• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2020 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 #ifndef TENSORFLOW_LITE_KERNELS_INTERNAL_UTILS_SPARSITY_FORMAT_CONVERTER_H_
16 #define TENSORFLOW_LITE_KERNELS_INTERNAL_UTILS_SPARSITY_FORMAT_CONVERTER_H_
17 
18 #include <vector>
19 
20 #include "Eigen/Core"
21 #include "tensorflow/lite/c/common.h"
22 
23 namespace tflite {
24 namespace internal {
25 namespace sparsity {
26 
27 // A converter that keeps an internal representation of sparse tensor parameters
28 // and converts tensors between dense and sparse formats.
29 template <typename T>
30 class FormatConverter {
31  public:
32   /*
33    * Creates a dense to sparse converter.
34    * @param shape             Shape of the dense tensor.
35    * @param traversal_order   In what order to traverse all dimensions,
36    *                          including block dimensions.
37    * @param format            Whether each dimension in the dense tensor is
38    *                          dense or sparse (not in the traversal order).
39    * @param block_size        Size of each block dimension.
40    * @param block_map         Map from block dimension to original tensor
41    *                          dimension.
42    */
43   FormatConverter(const std::vector<int>& shape,
44                   const std::vector<int>& traversal_order,
45                   const std::vector<TfLiteDimensionType>& format,
46                   const std::vector<int>& block_size = {},
47                   const std::vector<int>& block_map = {});
48 
49   /*
50    * Creates a sparse to dense converter.
51    * @param shape             Shape of the target dense tensor.
52    * @param traversal_order   In what order to traverse all dimensions,
53    *                          including block dimensions.
54    * @param format            Whether each dimension in the dense tensor is
55    *                          dense or sparse (not in the traversal order).
56    * @param dense_size        Size of each dense dimension in the sparse tensor.
57    *                          Should be 0 for sparse dimensions.
58    * @param segments          Segments of each dimension in the sparse tensor.
59    *                          Should be empty for dense dimensions.
60    * @param indices           Indices in the dense tensor for each dimension.
61    *                          Should be empty for dense dimensions.
62    * @param block_map         Map from block dimension to original tensor
63    *                          dimension.
64    */
65   FormatConverter(const std::vector<int>& shape,
66                   const std::vector<int>& traversal_order,
67                   const std::vector<TfLiteDimensionType>& format,
68                   const std::vector<int>& dense_size,
69                   const std::vector<std::vector<int>>& segments,
70                   const std::vector<std::vector<int>>& indices,
71                   const std::vector<int>& block_map = {});
72 
73   /* Creates a sparse to dense converter.
74    * @param shape      Shape of the target dense tensor.
75    * @param sparsity   Sparsity parameter of the sparse TfLiteTensor.
76    */
77   FormatConverter(const std::vector<int>& shape,
78                   const TfLiteSparsity& sparsity);
79 
GetData()80   const std::vector<T>& GetData() { return data_; }
GetDimMetadata()81   const std::vector<std::vector<int>>& GetDimMetadata() {
82     return dim_metadata_;
83   }
84 
85   // Method for dense to sparse conversion. Need to call GetData() method to get
86   // the compressed data.
87   TfLiteStatus DenseToSparse(const T* src_data);
88 
89   // Method for sparse to dense conversion. Need to call GetData() method to get
90   // the decompressed data.
91   TfLiteStatus SparseToDense(const T* src_data);
92   // Method for sparse to dense conversion with caller provided buffer. No need
93   // to call GetData() with this method.
94   TfLiteStatus SparseToDense(const T* src_data, const size_t dest_size,
95                              T* dest_data, TfLiteContext* context = nullptr);
96 
97  private:
98   // Helper function for initializing this converter for sparse to dense
99   // conversion.
100   void InitSparseToDenseConverter(std::vector<int> shape,
101                                   std::vector<int> traversal_order,
102                                   std::vector<TfLiteDimensionType> format,
103                                   std::vector<int> dense_size,
104                                   std::vector<std::vector<int>> segments,
105                                   std::vector<std::vector<int>> indices,
106                                   std::vector<int> block_map);
107 
108   // A recursive function to fetch data from the compressed src_data buffer and
109   // populate the dense buffer.
110   void Populate(const T* src_data, std::vector<int> indices, int level,
111                 int prev_idx, int* src_data_ptr, T* dest_data);
112 
113   // Check if val is equal to zero.
114   bool IsZero(const T val);
115 
116   // Shape of the conceptual dense tensor.
117   std::vector<int> dense_shape_;
118   // Shape of the dense tensor with inner blocks reduced. For example, a (4, 4)
119   // tensor with (2, 2) block has blocked_shape (2, 2).
120   std::vector<int> blocked_shape_;
121   // Total number of elements in the dense tensor.
122   size_t dense_size_;
123   // Has n(original dimension)+k(block_dimension) elements.
124   std::vector<int> traversal_order_;
125   // Format of each dimension in the traversal order.
126   std::vector<TfLiteDimensionType> format_;
127   // Size of each block dimension, in the same order as block map.
128   std::vector<int> block_size_;
129   // Map from block dimension to the original tensor dimension.
130   std::vector<int> block_map_;
131   // Metadata of each dimension in the traversal order.
132   // Each dimension needs two vectors. For dense dimensions, the first vector
133   // stores the size of that dimension, and the second vector is empty. For
134   // sparse dimensions, the first vector stores the segments and the second one
135   // stores the indices.
136   std::vector<std::vector<int>> dim_metadata_;
137   // Actual buffer holding data after conversion. Could be sparse buffer or
138   // dense buffer.
139   std::vector<T> data_;
140 };
141 
142 extern template class FormatConverter<int32_t>;
143 extern template class FormatConverter<int8_t>;
144 extern template class FormatConverter<float>;
145 extern template class FormatConverter<Eigen::half>;
146 }  // namespace sparsity
147 }  // namespace internal
148 }  // namespace tflite
149 
150 #endif  // TENSORFLOW_LITE_KERNELS_INTERNAL_UTILS_SPARSITY_FORMAT_CONVERTER_H_
151