #include "palette/palette.h"
97 #include "quick/quick_method_frame_info.h"
98 #include "quick_exception_handler.h"
99 #include "read_barrier-inl.h"
100 #include "reflection.h"
101 #include "reflective_handle_scope-inl.h"
102 #include "runtime-inl.h"
103 #include "runtime.h"
104 #include "runtime_callbacks.h"
105 #include "scoped_thread_state_change-inl.h"
106 #include "scoped_disable_public_sdk_checker.h"
107 #include "stack.h"
108 #include "stack_map.h"
109 #include "thread-inl.h"
110 #include "thread_list.h"
111 #include "trace.h"
112 #include "verifier/method_verifier.h"
113 #include "verify_object.h"
114 #include "well_known_classes-inl.h"
115 
116 #if ART_USE_FUTEXES
117 #include "linux/futex.h"
118 #include "sys/syscall.h"
119 #ifndef SYS_futex
120 #define SYS_futex __NR_futex
121 #endif
122 #endif  // ART_USE_FUTEXES
123 
124 #pragma clang diagnostic push
125 #pragma clang diagnostic error "-Wconversion"
126 
127 extern "C" __attribute__((weak)) void* __hwasan_tag_pointer(const volatile void* p,
128                                                             unsigned char tag);
129 
130 namespace art {
131 
132 using android::base::StringAppendV;
133 using android::base::StringPrintf;
134 
135 extern "C" NO_RETURN void artDeoptimize(Thread* self, bool skip_method_exit_callbacks);
136 
137 bool Thread::is_started_ = false;
138 pthread_key_t Thread::pthread_key_self_;
139 ConditionVariable* Thread::resume_cond_ = nullptr;
140 const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
141 bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
142 Thread* Thread::jit_sensitive_thread_ = nullptr;
143 #ifndef __BIONIC__
144 thread_local Thread* Thread::self_tls_ = nullptr;
145 #endif
146 
147 static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
148 
149 // For implicit overflow checks we reserve an extra piece of memory at the bottom
150 // of the stack (lowest memory).  The higher portion of the memory
151 // is protected against reads and the lower is available for use while
152 // throwing the StackOverflow exception.
153 constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
154 
155 static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
156 
InitCardTable()157 void Thread::InitCardTable() {
158   tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
159 }
160 
UnimplementedEntryPoint()161 static void UnimplementedEntryPoint() {
162   UNIMPLEMENTED(FATAL);
163 }
164 
165 void InitEntryPoints(JniEntryPoints* jpoints,
166                      QuickEntryPoints* qpoints,
167                      bool monitor_jni_entry_exit);
168 void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
169 
SetIsGcMarkingAndUpdateEntrypoints(bool is_marking)170 void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
171   CHECK(gUseReadBarrier);
172   tls32_.is_gc_marking = is_marking;
173   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active= */ is_marking);
174 }
175 
InitTlsEntryPoints()176 void Thread::InitTlsEntryPoints() {
177   ScopedTrace trace("InitTlsEntryPoints");
178   // Insert a placeholder so we can easily tell if we call an unimplemented entry point.
179   uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
180   uintptr_t* end = reinterpret_cast<uintptr_t*>(
181       reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
182   for (uintptr_t* it = begin; it != end; ++it) {
183     *it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
184   }
185   bool monitor_jni_entry_exit = false;
186   PaletteShouldReportJniInvocations(&monitor_jni_entry_exit);
187   if (monitor_jni_entry_exit) {
188     AtomicSetFlag(ThreadFlag::kMonitorJniEntryExit);
189   }
190   InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints, monitor_jni_entry_exit);
191 }
192 
ResetQuickAllocEntryPointsForThread()193 void Thread::ResetQuickAllocEntryPointsForThread() {
194   ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints);
195 }
196 
197 class DeoptimizationContextRecord {
198  public:
DeoptimizationContextRecord(const JValue & ret_val,bool is_reference,bool from_code,ObjPtr<mirror::Throwable> pending_exception,DeoptimizationMethodType method_type,DeoptimizationContextRecord * link)199   DeoptimizationContextRecord(const JValue& ret_val,
200                               bool is_reference,
201                               bool from_code,
202                               ObjPtr<mirror::Throwable> pending_exception,
203                               DeoptimizationMethodType method_type,
204                               DeoptimizationContextRecord* link)
205       : ret_val_(ret_val),
206         is_reference_(is_reference),
207         from_code_(from_code),
208         pending_exception_(pending_exception.Ptr()),
209         deopt_method_type_(method_type),
210         link_(link) {}
211 
GetReturnValue() const212   JValue GetReturnValue() const { return ret_val_; }
IsReference() const213   bool IsReference() const { return is_reference_; }
GetFromCode() const214   bool GetFromCode() const { return from_code_; }
GetPendingException() const215   ObjPtr<mirror::Throwable> GetPendingException() const REQUIRES_SHARED(Locks::mutator_lock_) {
216     return pending_exception_;
217   }
GetLink() const218   DeoptimizationContextRecord* GetLink() const { return link_; }
GetReturnValueAsGCRoot()219   mirror::Object** GetReturnValueAsGCRoot() {
220     DCHECK(is_reference_);
221     return ret_val_.GetGCRoot();
222   }
GetPendingExceptionAsGCRoot()223   mirror::Object** GetPendingExceptionAsGCRoot() {
224     return reinterpret_cast<mirror::Object**>(&pending_exception_);
225   }
GetDeoptimizationMethodType() const226   DeoptimizationMethodType GetDeoptimizationMethodType() const {
227     return deopt_method_type_;
228   }
229 
230  private:
231   // The value returned by the method at the top of the stack before deoptimization.
232   JValue ret_val_;
233 
234   // Indicates whether the returned value is a reference. If so, the GC will visit it.
235   const bool is_reference_;
236 
237   // Whether the context was created from an explicit deoptimization in the code.
238   const bool from_code_;
239 
240   // The exception that was pending before deoptimization (or null if there was no pending
241   // exception).
242   mirror::Throwable* pending_exception_;
243 
244   // Whether the context was created for an (idempotent) runtime method.
245   const DeoptimizationMethodType deopt_method_type_;
246 
247   // A link to the previous DeoptimizationContextRecord.
248   DeoptimizationContextRecord* const link_;
249 
250   DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
251 };
252 
253 class StackedShadowFrameRecord {
254  public:
StackedShadowFrameRecord(ShadowFrame * shadow_frame,StackedShadowFrameType type,StackedShadowFrameRecord * link)255   StackedShadowFrameRecord(ShadowFrame* shadow_frame,
256                            StackedShadowFrameType type,
257                            StackedShadowFrameRecord* link)
258       : shadow_frame_(shadow_frame),
259         type_(type),
260         link_(link) {}
261 
GetShadowFrame() const262   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetType() const263   StackedShadowFrameType GetType() const { return type_; }
GetLink() const264   StackedShadowFrameRecord* GetLink() const { return link_; }
265 
266  private:
267   ShadowFrame* const shadow_frame_;
268   const StackedShadowFrameType type_;
269   StackedShadowFrameRecord* const link_;
270 
271   DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
272 };
273 
PushDeoptimizationContext(const JValue & return_value,bool is_reference,ObjPtr<mirror::Throwable> exception,bool from_code,DeoptimizationMethodType method_type)274 void Thread::PushDeoptimizationContext(const JValue& return_value,
275                                        bool is_reference,
276                                        ObjPtr<mirror::Throwable> exception,
277                                        bool from_code,
278                                        DeoptimizationMethodType method_type) {
279   DCHECK(exception != Thread::GetDeoptimizationException());
280   DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
281       return_value,
282       is_reference,
283       from_code,
284       exception,
285       method_type,
286       tlsPtr_.deoptimization_context_stack);
287   tlsPtr_.deoptimization_context_stack = record;
288 }
289 
PopDeoptimizationContext(JValue * result,ObjPtr<mirror::Throwable> * exception,bool * from_code,DeoptimizationMethodType * method_type)290 void Thread::PopDeoptimizationContext(JValue* result,
291                                       ObjPtr<mirror::Throwable>* exception,
292                                       bool* from_code,
293                                       DeoptimizationMethodType* method_type) {
294   AssertHasDeoptimizationContext();
295   DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
296   tlsPtr_.deoptimization_context_stack = record->GetLink();
297   result->SetJ(record->GetReturnValue().GetJ());
298   *exception = record->GetPendingException();
299   *from_code = record->GetFromCode();
300   *method_type = record->GetDeoptimizationMethodType();
301   delete record;
302 }
303 
AssertHasDeoptimizationContext()304 void Thread::AssertHasDeoptimizationContext() {
305   CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
306       << "No deoptimization context for thread " << *this;
307 }
308 
309 enum {
310   kPermitAvailable = 0,  // Incrementing consumes the permit
311   kNoPermit = 1,  // Incrementing marks as waiter waiting
312   kNoPermitWaiterWaiting = 2
313 };
314 
Park(bool is_absolute,int64_t time)315 void Thread::Park(bool is_absolute, int64_t time) {
316   DCHECK(this == Thread::Current());
317 #if ART_USE_FUTEXES
318   // Consume the permit, or mark as waiting. This cannot cause park_state to go
319   // outside of its valid range (0, 1, 2), because in all cases where 2 is
320   // assigned it is set back to 1 before returning, and this method cannot run
321   // concurrently with itself since it operates on the current thread.
322   int old_state = tls32_.park_state_.fetch_add(1, std::memory_order_relaxed);
323   if (old_state == kNoPermit) {
324     // no permit was available. block thread until later.
325     Runtime::Current()->GetRuntimeCallbacks()->ThreadParkStart(is_absolute, time);
326     bool timed_out = false;
327     if (!is_absolute && time == 0) {
328       // Thread.getState() is documented to return waiting for untimed parks.
329       ScopedThreadSuspension sts(this, ThreadState::kWaiting);
330       DCHECK_EQ(NumberOfHeldMutexes(), 0u);
331       int result = futex(tls32_.park_state_.Address(),
332                      FUTEX_WAIT_PRIVATE,
333                      /* sleep if val = */ kNoPermitWaiterWaiting,
334                      /* timeout */ nullptr,
335                      nullptr,
336                      0);
337       // This errno check must happen before the scope is closed, to ensure that
338       // no destructors (such as ScopedThreadSuspension) overwrite errno.
339       if (result == -1) {
340         switch (errno) {
341           case EAGAIN:
342             FALLTHROUGH_INTENDED;
343           case EINTR: break;  // park() is allowed to spuriously return
344           default: PLOG(FATAL) << "Failed to park";
345         }
346       }
347     } else if (time > 0) {
348       // Only actually suspend and futex_wait if we're going to wait for some
349       // positive amount of time - the kernel will reject negative times with
350       // EINVAL, and a zero time will just noop.
351 
352       // Thread.getState() is documented to return timed wait for timed parks.
353       ScopedThreadSuspension sts(this, ThreadState::kTimedWaiting);
354       DCHECK_EQ(NumberOfHeldMutexes(), 0u);
355       timespec timespec;
356       int result = 0;
357       if (is_absolute) {
358         // Time is millis when scheduled for an absolute time
359         timespec.tv_nsec = (time % 1000) * 1000000;
360         timespec.tv_sec = SaturatedTimeT(time / 1000);
361         // This odd looking pattern is recommended by futex documentation to
362         // wait until an absolute deadline, with otherwise identical behavior to
363         // FUTEX_WAIT_PRIVATE. This also allows parkUntil() to return at the
364         // correct time when the system clock changes.
365         result = futex(tls32_.park_state_.Address(),
366                        FUTEX_WAIT_BITSET_PRIVATE | FUTEX_CLOCK_REALTIME,
367                        /* sleep if val = */ kNoPermitWaiterWaiting,
368                        &timespec,
369                        nullptr,
370                        static_cast<int>(FUTEX_BITSET_MATCH_ANY));
371       } else {
372         // Time is nanos when scheduled for a relative time
373         timespec.tv_sec = SaturatedTimeT(time / 1000000000);
374         timespec.tv_nsec = time % 1000000000;
375         result = futex(tls32_.park_state_.Address(),
376                        FUTEX_WAIT_PRIVATE,
377                        /* sleep if val = */ kNoPermitWaiterWaiting,
378                        &timespec,
379                        nullptr,
380                        0);
381       }
382       // This errno check must happen before the scope is closed, to ensure that
383       // no destructors (such as ScopedThreadSuspension) overwrite errno.
384       if (result == -1) {
385         switch (errno) {
386           case ETIMEDOUT:
387             timed_out = true;
388             FALLTHROUGH_INTENDED;
389           case EAGAIN:
390           case EINTR: break;  // park() is allowed to spuriously return
391           default: PLOG(FATAL) << "Failed to park";
392         }
393       }
394     }
395     // Mark as no longer waiting, and consume permit if there is one.
396     tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
397     // TODO: Call to signal jvmti here
398     Runtime::Current()->GetRuntimeCallbacks()->ThreadParkFinished(timed_out);
399   } else {
400     // the fetch_add has consumed the permit. immediately return.
401     DCHECK_EQ(old_state, kPermitAvailable);
402   }
403 #else
404   #pragma clang diagnostic push
405   #pragma clang diagnostic warning "-W#warnings"
406   #warning "LockSupport.park/unpark implemented as noops without FUTEX support."
407   #pragma clang diagnostic pop
408   UNUSED(is_absolute, time);
409   UNIMPLEMENTED(WARNING);
410   sched_yield();
411 #endif
412 }
413 
Unpark()414 void Thread::Unpark() {
415 #if ART_USE_FUTEXES
416   // Set permit available; will be consumed either by fetch_add (when the thread
417   // tries to park) or store (when the parked thread is woken up)
418   if (tls32_.park_state_.exchange(kPermitAvailable, std::memory_order_relaxed)
419       == kNoPermitWaiterWaiting) {
420     int result = futex(tls32_.park_state_.Address(),
421                        FUTEX_WAKE_PRIVATE,
422                        /* number of waiters = */ 1,
423                        nullptr,
424                        nullptr,
425                        0);
426     if (result == -1) {
427       PLOG(FATAL) << "Failed to unpark";
428     }
429   }
430 #else
431   UNIMPLEMENTED(WARNING);
432 #endif
433 }
434 
PushStackedShadowFrame(ShadowFrame * sf,StackedShadowFrameType type)435 void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
436   StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
437       sf, type, tlsPtr_.stacked_shadow_frame_record);
438   tlsPtr_.stacked_shadow_frame_record = record;
439 }
440 
MaybePopDeoptimizedStackedShadowFrame()441 ShadowFrame* Thread::MaybePopDeoptimizedStackedShadowFrame() {
442   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
443   if (record == nullptr ||
444       record->GetType() != StackedShadowFrameType::kDeoptimizationShadowFrame) {
445     return nullptr;
446   }
447   return PopStackedShadowFrame();
448 }
449 
PopStackedShadowFrame()450 ShadowFrame* Thread::PopStackedShadowFrame() {
451   StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
452   DCHECK_NE(record, nullptr);
453   tlsPtr_.stacked_shadow_frame_record = record->GetLink();
454   ShadowFrame* shadow_frame = record->GetShadowFrame();
455   delete record;
456   return shadow_frame;
457 }
458 
459 class FrameIdToShadowFrame {
460  public:
Create(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next,size_t num_vregs)461   static FrameIdToShadowFrame* Create(size_t frame_id,
462                                       ShadowFrame* shadow_frame,
463                                       FrameIdToShadowFrame* next,
464                                       size_t num_vregs) {
465     // Append a bool array at the end to keep track of what vregs are updated by the debugger.
466     uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
467     return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
468   }
469 
Delete(FrameIdToShadowFrame * f)470   static void Delete(FrameIdToShadowFrame* f) {
471     uint8_t* memory = reinterpret_cast<uint8_t*>(f);
472     delete[] memory;
473   }
474 
GetFrameId() const475   size_t GetFrameId() const { return frame_id_; }
GetShadowFrame() const476   ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
GetNext() const477   FrameIdToShadowFrame* GetNext() const { return next_; }
SetNext(FrameIdToShadowFrame * next)478   void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
GetUpdatedVRegFlags()479   bool* GetUpdatedVRegFlags() {
480     return updated_vreg_flags_;
481   }
482 
483  private:
FrameIdToShadowFrame(size_t frame_id,ShadowFrame * shadow_frame,FrameIdToShadowFrame * next)484   FrameIdToShadowFrame(size_t frame_id,
485                        ShadowFrame* shadow_frame,
486                        FrameIdToShadowFrame* next)
487       : frame_id_(frame_id),
488         shadow_frame_(shadow_frame),
489         next_(next) {}
490 
491   const size_t frame_id_;
492   ShadowFrame* const shadow_frame_;
493   FrameIdToShadowFrame* next_;
494   bool updated_vreg_flags_[0];
495 
496   DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
497 };
498 
FindFrameIdToShadowFrame(FrameIdToShadowFrame * head,size_t frame_id)499 static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
500                                                       size_t frame_id) {
501   FrameIdToShadowFrame* found = nullptr;
502   for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
503     if (record->GetFrameId() == frame_id) {
504       if (kIsDebugBuild) {
505         // Check we have at most one record for this frame.
506         CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
507         found = record;
508       } else {
509         return record;
510       }
511     }
512   }
513   return found;
514 }
515 
FindDebuggerShadowFrame(size_t frame_id)516 ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
517   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
518       tlsPtr_.frame_id_to_shadow_frame, frame_id);
519   if (record != nullptr) {
520     return record->GetShadowFrame();
521   }
522   return nullptr;
523 }
524 
525 // Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
GetUpdatedVRegFlags(size_t frame_id)526 bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
527   FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
528       tlsPtr_.frame_id_to_shadow_frame, frame_id);
529   CHECK(record != nullptr);
530   return record->GetUpdatedVRegFlags();
531 }
532 
FindOrCreateDebuggerShadowFrame(size_t frame_id,uint32_t num_vregs,ArtMethod * method,uint32_t dex_pc)533 ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
534                                                      uint32_t num_vregs,
535                                                      ArtMethod* method,
536                                                      uint32_t dex_pc) {
537   ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
538   if (shadow_frame != nullptr) {
539     return shadow_frame;
540   }
541   VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
542   shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, method, dex_pc);
543   FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
544                                                               shadow_frame,
545                                                               tlsPtr_.frame_id_to_shadow_frame,
546                                                               num_vregs);
547   for (uint32_t i = 0; i < num_vregs; i++) {
548     // Do this to clear all references for root visitors.
549     shadow_frame->SetVRegReference(i, nullptr);
550     // This flag will be changed to true if the debugger modifies the value.
551     record->GetUpdatedVRegFlags()[i] = false;
552   }
553   tlsPtr_.frame_id_to_shadow_frame = record;
554   return shadow_frame;
555 }
556 
GetCustomTLS(const char * key)557 TLSData* Thread::GetCustomTLS(const char* key) {
558   MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
559   auto it = custom_tls_.find(key);
560   return (it != custom_tls_.end()) ? it->second.get() : nullptr;
561 }
562 
SetCustomTLS(const char * key,TLSData * data)563 void Thread::SetCustomTLS(const char* key, TLSData* data) {
564   // We will swap the old data (which might be nullptr) with this and then delete it outside of the
565   // custom_tls_lock_.
566   std::unique_ptr<TLSData> old_data(data);
567   {
568     MutexLock mu(Thread::Current(), *Locks::custom_tls_lock_);
569     custom_tls_.GetOrCreate(key, []() { return std::unique_ptr<TLSData>(); }).swap(old_data);
570   }
571 }
572 
RemoveDebuggerShadowFrameMapping(size_t frame_id)573 void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
574   FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
575   if (head->GetFrameId() == frame_id) {
576     tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
577     FrameIdToShadowFrame::Delete(head);
578     return;
579   }
580   FrameIdToShadowFrame* prev = head;
581   for (FrameIdToShadowFrame* record = head->GetNext();
582        record != nullptr;
583        prev = record, record = record->GetNext()) {
584     if (record->GetFrameId() == frame_id) {
585       prev->SetNext(record->GetNext());
586       FrameIdToShadowFrame::Delete(record);
587       return;
588     }
589   }
590   LOG(FATAL) << "No shadow frame for frame " << frame_id;
591   UNREACHABLE();
592 }
593 
InitTid()594 void Thread::InitTid() {
595   tls32_.tid = ::art::GetTid();
596 }
597 
InitAfterFork()598 void Thread::InitAfterFork() {
599   // One thread (us) survived the fork, but we have a new tid so we need to
600   // update the value stashed in this Thread*.
601   InitTid();
602 }
603 
DeleteJPeer(JNIEnv * env)604 void Thread::DeleteJPeer(JNIEnv* env) {
605   // Make sure nothing can observe both opeer and jpeer set at the same time.
606   jobject old_jpeer = tlsPtr_.jpeer;
607   CHECK(old_jpeer != nullptr);
608   tlsPtr_.jpeer = nullptr;
609   env->DeleteGlobalRef(old_jpeer);
610 }
611 
CreateCallbackWithUffdGc(void * arg)612 void* Thread::CreateCallbackWithUffdGc(void* arg) {
613   return Thread::CreateCallback(arg);
614 }
615 
CreateCallback(void * arg)616 void* Thread::CreateCallback(void* arg) {
617   Thread* self = reinterpret_cast<Thread*>(arg);
618   Runtime* runtime = Runtime::Current();
619   if (runtime == nullptr) {
620     LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
621     return nullptr;
622   }
623   {
624     // TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
625     //       after self->Init().
626     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
627     // Check that if we got here we cannot be shutting down (as shutdown should never have started
628     // while threads are being born).
629     CHECK(!runtime->IsShuttingDownLocked());
630     // Note: given that the JNIEnv is created in the parent thread, the only failure point here is
631     //       a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
632     //       the runtime in such a case. In case this ever changes, we need to make sure here to
633     //       delete the tmp_jni_env, as we own it at this point.
634     CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
635     self->tlsPtr_.tmp_jni_env = nullptr;
636     Runtime::Current()->EndThreadBirth();
637   }
638   {
639     ScopedObjectAccess soa(self);
640     self->InitStringEntryPoints();
641 
642     // Copy peer into self, deleting global reference when done.
643     CHECK(self->tlsPtr_.jpeer != nullptr);
644     self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
645     // Make sure nothing can observe both opeer and jpeer set at the same time.
646     self->DeleteJPeer(self->GetJniEnv());
647     self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
648 
649     ArtField* priorityField = WellKnownClasses::java_lang_Thread_priority;
650     self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
651 
652     runtime->GetRuntimeCallbacks()->ThreadStart(self);
653 
654     // Unpark ourselves if the java peer was unparked before it started (see
655     // b/28845097#comment49 for more information)
656 
657     ArtField* unparkedField = WellKnownClasses::java_lang_Thread_unparkedBeforeStart;
658     bool should_unpark = false;
659     {
660       // Hold the lock here, so that if another thread calls unpark before the thread starts
661       // we don't observe the unparkedBeforeStart field before the unparker writes to it,
662       // which could cause a lost unpark.
663       art::MutexLock mu(soa.Self(), *art::Locks::thread_list_lock_);
664       should_unpark = unparkedField->GetBoolean(self->tlsPtr_.opeer) == JNI_TRUE;
665     }
666     if (should_unpark) {
667       self->Unpark();
668     }
669     // Invoke the 'run' method of our java.lang.Thread.
670     ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
671     WellKnownClasses::java_lang_Thread_run->InvokeVirtual<'V'>(self, receiver);
672   }
673   // Detach and delete self.
674   Runtime::Current()->GetThreadList()->Unregister(self, /* should_run_callbacks= */ true);
675 
676   return nullptr;
677 }
678 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,ObjPtr<mirror::Object> thread_peer)679 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
680                                   ObjPtr<mirror::Object> thread_peer) {
681   ArtField* f = WellKnownClasses::java_lang_Thread_nativePeer;
682   Thread* result = reinterpret_cast64<Thread*>(f->GetLong(thread_peer));
683   // Check that if we have a result it is either suspended or we hold the thread_list_lock_
684   // to stop it from going away.
685   if (kIsDebugBuild) {
686     MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
687     if (result != nullptr && !result->IsSuspended()) {
688       Locks::thread_list_lock_->AssertHeld(soa.Self());
689     }
690   }
691   return result;
692 }
693 
FromManagedThread(const ScopedObjectAccessAlreadyRunnable & soa,jobject java_thread)694 Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
695                                   jobject java_thread) {
696   return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread));
697 }
698 
FixStackSize(size_t stack_size)699 static size_t FixStackSize(size_t stack_size) {
700   // A stack size of zero means "use the default".
701   if (stack_size == 0) {
702     stack_size = Runtime::Current()->GetDefaultStackSize();
703   }
704 
705   // Dalvik used the bionic pthread default stack size for native threads,
706   // so include that here to support apps that expect large native stacks.
707   stack_size += 1 * MB;
708 
709   // Under sanitization, frames of the interpreter may become bigger, both for C code as
710   // well as the ShadowFrame. Ensure a larger minimum size. Otherwise initialization
711   // of all core classes cannot be done in all test circumstances.
712   if (kMemoryToolIsAvailable) {
713     stack_size = std::max(2 * MB, stack_size);
714   }
715 
716   // It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
717   if (stack_size < PTHREAD_STACK_MIN) {
718     stack_size = PTHREAD_STACK_MIN;
719   }
720 
721   if (Runtime::Current()->GetImplicitStackOverflowChecks()) {
722     // If we are going to use implicit stack checks, allocate space for the protected
723     // region at the bottom of the stack.
724     stack_size += Thread::kStackOverflowImplicitCheckSize +
725         GetStackOverflowReservedBytes(kRuntimeISA);
726   } else {
727     // It's likely that callers are trying to ensure they have at least a certain amount of
728     // stack space, so we should add our reserved space on top of what they requested, rather
729     // than implicitly take it away from them.
730     stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
731   }
732 
733   // Some systems require the stack size to be a multiple of the system page size, so round up.
734   stack_size = RoundUp(stack_size, kPageSize);
735 
736   return stack_size;
737 }
738 
739 // Return the nearest page-aligned address below the current stack top.
740 NO_INLINE
FindStackTop()741 static uint8_t* FindStackTop() {
742   return reinterpret_cast<uint8_t*>(
743       AlignDown(__builtin_frame_address(0), kPageSize));
744 }
745 
746 // Install a protected region in the stack.  This is used to trigger a SIGSEGV if a stack
747 // overflow is detected.  It is located right below the stack_begin_.
748 ATTRIBUTE_NO_SANITIZE_ADDRESS
InstallImplicitProtection()749 void Thread::InstallImplicitProtection() {
750   uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
751   // Page containing current top of stack.
752   uint8_t* stack_top = FindStackTop();
753 
754   // Try to directly protect the stack.
755   VLOG(threads) << "installing stack protected region at " << std::hex <<
756         static_cast<void*>(pregion) << " to " <<
757         static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
758   if (ProtectStack(/* fatal_on_error= */ false)) {
759     // Tell the kernel that we won't be needing these pages any more.
760     // NB. madvise will probably write zeroes into the memory (on linux it does).
761     size_t unwanted_size =
762         reinterpret_cast<uintptr_t>(stack_top) - reinterpret_cast<uintptr_t>(pregion) - kPageSize;
763     madvise(pregion, unwanted_size, MADV_DONTNEED);
764     return;
765   }
766 
767   // There is a little complexity here that deserves a special mention.  On some
768   // architectures, the stack is created using a VM_GROWSDOWN flag
769   // to prevent memory being allocated when it's not needed.  This flag makes the
770   // kernel only allocate memory for the stack by growing down in memory.  Because we
771   // want to put an mprotected region far away from that at the stack top, we need
772   // to make sure the pages for the stack are mapped in before we call mprotect.
773   //
774   // The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
775   // with a non-mapped stack (usually only the main thread).
776   //
777   // We map in the stack by reading every page from the stack bottom (highest address)
778   // to the stack top. (We then madvise this away.) This must be done by reading from the
779   // current stack pointer downwards.
780   //
781   // Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
782   // ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
783   // thus have to move the stack pointer. We do this portably by using a recursive function with a
784   // large stack frame size.
785 
786   // (Defensively) first remove the protection on the protected region as we'll want to read
787   // and write it. Ignore errors.
788   UnprotectStack();
789 
790   VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
791       static_cast<void*>(pregion);
792 
793   struct RecurseDownStack {
794     // This function has an intentionally large stack size.
795 #pragma GCC diagnostic push
796 #pragma GCC diagnostic ignored "-Wframe-larger-than="
797     NO_INLINE
798     __attribute__((no_sanitize("memtag"))) static void Touch(uintptr_t target) {
799       volatile size_t zero = 0;
800       // Use a large local volatile array to ensure a large frame size. Do not use anything close
801       // to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
802       // there is no pragma support for this.
803       // Note: for ASAN we need to shrink the array a bit, as there's other overhead.
804       constexpr size_t kAsanMultiplier =
805 #ifdef ADDRESS_SANITIZER
806           2u;
807 #else
808           1u;
809 #endif
810       // Keep space uninitialized as it can overflow the stack otherwise (should Clang actually
811       // auto-initialize this local variable).
812       volatile char space[kPageSize - (kAsanMultiplier * 256)] __attribute__((uninitialized));
813       char sink ATTRIBUTE_UNUSED = space[zero];  // NOLINT
814       // Remove tag from the pointer. Nop in non-hwasan builds.
815       uintptr_t addr = reinterpret_cast<uintptr_t>(
816           __hwasan_tag_pointer != nullptr ? __hwasan_tag_pointer(space, 0) : space);
817       if (addr >= target + kPageSize) {
818         Touch(target);
819       }
820       zero *= 2;  // Try to avoid tail recursion.
821     }
822 #pragma GCC diagnostic pop
823   };
824   RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
825 
826   VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
827       static_cast<void*>(pregion) << " to " <<
828       static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
829 
830   // Protect the bottom of the stack to prevent read/write to it.
831   ProtectStack(/* fatal_on_error= */ true);
832 
833   // Tell the kernel that we won't be needing these pages any more.
834   // NB. madvise will probably write zeroes into the memory (on linux it does).
835   size_t unwanted_size =
836       reinterpret_cast<uintptr_t>(stack_top) - reinterpret_cast<uintptr_t>(pregion) - kPageSize;
837   madvise(pregion, unwanted_size, MADV_DONTNEED);
838 }
839 
840 template <bool kSupportTransaction>
SetNativePeer(ObjPtr<mirror::Object> java_peer,Thread * thread)841 static void SetNativePeer(ObjPtr<mirror::Object> java_peer, Thread* thread)
842     REQUIRES_SHARED(Locks::mutator_lock_) {
843   ArtField* field = WellKnownClasses::java_lang_Thread_nativePeer;
844   if (kSupportTransaction && Runtime::Current()->IsActiveTransaction()) {
845     field->SetLong</*kTransactionActive=*/ true>(java_peer, reinterpret_cast<jlong>(thread));
846   } else {
847     field->SetLong</*kTransactionActive=*/ false>(java_peer, reinterpret_cast<jlong>(thread));
848   }
849 }
850 
SetNativePeer(JNIEnv * env,jobject java_peer,Thread * thread)851 static void SetNativePeer(JNIEnv* env, jobject java_peer, Thread* thread) {
852   ScopedObjectAccess soa(env);
853   SetNativePeer</*kSupportTransaction=*/ false>(soa.Decode<mirror::Object>(java_peer), thread);
854 }
855 
CreateNativeThread(JNIEnv * env,jobject java_peer,size_t stack_size,bool is_daemon)856 void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
857   CHECK(java_peer != nullptr);
858   Thread* self = static_cast<JNIEnvExt*>(env)->GetSelf();
859 
860   if (VLOG_IS_ON(threads)) {
861     ScopedObjectAccess soa(env);
862 
863     ArtField* f = WellKnownClasses::java_lang_Thread_name;
864     ObjPtr<mirror::String> java_name =
865         f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
866     std::string thread_name;
867     if (java_name != nullptr) {
868       thread_name = java_name->ToModifiedUtf8();
869     } else {
870       thread_name = "(Unnamed)";
871     }
872 
873     VLOG(threads) << "Creating native thread for " << thread_name;
874     self->Dump(LOG_STREAM(INFO));
875   }
876 
877   Runtime* runtime = Runtime::Current();
878 
879   // Atomically start the birth of the thread ensuring the runtime isn't shutting down.
880   bool thread_start_during_shutdown = false;
881   {
882     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
883     if (runtime->IsShuttingDownLocked()) {
884       thread_start_during_shutdown = true;
885     } else {
886       runtime->StartThreadBirth();
887     }
888   }
889   if (thread_start_during_shutdown) {
890     ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
891     env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
892     return;
893   }
894 
895   Thread* child_thread = new Thread(is_daemon);
896   // Use global JNI ref to hold peer live while child thread starts.
897   child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
898   stack_size = FixStackSize(stack_size);
899 
900   // Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing
901   // to assign it.
902   SetNativePeer(env, java_peer, child_thread);
903 
904   // Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
905   // do not have a good way to report this on the child's side.
906   std::string error_msg;
907   std::unique_ptr<JNIEnvExt> child_jni_env_ext(
908       JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
909 
910   int pthread_create_result = 0;
911   if (child_jni_env_ext.get() != nullptr) {
912     pthread_t new_pthread;
913     pthread_attr_t attr;
914     child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
915     CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
916     CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
917                        "PTHREAD_CREATE_DETACHED");
918     CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
919     pthread_create_result = pthread_create(&new_pthread,
920                                            &attr,
921                                            gUseUserfaultfd ? Thread::CreateCallbackWithUffdGc
922                                                            : Thread::CreateCallback,
923                                            child_thread);
924     CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
925 
926     if (pthread_create_result == 0) {
927       // pthread_create started the new thread. The child is now responsible for managing the
928       // JNIEnvExt we created.
929       // Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
930       //       between the threads.
931       child_jni_env_ext.release();  // NOLINT pthreads API.
932       return;
933     }
934   }
935 
936   // Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
937   {
938     MutexLock mu(self, *Locks::runtime_shutdown_lock_);
939     runtime->EndThreadBirth();
940   }
941   // Manually delete the global reference since Thread::Init will not have been run. Make sure
942   // nothing can observe both opeer and jpeer set at the same time.
943   child_thread->DeleteJPeer(env);
944   delete child_thread;
945   child_thread = nullptr;
946   // TODO: remove from thread group?
947   SetNativePeer(env, java_peer, nullptr);
948   {
949     std::string msg(child_jni_env_ext.get() == nullptr ?
950         StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
951         StringPrintf("pthread_create (%s stack) failed: %s",
952                                  PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
953     ScopedObjectAccess soa(env);
954     soa.Self()->ThrowOutOfMemoryError(msg.c_str());
955   }
956 }
957 
Init(ThreadList * thread_list,JavaVMExt * java_vm,JNIEnvExt * jni_env_ext)958 bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
959   // This function does all the initialization that must be run by the native thread it applies to.
960   // (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
961   // we can handshake with the corresponding native thread when it's ready.) Check this native
962   // thread hasn't been through here already...
963   CHECK(Thread::Current() == nullptr);
964 
965   // Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
966   // avoids pthread_self_ ever being invalid when discovered from Thread::Current().
967   tlsPtr_.pthread_self = pthread_self();
968   CHECK(is_started_);
969 
970   ScopedTrace trace("Thread::Init");
971 
972   SetUpAlternateSignalStack();
973   if (!InitStackHwm()) {
974     return false;
975   }
976   InitCpu();
977   InitTlsEntryPoints();
978   RemoveSuspendTrigger();
979   InitCardTable();
980   InitTid();
981 
982 #ifdef __BIONIC__
983   __get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
984 #else
985   CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
986   Thread::self_tls_ = this;
987 #endif
988   DCHECK_EQ(Thread::Current(), this);
989 
990   tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
991 
992   if (jni_env_ext != nullptr) {
993     DCHECK_EQ(jni_env_ext->GetVm(), java_vm);
994     DCHECK_EQ(jni_env_ext->GetSelf(), this);
995     tlsPtr_.jni_env = jni_env_ext;
996   } else {
997     std::string error_msg;
998     tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
999     if (tlsPtr_.jni_env == nullptr) {
1000       LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
1001       return false;
1002     }
1003   }
1004 
1005   ScopedTrace trace3("ThreadList::Register");
1006   thread_list->Register(this);
1007   return true;
1008 }
1009 
1010 template <typename PeerAction>
Attach(const char * thread_name,bool as_daemon,PeerAction peer_action,bool should_run_callbacks)1011 Thread* Thread::Attach(const char* thread_name,
1012                        bool as_daemon,
1013                        PeerAction peer_action,
1014                        bool should_run_callbacks) {
1015   Runtime* runtime = Runtime::Current();
1016   ScopedTrace trace("Thread::Attach");
1017   if (runtime == nullptr) {
1018     LOG(ERROR) << "Thread attaching to non-existent runtime: " <<
1019         ((thread_name != nullptr) ? thread_name : "(Unnamed)");
1020     return nullptr;
1021   }
1022   Thread* self;
1023   {
1024     ScopedTrace trace2("Thread birth");
1025     MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
1026     if (runtime->IsShuttingDownLocked()) {
1027       LOG(WARNING) << "Thread attaching while runtime is shutting down: " <<
1028           ((thread_name != nullptr) ? thread_name : "(Unnamed)");
1029       return nullptr;
1030     } else {
1031       Runtime::Current()->StartThreadBirth();
1032       self = new Thread(as_daemon);
1033       bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
1034       Runtime::Current()->EndThreadBirth();
1035       if (!init_success) {
1036         delete self;
1037         return nullptr;
1038       }
1039     }
1040   }
1041 
1042   self->InitStringEntryPoints();
1043 
1044   CHECK_NE(self->GetState(), ThreadState::kRunnable);
1045   self->SetState(ThreadState::kNative);
1046 
1047   // Run the action that is acting on the peer.
1048   if (!peer_action(self)) {
1049     runtime->GetThreadList()->Unregister(self, should_run_callbacks);
1050     // Unregister deletes self, no need to do this here.
1051     return nullptr;
1052   }
1053 
1054   if (VLOG_IS_ON(threads)) {
1055     if (thread_name != nullptr) {
1056       VLOG(threads) << "Attaching thread " << thread_name;
1057     } else {
1058       VLOG(threads) << "Attaching unnamed thread.";
1059     }
1060     ScopedObjectAccess soa(self);
1061     self->Dump(LOG_STREAM(INFO));
1062   }
1063 
1064   if (should_run_callbacks) {
1065     ScopedObjectAccess soa(self);
1066     runtime->GetRuntimeCallbacks()->ThreadStart(self);
1067   }
1068 
1069   return self;
1070 }
1071 
Attach(const char * thread_name,bool as_daemon,jobject thread_group,bool create_peer,bool should_run_callbacks)1072 Thread* Thread::Attach(const char* thread_name,
1073                        bool as_daemon,
1074                        jobject thread_group,
1075                        bool create_peer,
1076                        bool should_run_callbacks) {
1077   auto create_peer_action = [&](Thread* self) {
1078     // If we're the main thread, ClassLinker won't be created until after we're attached,
1079     // so that thread needs a two-stage attach. Regular threads don't need this hack.
1080     // In the compiler, all threads need this hack, because no-one's going to be getting
1081     // a native peer!
1082     if (create_peer) {
1083       self->CreatePeer(thread_name, as_daemon, thread_group);
1084       if (self->IsExceptionPending()) {
1085         // We cannot keep the exception around, as we're deleting self. Try to be helpful and log
1086         // the failure but do not dump the exception details. If we fail to allocate the peer, we
1087         // usually also fail to allocate an exception object and throw a pre-allocated OOME without
1088         // any useful information. If we do manage to allocate the exception object, the memory
1089         // information in the message could have been collected too late and therefore misleading.
1090         {
1091           ScopedObjectAccess soa(self);
1092           LOG(ERROR) << "Exception creating thread peer: "
1093                      << ((thread_name != nullptr) ? thread_name : "<null>");
1094           self->ClearException();
1095         }
1096         return false;
1097       }
1098     } else {
1099       // These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
1100       if (thread_name != nullptr) {
1101         self->SetCachedThreadName(thread_name);
1102         ::art::SetThreadName(thread_name);
1103       } else if (self->GetJniEnv()->IsCheckJniEnabled()) {
1104         LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
1105       }
1106     }
1107     return true;
1108   };
1109   return Attach(thread_name, as_daemon, create_peer_action, should_run_callbacks);
1110 }
1111 
Attach(const char * thread_name,bool as_daemon,jobject thread_peer)1112 Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
1113   auto set_peer_action = [&](Thread* self) {
1114     // Install the given peer.
1115     DCHECK(self == Thread::Current());
1116     ScopedObjectAccess soa(self);
1117     ObjPtr<mirror::Object> peer = soa.Decode<mirror::Object>(thread_peer);
1118     self->tlsPtr_.opeer = peer.Ptr();
1119     SetNativePeer</*kSupportTransaction=*/ false>(peer, self);
1120     return true;
1121   };
1122   return Attach(thread_name, as_daemon, set_peer_action, /* should_run_callbacks= */ true);
1123 }
1124 
CreatePeer(const char * name,bool as_daemon,jobject thread_group)1125 void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
1126   Runtime* runtime = Runtime::Current();
1127   CHECK(runtime->IsStarted());
1128   Thread* self = this;
1129   DCHECK_EQ(self, Thread::Current());
1130 
1131   ScopedObjectAccess soa(self);
1132   StackHandleScope<4u> hs(self);
1133   DCHECK(WellKnownClasses::java_lang_ThreadGroup->IsInitialized());
1134   Handle<mirror::Object> thr_group = hs.NewHandle(soa.Decode<mirror::Object>(
1135       thread_group != nullptr ? thread_group : runtime->GetMainThreadGroup()));
1136   Handle<mirror::String> thread_name = hs.NewHandle(
1137       name != nullptr ? mirror::String::AllocFromModifiedUtf8(self, name) : nullptr);
1138   // Add missing null check in case of OOM b/18297817
1139   if (name != nullptr && UNLIKELY(thread_name == nullptr)) {
1140     CHECK(self->IsExceptionPending());
1141     return;
1142   }
1143   jint thread_priority = GetNativePriority();
1144 
1145   DCHECK(WellKnownClasses::java_lang_Thread->IsInitialized());
1146   Handle<mirror::Object> peer =
1147       hs.NewHandle(WellKnownClasses::java_lang_Thread->AllocObject(self));
1148   if (UNLIKELY(peer == nullptr)) {
1149     CHECK(IsExceptionPending());
1150     return;
1151   }
1152   tlsPtr_.opeer = peer.Get();
1153   WellKnownClasses::java_lang_Thread_init->InvokeInstance<'V', 'L', 'L', 'I', 'Z'>(
1154       self, peer.Get(), thr_group.Get(), thread_name.Get(), thread_priority, as_daemon);
1155   if (self->IsExceptionPending()) {
1156     return;
1157   }
1158 
1159   SetNativePeer</*kSupportTransaction=*/ false>(peer.Get(), self);
1160 
1161   MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
1162   if (peer_thread_name == nullptr) {
1163     // The Thread constructor should have set the Thread.name to a
1164     // non-null value. However, because we can run without code
1165     // available (in the compiler, in tests), we manually assign the
1166     // fields the constructor should have set.
1167     if (runtime->IsActiveTransaction()) {
1168       InitPeer<true>(tlsPtr_.opeer,
1169                      as_daemon,
1170                      thr_group.Get(),
1171                      thread_name.Get(),
1172                      thread_priority);
1173     } else {
1174       InitPeer<false>(tlsPtr_.opeer,
1175                       as_daemon,
1176                       thr_group.Get(),
1177                       thread_name.Get(),
1178                       thread_priority);
1179     }
1180     peer_thread_name.Assign(GetThreadName());
1181   }
1182   // 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
1183   if (peer_thread_name != nullptr) {
1184     SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
1185   }
1186 }
1187 
CreateCompileTimePeer(const char * name,bool as_daemon,jobject thread_group)1188 ObjPtr<mirror::Object> Thread::CreateCompileTimePeer(const char* name,
1189                                                      bool as_daemon,
1190                                                      jobject thread_group) {
1191   Runtime* runtime = Runtime::Current();
1192   CHECK(!runtime->IsStarted());
1193   Thread* self = this;
1194   DCHECK_EQ(self, Thread::Current());
1195 
1196   ScopedObjectAccessUnchecked soa(self);
1197   StackHandleScope<3u> hs(self);
1198   DCHECK(WellKnownClasses::java_lang_ThreadGroup->IsInitialized());
1199   Handle<mirror::Object> thr_group = hs.NewHandle(soa.Decode<mirror::Object>(
1200       thread_group != nullptr ? thread_group : runtime->GetMainThreadGroup()));
1201   Handle<mirror::String> thread_name = hs.NewHandle(
1202       name != nullptr ? mirror::String::AllocFromModifiedUtf8(self, name) : nullptr);
1203   // Add missing null check in case of OOM b/18297817
1204   if (name != nullptr && UNLIKELY(thread_name == nullptr)) {
1205     CHECK(self->IsExceptionPending());
1206     return nullptr;
1207   }
1208   jint thread_priority = kNormThreadPriority;  // Always normalize to NORM priority.
1209 
1210   DCHECK(WellKnownClasses::java_lang_Thread->IsInitialized());
1211   Handle<mirror::Object> peer = hs.NewHandle(
1212       WellKnownClasses::java_lang_Thread->AllocObject(self));
1213   if (peer == nullptr) {
1214     CHECK(Thread::Current()->IsExceptionPending());
1215     return nullptr;
1216   }
1217 
1218   // We cannot call Thread.init, as it will recursively ask for currentThread.
1219 
1220   // The Thread constructor should have set the Thread.name to a
1221   // non-null value. However, because we can run without code
1222   // available (in the compiler, in tests), we manually assign the
1223   // fields the constructor should have set.
1224   if (runtime->IsActiveTransaction()) {
1225     InitPeer<true>(peer.Get(),
1226                    as_daemon,
1227                    thr_group.Get(),
1228                    thread_name.Get(),
1229                    thread_priority);
1230   } else {
1231     InitPeer<false>(peer.Get(),
1232                     as_daemon,
1233                     thr_group.Get(),
1234                     thread_name.Get(),
1235                     thread_priority);
1236   }
1237 
1238   return peer.Get();
1239 }
1240 
1241 template<bool kTransactionActive>
InitPeer(ObjPtr<mirror::Object> peer,bool as_daemon,ObjPtr<mirror::Object> thread_group,ObjPtr<mirror::String> thread_name,jint thread_priority)1242 void Thread::InitPeer(ObjPtr<mirror::Object> peer,
1243                       bool as_daemon,
1244                       ObjPtr<mirror::Object> thread_group,
1245                       ObjPtr<mirror::String> thread_name,
1246                       jint thread_priority) {
1247   WellKnownClasses::java_lang_Thread_daemon->SetBoolean<kTransactionActive>(peer,
1248       static_cast<uint8_t>(as_daemon ? 1u : 0u));
1249   WellKnownClasses::java_lang_Thread_group->SetObject<kTransactionActive>(peer, thread_group);
1250   WellKnownClasses::java_lang_Thread_name->SetObject<kTransactionActive>(peer, thread_name);
1251   WellKnownClasses::java_lang_Thread_priority->SetInt<kTransactionActive>(peer, thread_priority);
1252 }
1253 
SetCachedThreadName(const char * name)1254 void Thread::SetCachedThreadName(const char* name) {
1255   DCHECK(name != kThreadNameDuringStartup);
1256   const char* old_name = tlsPtr_.name.exchange(name == nullptr ? nullptr : strdup(name));
1257   if (old_name != nullptr && old_name !=  kThreadNameDuringStartup) {
1258     // Deallocate it, carefully. Note that the load has to be ordered wrt the store of the xchg.
1259     for (uint32_t i = 0; UNLIKELY(tls32_.num_name_readers.load(std::memory_order_seq_cst) != 0);
1260          ++i) {
1261       static constexpr uint32_t kNumSpins = 1000;
1262       // Ugly, but keeps us from having to do anything on the reader side.
1263       if (i > kNumSpins) {
1264         usleep(500);
1265       }
1266     }
1267     // We saw the reader count drop to zero since we replaced the name; old one is now safe to
1268     // deallocate.
1269     free(const_cast<char *>(old_name));
1270   }
1271 }
1272 
SetThreadName(const char * name)1273 void Thread::SetThreadName(const char* name) {
1274   SetCachedThreadName(name);
1275   ::art::SetThreadName(name);
1276   Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
1277 }
1278 
GetThreadStack(pthread_t thread,void ** stack_base,size_t * stack_size,size_t * guard_size)1279 static void GetThreadStack(pthread_t thread,
1280                            void** stack_base,
1281                            size_t* stack_size,
1282                            size_t* guard_size) {
1283 #if defined(__APPLE__)
1284   *stack_size = pthread_get_stacksize_np(thread);
1285   void* stack_addr = pthread_get_stackaddr_np(thread);
1286 
1287   // Check whether stack_addr is the base or end of the stack.
1288   // (On Mac OS 10.7, it's the end.)
1289   int stack_variable;
1290   if (stack_addr > &stack_variable) {
1291     *stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
1292   } else {
1293     *stack_base = stack_addr;
1294   }
1295 
1296   // This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
1297   pthread_attr_t attributes;
1298   CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
1299   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1300   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1301 #else
1302   pthread_attr_t attributes;
1303   CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
1304   CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
1305   CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
1306   CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
1307 
1308 #if defined(__GLIBC__)
1309   // If we're the main thread, check whether we were run with an unlimited stack. In that case,
1310   // glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
1311   // will be broken because we'll die long before we get close to 2GB.
1312   bool is_main_thread = (::art::GetTid() == static_cast<uint32_t>(getpid()));
1313   if (is_main_thread) {
1314     rlimit stack_limit;
1315     if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
1316       PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
1317     }
1318     if (stack_limit.rlim_cur == RLIM_INFINITY) {
1319       size_t old_stack_size = *stack_size;
1320 
1321       // Use the kernel default limit as our size, and adjust the base to match.
1322       *stack_size = 8 * MB;
1323       *stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
1324 
1325       VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
1326                     << " to " << PrettySize(*stack_size)
1327                     << " with base " << *stack_base;
1328     }
1329   }
1330 #endif
1331 
1332 #endif
1333 }
1334 
InitStackHwm()1335 bool Thread::InitStackHwm() {
1336   ScopedTrace trace("InitStackHwm");
1337   void* read_stack_base;
1338   size_t read_stack_size;
1339   size_t read_guard_size;
1340   GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
1341 
1342   tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
1343   tlsPtr_.stack_size = read_stack_size;
1344 
1345   // The minimum stack size we can cope with is the overflow reserved bytes (typically
1346   // 8K) + the protected region size (4K) + another page (4K).  Typically this will
1347   // be 8+4+4 = 16K.  The thread won't be able to do much with this stack even the GC takes
1348   // between 8K and 12K.
1349   uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
1350     + 4 * KB;
1351   if (read_stack_size <= min_stack) {
1352     // Note, as we know the stack is small, avoid operations that could use a lot of stack.
1353     LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
1354                                __LINE__,
1355                                ::android::base::ERROR,
1356                                "Attempt to attach a thread with a too-small stack");
1357     return false;
1358   }
1359 
1360   // This is included in the SIGQUIT output, but it's useful here for thread debugging.
1361   VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
1362                                 read_stack_base,
1363                                 PrettySize(read_stack_size).c_str(),
1364                                 PrettySize(read_guard_size).c_str());
1365 
1366   // Set stack_end_ to the bottom of the stack saving space of stack overflows
1367 
1368   Runtime* runtime = Runtime::Current();
1369   bool implicit_stack_check =
1370       runtime->GetImplicitStackOverflowChecks() && !runtime->IsAotCompiler();
1371 
1372   ResetDefaultStackEnd();
1373 
1374   // Install the protected region if we are doing implicit overflow checks.
1375   if (implicit_stack_check) {
1376     // The thread might have protected region at the bottom.  We need
1377     // to install our own region so we need to move the limits
1378     // of the stack to make room for it.
1379 
1380     tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
1381     tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
1382     tlsPtr_.stack_size -= read_guard_size + kStackOverflowProtectedSize;
1383 
1384     InstallImplicitProtection();
1385   }
1386 
1387   // Consistency check.
1388   CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
1389 
1390   return true;
1391 }
1392 
ShortDump(std::ostream & os) const1393 void Thread::ShortDump(std::ostream& os) const {
1394   os << "Thread[";
1395   if (GetThreadId() != 0) {
1396     // If we're in kStarting, we won't have a thin lock id or tid yet.
1397     os << GetThreadId()
1398        << ",tid=" << GetTid() << ',';
1399   }
1400   tls32_.num_name_readers.fetch_add(1, std::memory_order_seq_cst);
1401   const char* name = tlsPtr_.name.load();
1402   os << GetState()
1403      << ",Thread*=" << this
1404      << ",peer=" << tlsPtr_.opeer
1405      << ",\"" << (name == nullptr ? "null" : name) << "\""
1406      << "]";
1407   tls32_.num_name_readers.fetch_sub(1 /* at least memory_order_release */);
1408 }
1409 
Dump(std::ostream & os,bool dump_native_stack,bool force_dump_stack) const1410 Thread::DumpOrder Thread::Dump(std::ostream& os,
1411                                bool dump_native_stack,
1412                                bool force_dump_stack) const {
1413   DumpState(os);
1414   return DumpStack(os, dump_native_stack, force_dump_stack);
1415 }
1416 
Dump(std::ostream & os,unwindstack::AndroidLocalUnwinder & unwinder,bool dump_native_stack,bool force_dump_stack) const1417 Thread::DumpOrder Thread::Dump(std::ostream& os,
1418                                unwindstack::AndroidLocalUnwinder& unwinder,
1419                                bool dump_native_stack,
1420                                bool force_dump_stack) const {
1421   DumpState(os);
1422   return DumpStack(os, unwinder, dump_native_stack, force_dump_stack);
1423 }
1424 
GetThreadName() const1425 ObjPtr<mirror::String> Thread::GetThreadName() const {
1426   if (tlsPtr_.opeer == nullptr) {
1427     return nullptr;
1428   }
1429   ObjPtr<mirror::Object> name = WellKnownClasses::java_lang_Thread_name->GetObject(tlsPtr_.opeer);
1430   return name == nullptr ? nullptr : name->AsString();
1431 }
1432 
GetThreadName(std::string & name) const1433 void Thread::GetThreadName(std::string& name) const {
1434   tls32_.num_name_readers.fetch_add(1, std::memory_order_seq_cst);
1435   // The store part of the increment has to be ordered with respect to the following load.
1436   name.assign(tlsPtr_.name.load(std::memory_order_seq_cst));
1437   tls32_.num_name_readers.fetch_sub(1 /* at least memory_order_release */);
1438 }
1439 
GetCpuMicroTime() const1440 uint64_t Thread::GetCpuMicroTime() const {
1441 #if defined(__linux__)
1442   clockid_t cpu_clock_id;
1443   pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
1444   timespec now;
1445   clock_gettime(cpu_clock_id, &now);
1446   return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) +
1447          static_cast<uint64_t>(now.tv_nsec) / UINT64_C(1000);
1448 #else  // __APPLE__
1449   UNIMPLEMENTED(WARNING);
1450   return -1;
1451 #endif
1452 }
1453 
1454 // Attempt to rectify locks so that we dump thread list with required locks before exiting.
UnsafeLogFatalForSuspendCount(Thread * self,Thread * thread)1455 static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
1456   LOG(ERROR) << *thread << " suspend count already zero.";
1457   Locks::thread_suspend_count_lock_->Unlock(self);
1458   if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1459     Locks::mutator_lock_->SharedTryLock(self);
1460     if (!Locks::mutator_lock_->IsSharedHeld(self)) {
1461       LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
1462     }
1463   }
1464   if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1465     Locks::thread_list_lock_->TryLock(self);
1466     if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
1467       LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
1468     }
1469   }
1470   std::ostringstream ss;
1471   Runtime::Current()->GetThreadList()->Dump(ss);
1472   LOG(FATAL) << ss.str();
1473 }
1474 
ModifySuspendCountInternal(Thread * self,int delta,AtomicInteger * suspend_barrier,SuspendReason reason)1475 bool Thread::ModifySuspendCountInternal(Thread* self,
1476                                         int delta,
1477                                         AtomicInteger* suspend_barrier,
1478                                         SuspendReason reason) {
1479   if (kIsDebugBuild) {
1480     DCHECK(delta == -1 || delta == +1)
1481           << reason << " " << delta << " " << this;
1482     Locks::thread_suspend_count_lock_->AssertHeld(self);
1483     if (this != self && !IsSuspended()) {
1484       Locks::thread_list_lock_->AssertHeld(self);
1485     }
1486   }
1487   // User code suspensions need to be checked more closely since they originate from code outside of
1488   // the runtime's control.
1489   if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
1490     Locks::user_code_suspension_lock_->AssertHeld(self);
1491     if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
1492       LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
1493       return false;
1494     }
1495   }
1496   if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
1497     UnsafeLogFatalForSuspendCount(self, this);
1498     return false;
1499   }
1500 
1501   if (delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
1502     // Force retry of a suspend request if it's in the middle of a thread flip to avoid a
1503     // deadlock. b/31683379.
1504     return false;
1505   }
1506 
1507   uint32_t flags = enum_cast<uint32_t>(ThreadFlag::kSuspendRequest);
1508   if (delta > 0 && suspend_barrier != nullptr) {
1509     uint32_t available_barrier = kMaxSuspendBarriers;
1510     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1511       if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
1512         available_barrier = i;
1513         break;
1514       }
1515     }
1516     if (available_barrier == kMaxSuspendBarriers) {
1517       // No barrier spaces available, we can't add another.
1518       return false;
1519     }
1520     tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
1521     flags |= enum_cast<uint32_t>(ThreadFlag::kActiveSuspendBarrier);
1522   }
1523 
1524   tls32_.suspend_count += delta;
1525   switch (reason) {
1526     case SuspendReason::kForUserCode:
1527       tls32_.user_code_suspend_count += delta;
1528       break;
1529     case SuspendReason::kInternal:
1530       break;
1531   }
1532 
1533   if (tls32_.suspend_count == 0) {
1534     AtomicClearFlag(ThreadFlag::kSuspendRequest);
1535   } else {
1536     // Two bits might be set simultaneously.
1537     tls32_.state_and_flags.fetch_or(flags, std::memory_order_seq_cst);
1538     TriggerSuspend();
1539   }
1540   return true;
1541 }
1542 
PassActiveSuspendBarriers(Thread * self)1543 bool Thread::PassActiveSuspendBarriers(Thread* self) {
1544   // Grab the suspend_count lock and copy the current set of
1545   // barriers. Then clear the list and the flag. The ModifySuspendCount
1546   // function requires the lock so we prevent a race between setting
1547   // the kActiveSuspendBarrier flag and clearing it.
1548   AtomicInteger* pass_barriers[kMaxSuspendBarriers];
1549   {
1550     MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1551     if (!ReadFlag(ThreadFlag::kActiveSuspendBarrier)) {
1552       // quick exit test: the barriers have already been claimed - this is
1553       // possible as there may be a race to claim and it doesn't matter
1554       // who wins.
1555       // All of the callers of this function (except the SuspendAllInternal)
1556       // will first test the kActiveSuspendBarrier flag without lock. Here
1557       // double-check whether the barrier has been passed with the
1558       // suspend_count lock.
1559       return false;
1560     }
1561 
1562     for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1563       pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
1564       tlsPtr_.active_suspend_barriers[i] = nullptr;
1565     }
1566     AtomicClearFlag(ThreadFlag::kActiveSuspendBarrier);
1567   }
1568 
1569   uint32_t barrier_count = 0;
1570   for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
1571     AtomicInteger* pending_threads = pass_barriers[i];
1572     if (pending_threads != nullptr) {
1573       bool done = false;
1574       do {
1575         int32_t cur_val = pending_threads->load(std::memory_order_relaxed);
1576         CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
1577         // Reduce value by 1.
1578         done = pending_threads->CompareAndSetWeakRelaxed(cur_val, cur_val - 1);
1579 #if ART_USE_FUTEXES
1580         if (done && (cur_val - 1) == 0) {  // Weak CAS may fail spuriously.
1581           futex(pending_threads->Address(), FUTEX_WAKE_PRIVATE, INT_MAX, nullptr, nullptr, 0);
1582         }
1583 #endif
1584       } while (!done);
1585       ++barrier_count;
1586     }
1587   }
1588   CHECK_GT(barrier_count, 0U);
1589   return true;
1590 }
1591 
ClearSuspendBarrier(AtomicInteger * target)1592 void Thread::ClearSuspendBarrier(AtomicInteger* target) {
1593   CHECK(ReadFlag(ThreadFlag::kActiveSuspendBarrier));
1594   bool clear_flag = true;
1595   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
1596     AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
1597     if (ptr == target) {
1598       tlsPtr_.active_suspend_barriers[i] = nullptr;
1599     } else if (ptr != nullptr) {
1600       clear_flag = false;
1601     }
1602   }
1603   if (LIKELY(clear_flag)) {
1604     AtomicClearFlag(ThreadFlag::kActiveSuspendBarrier);
1605   }
1606 }
1607 
RunCheckpointFunction()1608 void Thread::RunCheckpointFunction() {
1609   // If this thread is suspended and another thread is running the checkpoint on its behalf,
1610   // we may have a pending flip function that we need to run for the sake of those checkpoints
1611   // that need to walk the stack. We should not see the flip function flags when the thread
1612   // is running the checkpoint on its own.
1613   StateAndFlags state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
1614   if (UNLIKELY(state_and_flags.IsAnyOfFlagsSet(FlipFunctionFlags()))) {
1615     DCHECK(IsSuspended());
1616     Thread* self = Thread::Current();
1617     DCHECK(self != this);
1618     if (state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction)) {
1619       EnsureFlipFunctionStarted(self);
1620       state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
1621       DCHECK(!state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction));
1622     }
1623     if (state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)) {
1624       WaitForFlipFunction(self);
1625     }
1626   }
1627 
1628   // Grab the suspend_count lock, get the next checkpoint and update all the checkpoint fields. If
1629   // there are no more checkpoints we will also clear the kCheckpointRequest flag.
1630   Closure* checkpoint;
1631   {
1632     MutexLock mu(this, *Locks::thread_suspend_count_lock_);
1633     checkpoint = tlsPtr_.checkpoint_function;
1634     if (!checkpoint_overflow_.empty()) {
1635       // Overflow list not empty, copy the first one out and continue.
1636       tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
1637       checkpoint_overflow_.pop_front();
1638     } else {
1639       // No overflow checkpoints. Clear the kCheckpointRequest flag
1640       tlsPtr_.checkpoint_function = nullptr;
1641       AtomicClearFlag(ThreadFlag::kCheckpointRequest);
1642     }
1643   }
1644   // Outside the lock, run the checkpoint function.
1645   ScopedTrace trace("Run checkpoint function");
1646   CHECK(checkpoint != nullptr) << "Checkpoint flag set without pending checkpoint";
1647   checkpoint->Run(this);
1648 }
1649 
RunEmptyCheckpoint()1650 void Thread::RunEmptyCheckpoint() {
1651   // Note: Empty checkpoint does not access the thread's stack,
1652   // so we do not need to check for the flip function.
1653   DCHECK_EQ(Thread::Current(), this);
1654   AtomicClearFlag(ThreadFlag::kEmptyCheckpointRequest);
1655   Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
1656 }
1657 
RequestCheckpoint(Closure * function)1658 bool Thread::RequestCheckpoint(Closure* function) {
1659   StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
1660   if (old_state_and_flags.GetState() != ThreadState::kRunnable) {
1661     return false;  // Fail, thread is suspended and so can't run a checkpoint.
1662   }
1663 
1664   // We must be runnable to request a checkpoint.
1665   DCHECK_EQ(old_state_and_flags.GetState(), ThreadState::kRunnable);
1666   StateAndFlags new_state_and_flags = old_state_and_flags;
1667   new_state_and_flags.SetFlag(ThreadFlag::kCheckpointRequest);
1668   bool success = tls32_.state_and_flags.CompareAndSetStrongSequentiallyConsistent(
1669       old_state_and_flags.GetValue(), new_state_and_flags.GetValue());
1670   if (success) {
1671     // Succeeded setting checkpoint flag, now insert the actual checkpoint.
1672     if (tlsPtr_.checkpoint_function == nullptr) {
1673       tlsPtr_.checkpoint_function = function;
1674     } else {
1675       checkpoint_overflow_.push_back(function);
1676     }
1677     CHECK(ReadFlag(ThreadFlag::kCheckpointRequest));
1678     TriggerSuspend();
1679   }
1680   return success;
1681 }
1682 
RequestEmptyCheckpoint()1683 bool Thread::RequestEmptyCheckpoint() {
1684   StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
1685   if (old_state_and_flags.GetState() != ThreadState::kRunnable) {
1686     // If it's not runnable, we don't need to do anything because it won't be in the middle of a
1687     // heap access (eg. the read barrier).
1688     return false;
1689   }
1690 
1691   // We must be runnable to request a checkpoint.
1692   DCHECK_EQ(old_state_and_flags.GetState(), ThreadState::kRunnable);
1693   StateAndFlags new_state_and_flags = old_state_and_flags;
1694   new_state_and_flags.SetFlag(ThreadFlag::kEmptyCheckpointRequest);
1695   bool success = tls32_.state_and_flags.CompareAndSetStrongSequentiallyConsistent(
1696       old_state_and_flags.GetValue(), new_state_and_flags.GetValue());
1697   if (success) {
1698     TriggerSuspend();
1699   }
1700   return success;
1701 }
1702 
1703 class BarrierClosure : public Closure {
1704  public:
BarrierClosure(Closure * wrapped)1705   explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
1706 
Run(Thread * self)1707   void Run(Thread* self) override {
1708     wrapped_->Run(self);
1709     barrier_.Pass(self);
1710   }
1711 
Wait(Thread * self,ThreadState suspend_state)1712   void Wait(Thread* self, ThreadState suspend_state) {
1713     if (suspend_state != ThreadState::kRunnable) {
1714       barrier_.Increment<Barrier::kDisallowHoldingLocks>(self, 1);
1715     } else {
1716       barrier_.Increment<Barrier::kAllowHoldingLocks>(self, 1);
1717     }
1718   }
1719 
1720  private:
1721   Closure* wrapped_;
1722   Barrier barrier_;
1723 };
1724 
1725 // RequestSynchronousCheckpoint releases the thread_list_lock_ as a part of its execution.
RequestSynchronousCheckpoint(Closure * function,ThreadState suspend_state)1726 bool Thread::RequestSynchronousCheckpoint(Closure* function, ThreadState suspend_state) {
1727   Thread* self = Thread::Current();
1728   if (this == Thread::Current()) {
1729     Locks::thread_list_lock_->AssertExclusiveHeld(self);
1730     // Unlock the tll before running so that the state is the same regardless of thread.
1731     Locks::thread_list_lock_->ExclusiveUnlock(self);
1732     // Asked to run on this thread. Just run.
1733     function->Run(this);
1734     return true;
1735   }
1736 
1737   // The current thread is not this thread.
1738 
1739   if (GetState() == ThreadState::kTerminated) {
1740     Locks::thread_list_lock_->ExclusiveUnlock(self);
1741     return false;
1742   }
1743 
1744   struct ScopedThreadListLockUnlock {
1745     explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
1746         : self_thread(self_in) {
1747       Locks::thread_list_lock_->AssertHeld(self_thread);
1748       Locks::thread_list_lock_->Unlock(self_thread);
1749     }
1750 
1751     ~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
1752       Locks::thread_list_lock_->AssertNotHeld(self_thread);
1753       Locks::thread_list_lock_->Lock(self_thread);
1754     }
1755 
1756     Thread* self_thread;
1757   };
1758 
1759   for (;;) {
1760     Locks::thread_list_lock_->AssertExclusiveHeld(self);
1761     // If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
1762     // suspend-count lock for too long.
1763     if (GetState() == ThreadState::kRunnable) {
1764       BarrierClosure barrier_closure(function);
1765       bool installed = false;
1766       {
1767         MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1768         installed = RequestCheckpoint(&barrier_closure);
1769       }
1770       if (installed) {
1771         // Relinquish the thread-list lock. We should not wait holding any locks. We cannot
1772         // reacquire it since we don't know if 'this' hasn't been deleted yet.
1773         Locks::thread_list_lock_->ExclusiveUnlock(self);
1774         ScopedThreadStateChange sts(self, suspend_state);
1775         barrier_closure.Wait(self, suspend_state);
1776         return true;
1777       }
1778       // Fall-through.
1779     }
1780 
1781     // This thread is not runnable, make sure we stay suspended, then run the checkpoint.
1782     // Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
1783     //       certain situations.
1784     {
1785       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1786 
1787       if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
1788         // Just retry the loop.
1789         sched_yield();
1790         continue;
1791       }
1792     }
1793 
1794     {
1795       // Release for the wait. The suspension will keep us from being deleted. Reacquire after so
1796       // that we can call ModifySuspendCount without racing against ThreadList::Unregister.
1797       ScopedThreadListLockUnlock stllu(self);
1798       {
1799         ScopedThreadStateChange sts(self, suspend_state);
1800         while (GetState() == ThreadState::kRunnable) {
1801           // We became runnable again. Wait till the suspend triggered in ModifySuspendCount
1802           // moves us to suspended.
1803           sched_yield();
1804         }
1805       }
1806       // Ensure that the flip function for this thread, if pending, is finished *before*
1807       // the checkpoint function is run. Otherwise, we may end up with both `to' and 'from'
1808       // space references on the stack, confusing the GC's thread-flip logic. The caller is
1809       // runnable so can't have a pending flip function.
1810       DCHECK_EQ(self->GetState(), ThreadState::kRunnable);
1811       DCHECK(
1812           !self->GetStateAndFlags(std::memory_order_relaxed).IsAnyOfFlagsSet(FlipFunctionFlags()));
1813       EnsureFlipFunctionStarted(self);
1814       while (GetStateAndFlags(std::memory_order_acquire).IsAnyOfFlagsSet(FlipFunctionFlags())) {
1815         sched_yield();
1816       }
1817 
1818       function->Run(this);
1819     }
1820 
1821     {
1822       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1823 
1824       DCHECK_NE(GetState(), ThreadState::kRunnable);
1825       bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
1826       DCHECK(updated);
1827     }
1828 
1829     {
1830       // Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
1831       // suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
1832       MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
1833       Thread::resume_cond_->Broadcast(self);
1834     }
1835 
1836     // Release the thread_list_lock_ to be consistent with the barrier-closure path.
1837     Locks::thread_list_lock_->ExclusiveUnlock(self);
1838 
1839     return true;  // We're done, break out of the loop.
1840   }
1841 }
1842 
SetFlipFunction(Closure * function)1843 void Thread::SetFlipFunction(Closure* function) {
1844   // This is called with all threads suspended, except for the calling thread.
1845   DCHECK(IsSuspended() || Thread::Current() == this);
1846   DCHECK(function != nullptr);
1847   DCHECK(tlsPtr_.flip_function == nullptr);
1848   tlsPtr_.flip_function = function;
1849   DCHECK(!GetStateAndFlags(std::memory_order_relaxed).IsAnyOfFlagsSet(FlipFunctionFlags()));
1850   AtomicSetFlag(ThreadFlag::kPendingFlipFunction, std::memory_order_release);
1851 }
1852 
EnsureFlipFunctionStarted(Thread * self)1853 void Thread::EnsureFlipFunctionStarted(Thread* self) {
1854   while (true) {
1855     StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_relaxed);
1856     if (!old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction)) {
1857       return;
1858     }
1859     DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction));
1860     StateAndFlags new_state_and_flags =
1861         old_state_and_flags.WithFlag(ThreadFlag::kRunningFlipFunction)
1862                            .WithoutFlag(ThreadFlag::kPendingFlipFunction);
1863     if (tls32_.state_and_flags.CompareAndSetWeakAcquire(old_state_and_flags.GetValue(),
1864                                                         new_state_and_flags.GetValue())) {
1865       RunFlipFunction(self, /*notify=*/ true);
1866       DCHECK(!GetStateAndFlags(std::memory_order_relaxed).IsAnyOfFlagsSet(FlipFunctionFlags()));
1867       return;
1868     }
1869   }
1870 }
1871 
RunFlipFunction(Thread * self,bool notify)1872 void Thread::RunFlipFunction(Thread* self, bool notify) {
1873   // This function is called for suspended threads and by the thread running
1874   // `ThreadList::FlipThreadRoots()` after we've successfully set the flag
1875   // `ThreadFlag::kRunningFlipFunction`. This flag is not set if the thread is
1876   // running the flip function right after transitioning to Runnable as
1877   // no other thread may run checkpoints on a thread that's actually Runnable.
1878   DCHECK_EQ(notify, ReadFlag(ThreadFlag::kRunningFlipFunction));
1879 
1880   Closure* flip_function = tlsPtr_.flip_function;
1881   tlsPtr_.flip_function = nullptr;
1882   DCHECK(flip_function != nullptr);
1883   flip_function->Run(this);
1884 
1885   if (notify) {
1886     // Clear the `ThreadFlag::kRunningFlipFunction` and `ThreadFlag::kWaitingForFlipFunction`.
1887     // Check if the latter was actually set, indicating that there is at least one waiting thread.
1888     constexpr uint32_t kFlagsToClear = enum_cast<uint32_t>(ThreadFlag::kRunningFlipFunction) |
1889                                        enum_cast<uint32_t>(ThreadFlag::kWaitingForFlipFunction);
1890     StateAndFlags old_state_and_flags(
1891         tls32_.state_and_flags.fetch_and(~kFlagsToClear, std::memory_order_release));
1892     if (old_state_and_flags.IsFlagSet(ThreadFlag::kWaitingForFlipFunction)) {
1893       // Notify all threads that are waiting for completion (at least one).
1894       // TODO: Should we create a separate mutex and condition variable instead
1895       // of piggy-backing on the `thread_suspend_count_lock_` and `resume_cond_`?
1896       MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1897       resume_cond_->Broadcast(self);
1898     }
1899   }
1900 }
1901 
WaitForFlipFunction(Thread * self)1902 void Thread::WaitForFlipFunction(Thread* self) {
1903   // Another thread is running the flip function. Wait for it to complete.
1904   // Check the flag while holding the mutex so that we do not miss the broadcast.
1905   // Repeat the check after waiting to guard against spurious wakeups (and because
1906   // we share the `thread_suspend_count_lock_` and `resume_cond_` with other code).
1907   MutexLock mu(self, *Locks::thread_suspend_count_lock_);
1908   while (true) {
1909     StateAndFlags old_state_and_flags = GetStateAndFlags(std::memory_order_acquire);
1910     DCHECK(!old_state_and_flags.IsFlagSet(ThreadFlag::kPendingFlipFunction));
1911     if (!old_state_and_flags.IsFlagSet(ThreadFlag::kRunningFlipFunction)) {
1912       DCHECK(!old_state_and_flags.IsAnyOfFlagsSet(FlipFunctionFlags()));
1913       break;
1914     }
1915     if (!old_state_and_flags.IsFlagSet(ThreadFlag::kWaitingForFlipFunction)) {
1916       // Mark that there is a waiting thread.
1917       StateAndFlags new_state_and_flags =
1918           old_state_and_flags.WithFlag(ThreadFlag::kWaitingForFlipFunction);
1919       if (!tls32_.state_and_flags.CompareAndSetWeakRelaxed(old_state_and_flags.GetValue(),
1920                                                            new_state_and_flags.GetValue())) {
1921         continue;  // Retry.
1922       }
1923     }
1924     resume_cond_->Wait(self);
1925   }
1926 }
1927 
FullSuspendCheck(bool implicit)1928 void Thread::FullSuspendCheck(bool implicit) {
1929   ScopedTrace trace(__FUNCTION__);
1930   VLOG(threads) << this << " self-suspending";
1931   // Make thread appear suspended to other threads, release mutator_lock_.
1932   // Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
1933   ScopedThreadSuspension(this, ThreadState::kSuspended);  // NOLINT
1934   if (implicit) {
1935     // For implicit suspend check we want to `madvise()` away
1936     // the alternate signal stack to avoid wasting memory.
1937     MadviseAwayAlternateSignalStack();
1938   }
1939   VLOG(threads) << this << " self-reviving";
1940 }
1941 
GetSchedulerGroupName(pid_t tid)1942 static std::string GetSchedulerGroupName(pid_t tid) {
1943   // /proc/<pid>/cgroup looks like this:
1944   // 2:devices:/
1945   // 1:cpuacct,cpu:/
1946   // We want the third field from the line whose second field contains the "cpu" token.
1947   std::string cgroup_file;
1948   if (!android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid),
1949                                        &cgroup_file)) {
1950     return "";
1951   }
1952   std::vector<std::string> cgroup_lines;
1953   Split(cgroup_file, '\n', &cgroup_lines);
1954   for (size_t i = 0; i < cgroup_lines.size(); ++i) {
1955     std::vector<std::string> cgroup_fields;
1956     Split(cgroup_lines[i], ':', &cgroup_fields);
1957     std::vector<std::string> cgroups;
1958     Split(cgroup_fields[1], ',', &cgroups);
1959     for (size_t j = 0; j < cgroups.size(); ++j) {
1960       if (cgroups[j] == "cpu") {
1961         return cgroup_fields[2].substr(1);  // Skip the leading slash.
1962       }
1963     }
1964   }
1965   return "";
1966 }
1967 
DumpState(std::ostream & os,const Thread * thread,pid_t tid)1968 void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
1969   std::string group_name;
1970   int priority;
1971   bool is_daemon = false;
1972   Thread* self = Thread::Current();
1973 
1974   // Don't do this if we are aborting since the GC may have all the threads suspended. This will
1975   // cause ScopedObjectAccessUnchecked to deadlock.
1976   if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
1977     ScopedObjectAccessUnchecked soa(self);
1978     priority = WellKnownClasses::java_lang_Thread_priority->GetInt(thread->tlsPtr_.opeer);
1979     is_daemon = WellKnownClasses::java_lang_Thread_daemon->GetBoolean(thread->tlsPtr_.opeer);
1980 
1981     ObjPtr<mirror::Object> thread_group =
1982         WellKnownClasses::java_lang_Thread_group->GetObject(thread->tlsPtr_.opeer);
1983 
1984     if (thread_group != nullptr) {
1985       ObjPtr<mirror::Object> group_name_object =
1986           WellKnownClasses::java_lang_ThreadGroup_name->GetObject(thread_group);
1987       group_name = (group_name_object != nullptr)
1988           ? group_name_object->AsString()->ToModifiedUtf8()
1989           : "<null>";
1990     }
1991   } else if (thread != nullptr) {
1992     priority = thread->GetNativePriority();
1993   } else {
1994     palette_status_t status = PaletteSchedGetPriority(tid, &priority);
1995     CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO);
1996   }
1997 
1998   std::string scheduler_group_name(GetSchedulerGroupName(tid));
1999   if (scheduler_group_name.empty()) {
2000     scheduler_group_name = "default";
2001   }
2002 
2003   if (thread != nullptr) {
2004     thread->tls32_.num_name_readers.fetch_add(1, std::memory_order_seq_cst);
2005     os << '"' << thread->tlsPtr_.name.load() << '"';
2006     thread->tls32_.num_name_readers.fetch_sub(1 /* at least memory_order_release */);
2007     if (is_daemon) {
2008       os << " daemon";
2009     }
2010     os << " prio=" << priority
2011        << " tid=" << thread->GetThreadId()
2012        << " " << thread->GetState();
2013     if (thread->IsStillStarting()) {
2014       os << " (still starting up)";
2015     }
2016     if (thread->tls32_.disable_thread_flip_count != 0) {
2017       os << " DisableFlipCount = " << thread->tls32_.disable_thread_flip_count;
2018     }
2019     os << "\n";
2020   } else {
2021     os << '"' << ::art::GetThreadName(tid) << '"'
2022        << " prio=" << priority
2023        << " (not attached)\n";
2024   }
2025 
2026   if (thread != nullptr) {
2027     auto suspend_log_fn = [&]() REQUIRES(Locks::thread_suspend_count_lock_) {
2028       StateAndFlags state_and_flags = thread->GetStateAndFlags(std::memory_order_relaxed);
2029       static_assert(
2030           static_cast<std::underlying_type_t<ThreadState>>(ThreadState::kRunnable) == 0u);
2031       state_and_flags.SetState(ThreadState::kRunnable);  // Clear state bits.
2032       os << "  | group=\"" << group_name << "\""
2033          << " sCount=" << thread->tls32_.suspend_count
2034          << " ucsCount=" << thread->tls32_.user_code_suspend_count
2035          << " flags=" << state_and_flags.GetValue()
2036          << " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
2037          << " self=" << reinterpret_cast<const void*>(thread) << "\n";
2038     };
2039     if (Locks::thread_suspend_count_lock_->IsExclusiveHeld(self)) {
2040       Locks::thread_suspend_count_lock_->AssertExclusiveHeld(self);  // For annotalysis.
2041       suspend_log_fn();
2042     } else {
2043       MutexLock mu(self, *Locks::thread_suspend_count_lock_);
2044       suspend_log_fn();
2045     }
2046   }
2047 
2048   os << "  | sysTid=" << tid
2049      << " nice=" << getpriority(PRIO_PROCESS, static_cast<id_t>(tid))
2050      << " cgrp=" << scheduler_group_name;
2051   if (thread != nullptr) {
2052     int policy;
2053     sched_param sp;
2054 #if !defined(__APPLE__)
2055     // b/36445592 Don't use pthread_getschedparam since pthread may have exited.
2056     policy = sched_getscheduler(tid);
2057     if (policy == -1) {
2058       PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
2059     }
2060     int sched_getparam_result = sched_getparam(tid, &sp);
2061     if (sched_getparam_result == -1) {
2062       PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
2063       sp.sched_priority = -1;
2064     }
2065 #else
2066     CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
2067                        __FUNCTION__);
2068 #endif
2069     os << " sched=" << policy << "/" << sp.sched_priority
2070        << " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
2071   }
2072   os << "\n";
2073 
2074   // Grab the scheduler stats for this thread.
2075   std::string scheduler_stats;
2076   if (android::base::ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid),
2077                                       &scheduler_stats)
2078       && !scheduler_stats.empty()) {
2079     scheduler_stats = android::base::Trim(scheduler_stats);  // Lose the trailing '\n'.
2080   } else {
2081     scheduler_stats = "0 0 0";
2082   }
2083 
2084   char native_thread_state = '?';
2085   int utime = 0;
2086   int stime = 0;
2087   int task_cpu = 0;
2088   GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
2089 
2090   os << "  | state=" << native_thread_state
2091      << " schedstat=( " << scheduler_stats << " )"
2092      << " utm=" << utime
2093      << " stm=" << stime
2094      << " core=" << task_cpu
2095      << " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
2096   if (thread != nullptr) {
2097     os << "  | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
2098         << reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
2099         << PrettySize(thread->tlsPtr_.stack_size) << "\n";
2100     // Dump the held mutexes.
2101     os << "  | held mutexes=";
2102     for (size_t i = 0; i < kLockLevelCount; ++i) {
2103       if (i != kMonitorLock) {
2104         BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
2105         if (mutex != nullptr) {
2106           os << " \"" << mutex->GetName() << "\"";
2107           if (mutex->IsReaderWriterMutex()) {
2108             ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
2109             if (rw_mutex->GetExclusiveOwnerTid() == tid) {
2110               os << "(exclusive held)";
2111             } else {
2112               os << "(shared held)";
2113             }
2114           }
2115         }
2116       }
2117     }
2118     os << "\n";
2119   }
2120 }
2121 
DumpState(std::ostream & os) const2122 void Thread::DumpState(std::ostream& os) const {
2123   Thread::DumpState(os, this, GetTid());
2124 }
2125 
2126 struct StackDumpVisitor : public MonitorObjectsStackVisitor {
StackDumpVisitorart::StackDumpVisitor2127   StackDumpVisitor(std::ostream& os_in,
2128                    Thread* thread_in,
2129                    Context* context,
2130                    bool can_allocate,
2131                    bool check_suspended = true,
2132                    bool dump_locks = true)
2133       REQUIRES_SHARED(Locks::mutator_lock_)
2134       : MonitorObjectsStackVisitor(thread_in,
2135                                    context,
2136                                    check_suspended,
2137                                    can_allocate && dump_locks),
2138         os(os_in),
2139         last_method(nullptr),
2140         last_line_number(0),
2141         repetition_count(0) {}
2142 
~StackDumpVisitorart::StackDumpVisitor2143   virtual ~StackDumpVisitor() {
2144     if (frame_count == 0) {
2145       os << "  (no managed stack frames)\n";
2146     }
2147   }
2148 
2149   static constexpr size_t kMaxRepetition = 3u;
2150 
StartMethodart::StackDumpVisitor2151   VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
2152       override
2153       REQUIRES_SHARED(Locks::mutator_lock_) {
2154     m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
2155     ObjPtr<mirror::DexCache> dex_cache = m->GetDexCache();
2156     int line_number = -1;
2157     uint32_t dex_pc = GetDexPc(false);
2158     if (dex_cache != nullptr) {  // be tolerant of bad input
2159       const DexFile* dex_file = dex_cache->GetDexFile();
2160       line_number = annotations::GetLineNumFromPC(dex_file, m, dex_pc);
2161     }
2162     if (line_number == last_line_number && last_method == m) {
2163       ++repetition_count;
2164     } else {
2165       if (repetition_count >= kMaxRepetition) {
2166         os << "  ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
2167       }
2168       repetition_count = 0;
2169       last_line_number = line_number;
2170       last_method = m;
2171     }
2172 
2173     if (repetition_count >= kMaxRepetition) {
2174       // Skip visiting=printing anything.
2175       return VisitMethodResult::kSkipMethod;
2176     }
2177 
2178     os << "  at " << m->PrettyMethod(false);
2179     if (m->IsNative()) {
2180       os << "(Native method)";
2181     } else {
2182       const char* source_file(m->GetDeclaringClassSourceFile());
2183       if (line_number == -1) {
2184         // If we failed to map to a line number, use
2185         // the dex pc as the line number and leave source file null
2186         source_file = nullptr;
2187         line_number = static_cast<int32_t>(dex_pc);
2188       }
2189       os << "(" << (source_file != nullptr ? source_file : "unavailable")
2190                        << ":" << line_number << ")";
2191     }
2192     os << "\n";
2193     // Go and visit locks.
2194     return VisitMethodResult::kContinueMethod;
2195   }
2196 
EndMethodart::StackDumpVisitor2197   VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override {
2198     return VisitMethodResult::kContinueMethod;
2199   }
2200 
VisitWaitingObjectart::StackDumpVisitor2201   void VisitWaitingObject(ObjPtr<mirror::Object> obj, ThreadState state ATTRIBUTE_UNUSED)
2202       override
2203       REQUIRES_SHARED(Locks::mutator_lock_) {
2204     PrintObject(obj, "  - waiting on ", ThreadList::kInvalidThreadId);
2205   }
VisitSleepingObjectart::StackDumpVisitor2206   void VisitSleepingObject(ObjPtr<mirror::Object> obj)
2207       override
2208       REQUIRES_SHARED(Locks::mutator_lock_) {
2209     PrintObject(obj, "  - sleeping on ", ThreadList::kInvalidThreadId);
2210   }
VisitBlockedOnObjectart::StackDumpVisitor2211   void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
2212                             ThreadState state,
2213                             uint32_t owner_tid)
2214       override
2215       REQUIRES_SHARED(Locks::mutator_lock_) {
2216     const char* msg;
2217     switch (state) {
2218       case ThreadState::kBlocked:
2219         msg = "  - waiting to lock ";
2220         break;
2221 
2222       case ThreadState::kWaitingForLockInflation:
2223         msg = "  - waiting for lock inflation of ";
2224         break;
2225 
2226       default:
2227         LOG(FATAL) << "Unreachable";
2228         UNREACHABLE();
2229     }
2230     PrintObject(obj, msg, owner_tid);
2231     num_blocked++;
2232   }
VisitLockedObjectart::StackDumpVisitor2233   void VisitLockedObject(ObjPtr<mirror::Object> obj)
2234       override
2235       REQUIRES_SHARED(Locks::mutator_lock_) {
2236     PrintObject(obj, "  - locked ", ThreadList::kInvalidThreadId);
2237     num_locked++;
2238   }
2239 
PrintObjectart::StackDumpVisitor2240   void PrintObject(ObjPtr<mirror::Object> obj,
2241                    const char* msg,
2242                    uint32_t owner_tid) REQUIRES_SHARED(Locks::mutator_lock_) {
2243     if (obj == nullptr) {
2244       os << msg << "an unknown object";
2245     } else {
2246       if ((obj->GetLockWord(true).GetState() == LockWord::kThinLocked) &&
2247           Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
2248         // Getting the identity hashcode here would result in lock inflation and suspension of the
2249         // current thread, which isn't safe if this is the only runnable thread.
2250         os << msg << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)",
2251                                   reinterpret_cast<intptr_t>(obj.Ptr()),
2252                                   obj->PrettyTypeOf().c_str());
2253       } else {
2254         // - waiting on <0x6008c468> (a java.lang.Class<java.lang.ref.ReferenceQueue>)
2255         // Call PrettyTypeOf before IdentityHashCode since IdentityHashCode can cause thread
2256         // suspension and move pretty_object.
2257         const std::string pretty_type(obj->PrettyTypeOf());
2258         os << msg << StringPrintf("<0x%08x> (a %s)", obj->IdentityHashCode(), pretty_type.c_str());
2259       }
2260     }
2261     if (owner_tid != ThreadList::kInvalidThreadId) {
2262       os << " held by thread " << owner_tid;
2263     }
2264     os << "\n";
2265   }
2266 
2267   std::ostream& os;
2268   ArtMethod* last_method;
2269   int last_line_number;
2270   size_t repetition_count;
2271   size_t num_blocked = 0;
2272   size_t num_locked = 0;
2273 };
2274 
ShouldShowNativeStack(const Thread * thread)2275 static bool ShouldShowNativeStack(const Thread* thread)
2276     REQUIRES_SHARED(Locks::mutator_lock_) {
2277   ThreadState state = thread->GetState();
2278 
2279   // In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
2280   if (state > ThreadState::kWaiting && state < ThreadState::kStarting) {
2281     return true;
2282   }
2283 
2284   // In an Object.wait variant or Thread.sleep? That's not interesting.
2285   if (state == ThreadState::kTimedWaiting ||
2286       state == ThreadState::kSleeping ||
2287       state == ThreadState::kWaiting) {
2288     return false;
2289   }
2290 
2291   // Threads with no managed stack frames should be shown.
2292   if (!thread->HasManagedStack()) {
2293     return true;
2294   }
2295 
2296   // In some other native method? That's interesting.
2297   // We don't just check kNative because native methods will be in state kSuspended if they're
2298   // calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
2299   // thread-startup states if it's early enough in their life cycle (http://b/7432159).
2300   ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
2301   return current_method != nullptr && current_method->IsNative();
2302 }
2303 
DumpJavaStack(std::ostream & os,bool check_suspended,bool dump_locks) const2304 Thread::DumpOrder Thread::DumpJavaStack(std::ostream& os,
2305                                         bool check_suspended,
2306                                         bool dump_locks) const {
2307   // Dumping the Java stack involves the verifier for locks. The verifier operates under the
2308   // assumption that there is no exception pending on entry. Thus, stash any pending exception.
2309   // Thread::Current() instead of this in case a thread is dumping the stack of another suspended
2310   // thread.
2311   ScopedExceptionStorage ses(Thread::Current());
2312 
2313   std::unique_ptr<Context> context(Context::Create());
2314   StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
2315                           !tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
2316   dumper.WalkStack();
2317   if (IsJitSensitiveThread()) {
2318     return DumpOrder::kMain;
2319   } else if (dumper.num_blocked > 0) {
2320     return DumpOrder::kBlocked;
2321   } else if (dumper.num_locked > 0) {
2322     return DumpOrder::kLocked;
2323   } else {
2324     return DumpOrder::kDefault;
2325   }
2326 }
2327 
DumpStack(std::ostream & os,bool dump_native_stack,bool force_dump_stack) const2328 Thread::DumpOrder Thread::DumpStack(std::ostream& os,
2329                                     bool dump_native_stack,
2330                                     bool force_dump_stack) const {
2331   unwindstack::AndroidLocalUnwinder unwinder;
2332   return DumpStack(os, unwinder, dump_native_stack, force_dump_stack);
2333 }
2334 
DumpStack(std::ostream & os,unwindstack::AndroidLocalUnwinder & unwinder,bool dump_native_stack,bool force_dump_stack) const2335 Thread::DumpOrder Thread::DumpStack(std::ostream& os,
2336                                     unwindstack::AndroidLocalUnwinder& unwinder,
2337                                     bool dump_native_stack,
2338                                     bool force_dump_stack) const {
2339   // TODO: we call this code when dying but may not have suspended the thread ourself. The
2340   //       IsSuspended check is therefore racy with the use for dumping (normally we inhibit
2341   //       the race with the thread_suspend_count_lock_).
2342   bool dump_for_abort = (gAborting > 0);
2343   bool safe_to_dump = (this == Thread::Current() || IsSuspended());
2344   if (!kIsDebugBuild) {
2345     // We always want to dump the stack for an abort, however, there is no point dumping another
2346     // thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
2347     safe_to_dump = (safe_to_dump || dump_for_abort);
2348   }
2349   DumpOrder dump_order = DumpOrder::kDefault;
2350   if (safe_to_dump || force_dump_stack) {
2351     // If we're currently in native code, dump that stack before dumping the managed stack.
2352     if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
2353       ArtMethod* method =
2354           GetCurrentMethod(nullptr,
2355                            /*check_suspended=*/ !force_dump_stack,
2356                            /*abort_on_error=*/ !(dump_for_abort || force_dump_stack));
2357       DumpNativeStack(os, unwinder, GetTid(), "  native: ", method);
2358     }
2359     dump_order = DumpJavaStack(os,
2360                                /*check_suspended=*/ !force_dump_stack,
2361                                /*dump_locks=*/ !force_dump_stack);
2362   } else {
2363     os << "Not able to dump stack of thread that isn't suspended";
2364   }
2365   return dump_order;
2366 }
2367 
ThreadExitCallback(void * arg)2368 void Thread::ThreadExitCallback(void* arg) {
2369   Thread* self = reinterpret_cast<Thread*>(arg);
2370   if (self->tls32_.thread_exit_check_count == 0) {
2371     LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
2372         "going to use a pthread_key_create destructor?): " << *self;
2373     CHECK(is_started_);
2374 #ifdef __BIONIC__
2375     __get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
2376 #else
2377     CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
2378     Thread::self_tls_ = self;
2379 #endif
2380     self->tls32_.thread_exit_check_count = 1;
2381   } else {
2382     LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
2383   }
2384 }
2385 
Startup()2386 void Thread::Startup() {
2387   CHECK(!is_started_);
2388   is_started_ = true;
2389   {
2390     // MutexLock to keep annotalysis happy.
2391     //
2392     // Note we use null for the thread because Thread::Current can
2393     // return garbage since (is_started_ == true) and
2394     // Thread::pthread_key_self_ is not yet initialized.
2395     // This was seen on glibc.
2396     MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
2397     resume_cond_ = new ConditionVariable("Thread resumption condition variable",
2398                                          *Locks::thread_suspend_count_lock_);
2399   }
2400 
2401   // Allocate a TLS slot.
2402   CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
2403                      "self key");
2404 
2405   // Double-check the TLS slot allocation.
2406   if (pthread_getspecific(pthread_key_self_) != nullptr) {
2407     LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
2408   }
2409 #ifndef __BIONIC__
2410   CHECK(Thread::self_tls_ == nullptr);
2411 #endif
2412 }
2413 
FinishStartup()2414 void Thread::FinishStartup() {
2415   Runtime* runtime = Runtime::Current();
2416   CHECK(runtime->IsStarted());
2417 
2418   // Finish attaching the main thread.
2419   ScopedObjectAccess soa(Thread::Current());
2420   soa.Self()->CreatePeer("main", false, runtime->GetMainThreadGroup());
2421   soa.Self()->AssertNoPendingException();
2422 
2423   runtime->RunRootClinits(soa.Self());
2424 
2425   // The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
2426   // threads, this is done in Thread.start() on the Java side.
2427   soa.Self()->NotifyThreadGroup(soa, runtime->GetMainThreadGroup());
2428   soa.Self()->AssertNoPendingException();
2429 }
2430 
Shutdown()2431 void Thread::Shutdown() {
2432   CHECK(is_started_);
2433   is_started_ = false;
2434   CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
2435   MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
2436   if (resume_cond_ != nullptr) {
2437     delete resume_cond_;
2438     resume_cond_ = nullptr;
2439   }
2440 }
2441 
NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable & soa,jobject thread_group)2442 void Thread::NotifyThreadGroup(ScopedObjectAccessAlreadyRunnable& soa, jobject thread_group) {
2443   ObjPtr<mirror::Object> thread_object = soa.Self()->GetPeer();
2444   ObjPtr<mirror::Object> thread_group_object = soa.Decode<mirror::Object>(thread_group);
2445   if (thread_group == nullptr || kIsDebugBuild) {
2446     // There is always a group set. Retrieve it.
2447     thread_group_object = WellKnownClasses::java_lang_Thread_group->GetObject(thread_object);
2448     if (kIsDebugBuild && thread_group != nullptr) {
2449       CHECK(thread_group_object == soa.Decode<mirror::Object>(thread_group));
2450     }
2451   }
2452   WellKnownClasses::java_lang_ThreadGroup_add->InvokeVirtual<'V', 'L'>(
2453       soa.Self(), thread_group_object, thread_object);
2454 }
2455 
Thread(bool daemon)2456 Thread::Thread(bool daemon)
2457     : tls32_(daemon),
2458       wait_monitor_(nullptr),
2459       is_runtime_thread_(false) {
2460   wait_mutex_ = new Mutex("a thread wait mutex", LockLevel::kThreadWaitLock);
2461   wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
2462   tlsPtr_.mutator_lock = Locks::mutator_lock_;
2463   DCHECK(tlsPtr_.mutator_lock != nullptr);
2464   tlsPtr_.name.store(kThreadNameDuringStartup, std::memory_order_relaxed);
2465 
2466   static_assert((sizeof(Thread) % 4) == 0U,
2467                 "art::Thread has a size which is not a multiple of 4.");
2468   DCHECK_EQ(GetStateAndFlags(std::memory_order_relaxed).GetValue(), 0u);
2469   StateAndFlags state_and_flags = StateAndFlags(0u).WithState(ThreadState::kNative);
2470   tls32_.state_and_flags.store(state_and_flags.GetValue(), std::memory_order_relaxed);
2471   tls32_.interrupted.store(false, std::memory_order_relaxed);
2472   // Initialize with no permit; if the java Thread was unparked before being
2473   // started, it will unpark itself before calling into java code.
2474   tls32_.park_state_.store(kNoPermit, std::memory_order_relaxed);
2475   memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
2476   std::fill(tlsPtr_.rosalloc_runs,
2477             tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
2478             gc::allocator::RosAlloc::GetDedicatedFullRun());
2479   tlsPtr_.checkpoint_function = nullptr;
2480   for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
2481     tlsPtr_.active_suspend_barriers[i] = nullptr;
2482   }
2483   tlsPtr_.flip_function = nullptr;
2484   tlsPtr_.thread_local_mark_stack = nullptr;
2485   tls32_.is_transitioning_to_runnable = false;
2486   ResetTlab();
2487 }
2488 
CanLoadClasses() const2489 bool Thread::CanLoadClasses() const {
2490   return !IsRuntimeThread() || !Runtime::Current()->IsJavaDebuggable();
2491 }
2492 
IsStillStarting() const2493 bool Thread::IsStillStarting() const {
2494   // You might think you can check whether the state is kStarting, but for much of thread startup,
2495   // the thread is in kNative; it might also be in kVmWait.
2496   // You might think you can check whether the peer is null, but the peer is actually created and
2497   // assigned fairly early on, and needs to be.
2498   // It turns out that the last thing to change is the thread name; that's a good proxy for "has
2499   // this thread _ever_ entered kRunnable".
2500   return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
2501       (tlsPtr_.name.load() == kThreadNameDuringStartup);
2502 }
2503 
AssertPendingException() const2504 void Thread::AssertPendingException() const {
2505   CHECK(IsExceptionPending()) << "Pending exception expected.";
2506 }
2507 
AssertPendingOOMException() const2508 void Thread::AssertPendingOOMException() const {
2509   AssertPendingException();
2510   auto* e = GetException();
2511   CHECK_EQ(e->GetClass(), WellKnownClasses::java_lang_OutOfMemoryError.Get()) << e->Dump();
2512 }
2513 
AssertNoPendingException() const2514 void Thread::AssertNoPendingException() const {
2515   if (UNLIKELY(IsExceptionPending())) {
2516     ScopedObjectAccess soa(Thread::Current());
2517     LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
2518   }
2519 }
2520 
AssertNoPendingExceptionForNewException(const char * msg) const2521 void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
2522   if (UNLIKELY(IsExceptionPending())) {
2523     ScopedObjectAccess soa(Thread::Current());
2524     LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
2525         << GetException()->Dump();
2526   }
2527 }
2528 
2529 class MonitorExitVisitor : public SingleRootVisitor {
2530  public:
MonitorExitVisitor(Thread * self)2531   explicit MonitorExitVisitor(Thread* self) : self_(self) { }
2532 
2533   // NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
VisitRoot(mirror::Object * entered_monitor,const RootInfo & info ATTRIBUTE_UNUSED)2534   void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
2535       override NO_THREAD_SAFETY_ANALYSIS {
2536     if (self_->HoldsLock(entered_monitor)) {
2537       LOG(WARNING) << "Calling MonitorExit on object "
2538                    << entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
2539                    << " left locked by native thread "
2540                    << *Thread::Current() << " which is detaching";
2541       entered_monitor->MonitorExit(self_);
2542     }
2543   }
2544 
2545  private:
2546   Thread* const self_;
2547 };
2548 
Destroy(bool should_run_callbacks)2549 void Thread::Destroy(bool should_run_callbacks) {
2550   Thread* self = this;
2551   DCHECK_EQ(self, Thread::Current());
2552 
2553   if (tlsPtr_.jni_env != nullptr) {
2554     {
2555       ScopedObjectAccess soa(self);
2556       MonitorExitVisitor visitor(self);
2557       // On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
2558       tlsPtr_.jni_env->monitors_.VisitRoots(&visitor, RootInfo(kRootVMInternal));
2559     }
2560     // Release locally held global references which releasing may require the mutator lock.
2561     if (tlsPtr_.jpeer != nullptr) {
2562       // If pthread_create fails we don't have a jni env here.
2563       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
2564       tlsPtr_.jpeer = nullptr;
2565     }
2566     if (tlsPtr_.class_loader_override != nullptr) {
2567       tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
2568       tlsPtr_.class_loader_override = nullptr;
2569     }
2570   }
2571 
2572   if (tlsPtr_.opeer != nullptr) {
2573     ScopedObjectAccess soa(self);
2574     if (UNLIKELY(self->GetMethodTraceBuffer() != nullptr)) {
2575       Trace::FlushThreadBuffer(self);
2576       self->ResetMethodTraceBuffer();
2577     }
2578     // We may need to call user-supplied managed code, do this before final clean-up.
2579     HandleUncaughtExceptions();
2580     RemoveFromThreadGroup();
2581     Runtime* runtime = Runtime::Current();
2582     if (runtime != nullptr && should_run_callbacks) {
2583       runtime->GetRuntimeCallbacks()->ThreadDeath(self);
2584     }
2585 
2586     // this.nativePeer = 0;
2587     SetNativePeer</*kSupportTransaction=*/ true>(tlsPtr_.opeer, nullptr);
2588 
2589     // Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
2590     // who is waiting.
2591     ObjPtr<mirror::Object> lock =
2592         WellKnownClasses::java_lang_Thread_lock->GetObject(tlsPtr_.opeer);
2593     // (This conditional is only needed for tests, where Thread.lock won't have been set.)
2594     if (lock != nullptr) {
2595       StackHandleScope<1> hs(self);
2596       Handle<mirror::Object> h_obj(hs.NewHandle(lock));
2597       ObjectLock<mirror::Object> locker(self, h_obj);
2598       locker.NotifyAll();
2599     }
2600     tlsPtr_.opeer = nullptr;
2601   }
2602 
2603   {
2604     ScopedObjectAccess soa(self);
2605     Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
2606   }
2607   // Mark-stack revocation must be performed at the very end. No
2608   // checkpoint/flip-function or read-barrier should be called after this.
2609   if (gUseReadBarrier) {
2610     Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
2611   }
2612 }
2613 
~Thread()2614 Thread::~Thread() {
2615   CHECK(tlsPtr_.class_loader_override == nullptr);
2616   CHECK(tlsPtr_.jpeer == nullptr);
2617   CHECK(tlsPtr_.opeer == nullptr);
2618   bool initialized = (tlsPtr_.jni_env != nullptr);  // Did Thread::Init run?
2619   if (initialized) {
2620     delete tlsPtr_.jni_env;
2621     tlsPtr_.jni_env = nullptr;
2622   }
2623   CHECK_NE(GetState(), ThreadState::kRunnable);
2624   CHECK(!ReadFlag(ThreadFlag::kCheckpointRequest));
2625   CHECK(!ReadFlag(ThreadFlag::kEmptyCheckpointRequest));
2626   CHECK(tlsPtr_.checkpoint_function == nullptr);
2627   CHECK_EQ(checkpoint_overflow_.size(), 0u);
2628   CHECK(tlsPtr_.flip_function == nullptr);
2629   CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
2630 
2631   // Make sure we processed all deoptimization requests.
2632   CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
2633   CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
2634       "Not all deoptimized frames have been consumed by the debugger.";
2635 
2636   // We may be deleting a still born thread.
2637   SetStateUnsafe(ThreadState::kTerminated);
2638 
2639   delete wait_cond_;
2640   delete wait_mutex_;
2641 
2642   if (tlsPtr_.long_jump_context != nullptr) {
2643     delete tlsPtr_.long_jump_context;
2644   }
2645 
2646   if (initialized) {
2647     CleanupCpu();
2648   }
2649 
2650   SetCachedThreadName(nullptr);  // Deallocate name.
2651   delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
2652 
2653   if (tlsPtr_.method_trace_buffer != nullptr) {
2654     delete[] tlsPtr_.method_trace_buffer;
2655   }
2656 
2657   Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
2658 
2659   TearDownAlternateSignalStack();
2660 }
2661 
HandleUncaughtExceptions()2662 void Thread::HandleUncaughtExceptions() {
2663   Thread* self = this;
2664   DCHECK_EQ(self, Thread::Current());
2665   if (!self->IsExceptionPending()) {
2666     return;
2667   }
2668 
2669   // Get and clear the exception.
2670   ObjPtr<mirror::Object> exception = self->GetException();
2671   self->ClearException();
2672 
2673   // Call the Thread instance's dispatchUncaughtException(Throwable)
2674   WellKnownClasses::java_lang_Thread_dispatchUncaughtException->InvokeFinal<'V', 'L'>(
2675       self, tlsPtr_.opeer, exception);
2676 
2677   // If the dispatchUncaughtException threw, clear that exception too.
2678   self->ClearException();
2679 }
2680 
RemoveFromThreadGroup()2681 void Thread::RemoveFromThreadGroup() {
2682   Thread* self = this;
2683   DCHECK_EQ(self, Thread::Current());
2684   // this.group.threadTerminated(this);
2685   // group can be null if we're in the compiler or a test.
2686   ObjPtr<mirror::Object> group =
2687       WellKnownClasses::java_lang_Thread_group->GetObject(tlsPtr_.opeer);
2688   if (group != nullptr) {
2689     WellKnownClasses::java_lang_ThreadGroup_threadTerminated->InvokeVirtual<'V', 'L'>(
2690         self, group, tlsPtr_.opeer);
2691   }
2692 }
2693 
2694 template <bool kPointsToStack>
2695 class JniTransitionReferenceVisitor : public StackVisitor {
2696  public:
JniTransitionReferenceVisitor(Thread * thread,void * obj)2697   JniTransitionReferenceVisitor(Thread* thread, void* obj) REQUIRES_SHARED(Locks::mutator_lock_)
2698       : StackVisitor(thread, /*context=*/ nullptr, StackVisitor::StackWalkKind::kSkipInlinedFrames),
2699         obj_(obj),
2700         found_(false) {}
2701 
VisitFrame()2702   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2703     ArtMethod* m = GetMethod();
2704     if (!m->IsNative() || m->IsCriticalNative()) {
2705       return true;
2706     }
2707     if (kPointsToStack) {
2708       uint8_t* sp = reinterpret_cast<uint8_t*>(GetCurrentQuickFrame());
2709       size_t frame_size = GetCurrentQuickFrameInfo().FrameSizeInBytes();
2710       uint32_t* current_vreg = reinterpret_cast<uint32_t*>(sp + frame_size + sizeof(ArtMethod*));
2711       if (!m->IsStatic()) {
2712         if (current_vreg == obj_) {
2713           found_ = true;
2714           return false;
2715         }
2716         current_vreg += 1u;
2717       }
2718       uint32_t shorty_length;
2719       const char* shorty = m->GetShorty(&shorty_length);
2720       for (size_t i = 1; i != shorty_length; ++i) {
2721         switch (shorty[i]) {
2722           case 'D':
2723           case 'J':
2724             current_vreg += 2u;
2725             break;
2726           case 'L':
2727             if (current_vreg == obj_) {
2728               found_ = true;
2729               return false;
2730             }
2731             FALLTHROUGH_INTENDED;
2732           default:
2733             current_vreg += 1u;
2734             break;
2735         }
2736       }
2737       // Continue only if the object is somewhere higher on the stack.
2738       return obj_ >= current_vreg;
2739     } else {  // if (kPointsToStack)
2740       if (m->IsStatic() && obj_ == m->GetDeclaringClassAddressWithoutBarrier()) {
2741         found_ = true;
2742         return false;
2743       }
2744       return true;
2745     }
2746   }
2747 
Found() const2748   bool Found() const {
2749     return found_;
2750   }
2751 
2752  private:
2753   void* obj_;
2754   bool found_;
2755 };
2756 
IsJniTransitionReference(jobject obj) const2757 bool Thread::IsJniTransitionReference(jobject obj) const {
2758   DCHECK(obj != nullptr);
2759   // We need a non-const pointer for stack walk even if we're not modifying the thread state.
2760   Thread* thread = const_cast<Thread*>(this);
2761   uint8_t* raw_obj = reinterpret_cast<uint8_t*>(obj);
2762   if (static_cast<size_t>(raw_obj - tlsPtr_.stack_begin) < tlsPtr_.stack_size) {
2763     JniTransitionReferenceVisitor</*kPointsToStack=*/ true> visitor(thread, raw_obj);
2764     visitor.WalkStack();
2765     return visitor.Found();
2766   } else {
2767     JniTransitionReferenceVisitor</*kPointsToStack=*/ false> visitor(thread, raw_obj);
2768     visitor.WalkStack();
2769     return visitor.Found();
2770   }
2771 }
2772 
HandleScopeVisitRoots(RootVisitor * visitor,uint32_t thread_id)2773 void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
2774   BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
2775       visitor, RootInfo(kRootNativeStack, thread_id));
2776   for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
2777     cur->VisitRoots(buffered_visitor);
2778   }
2779 }
2780 
DecodeGlobalJObject(jobject obj) const2781 ObjPtr<mirror::Object> Thread::DecodeGlobalJObject(jobject obj) const {
2782   DCHECK(obj != nullptr);
2783   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2784   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2785   DCHECK_NE(kind, kJniTransition);
2786   DCHECK_NE(kind, kLocal);
2787   ObjPtr<mirror::Object> result;
2788   bool expect_null = false;
2789   if (kind == kGlobal) {
2790     result = tlsPtr_.jni_env->vm_->DecodeGlobal(ref);
2791   } else {
2792     DCHECK_EQ(kind, kWeakGlobal);
2793     result = tlsPtr_.jni_env->vm_->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
2794     if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
2795       // This is a special case where it's okay to return null.
2796       expect_null = true;
2797       result = nullptr;
2798     }
2799   }
2800 
2801   DCHECK(expect_null || result != nullptr)
2802       << "use of deleted " << ToStr<IndirectRefKind>(kind).c_str()
2803       << " " << static_cast<const void*>(obj);
2804   return result;
2805 }
2806 
IsJWeakCleared(jweak obj) const2807 bool Thread::IsJWeakCleared(jweak obj) const {
2808   CHECK(obj != nullptr);
2809   IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
2810   IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
2811   CHECK_EQ(kind, kWeakGlobal);
2812   return tlsPtr_.jni_env->vm_->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
2813 }
2814 
2815 // Implements java.lang.Thread.interrupted.
Interrupted()2816 bool Thread::Interrupted() {
2817   DCHECK_EQ(Thread::Current(), this);
2818   // No other thread can concurrently reset the interrupted flag.
2819   bool interrupted = tls32_.interrupted.load(std::memory_order_seq_cst);
2820   if (interrupted) {
2821     tls32_.interrupted.store(false, std::memory_order_seq_cst);
2822   }
2823   return interrupted;
2824 }
2825 
2826 // Implements java.lang.Thread.isInterrupted.
IsInterrupted()2827 bool Thread::IsInterrupted() {
2828   return tls32_.interrupted.load(std::memory_order_seq_cst);
2829 }
2830 
Interrupt(Thread * self)2831 void Thread::Interrupt(Thread* self) {
2832   {
2833     MutexLock mu(self, *wait_mutex_);
2834     if (tls32_.interrupted.load(std::memory_order_seq_cst)) {
2835       return;
2836     }
2837     tls32_.interrupted.store(true, std::memory_order_seq_cst);
2838     NotifyLocked(self);
2839   }
2840   Unpark();
2841 }
2842 
Notify()2843 void Thread::Notify() {
2844   Thread* self = Thread::Current();
2845   MutexLock mu(self, *wait_mutex_);
2846   NotifyLocked(self);
2847 }
2848 
NotifyLocked(Thread * self)2849 void Thread::NotifyLocked(Thread* self) {
2850   if (wait_monitor_ != nullptr) {
2851     wait_cond_->Signal(self);
2852   }
2853 }
2854 
SetClassLoaderOverride(jobject class_loader_override)2855 void Thread::SetClassLoaderOverride(jobject class_loader_override) {
2856   if (tlsPtr_.class_loader_override != nullptr) {
2857     GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
2858   }
2859   tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
2860 }
2861 
2862 using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
2863 
2864 // Counts the stack trace depth and also fetches the first max_saved_frames frames.
2865 class FetchStackTraceVisitor : public StackVisitor {
2866  public:
FetchStackTraceVisitor(Thread * thread,ArtMethodDexPcPair * saved_frames=nullptr,size_t max_saved_frames=0)2867   explicit FetchStackTraceVisitor(Thread* thread,
2868                                   ArtMethodDexPcPair* saved_frames = nullptr,
2869                                   size_t max_saved_frames = 0)
2870       REQUIRES_SHARED(Locks::mutator_lock_)
2871       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2872         saved_frames_(saved_frames),
2873         max_saved_frames_(max_saved_frames) {}
2874 
VisitFrame()2875   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2876     // We want to skip frames up to and including the exception's constructor.
2877     // Note we also skip the frame if it doesn't have a method (namely the callee
2878     // save frame)
2879     ArtMethod* m = GetMethod();
2880     if (skipping_ && !m->IsRuntimeMethod() &&
2881         !GetClassRoot<mirror::Throwable>()->IsAssignableFrom(m->GetDeclaringClass())) {
2882       skipping_ = false;
2883     }
2884     if (!skipping_) {
2885       if (!m->IsRuntimeMethod()) {  // Ignore runtime frames (in particular callee save).
2886         if (depth_ < max_saved_frames_) {
2887           saved_frames_[depth_].first = m;
2888           saved_frames_[depth_].second = m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc();
2889         }
2890         ++depth_;
2891       }
2892     } else {
2893       ++skip_depth_;
2894     }
2895     return true;
2896   }
2897 
GetDepth() const2898   uint32_t GetDepth() const {
2899     return depth_;
2900   }
2901 
GetSkipDepth() const2902   uint32_t GetSkipDepth() const {
2903     return skip_depth_;
2904   }
2905 
2906  private:
2907   uint32_t depth_ = 0;
2908   uint32_t skip_depth_ = 0;
2909   bool skipping_ = true;
2910   ArtMethodDexPcPair* saved_frames_;
2911   const size_t max_saved_frames_;
2912 
2913   DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
2914 };
2915 
2916 class BuildInternalStackTraceVisitor : public StackVisitor {
2917  public:
BuildInternalStackTraceVisitor(Thread * self,Thread * thread,uint32_t skip_depth)2918   BuildInternalStackTraceVisitor(Thread* self, Thread* thread, uint32_t skip_depth)
2919       : StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
2920         self_(self),
2921         skip_depth_(skip_depth),
2922         pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
2923 
Init(uint32_t depth)2924   bool Init(uint32_t depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
2925     // Allocate method trace as an object array where the first element is a pointer array that
2926     // contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
2927     // class of the ArtMethod pointers.
2928     ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2929     StackHandleScope<1> hs(self_);
2930     ObjPtr<mirror::Class> array_class =
2931         GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker);
2932     // The first element is the methods and dex pc array, the other elements are declaring classes
2933     // for the methods to ensure classes in the stack trace don't get unloaded.
2934     Handle<mirror::ObjectArray<mirror::Object>> trace(
2935         hs.NewHandle(mirror::ObjectArray<mirror::Object>::Alloc(
2936             hs.Self(), array_class, static_cast<int32_t>(depth) + 1)));
2937     if (trace == nullptr) {
2938       // Acquire uninterruptible_ in all paths.
2939       self_->StartAssertNoThreadSuspension("Building internal stack trace");
2940       self_->AssertPendingOOMException();
2941       return false;
2942     }
2943     ObjPtr<mirror::PointerArray> methods_and_pcs =
2944         class_linker->AllocPointerArray(self_, depth * 2);
2945     const char* last_no_suspend_cause =
2946         self_->StartAssertNoThreadSuspension("Building internal stack trace");
2947     if (methods_and_pcs == nullptr) {
2948       self_->AssertPendingOOMException();
2949       return false;
2950     }
2951     trace->Set</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(0, methods_and_pcs);
2952     trace_ = trace.Get();
2953     // If We are called from native, use non-transactional mode.
2954     CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
2955     return true;
2956   }
2957 
RELEASE(Roles::uninterruptible_)2958   virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
2959     self_->EndAssertNoThreadSuspension(nullptr);
2960   }
2961 
VisitFrame()2962   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
2963     if (trace_ == nullptr) {
2964       return true;  // We're probably trying to fillInStackTrace for an OutOfMemoryError.
2965     }
2966     if (skip_depth_ > 0) {
2967       skip_depth_--;
2968       return true;
2969     }
2970     ArtMethod* m = GetMethod();
2971     if (m->IsRuntimeMethod()) {
2972       return true;  // Ignore runtime frames (in particular callee save).
2973     }
2974     AddFrame(m, m->IsProxyMethod() ? dex::kDexNoIndex : GetDexPc());
2975     return true;
2976   }
2977 
AddFrame(ArtMethod * method,uint32_t dex_pc)2978   void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
2979     ObjPtr<mirror::PointerArray> methods_and_pcs = GetTraceMethodsAndPCs();
2980     methods_and_pcs->SetElementPtrSize</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
2981         count_, method, pointer_size_);
2982     methods_and_pcs->SetElementPtrSize</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
2983         static_cast<uint32_t>(methods_and_pcs->GetLength()) / 2 + count_, dex_pc, pointer_size_);
2984     // Save the declaring class of the method to ensure that the declaring classes of the methods
2985     // do not get unloaded while the stack trace is live. However, this does not work for copied
2986     // methods because the declaring class of a copied method points to an interface class which
2987     // may be in a different class loader. Instead, retrieve the class loader associated with the
2988     // allocator that holds the copied method. This is much cheaper than finding the actual class.
2989     ObjPtr<mirror::Object> keep_alive;
2990     if (UNLIKELY(method->IsCopied())) {
2991       ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
2992       keep_alive = class_linker->GetHoldingClassLoaderOfCopiedMethod(self_, method);
2993     } else {
2994       keep_alive = method->GetDeclaringClass();
2995     }
2996     trace_->Set</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
2997         static_cast<int32_t>(count_) + 1, keep_alive);
2998     ++count_;
2999   }
3000 
GetTraceMethodsAndPCs() const3001   ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
3002     return ObjPtr<mirror::PointerArray>::DownCast(trace_->Get(0));
3003   }
3004 
GetInternalStackTrace() const3005   mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
3006     return trace_;
3007   }
3008 
3009  private:
3010   Thread* const self_;
3011   // How many more frames to skip.
3012   uint32_t skip_depth_;
3013   // Current position down stack trace.
3014   uint32_t count_ = 0;
3015   // An object array where the first element is a pointer array that contains the `ArtMethod`
3016   // pointers on the stack and dex PCs. The rest of the elements are referencing objects
3017   // that shall keep the methods alive, namely the declaring class of the `ArtMethod` for
3018   // declared methods and the class loader for copied methods (because it's faster to find
3019   // the class loader than the actual class that holds the copied method). The `trace_[i+1]`
3020   // contains the declaring class or class loader of the `ArtMethod` of the i'th frame.
3021   // We're initializing a newly allocated trace, so we do not need to record that under
3022   // a transaction. If the transaction is aborted, the whole trace shall be unreachable.
3023   mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
3024   // For cross compilation.
3025   const PointerSize pointer_size_;
3026 
3027   DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
3028 };
3029 
CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const3030 jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
3031   // Compute depth of stack, save frames if possible to avoid needing to recompute many.
3032   constexpr size_t kMaxSavedFrames = 256;
3033   std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
3034   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
3035                                        &saved_frames[0],
3036                                        kMaxSavedFrames);
3037   count_visitor.WalkStack();
3038   const uint32_t depth = count_visitor.GetDepth();
3039   const uint32_t skip_depth = count_visitor.GetSkipDepth();
3040 
3041   // Build internal stack trace.
3042   BuildInternalStackTraceVisitor build_trace_visitor(
3043       soa.Self(), const_cast<Thread*>(this), skip_depth);
3044   if (!build_trace_visitor.Init(depth)) {
3045     return nullptr;  // Allocation failed.
3046   }
3047   // If we saved all of the frames we don't even need to do the actual stack walk. This is faster
3048   // than doing the stack walk twice.
3049   if (depth < kMaxSavedFrames) {
3050     for (size_t i = 0; i < depth; ++i) {
3051       build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
3052     }
3053   } else {
3054     build_trace_visitor.WalkStack();
3055   }
3056 
3057   mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
3058   if (kIsDebugBuild) {
3059     ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
3060     // Second half of trace_methods is dex PCs.
3061     for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
3062       auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
3063           i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
3064       CHECK(method != nullptr);
3065     }
3066   }
3067   return soa.AddLocalReference<jobject>(trace);
3068 }
3069 
IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const3070 bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
3071   // Only count the depth since we do not pass a stack frame array as an argument.
3072   FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
3073   count_visitor.WalkStack();
3074   return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
3075 }
3076 
CreateStackTraceElement(const ScopedObjectAccessAlreadyRunnable & soa,ArtMethod * method,uint32_t dex_pc)3077 static ObjPtr<mirror::StackTraceElement> CreateStackTraceElement(
3078     const ScopedObjectAccessAlreadyRunnable& soa,
3079     ArtMethod* method,
3080     uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
3081   int32_t line_number;
3082   StackHandleScope<3> hs(soa.Self());
3083   auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
3084   auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
3085   if (method->IsProxyMethod()) {
3086     line_number = -1;
3087     class_name_object.Assign(method->GetDeclaringClass()->GetName());
3088     // source_name_object intentionally left null for proxy methods
3089   } else {
3090     line_number = method->GetLineNumFromDexPC(dex_pc);
3091     // Allocate element, potentially triggering GC
3092     // TODO: reuse class_name_object via Class::name_?
3093     const char* descriptor = method->GetDeclaringClassDescriptor();
3094     CHECK(descriptor != nullptr);
3095     std::string class_name(PrettyDescriptor(descriptor));
3096     class_name_object.Assign(
3097         mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
3098     if (class_name_object == nullptr) {
3099       soa.Self()->AssertPendingOOMException();
3100       return nullptr;
3101     }
3102     const char* source_file = method->GetDeclaringClassSourceFile();
3103     if (line_number == -1) {
3104       // Make the line_number field of StackTraceElement hold the dex pc.
3105       // source_name_object is intentionally left null if we failed to map the dex pc to
3106       // a line number (most probably because there is no debug info). See b/30183883.
3107       line_number = static_cast<int32_t>(dex_pc);
3108     } else {
3109       if (source_file != nullptr) {
3110         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
3111         if (source_name_object == nullptr) {
3112           soa.Self()->AssertPendingOOMException();
3113           return nullptr;
3114         }
3115       }
3116     }
3117   }
3118   const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
3119   CHECK(method_name != nullptr);
3120   Handle<mirror::String> method_name_object(
3121       hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
3122   if (method_name_object == nullptr) {
3123     return nullptr;
3124   }
3125   return mirror::StackTraceElement::Alloc(soa.Self(),
3126                                           class_name_object,
3127                                           method_name_object,
3128                                           source_name_object,
3129                                           line_number);
3130 }
3131 
InternalStackTraceToStackTraceElementArray(const ScopedObjectAccessAlreadyRunnable & soa,jobject internal,jobjectArray output_array,int * stack_depth)3132 jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
3133     const ScopedObjectAccessAlreadyRunnable& soa,
3134     jobject internal,
3135     jobjectArray output_array,
3136     int* stack_depth) {
3137   // Decode the internal stack trace into the depth, method trace and PC trace.
3138   // Subtract one for the methods and PC trace.
3139   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
3140   DCHECK_GE(depth, 0);
3141 
3142   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
3143 
3144   jobjectArray result;
3145 
3146   if (output_array != nullptr) {
3147     // Reuse the array we were given.
3148     result = output_array;
3149     // ...adjusting the number of frames we'll write to not exceed the array length.
3150     const int32_t traces_length =
3151         soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
3152     depth = std::min(depth, traces_length);
3153   } else {
3154     // Create java_trace array and place in local reference table
3155     ObjPtr<mirror::ObjectArray<mirror::StackTraceElement>> java_traces =
3156         class_linker->AllocStackTraceElementArray(soa.Self(), static_cast<size_t>(depth));
3157     if (java_traces == nullptr) {
3158       return nullptr;
3159     }
3160     result = soa.AddLocalReference<jobjectArray>(java_traces);
3161   }
3162 
3163   if (stack_depth != nullptr) {
3164     *stack_depth = depth;
3165   }
3166 
3167   for (uint32_t i = 0; i < static_cast<uint32_t>(depth); ++i) {
3168     ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
3169         soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
3170     // Methods and dex PC trace is element 0.
3171     DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
3172     const ObjPtr<mirror::PointerArray> method_trace =
3173         ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0));
3174     // Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
3175     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
3176     uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
3177         i + static_cast<uint32_t>(method_trace->GetLength()) / 2, kRuntimePointerSize);
3178     const ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(soa, method, dex_pc);
3179     if (obj == nullptr) {
3180       return nullptr;
3181     }
3182     // We are called from native: use non-transactional mode.
3183     soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(
3184         static_cast<int32_t>(i), obj);
3185   }
3186   return result;
3187 }
3188 
InitStackFrameInfo(const ScopedObjectAccessAlreadyRunnable & soa,ClassLinker * class_linker,Handle<mirror::StackFrameInfo> stackFrameInfo,ArtMethod * method,uint32_t dex_pc)3189 [[nodiscard]] static ObjPtr<mirror::StackFrameInfo> InitStackFrameInfo(
3190     const ScopedObjectAccessAlreadyRunnable& soa,
3191     ClassLinker* class_linker,
3192     Handle<mirror::StackFrameInfo> stackFrameInfo,
3193     ArtMethod* method,
3194     uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
3195   StackHandleScope<4> hs(soa.Self());
3196   int32_t line_number;
3197   auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
3198   if (method->IsProxyMethod()) {
3199     line_number = -1;
3200     // source_name_object intentionally left null for proxy methods
3201   } else {
3202     line_number = method->GetLineNumFromDexPC(dex_pc);
3203     if (line_number == -1) {
3204       // Make the line_number field of StackFrameInfo hold the dex pc.
3205       // source_name_object is intentionally left null if we failed to map the dex pc to
3206       // a line number (most probably because there is no debug info). See b/30183883.
3207       line_number = static_cast<int32_t>(dex_pc);
3208     } else {
3209       const char* source_file = method->GetDeclaringClassSourceFile();
3210       if (source_file != nullptr) {
3211         source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
3212         if (source_name_object == nullptr) {
3213           soa.Self()->AssertPendingOOMException();
3214           return nullptr;
3215         }
3216       }
3217     }
3218   }
3219 
3220   Handle<mirror::Class> declaring_class_object(
3221       hs.NewHandle<mirror::Class>(method->GetDeclaringClass()));
3222 
3223   ArtMethod* interface_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
3224   const char* method_name = interface_method->GetName();
3225   CHECK(method_name != nullptr);
3226   Handle<mirror::String> method_name_object(
3227       hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
3228   if (method_name_object == nullptr) {
3229     soa.Self()->AssertPendingOOMException();
3230     return nullptr;
3231   }
3232 
3233   dex::ProtoIndex proto_idx =
3234       method->GetDexFile()->GetIndexForProtoId(interface_method->GetPrototype());
3235   Handle<mirror::MethodType> method_type_object(hs.NewHandle<mirror::MethodType>(
3236       class_linker->ResolveMethodType(soa.Self(), proto_idx, interface_method)));
3237   if (method_type_object == nullptr) {
3238     soa.Self()->AssertPendingOOMException();
3239     return nullptr;
3240   }
3241 
3242   stackFrameInfo->AssignFields(declaring_class_object,
3243                                method_type_object,
3244                                method_name_object,
3245                                source_name_object,
3246                                line_number,
3247                                static_cast<int32_t>(dex_pc));
3248   return stackFrameInfo.Get();
3249 }
3250 
3251 constexpr jlong FILL_CLASS_REFS_ONLY = 0x2;  // StackStreamFactory.FILL_CLASS_REFS_ONLY
3252 
InternalStackTraceToStackFrameInfoArray(const ScopedObjectAccessAlreadyRunnable & soa,jlong mode,jobject internal,jint startLevel,jint batchSize,jint startBufferIndex,jobjectArray output_array)3253 jint Thread::InternalStackTraceToStackFrameInfoArray(
3254     const ScopedObjectAccessAlreadyRunnable& soa,
3255     jlong mode,  // See java.lang.StackStreamFactory for the mode flags
3256     jobject internal,
3257     jint startLevel,
3258     jint batchSize,
3259     jint startBufferIndex,
3260     jobjectArray output_array) {
3261   // Decode the internal stack trace into the depth, method trace and PC trace.
3262   // Subtract one for the methods and PC trace.
3263   int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
3264   DCHECK_GE(depth, 0);
3265 
3266   StackHandleScope<6> hs(soa.Self());
3267   Handle<mirror::ObjectArray<mirror::Object>> framesOrClasses =
3268       hs.NewHandle(soa.Decode<mirror::ObjectArray<mirror::Object>>(output_array));
3269 
3270   jint endBufferIndex = startBufferIndex;
3271 
3272   if (startLevel < 0 || startLevel >= depth) {
3273     return endBufferIndex;
3274   }
3275 
3276   int32_t bufferSize = framesOrClasses->GetLength();
3277   if (startBufferIndex < 0 || startBufferIndex >= bufferSize) {
3278     return endBufferIndex;
3279   }
3280 
3281   // The FILL_CLASS_REFS_ONLY flag is defined in AbstractStackWalker.fetchStackFrames() javadoc.
3282   bool isClassArray = (mode & FILL_CLASS_REFS_ONLY) != 0;
3283 
3284   Handle<mirror::ObjectArray<mirror::Object>> decoded_traces =
3285       hs.NewHandle(soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>());
3286   // Methods and dex PC trace is element 0.
3287   DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
3288   Handle<mirror::PointerArray> method_trace =
3289       hs.NewHandle(ObjPtr<mirror::PointerArray>::DownCast(decoded_traces->Get(0)));
3290 
3291   ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
3292   Handle<mirror::Class> sfi_class =
3293       hs.NewHandle(class_linker->FindSystemClass(soa.Self(), "Ljava/lang/StackFrameInfo;"));
3294   DCHECK(sfi_class != nullptr);
3295 
3296   MutableHandle<mirror::StackFrameInfo> frame = hs.NewHandle<mirror::StackFrameInfo>(nullptr);
3297   MutableHandle<mirror::Class> clazz = hs.NewHandle<mirror::Class>(nullptr);
3298   for (uint32_t i = static_cast<uint32_t>(startLevel); i < static_cast<uint32_t>(depth); ++i) {
3299     if (endBufferIndex >= startBufferIndex + batchSize || endBufferIndex >= bufferSize) {
3300       break;
3301     }
3302 
3303     ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
3304     if (isClassArray) {
3305       clazz.Assign(method->GetDeclaringClass());
3306       framesOrClasses->Set(endBufferIndex, clazz.Get());
3307     } else {
3308       // Prepare parameters for fields in StackFrameInfo
3309       uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
3310           i + static_cast<uint32_t>(method_trace->GetLength()) / 2, kRuntimePointerSize);
3311 
3312       ObjPtr<mirror::Object> frameObject = framesOrClasses->Get(endBufferIndex);
3313       // If libcore didn't allocate the object, we just stop here, but it's unlikely.
3314       if (frameObject == nullptr || !frameObject->InstanceOf(sfi_class.Get())) {
3315         break;
3316       }
3317       frame.Assign(ObjPtr<mirror::StackFrameInfo>::DownCast(frameObject));
3318       frame.Assign(InitStackFrameInfo(soa, class_linker, frame, method, dex_pc));
3319       // Break if InitStackFrameInfo fails to allocate objects or assign the fields.
3320       if (frame == nullptr) {
3321         break;
3322       }
3323     }
3324 
3325     ++endBufferIndex;
3326   }
3327 
3328   return endBufferIndex;
3329 }
3330 
CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable & soa) const3331 jobjectArray Thread::CreateAnnotatedStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
3332   // This code allocates. Do not allow it to operate with a pending exception.
3333   if (IsExceptionPending()) {
3334     return nullptr;
3335   }
3336 
3337   class CollectFramesAndLocksStackVisitor : public MonitorObjectsStackVisitor {
3338    public:
3339     CollectFramesAndLocksStackVisitor(const ScopedObjectAccessAlreadyRunnable& soaa_in,
3340                                       Thread* self,
3341                                       Context* context)
3342         : MonitorObjectsStackVisitor(self, context),
3343           wait_jobject_(soaa_in.Env(), nullptr),
3344           block_jobject_(soaa_in.Env(), nullptr),
3345           soaa_(soaa_in) {}
3346 
3347    protected:
3348     VisitMethodResult StartMethod(ArtMethod* m, size_t frame_nr ATTRIBUTE_UNUSED)
3349         override
3350         REQUIRES_SHARED(Locks::mutator_lock_) {
3351       ObjPtr<mirror::StackTraceElement> obj = CreateStackTraceElement(
3352           soaa_, m, GetDexPc(/* abort on error */ false));
3353       if (obj == nullptr) {
3354         return VisitMethodResult::kEndStackWalk;
3355       }
3356       stack_trace_elements_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj.Ptr()));
3357       return VisitMethodResult::kContinueMethod;
3358     }
3359 
3360     VisitMethodResult EndMethod(ArtMethod* m ATTRIBUTE_UNUSED) override {
3361       lock_objects_.push_back({});
3362       lock_objects_[lock_objects_.size() - 1].swap(frame_lock_objects_);
3363 
3364       DCHECK_EQ(lock_objects_.size(), stack_trace_elements_.size());
3365 
3366       return VisitMethodResult::kContinueMethod;
3367     }
3368 
3369     void VisitWaitingObject(ObjPtr<mirror::Object> obj, ThreadState state ATTRIBUTE_UNUSED)
3370         override
3371         REQUIRES_SHARED(Locks::mutator_lock_) {
3372       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3373     }
3374     void VisitSleepingObject(ObjPtr<mirror::Object> obj)
3375         override
3376         REQUIRES_SHARED(Locks::mutator_lock_) {
3377       wait_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3378     }
3379     void VisitBlockedOnObject(ObjPtr<mirror::Object> obj,
3380                               ThreadState state ATTRIBUTE_UNUSED,
3381                               uint32_t owner_tid ATTRIBUTE_UNUSED)
3382         override
3383         REQUIRES_SHARED(Locks::mutator_lock_) {
3384       block_jobject_.reset(soaa_.AddLocalReference<jobject>(obj));
3385     }
3386     void VisitLockedObject(ObjPtr<mirror::Object> obj)
3387         override
3388         REQUIRES_SHARED(Locks::mutator_lock_) {
3389       frame_lock_objects_.emplace_back(soaa_.Env(), soaa_.AddLocalReference<jobject>(obj));
3390     }
3391 
3392    public:
3393     std::vector<ScopedLocalRef<jobject>> stack_trace_elements_;
3394     ScopedLocalRef<jobject> wait_jobject_;
3395     ScopedLocalRef<jobject> block_jobject_;
3396     std::vector<std::vector<ScopedLocalRef<jobject>>> lock_objects_;
3397 
3398    private:
3399     const ScopedObjectAccessAlreadyRunnable& soaa_;
3400 
3401     std::vector<ScopedLocalRef<jobject>> frame_lock_objects_;
3402   };
3403 
3404   std::unique_ptr<Context> context(Context::Create());
3405   CollectFramesAndLocksStackVisitor dumper(soa, const_cast<Thread*>(this), context.get());
3406   dumper.WalkStack();
3407 
3408   // There should not be a pending exception. Otherwise, return with it pending.
3409   if (IsExceptionPending()) {
3410     return nullptr;
3411   }
3412 
3413   // Now go and create Java arrays.
3414 
3415   ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
3416 
3417   StackHandleScope<6> hs(soa.Self());
3418   Handle<mirror::Class> h_aste_array_class = hs.NewHandle(class_linker->FindSystemClass(
3419       soa.Self(),
3420       "[Ldalvik/system/AnnotatedStackTraceElement;"));
3421   if (h_aste_array_class == nullptr) {
3422     return nullptr;
3423   }
3424   Handle<mirror::Class> h_aste_class = hs.NewHandle(h_aste_array_class->GetComponentType());
3425 
3426   Handle<mirror::Class> h_o_array_class =
3427       hs.NewHandle(GetClassRoot<mirror::ObjectArray<mirror::Object>>(class_linker));
3428   DCHECK(h_o_array_class != nullptr);  // Class roots must be already initialized.
3429 
3430 
3431   // Make sure the AnnotatedStackTraceElement.class is initialized, b/76208924 .
3432   class_linker->EnsureInitialized(soa.Self(),
3433                                   h_aste_class,
3434                                   /* can_init_fields= */ true,
3435                                   /* can_init_parents= */ true);
3436   if (soa.Self()->IsExceptionPending()) {
3437     // This should not fail in a healthy runtime.
3438     return nullptr;
3439   }
3440 
3441   ArtField* stack_trace_element_field =
3442       h_aste_class->FindDeclaredInstanceField("stackTraceElement", "Ljava/lang/StackTraceElement;");
3443   DCHECK(stack_trace_element_field != nullptr);
3444   ArtField* held_locks_field =
3445       h_aste_class->FindDeclaredInstanceField("heldLocks", "[Ljava/lang/Object;");
3446   DCHECK(held_locks_field != nullptr);
3447   ArtField* blocked_on_field =
3448       h_aste_class->FindDeclaredInstanceField("blockedOn", "Ljava/lang/Object;");
3449   DCHECK(blocked_on_field != nullptr);
3450 
3451   int32_t length = static_cast<int32_t>(dumper.stack_trace_elements_.size());
3452   ObjPtr<mirror::ObjectArray<mirror::Object>> array =
3453       mirror::ObjectArray<mirror::Object>::Alloc(soa.Self(), h_aste_array_class.Get(), length);
3454   if (array == nullptr) {
3455     soa.Self()->AssertPendingOOMException();
3456     return nullptr;
3457   }
3458 
3459   ScopedLocalRef<jobjectArray> result(soa.Env(), soa.Env()->AddLocalReference<jobjectArray>(array));
3460 
3461   MutableHandle<mirror::Object> handle(hs.NewHandle<mirror::Object>(nullptr));
3462   MutableHandle<mirror::ObjectArray<mirror::Object>> handle2(
3463       hs.NewHandle<mirror::ObjectArray<mirror::Object>>(nullptr));
3464   for (size_t i = 0; i != static_cast<size_t>(length); ++i) {
3465     handle.Assign(h_aste_class->AllocObject(soa.Self()));
3466     if (handle == nullptr) {
3467       soa.Self()->AssertPendingOOMException();
3468       return nullptr;
3469     }
3470 
3471     // Set stack trace element.
3472     stack_trace_element_field->SetObject<false>(
3473         handle.Get(), soa.Decode<mirror::Object>(dumper.stack_trace_elements_[i].get()));
3474 
3475     // Create locked-on array.
3476     if (!dumper.lock_objects_[i].empty()) {
3477       handle2.Assign(mirror::ObjectArray<mirror::Object>::Alloc(
3478           soa.Self(), h_o_array_class.Get(), static_cast<int32_t>(dumper.lock_objects_[i].size())));
3479       if (handle2 == nullptr) {
3480         soa.Self()->AssertPendingOOMException();
3481         return nullptr;
3482       }
3483       int32_t j = 0;
3484       for (auto& scoped_local : dumper.lock_objects_[i]) {
3485         if (scoped_local == nullptr) {
3486           continue;
3487         }
3488         handle2->Set(j, soa.Decode<mirror::Object>(scoped_local.get()));
3489         DCHECK(!soa.Self()->IsExceptionPending());
3490         j++;
3491       }
3492       held_locks_field->SetObject<false>(handle.Get(), handle2.Get());
3493     }
3494 
3495     // Set blocked-on object.
3496     if (i == 0) {
3497       if (dumper.block_jobject_ != nullptr) {
3498         blocked_on_field->SetObject<false>(
3499             handle.Get(), soa.Decode<mirror::Object>(dumper.block_jobject_.get()));
3500       }
3501     }
3502 
3503     ScopedLocalRef<jobject> elem(soa.Env(), soa.AddLocalReference<jobject>(handle.Get()));
3504     soa.Env()->SetObjectArrayElement(result.get(), static_cast<jsize>(i), elem.get());
3505     DCHECK(!soa.Self()->IsExceptionPending());
3506   }
3507 
3508   return result.release();
3509 }
3510 
ThrowNewExceptionF(const char * exception_class_descriptor,const char * fmt,...)3511 void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
3512   va_list args;
3513   va_start(args, fmt);
3514   ThrowNewExceptionV(exception_class_descriptor, fmt, args);
3515   va_end(args);
3516 }
3517 
ThrowNewExceptionV(const char * exception_class_descriptor,const char * fmt,va_list ap)3518 void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
3519                                 const char* fmt, va_list ap) {
3520   std::string msg;
3521   StringAppendV(&msg, fmt, ap);
3522   ThrowNewException(exception_class_descriptor, msg.c_str());
3523 }
3524 
ThrowNewException(const char * exception_class_descriptor,const char * msg)3525 void Thread::ThrowNewException(const char* exception_class_descriptor,
3526                                const char* msg) {
3527   // Callers should either clear or call ThrowNewWrappedException.
3528   AssertNoPendingExceptionForNewException(msg);
3529   ThrowNewWrappedException(exception_class_descriptor, msg);
3530 }
3531 
GetCurrentClassLoader(Thread * self)3532 static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
3533     REQUIRES_SHARED(Locks::mutator_lock_) {
3534   ArtMethod* method = self->GetCurrentMethod(nullptr);
3535   return method != nullptr
3536       ? method->GetDeclaringClass()->GetClassLoader()
3537       : nullptr;
3538 }
3539 
ThrowNewWrappedException(const char * exception_class_descriptor,const char * msg)3540 void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
3541                                       const char* msg) {
3542   DCHECK_EQ(this, Thread::Current());
3543   ScopedObjectAccessUnchecked soa(this);
3544   StackHandleScope<3> hs(soa.Self());
3545 
3546   // Disable public sdk checks if we need to throw exceptions.
3547   // The checks are only used in AOT compilation and may block (exception) class
3548   // initialization if it needs access to private fields (e.g. serialVersionUID).
3549   //
3550   // Since throwing an exception will EnsureInitialization and the public sdk may
3551   // block that, disable the checks. It's ok to do so, because the thrown exceptions
3552   // are not part of the application code that needs to verified.
3553   ScopedDisablePublicSdkChecker sdpsc;
3554 
3555   Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
3556   ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
3557   ClearException();
3558   Runtime* runtime = Runtime::Current();
3559   auto* cl = runtime->GetClassLinker();
3560   Handle<mirror::Class> exception_class(
3561       hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
3562   if (UNLIKELY(exception_class == nullptr)) {
3563     CHECK(IsExceptionPending());
3564     LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
3565     return;
3566   }
3567 
3568   if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
3569                                                              true))) {
3570     DCHECK(IsExceptionPending());
3571     return;
3572   }
3573   DCHECK_IMPLIES(runtime->IsStarted(), exception_class->IsThrowableClass());
3574   Handle<mirror::Throwable> exception(
3575       hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
3576 
3577   // If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
3578   if (exception == nullptr) {
3579     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
3580     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingException());
3581     return;
3582   }
3583 
3584   // Choose an appropriate constructor and set up the arguments.
3585   const char* signature;
3586   ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
3587   if (msg != nullptr) {
3588     // Ensure we remember this and the method over the String allocation.
3589     msg_string.reset(
3590         soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
3591     if (UNLIKELY(msg_string.get() == nullptr)) {
3592       CHECK(IsExceptionPending());  // OOME.
3593       return;
3594     }
3595     if (cause.get() == nullptr) {
3596       signature = "(Ljava/lang/String;)V";
3597     } else {
3598       signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
3599     }
3600   } else {
3601     if (cause.get() == nullptr) {
3602       signature = "()V";
3603     } else {
3604       signature = "(Ljava/lang/Throwable;)V";
3605     }
3606   }
3607   ArtMethod* exception_init_method =
3608       exception_class->FindConstructor(signature, cl->GetImagePointerSize());
3609 
3610   CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
3611       << PrettyDescriptor(exception_class_descriptor);
3612 
3613   if (UNLIKELY(!runtime->IsStarted())) {
3614     // Something is trying to throw an exception without a started runtime, which is the common
3615     // case in the compiler. We won't be able to invoke the constructor of the exception, so set
3616     // the exception fields directly.
3617     if (msg != nullptr) {
3618       exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
3619     }
3620     if (cause.get() != nullptr) {
3621       exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
3622     }
3623     ScopedLocalRef<jobject> trace(GetJniEnv(), CreateInternalStackTrace(soa));
3624     if (trace.get() != nullptr) {
3625       exception->SetStackState(DecodeJObject(trace.get()).Ptr());
3626     }
3627     SetException(exception.Get());
3628   } else {
3629     jvalue jv_args[2];
3630     size_t i = 0;
3631 
3632     if (msg != nullptr) {
3633       jv_args[i].l = msg_string.get();
3634       ++i;
3635     }
3636     if (cause.get() != nullptr) {
3637       jv_args[i].l = cause.get();
3638       ++i;
3639     }
3640     ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
3641     InvokeWithJValues(soa, ref.get(), exception_init_method, jv_args);
3642     if (LIKELY(!IsExceptionPending())) {
3643       SetException(exception.Get());
3644     }
3645   }
3646 }
3647 
ThrowOutOfMemoryError(const char * msg)3648 void Thread::ThrowOutOfMemoryError(const char* msg) {
3649   LOG(WARNING) << "Throwing OutOfMemoryError "
3650                << '"' << msg << '"'
3651                << " (VmSize " << GetProcessStatus("VmSize")
3652                << (tls32_.throwing_OutOfMemoryError ? ", recursive case)" : ")");
3653   ScopedTrace trace("OutOfMemoryError");
3654   if (!tls32_.throwing_OutOfMemoryError) {
3655     tls32_.throwing_OutOfMemoryError = true;
3656     ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
3657     tls32_.throwing_OutOfMemoryError = false;
3658   } else {
3659     Dump(LOG_STREAM(WARNING));  // The pre-allocated OOME has no stack, so help out and log one.
3660     SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryErrorWhenThrowingOOME());
3661   }
3662 }
3663 
CurrentFromGdb()3664 Thread* Thread::CurrentFromGdb() {
3665   return Thread::Current();
3666 }
3667 
DumpFromGdb() const3668 void Thread::DumpFromGdb() const {
3669   std::ostringstream ss;
3670   Dump(ss);
3671   std::string str(ss.str());
3672   // log to stderr for debugging command line processes
3673   std::cerr << str;
3674 #ifdef ART_TARGET_ANDROID
3675   // log to logcat for debugging frameworks processes
3676   LOG(INFO) << str;
3677 #endif
3678 }
3679 
3680 // Explicitly instantiate 32 and 64bit thread offset dumping support.
3681 template
3682 void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
3683 template
3684 void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
3685 
3686 template<PointerSize ptr_size>
DumpThreadOffset(std::ostream & os,uint32_t offset)3687 void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
3688 #define DO_THREAD_OFFSET(x, y) \
3689     if (offset == (x).Uint32Value()) { \
3690       os << (y); \
3691       return; \
3692     }
3693   DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
3694   DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
3695   DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
3696   DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
3697   DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
3698   DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
3699   DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
3700   DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
3701   DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
3702   DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
3703   DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
3704   DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
3705   DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
3706 #undef DO_THREAD_OFFSET
3707 
3708 #define JNI_ENTRY_POINT_INFO(x) \
3709     if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3710       os << #x; \
3711       return; \
3712     }
3713   JNI_ENTRY_POINT_INFO(pDlsymLookup)
3714   JNI_ENTRY_POINT_INFO(pDlsymLookupCritical)
3715 #undef JNI_ENTRY_POINT_INFO
3716 
3717 #define QUICK_ENTRY_POINT_INFO(x) \
3718     if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
3719       os << #x; \
3720       return; \
3721     }
3722   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
3723   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
3724   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
3725   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
3726   QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
3727   QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
3728   QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
3729   QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
3730   QUICK_ENTRY_POINT_INFO(pAllocStringObject)
3731   QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
3732   QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
3733   QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
3734   QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
3735   QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
3736   QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
3737   QUICK_ENTRY_POINT_INFO(pResolveTypeAndVerifyAccess)
3738   QUICK_ENTRY_POINT_INFO(pResolveType)
3739   QUICK_ENTRY_POINT_INFO(pResolveString)
3740   QUICK_ENTRY_POINT_INFO(pSet8Instance)
3741   QUICK_ENTRY_POINT_INFO(pSet8Static)
3742   QUICK_ENTRY_POINT_INFO(pSet16Instance)
3743   QUICK_ENTRY_POINT_INFO(pSet16Static)
3744   QUICK_ENTRY_POINT_INFO(pSet32Instance)
3745   QUICK_ENTRY_POINT_INFO(pSet32Static)
3746   QUICK_ENTRY_POINT_INFO(pSet64Instance)
3747   QUICK_ENTRY_POINT_INFO(pSet64Static)
3748   QUICK_ENTRY_POINT_INFO(pSetObjInstance)
3749   QUICK_ENTRY_POINT_INFO(pSetObjStatic)
3750   QUICK_ENTRY_POINT_INFO(pGetByteInstance)
3751   QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
3752   QUICK_ENTRY_POINT_INFO(pGetByteStatic)
3753   QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
3754   QUICK_ENTRY_POINT_INFO(pGetShortInstance)
3755   QUICK_ENTRY_POINT_INFO(pGetCharInstance)
3756   QUICK_ENTRY_POINT_INFO(pGetShortStatic)
3757   QUICK_ENTRY_POINT_INFO(pGetCharStatic)
3758   QUICK_ENTRY_POINT_INFO(pGet32Instance)
3759   QUICK_ENTRY_POINT_INFO(pGet32Static)
3760   QUICK_ENTRY_POINT_INFO(pGet64Instance)
3761   QUICK_ENTRY_POINT_INFO(pGet64Static)
3762   QUICK_ENTRY_POINT_INFO(pGetObjInstance)
3763   QUICK_ENTRY_POINT_INFO(pGetObjStatic)
3764   QUICK_ENTRY_POINT_INFO(pAputObject)
3765   QUICK_ENTRY_POINT_INFO(pJniMethodStart)
3766   QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
3767   QUICK_ENTRY_POINT_INFO(pJniMethodEntryHook)
3768   QUICK_ENTRY_POINT_INFO(pJniDecodeReferenceResult)
3769   QUICK_ENTRY_POINT_INFO(pJniLockObject)
3770   QUICK_ENTRY_POINT_INFO(pJniUnlockObject)
3771   QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
3772   QUICK_ENTRY_POINT_INFO(pLockObject)
3773   QUICK_ENTRY_POINT_INFO(pUnlockObject)
3774   QUICK_ENTRY_POINT_INFO(pCmpgDouble)
3775   QUICK_ENTRY_POINT_INFO(pCmpgFloat)
3776   QUICK_ENTRY_POINT_INFO(pCmplDouble)
3777   QUICK_ENTRY_POINT_INFO(pCmplFloat)
3778   QUICK_ENTRY_POINT_INFO(pCos)
3779   QUICK_ENTRY_POINT_INFO(pSin)
3780   QUICK_ENTRY_POINT_INFO(pAcos)
3781   QUICK_ENTRY_POINT_INFO(pAsin)
3782   QUICK_ENTRY_POINT_INFO(pAtan)
3783   QUICK_ENTRY_POINT_INFO(pAtan2)
3784   QUICK_ENTRY_POINT_INFO(pCbrt)
3785   QUICK_ENTRY_POINT_INFO(pCosh)
3786   QUICK_ENTRY_POINT_INFO(pExp)
3787   QUICK_ENTRY_POINT_INFO(pExpm1)
3788   QUICK_ENTRY_POINT_INFO(pHypot)
3789   QUICK_ENTRY_POINT_INFO(pLog)
3790   QUICK_ENTRY_POINT_INFO(pLog10)
3791   QUICK_ENTRY_POINT_INFO(pNextAfter)
3792   QUICK_ENTRY_POINT_INFO(pSinh)
3793   QUICK_ENTRY_POINT_INFO(pTan)
3794   QUICK_ENTRY_POINT_INFO(pTanh)
3795   QUICK_ENTRY_POINT_INFO(pFmod)
3796   QUICK_ENTRY_POINT_INFO(pL2d)
3797   QUICK_ENTRY_POINT_INFO(pFmodf)
3798   QUICK_ENTRY_POINT_INFO(pL2f)
3799   QUICK_ENTRY_POINT_INFO(pD2iz)
3800   QUICK_ENTRY_POINT_INFO(pF2iz)
3801   QUICK_ENTRY_POINT_INFO(pIdivmod)
3802   QUICK_ENTRY_POINT_INFO(pD2l)
3803   QUICK_ENTRY_POINT_INFO(pF2l)
3804   QUICK_ENTRY_POINT_INFO(pLdiv)
3805   QUICK_ENTRY_POINT_INFO(pLmod)
3806   QUICK_ENTRY_POINT_INFO(pLmul)
3807   QUICK_ENTRY_POINT_INFO(pShlLong)
3808   QUICK_ENTRY_POINT_INFO(pShrLong)
3809   QUICK_ENTRY_POINT_INFO(pUshrLong)
3810   QUICK_ENTRY_POINT_INFO(pIndexOf)
3811   QUICK_ENTRY_POINT_INFO(pStringCompareTo)
3812   QUICK_ENTRY_POINT_INFO(pMemcpy)
3813   QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
3814   QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
3815   QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
3816   QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
3817   QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
3818   QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
3819   QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
3820   QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
3821   QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
3822   QUICK_ENTRY_POINT_INFO(pTestSuspend)
3823   QUICK_ENTRY_POINT_INFO(pDeliverException)
3824   QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
3825   QUICK_ENTRY_POINT_INFO(pThrowDivZero)
3826   QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
3827   QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
3828   QUICK_ENTRY_POINT_INFO(pDeoptimize)
3829   QUICK_ENTRY_POINT_INFO(pA64Load)
3830   QUICK_ENTRY_POINT_INFO(pA64Store)
3831   QUICK_ENTRY_POINT_INFO(pNewEmptyString)
3832   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
3833   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BB)
3834   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
3835   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
3836   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
3837   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
3838   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
3839   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
3840   QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
3841   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
3842   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
3843   QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
3844   QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
3845   QUICK_ENTRY_POINT_INFO(pNewStringFromString)
3846   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
3847   QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
3848   QUICK_ENTRY_POINT_INFO(pNewStringFromUtf16Bytes_BII)
3849   QUICK_ENTRY_POINT_INFO(pJniReadBarrier)
3850   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
3851   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
3852   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
3853   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
3854   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
3855   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
3856   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
3857   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
3858   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
3859   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
3860   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
3861   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
3862   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
3863   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
3864   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
3865   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
3866   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
3867   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
3868   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
3869   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
3870   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
3871   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
3872   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
3873   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
3874   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
3875   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
3876   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
3877   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
3878   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
3879   QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
3880   QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
3881   QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
3882 #undef QUICK_ENTRY_POINT_INFO
3883 
3884   os << offset;
3885 }
3886 
QuickDeliverException(bool skip_method_exit_callbacks)3887 void Thread::QuickDeliverException(bool skip_method_exit_callbacks) {
3888   // Get exception from thread.
3889   ObjPtr<mirror::Throwable> exception = GetException();
3890   CHECK(exception != nullptr);
3891   if (exception == GetDeoptimizationException()) {
3892     // This wasn't a real exception, so just clear it here. If there was an actual exception it
3893     // will be recorded in the DeoptimizationContext and it will be restored later.
3894     ClearException();
3895     artDeoptimize(this, skip_method_exit_callbacks);
3896     UNREACHABLE();
3897   }
3898 
3899   ReadBarrier::MaybeAssertToSpaceInvariant(exception.Ptr());
3900 
3901   // This is a real exception: let the instrumentation know about it. Exception throw listener
3902   // could set a breakpoint or install listeners that might require a deoptimization. Hence the
3903   // deoptimization check needs to happen after calling the listener.
3904   instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
3905   if (instrumentation->HasExceptionThrownListeners() &&
3906       IsExceptionThrownByCurrentMethod(exception)) {
3907     // Instrumentation may cause GC so keep the exception object safe.
3908     StackHandleScope<1> hs(this);
3909     HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
3910     instrumentation->ExceptionThrownEvent(this, exception);
3911   }
3912   // Does instrumentation need to deoptimize the stack or otherwise go to interpreter for something?
3913   // Note: we do this *after* reporting the exception to instrumentation in case it now requires
3914   // deoptimization. It may happen if a debugger is attached and requests new events (single-step,
3915   // breakpoint, ...) when the exception is reported.
3916   // Frame pop can be requested on a method unwind callback which requires a deopt. We could
3917   // potentially check after each unwind callback to see if a frame pop was requested and deopt if
3918   // needed. Since this is a debug only feature and this path is only taken when an exception is
3919   // thrown, it is not performance critical and we keep it simple by just deopting if method exit
3920   // listeners are installed and frame pop feature is supported.
3921   bool needs_deopt =
3922       instrumentation->HasMethodExitListeners() && Runtime::Current()->AreNonStandardExitsEnabled();
3923   if (Dbg::IsForcedInterpreterNeededForException(this) || IsForceInterpreter() || needs_deopt) {
3924     NthCallerVisitor visitor(this, 0, false);
3925     visitor.WalkStack();
3926     if (visitor.GetCurrentQuickFrame() != nullptr) {
3927       if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.GetOuterMethod(), visitor.caller_pc)) {
3928         // method_type shouldn't matter due to exception handling.
3929         const DeoptimizationMethodType method_type = DeoptimizationMethodType::kDefault;
3930         // Save the exception into the deoptimization context so it can be restored
3931         // before entering the interpreter.
3932         PushDeoptimizationContext(
3933             JValue(),
3934             /* is_reference= */ false,
3935             exception,
3936             /* from_code= */ false,
3937             method_type);
3938         artDeoptimize(this, skip_method_exit_callbacks);
3939         UNREACHABLE();
3940       } else {
3941         LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
3942                      << visitor.caller->PrettyMethod();
3943       }
3944     } else {
3945       // This is either top of call stack, or shadow frame.
3946       DCHECK(visitor.caller == nullptr || visitor.IsShadowFrame());
3947     }
3948   }
3949 
3950   // Don't leave exception visible while we try to find the handler, which may cause class
3951   // resolution.
3952   ClearException();
3953   QuickExceptionHandler exception_handler(this, false);
3954   exception_handler.FindCatch(exception, skip_method_exit_callbacks);
3955   if (exception_handler.GetClearException()) {
3956     // Exception was cleared as part of delivery.
3957     DCHECK(!IsExceptionPending());
3958   } else {
3959     // Exception was put back with a throw location.
3960     DCHECK(IsExceptionPending());
3961     // Check the to-space invariant on the re-installed exception (if applicable).
3962     ReadBarrier::MaybeAssertToSpaceInvariant(GetException());
3963   }
3964   exception_handler.DoLongJump();
3965 }
3966 
GetLongJumpContext()3967 Context* Thread::GetLongJumpContext() {
3968   Context* result = tlsPtr_.long_jump_context;
3969   if (result == nullptr) {
3970     result = Context::Create();
3971   } else {
3972     tlsPtr_.long_jump_context = nullptr;  // Avoid context being shared.
3973     result->Reset();
3974   }
3975   return result;
3976 }
3977 
GetCurrentMethod(uint32_t * dex_pc_out,bool check_suspended,bool abort_on_error) const3978 ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc_out,
3979                                     bool check_suspended,
3980                                     bool abort_on_error) const {
3981   // Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
3982   //       so we don't abort in a special situation (thinlocked monitor) when dumping the Java
3983   //       stack.
3984   ArtMethod* method = nullptr;
3985   uint32_t dex_pc = dex::kDexNoIndex;
3986   StackVisitor::WalkStack(
3987       [&](const StackVisitor* visitor) REQUIRES_SHARED(Locks::mutator_lock_) {
3988         ArtMethod* m = visitor->GetMethod();
3989         if (m->IsRuntimeMethod()) {
3990           // Continue if this is a runtime method.
3991           return true;
3992         }
3993         method = m;
3994         dex_pc = visitor->GetDexPc(abort_on_error);
3995         return false;
3996       },
3997       const_cast<Thread*>(this),
3998       /* context= */ nullptr,
3999       StackVisitor::StackWalkKind::kIncludeInlinedFrames,
4000       check_suspended);
4001 
4002   if (dex_pc_out != nullptr) {
4003     *dex_pc_out = dex_pc;
4004   }
4005   return method;
4006 }
4007 
HoldsLock(ObjPtr<mirror::Object> object) const4008 bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
4009   return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
4010 }
4011 
4012 extern std::vector<StackReference<mirror::Object>*> GetProxyReferenceArguments(ArtMethod** sp)
4013     REQUIRES_SHARED(Locks::mutator_lock_);
4014 
4015 // RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
4016 template <typename RootVisitor, bool kPrecise = false>
4017 class ReferenceMapVisitor : public StackVisitor {
4018  public:
ReferenceMapVisitor(Thread * thread,Context * context,RootVisitor & visitor)4019   ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
4020       REQUIRES_SHARED(Locks::mutator_lock_)
4021       // We are visiting the references in compiled frames, so we do not need
4022       // to know the inlined frames.
4023       : StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
4024         visitor_(visitor),
4025         visit_declaring_class_(!Runtime::Current()->GetHeap()->IsPerformingUffdCompaction()) {}
4026 
VisitFrame()4027   bool VisitFrame() override REQUIRES_SHARED(Locks::mutator_lock_) {
4028     if (false) {
4029       LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
4030                 << StringPrintf("@ PC:%04x", GetDexPc());
4031     }
4032     ShadowFrame* shadow_frame = GetCurrentShadowFrame();
4033     if (shadow_frame != nullptr) {
4034       VisitShadowFrame(shadow_frame);
4035     } else if (GetCurrentOatQuickMethodHeader()->IsNterpMethodHeader()) {
4036       VisitNterpFrame();
4037     } else {
4038       VisitQuickFrame();
4039     }
4040     return true;
4041   }
4042 
VisitShadowFrame(ShadowFrame * shadow_frame)4043   void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
4044     ArtMethod* m = shadow_frame->GetMethod();
4045     VisitDeclaringClass(m);
4046     DCHECK(m != nullptr);
4047     size_t num_regs = shadow_frame->NumberOfVRegs();
4048     // handle scope for JNI or References for interpreter.
4049     for (size_t reg = 0; reg < num_regs; ++reg) {
4050       mirror::Object* ref = shadow_frame->GetVRegReference(reg);
4051       if (ref != nullptr) {
4052         mirror::Object* new_ref = ref;
4053         visitor_(&new_ref, reg, this);
4054         if (new_ref != ref) {
4055           shadow_frame->SetVRegReference(reg, new_ref);
4056         }
4057       }
4058     }
4059     // Mark lock count map required for structured locking checks.
4060     shadow_frame->GetLockCountData().VisitMonitors(visitor_, /* vreg= */ -1, this);
4061   }
4062 
4063  private:
4064   // Visiting the declaring class is necessary so that we don't unload the class of a method that
4065   // is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
4066   // the threads do not all hold the heap bitmap lock for parallel GC.
VisitDeclaringClass(ArtMethod * method)4067   void VisitDeclaringClass(ArtMethod* method)
4068       REQUIRES_SHARED(Locks::mutator_lock_)
4069       NO_THREAD_SAFETY_ANALYSIS {
4070     if (!visit_declaring_class_) {
4071       return;
4072     }
4073     ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
4074     // klass can be null for runtime methods.
4075     if (klass != nullptr) {
4076       if (kVerifyImageObjectsMarked) {
4077         gc::Heap* const heap = Runtime::Current()->GetHeap();
4078         gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
4079                                                                                 /*fail_ok=*/true);
4080         if (space != nullptr && space->IsImageSpace()) {
4081           bool failed = false;
4082           if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
4083             failed = true;
4084             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
4085           } else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
4086             failed = true;
4087             LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
4088           }
4089           if (failed) {
4090             GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
4091             space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
4092             LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
4093                                      << " klass@" << klass.Ptr();
4094             // Pretty info last in case it crashes.
4095             LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
4096                        << klass->PrettyClass();
4097           }
4098         }
4099       }
4100       mirror::Object* new_ref = klass.Ptr();
4101       visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kMethodDeclaringClass, this);
4102       if (new_ref != klass) {
4103         method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
4104       }
4105     }
4106   }
4107 
VisitNterpFrame()4108   void VisitNterpFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
4109     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
4110     StackReference<mirror::Object>* vreg_ref_base =
4111         reinterpret_cast<StackReference<mirror::Object>*>(NterpGetReferenceArray(cur_quick_frame));
4112     StackReference<mirror::Object>* vreg_int_base =
4113         reinterpret_cast<StackReference<mirror::Object>*>(NterpGetRegistersArray(cur_quick_frame));
4114     CodeItemDataAccessor accessor((*cur_quick_frame)->DexInstructionData());
4115     const uint16_t num_regs = accessor.RegistersSize();
4116     // An nterp frame has two arrays: a dex register array and a reference array
4117     // that shadows the dex register array but only containing references
4118     // (non-reference dex registers have nulls). See nterp_helpers.cc.
4119     for (size_t reg = 0; reg < num_regs; ++reg) {
4120       StackReference<mirror::Object>* ref_addr = vreg_ref_base + reg;
4121       mirror::Object* ref = ref_addr->AsMirrorPtr();
4122       if (ref != nullptr) {
4123         mirror::Object* new_ref = ref;
4124         visitor_(&new_ref, reg, this);
4125         if (new_ref != ref) {
4126           ref_addr->Assign(new_ref);
4127           StackReference<mirror::Object>* int_addr = vreg_int_base + reg;
4128           int_addr->Assign(new_ref);
4129         }
4130       }
4131     }
4132   }
4133 
4134   template <typename T>
4135   ALWAYS_INLINE
VisitQuickFrameWithVregCallback()4136   inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
4137     ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
4138     DCHECK(cur_quick_frame != nullptr);
4139     ArtMethod* m = *cur_quick_frame;
4140     VisitDeclaringClass(m);
4141 
4142     if (m->IsNative()) {
4143       // TODO: Spill the `this` reference in the AOT-compiled String.charAt()
4144       // slow-path for throwing SIOOBE, so that we can remove this carve-out.
4145       if (UNLIKELY(m->IsIntrinsic()) &&
4146           m->GetIntrinsic() == enum_cast<uint32_t>(Intrinsics::kStringCharAt)) {
4147         // The String.charAt() method is AOT-compiled with an intrinsic implementation
4148         // instead of a JNI stub. It has a slow path that constructs a runtime frame
4149         // for throwing SIOOBE and in that path we do not get the `this` pointer
4150         // spilled on the stack, so there is nothing to visit. We can distinguish
4151         // this from the GenericJni path by checking that the PC is in the boot image
4152         // (PC shall be known thanks to the runtime frame for throwing SIOOBE).
4153         // Note that JIT does not emit that intrinic implementation.
4154         const void* pc = reinterpret_cast<const void*>(GetCurrentQuickFramePc());
4155         if (pc != nullptr && Runtime::Current()->GetHeap()->IsInBootImageOatFile(pc)) {
4156           return;
4157         }
4158       }
4159       // Native methods spill their arguments to the reserved vregs in the caller's frame
4160       // and use pointers to these stack references as jobject, jclass, jarray, etc.
4161       // Note: We can come here for a @CriticalNative method when it needs to resolve the
4162       // target native function but there would be no references to visit below.
4163       const size_t frame_size = GetCurrentQuickFrameInfo().FrameSizeInBytes();
4164       const size_t method_pointer_size = static_cast<size_t>(kRuntimePointerSize);
4165       uint32_t* current_vreg = reinterpret_cast<uint32_t*>(
4166           reinterpret_cast<uint8_t*>(cur_quick_frame) + frame_size + method_pointer_size);
4167       auto visit = [&]() REQUIRES_SHARED(Locks::mutator_lock_) {
4168         auto* ref_addr = reinterpret_cast<StackReference<mirror::Object>*>(current_vreg);
4169         mirror::Object* ref = ref_addr->AsMirrorPtr();
4170         if (ref != nullptr) {
4171           mirror::Object* new_ref = ref;
4172           visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kNativeReferenceArgument, this);
4173           if (ref != new_ref) {
4174             ref_addr->Assign(new_ref);
4175           }
4176         }
4177       };
4178       const char* shorty = m->GetShorty();
4179       if (!m->IsStatic()) {
4180         visit();
4181         current_vreg += 1u;
4182       }
4183       for (shorty += 1u; *shorty != 0; ++shorty) {
4184         switch (*shorty) {
4185           case 'D':
4186           case 'J':
4187             current_vreg += 2u;
4188             break;
4189           case 'L':
4190             visit();
4191             FALLTHROUGH_INTENDED;
4192           default:
4193             current_vreg += 1u;
4194             break;
4195         }
4196       }
4197     } else if (!m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
4198       // Process register map (which native, runtime and proxy methods don't have)
4199       const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
4200       DCHECK(method_header->IsOptimized());
4201       StackReference<mirror::Object>* vreg_base =
4202           reinterpret_cast<StackReference<mirror::Object>*>(cur_quick_frame);
4203       uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
4204       CodeInfo code_info = kPrecise
4205           ? CodeInfo(method_header)  // We will need dex register maps.
4206           : CodeInfo::DecodeGcMasksOnly(method_header);
4207       StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset);
4208       DCHECK(map.IsValid());
4209 
4210       T vreg_info(m, code_info, map, visitor_);
4211 
4212       // Visit stack entries that hold pointers.
4213       BitMemoryRegion stack_mask = code_info.GetStackMaskOf(map);
4214       for (size_t i = 0; i < stack_mask.size_in_bits(); ++i) {
4215         if (stack_mask.LoadBit(i)) {
4216           StackReference<mirror::Object>* ref_addr = vreg_base + i;
4217           mirror::Object* ref = ref_addr->AsMirrorPtr();
4218           if (ref != nullptr) {
4219             mirror::Object* new_ref = ref;
4220             vreg_info.VisitStack(&new_ref, i, this);
4221             if (ref != new_ref) {
4222               ref_addr->Assign(new_ref);
4223             }
4224           }
4225         }
4226       }
4227       // Visit callee-save registers that hold pointers.
4228       uint32_t register_mask = code_info.GetRegisterMaskOf(map);
4229       for (uint32_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
4230         if (register_mask & (1 << i)) {
4231           mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
4232           if (kIsDebugBuild && ref_addr == nullptr) {
4233             std::string thread_name;
4234             GetThread()->GetThreadName(thread_name);
4235             LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
4236             DescribeStack(GetThread());
4237             LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
4238                        << "set in register_mask=" << register_mask << " at " << DescribeLocation();
4239           }
4240           if (*ref_addr != nullptr) {
4241             vreg_info.VisitRegister(ref_addr, i, this);
4242           }
4243         }
4244       }
4245     } else if (!m->IsRuntimeMethod() && m->IsProxyMethod()) {
4246       // If this is a proxy method, visit its reference arguments.
4247       DCHECK(!m->IsStatic());
4248       DCHECK(!m->IsNative());
4249       std::vector<StackReference<mirror::Object>*> ref_addrs =
4250           GetProxyReferenceArguments(cur_quick_frame);
4251       for (StackReference<mirror::Object>* ref_addr : ref_addrs) {
4252         mirror::Object* ref = ref_addr->AsMirrorPtr();
4253         if (ref != nullptr) {
4254           mirror::Object* new_ref = ref;
4255           visitor_(&new_ref, /* vreg= */ JavaFrameRootInfo::kProxyReferenceArgument, this);
4256           if (ref != new_ref) {
4257             ref_addr->Assign(new_ref);
4258           }
4259         }
4260       }
4261     }
4262   }
4263 
VisitQuickFrame()4264   void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
4265     if (kPrecise) {
4266       VisitQuickFramePrecise();
4267     } else {
4268       VisitQuickFrameNonPrecise();
4269     }
4270   }
4271 
VisitQuickFrameNonPrecise()4272   void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
4273     struct UndefinedVRegInfo {
4274       UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
4275                         const CodeInfo& code_info ATTRIBUTE_UNUSED,
4276                         const StackMap& map ATTRIBUTE_UNUSED,
4277                         RootVisitor& _visitor)
4278           : visitor(_visitor) {
4279       }
4280 
4281       ALWAYS_INLINE
4282       void VisitStack(mirror::Object** ref,
4283                       size_t stack_index ATTRIBUTE_UNUSED,
4284                       const StackVisitor* stack_visitor)
4285           REQUIRES_SHARED(Locks::mutator_lock_) {
4286         visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor);
4287       }
4288 
4289       ALWAYS_INLINE
4290       void VisitRegister(mirror::Object** ref,
4291                          size_t register_index ATTRIBUTE_UNUSED,
4292                          const StackVisitor* stack_visitor)
4293           REQUIRES_SHARED(Locks::mutator_lock_) {
4294         visitor(ref, JavaFrameRootInfo::kImpreciseVreg, stack_visitor);
4295       }
4296 
4297       RootVisitor& visitor;
4298     };
4299     VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
4300   }
4301 
VisitQuickFramePrecise()4302   void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
4303     struct StackMapVRegInfo {
4304       StackMapVRegInfo(ArtMethod* method,
4305                        const CodeInfo& _code_info,
4306                        const StackMap& map,
4307                        RootVisitor& _visitor)
4308           : number_of_dex_registers(method->DexInstructionData().RegistersSize()),
4309             code_info(_code_info),
4310             dex_register_map(code_info.GetDexRegisterMapOf(map)),
4311             visitor(_visitor) {
4312         DCHECK_EQ(dex_register_map.size(), number_of_dex_registers);
4313       }
4314 
4315       // TODO: If necessary, we should consider caching a reverse map instead of the linear
4316       //       lookups for each location.
4317       void FindWithType(const size_t index,
4318                         const DexRegisterLocation::Kind kind,
4319                         mirror::Object** ref,
4320                         const StackVisitor* stack_visitor)
4321           REQUIRES_SHARED(Locks::mutator_lock_) {
4322         bool found = false;
4323         for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
4324           DexRegisterLocation location = dex_register_map[dex_reg];
4325           if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
4326             visitor(ref, dex_reg, stack_visitor);
4327             found = true;
4328           }
4329         }
4330 
4331         if (!found) {
4332           // If nothing found, report with unknown.
4333           visitor(ref, JavaFrameRootInfo::kUnknownVreg, stack_visitor);
4334         }
4335       }
4336 
4337       void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
4338           REQUIRES_SHARED(Locks::mutator_lock_) {
4339         const size_t stack_offset = stack_index * kFrameSlotSize;
4340         FindWithType(stack_offset,
4341                      DexRegisterLocation::Kind::kInStack,
4342                      ref,
4343                      stack_visitor);
4344       }
4345 
4346       void VisitRegister(mirror::Object** ref,
4347                          size_t register_index,
4348                          const StackVisitor* stack_visitor)
4349           REQUIRES_SHARED(Locks::mutator_lock_) {
4350         FindWithType(register_index,
4351                      DexRegisterLocation::Kind::kInRegister,
4352                      ref,
4353                      stack_visitor);
4354       }
4355 
4356       size_t number_of_dex_registers;
4357       const CodeInfo& code_info;
4358       DexRegisterMap dex_register_map;
4359       RootVisitor& visitor;
4360     };
4361     VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
4362   }
4363 
4364   // Visitor for when we visit a root.
4365   RootVisitor& visitor_;
4366   bool visit_declaring_class_;
4367 };
4368 
4369 class RootCallbackVisitor {
4370  public:
RootCallbackVisitor(RootVisitor * visitor,uint32_t tid)4371   RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
4372 
operator ()(mirror::Object ** obj,size_t vreg,const StackVisitor * stack_visitor) const4373   void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
4374       REQUIRES_SHARED(Locks::mutator_lock_) {
4375     visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
4376   }
4377 
4378  private:
4379   RootVisitor* const visitor_;
4380   const uint32_t tid_;
4381 };
4382 
VisitReflectiveTargets(ReflectiveValueVisitor * visitor)4383 void Thread::VisitReflectiveTargets(ReflectiveValueVisitor* visitor) {
4384   for (BaseReflectiveHandleScope* brhs = GetTopReflectiveHandleScope();
4385        brhs != nullptr;
4386        brhs = brhs->GetLink()) {
4387     brhs->VisitTargets(visitor);
4388   }
4389 }
4390 
4391 // FIXME: clang-r433403 reports the below function exceeds frame size limit.
4392 // http://b/197647048
4393 #pragma GCC diagnostic push
4394 #pragma GCC diagnostic ignored "-Wframe-larger-than="
4395 template <bool kPrecise>
VisitRoots(RootVisitor * visitor)4396 void Thread::VisitRoots(RootVisitor* visitor) {
4397   const uint32_t thread_id = GetThreadId();
4398   visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
4399   if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
4400     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
4401                        RootInfo(kRootNativeStack, thread_id));
4402   }
4403   if (tlsPtr_.async_exception != nullptr) {
4404     visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.async_exception),
4405                        RootInfo(kRootNativeStack, thread_id));
4406   }
4407   visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
4408   tlsPtr_.jni_env->VisitJniLocalRoots(visitor, RootInfo(kRootJNILocal, thread_id));
4409   tlsPtr_.jni_env->VisitMonitorRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
4410   HandleScopeVisitRoots(visitor, thread_id);
4411   // Visit roots for deoptimization.
4412   if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
4413     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4414     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4415     for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
4416          record != nullptr;
4417          record = record->GetLink()) {
4418       for (ShadowFrame* shadow_frame = record->GetShadowFrame();
4419            shadow_frame != nullptr;
4420            shadow_frame = shadow_frame->GetLink()) {
4421         mapper.VisitShadowFrame(shadow_frame);
4422       }
4423     }
4424   }
4425   for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
4426        record != nullptr;
4427        record = record->GetLink()) {
4428     if (record->IsReference()) {
4429       visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
4430                                   RootInfo(kRootThreadObject, thread_id));
4431     }
4432     visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
4433                                 RootInfo(kRootThreadObject, thread_id));
4434   }
4435   if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
4436     RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4437     ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
4438     for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
4439          record != nullptr;
4440          record = record->GetNext()) {
4441       mapper.VisitShadowFrame(record->GetShadowFrame());
4442     }
4443   }
4444   for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
4445     verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
4446   }
4447   // Visit roots on this thread's stack
4448   RuntimeContextType context;
4449   RootCallbackVisitor visitor_to_callback(visitor, thread_id);
4450   ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
4451   mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
4452 }
4453 #pragma GCC diagnostic pop
4454 
SweepCacheEntry(IsMarkedVisitor * visitor,const Instruction * inst,size_t * value)4455 static void SweepCacheEntry(IsMarkedVisitor* visitor, const Instruction* inst, size_t* value)
4456     REQUIRES_SHARED(Locks::mutator_lock_) {
4457   if (inst == nullptr) {
4458     return;
4459   }
4460   using Opcode = Instruction::Code;
4461   Opcode opcode = inst->Opcode();
4462   switch (opcode) {
4463     case Opcode::NEW_INSTANCE:
4464     case Opcode::CHECK_CAST:
4465     case Opcode::INSTANCE_OF:
4466     case Opcode::NEW_ARRAY:
4467     case Opcode::CONST_CLASS: {
4468       mirror::Class* klass = reinterpret_cast<mirror::Class*>(*value);
4469       if (klass == nullptr || klass == Runtime::GetWeakClassSentinel()) {
4470         return;
4471       }
4472       mirror::Class* new_klass = down_cast<mirror::Class*>(visitor->IsMarked(klass));
4473       if (new_klass == nullptr) {
4474         *value = reinterpret_cast<size_t>(Runtime::GetWeakClassSentinel());
4475       } else if (new_klass != klass) {
4476         *value = reinterpret_cast<size_t>(new_klass);
4477       }
4478       return;
4479     }
4480     case Opcode::CONST_STRING:
4481     case Opcode::CONST_STRING_JUMBO: {
4482       mirror::Object* object = reinterpret_cast<mirror::Object*>(*value);
4483       if (object == nullptr) {
4484         return;
4485       }
4486       mirror::Object* new_object = visitor->IsMarked(object);
4487       // We know the string is marked because it's a strongly-interned string that
4488       // is always alive (see b/117621117 for trying to make those strings weak).
4489       if (kIsDebugBuild && new_object == nullptr) {
4490         // (b/275005060) Currently the problem is reported only on CC GC.
4491         // Therefore we log it with more information. But since the failure rate
4492         // is quite high, sampling it.
4493         if (gUseReadBarrier) {
4494           Runtime* runtime = Runtime::Current();
4495           gc::collector::ConcurrentCopying* cc = runtime->GetHeap()->ConcurrentCopyingCollector();
4496           CHECK_NE(cc, nullptr);
4497           LOG(FATAL) << cc->DumpReferenceInfo(object, "string")
4498                      << " string interned: " << std::boolalpha
4499                      << runtime->GetInternTable()->LookupStrong(Thread::Current(),
4500                                                                 down_cast<mirror::String*>(object))
4501                      << std::noboolalpha;
4502         } else {
4503           // Other GCs
4504           LOG(FATAL) << __FUNCTION__
4505                      << ": IsMarked returned null for a strongly interned string: " << object;
4506         }
4507       } else if (new_object != object) {
4508         *value = reinterpret_cast<size_t>(new_object);
4509       }
4510       return;
4511     }
4512     default:
4513       // The following opcode ranges store non-reference values.
4514       if ((Opcode::IGET <= opcode && opcode <= Opcode::SPUT_SHORT) ||
4515           (Opcode::INVOKE_VIRTUAL <= opcode && opcode <= Opcode::INVOKE_INTERFACE_RANGE)) {
4516         return;  // Nothing to do for the GC.
4517       }
4518       // New opcode is using the cache. We need to explicitly handle it in this method.
4519       DCHECK(false) << "Unhandled opcode " << inst->Opcode();
4520   }
4521 }
4522 
SweepInterpreterCache(IsMarkedVisitor * visitor)4523 void Thread::SweepInterpreterCache(IsMarkedVisitor* visitor) {
4524   for (InterpreterCache::Entry& entry : GetInterpreterCache()->GetArray()) {
4525     SweepCacheEntry(visitor, reinterpret_cast<const Instruction*>(entry.first), &entry.second);
4526   }
4527 }
4528 
4529 // FIXME: clang-r433403 reports the below function exceeds frame size limit.
4530 // http://b/197647048
4531 #pragma GCC diagnostic push
4532 #pragma GCC diagnostic ignored "-Wframe-larger-than="
VisitRoots(RootVisitor * visitor,VisitRootFlags flags)4533 void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
4534   if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
4535     VisitRoots</* kPrecise= */ true>(visitor);
4536   } else {
4537     VisitRoots</* kPrecise= */ false>(visitor);
4538   }
4539 }
4540 #pragma GCC diagnostic pop
4541 
4542 class VerifyRootVisitor : public SingleRootVisitor {
4543  public:
VisitRoot(mirror::Object * root,const RootInfo & info ATTRIBUTE_UNUSED)4544   void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
4545       override REQUIRES_SHARED(Locks::mutator_lock_) {
4546     VerifyObject(root);
4547   }
4548 };
4549 
VerifyStackImpl()4550 void Thread::VerifyStackImpl() {
4551   if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
4552     VerifyRootVisitor visitor;
4553     std::unique_ptr<Context> context(Context::Create());
4554     RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
4555     ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
4556     mapper.WalkStack();
4557   }
4558 }
4559 
4560 // Set the stack end to that to be used during a stack overflow
SetStackEndForStackOverflow()4561 void Thread::SetStackEndForStackOverflow() {
4562   // During stack overflow we allow use of the full stack.
4563   if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
4564     // However, we seem to have already extended to use the full stack.
4565     LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
4566                << GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
4567     DumpStack(LOG_STREAM(ERROR));
4568     LOG(FATAL) << "Recursive stack overflow.";
4569   }
4570 
4571   tlsPtr_.stack_end = tlsPtr_.stack_begin;
4572 
4573   // Remove the stack overflow protection if is it set up.
4574   bool implicit_stack_check = Runtime::Current()->GetImplicitStackOverflowChecks();
4575   if (implicit_stack_check) {
4576     if (!UnprotectStack()) {
4577       LOG(ERROR) << "Unable to remove stack protection for stack overflow";
4578     }
4579   }
4580 }
4581 
SetTlab(uint8_t * start,uint8_t * end,uint8_t * limit)4582 void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
4583   DCHECK_LE(start, end);
4584   DCHECK_LE(end, limit);
4585   tlsPtr_.thread_local_start = start;
4586   tlsPtr_.thread_local_pos  = tlsPtr_.thread_local_start;
4587   tlsPtr_.thread_local_end = end;
4588   tlsPtr_.thread_local_limit = limit;
4589   tlsPtr_.thread_local_objects = 0;
4590 }
4591 
ResetTlab()4592 void Thread::ResetTlab() {
4593   gc::Heap* const heap = Runtime::Current()->GetHeap();
4594   if (heap->GetHeapSampler().IsEnabled()) {
4595     // Note: We always ResetTlab before SetTlab, therefore we can do the sample
4596     // offset adjustment here.
4597     heap->AdjustSampleOffset(GetTlabPosOffset());
4598     VLOG(heap) << "JHP: ResetTlab, Tid: " << GetTid()
4599                << " adjustment = "
4600                << (tlsPtr_.thread_local_pos - tlsPtr_.thread_local_start);
4601   }
4602   SetTlab(nullptr, nullptr, nullptr);
4603 }
4604 
HasTlab() const4605 bool Thread::HasTlab() const {
4606   const bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
4607   if (has_tlab) {
4608     DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
4609   } else {
4610     DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
4611   }
4612   return has_tlab;
4613 }
4614 
AdjustTlab(size_t slide_bytes)4615 void Thread::AdjustTlab(size_t slide_bytes) {
4616   if (HasTlab()) {
4617     tlsPtr_.thread_local_start -= slide_bytes;
4618     tlsPtr_.thread_local_pos -= slide_bytes;
4619     tlsPtr_.thread_local_end -= slide_bytes;
4620     tlsPtr_.thread_local_limit -= slide_bytes;
4621   }
4622 }
4623 
operator <<(std::ostream & os,const Thread & thread)4624 std::ostream& operator<<(std::ostream& os, const Thread& thread) {
4625   thread.ShortDump(os);
4626   return os;
4627 }
4628 
ProtectStack(bool fatal_on_error)4629 bool Thread::ProtectStack(bool fatal_on_error) {
4630   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
4631   VLOG(threads) << "Protecting stack at " << pregion;
4632   if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
4633     if (fatal_on_error) {
4634       // b/249586057, LOG(FATAL) times out
4635       LOG(ERROR) << "Unable to create protected region in stack for implicit overflow check. "
4636           "Reason: "
4637           << strerror(errno) << " size:  " << kStackOverflowProtectedSize;
4638       exit(1);
4639     }
4640     return false;
4641   }
4642   return true;
4643 }
4644 
UnprotectStack()4645 bool Thread::UnprotectStack() {
4646   void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
4647   VLOG(threads) << "Unprotecting stack at " << pregion;
4648   return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
4649 }
4650 
PushVerifier(verifier::MethodVerifier * verifier)4651 void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
4652   verifier->link_ = tlsPtr_.method_verifier;
4653   tlsPtr_.method_verifier = verifier;
4654 }
4655 
PopVerifier(verifier::MethodVerifier * verifier)4656 void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
4657   CHECK_EQ(tlsPtr_.method_verifier, verifier);
4658   tlsPtr_.method_verifier = verifier->link_;
4659 }
4660 
NumberOfHeldMutexes() const4661 size_t Thread::NumberOfHeldMutexes() const {
4662   size_t count = 0;
4663   for (BaseMutex* mu : tlsPtr_.held_mutexes) {
4664     count += mu != nullptr ? 1 : 0;
4665   }
4666   return count;
4667 }
4668 
DeoptimizeWithDeoptimizationException(JValue * result)4669 void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
4670   DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
4671   ClearException();
4672   ObjPtr<mirror::Throwable> pending_exception;
4673   bool from_code = false;
4674   DeoptimizationMethodType method_type;
4675   PopDeoptimizationContext(result, &pending_exception, &from_code, &method_type);
4676   SetTopOfStack(nullptr);
4677 
4678   // Restore the exception that was pending before deoptimization then interpret the
4679   // deoptimized frames.
4680   if (pending_exception != nullptr) {
4681     SetException(pending_exception);
4682   }
4683 
4684   ShadowFrame* shadow_frame = MaybePopDeoptimizedStackedShadowFrame();
4685   // We may not have a shadow frame if we deoptimized at the return of the
4686   // quick_to_interpreter_bridge which got directly called by art_quick_invoke_stub.
4687   if (shadow_frame != nullptr) {
4688     SetTopOfShadowStack(shadow_frame);
4689     interpreter::EnterInterpreterFromDeoptimize(this,
4690                                                 shadow_frame,
4691                                                 result,
4692                                                 from_code,
4693                                                 method_type);
4694   }
4695 }
4696 
SetAsyncException(ObjPtr<mirror::Throwable> new_exception)4697 void Thread::SetAsyncException(ObjPtr<mirror::Throwable> new_exception) {
4698   CHECK(new_exception != nullptr);
4699   Runtime::Current()->SetAsyncExceptionsThrown();
4700   if (kIsDebugBuild) {
4701     // Make sure we are in a checkpoint.
4702     MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
4703     CHECK(this == Thread::Current() || GetSuspendCount() >= 1)
4704         << "It doesn't look like this was called in a checkpoint! this: "
4705         << this << " count: " << GetSuspendCount();
4706   }
4707   tlsPtr_.async_exception = new_exception.Ptr();
4708 }
4709 
ObserveAsyncException()4710 bool Thread::ObserveAsyncException() {
4711   DCHECK(this == Thread::Current());
4712   if (tlsPtr_.async_exception != nullptr) {
4713     if (tlsPtr_.exception != nullptr) {
4714       LOG(WARNING) << "Overwriting pending exception with async exception. Pending exception is: "
4715                    << tlsPtr_.exception->Dump();
4716       LOG(WARNING) << "Async exception is " << tlsPtr_.async_exception->Dump();
4717     }
4718     tlsPtr_.exception = tlsPtr_.async_exception;
4719     tlsPtr_.async_exception = nullptr;
4720     return true;
4721   } else {
4722     return IsExceptionPending();
4723   }
4724 }
4725 
SetException(ObjPtr<mirror::Throwable> new_exception)4726 void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
4727   CHECK(new_exception != nullptr);
4728   // TODO: DCHECK(!IsExceptionPending());
4729   tlsPtr_.exception = new_exception.Ptr();
4730 }
4731 
IsAotCompiler()4732 bool Thread::IsAotCompiler() {
4733   return Runtime::Current()->IsAotCompiler();
4734 }
4735 
GetPeerFromOtherThread() const4736 mirror::Object* Thread::GetPeerFromOtherThread() const {
4737   DCHECK(tlsPtr_.jpeer == nullptr);
4738   mirror::Object* peer = tlsPtr_.opeer;
4739   if (gUseReadBarrier && Current()->GetIsGcMarking()) {
4740     // We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
4741     // may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
4742     // mark/forward it here.
4743     peer = art::ReadBarrier::Mark(peer);
4744   }
4745   return peer;
4746 }
4747 
SetReadBarrierEntrypoints()4748 void Thread::SetReadBarrierEntrypoints() {
4749   // Make sure entrypoints aren't null.
4750   UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active=*/ true);
4751 }
4752 
ClearAllInterpreterCaches()4753 void Thread::ClearAllInterpreterCaches() {
4754   static struct ClearInterpreterCacheClosure : Closure {
4755     void Run(Thread* thread) override {
4756       thread->GetInterpreterCache()->Clear(thread);
4757     }
4758   } closure;
4759   Runtime::Current()->GetThreadList()->RunCheckpoint(&closure);
4760 }
4761 
4762 
ReleaseLongJumpContextInternal()4763 void Thread::ReleaseLongJumpContextInternal() {
4764   // Each QuickExceptionHandler gets a long jump context and uses
4765   // it for doing the long jump, after finding catch blocks/doing deoptimization.
4766   // Both finding catch blocks and deoptimization can trigger another
4767   // exception such as a result of class loading. So there can be nested
4768   // cases of exception handling and multiple contexts being used.
4769   // ReleaseLongJumpContext tries to save the context in tlsPtr_.long_jump_context
4770   // for reuse so there is no need to always allocate a new one each time when
4771   // getting a context. Since we only keep one context for reuse, delete the
4772   // existing one since the passed in context is yet to be used for longjump.
4773   delete tlsPtr_.long_jump_context;
4774 }
4775 
SetNativePriority(int new_priority)4776 void Thread::SetNativePriority(int new_priority) {
4777   palette_status_t status = PaletteSchedSetPriority(GetTid(), new_priority);
4778   CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO);
4779 }
4780 
GetNativePriority() const4781 int Thread::GetNativePriority() const {
4782   int priority = 0;
4783   palette_status_t status = PaletteSchedGetPriority(GetTid(), &priority);
4784   CHECK(status == PALETTE_STATUS_OK || status == PALETTE_STATUS_CHECK_ERRNO);
4785   return priority;
4786 }
4787 
IsSystemDaemon() const4788 bool Thread::IsSystemDaemon() const {
4789   if (GetPeer() == nullptr) {
4790     return false;
4791   }
4792   return WellKnownClasses::java_lang_Thread_systemDaemon->GetBoolean(GetPeer());
4793 }
4794 
StateAndFlagsAsHexString() const4795 std::string Thread::StateAndFlagsAsHexString() const {
4796   std::stringstream result_stream;
4797   result_stream << std::hex << GetStateAndFlags(std::memory_order_relaxed).GetValue();
4798   return result_stream.str();
4799 }
4800 
ScopedExceptionStorage(art::Thread * self)4801 ScopedExceptionStorage::ScopedExceptionStorage(art::Thread* self)
4802     : self_(self), hs_(self_), excp_(hs_.NewHandle<art::mirror::Throwable>(self_->GetException())) {
4803   self_->ClearException();
4804 }
4805 
SuppressOldException(const char * message)4806 void ScopedExceptionStorage::SuppressOldException(const char* message) {
4807   CHECK(self_->IsExceptionPending()) << *self_;
4808   ObjPtr<mirror::Throwable> old_suppressed(excp_.Get());
4809   excp_.Assign(self_->GetException());
4810   if (old_suppressed != nullptr) {
4811     LOG(WARNING) << message << "Suppressing old exception: " << old_suppressed->Dump();
4812   }
4813   self_->ClearException();
4814 }
4815 
~ScopedExceptionStorage()4816 ScopedExceptionStorage::~ScopedExceptionStorage() {
4817   CHECK(!self_->IsExceptionPending()) << *self_;
4818   if (!excp_.IsNull()) {
4819     self_->SetException(excp_.Get());
4820   }
4821 }
4822 
4823 }  // namespace art
4824 
4825 #pragma clang diagnostic pop  // -Wconversion
4826