1 /* Copyright 2019 The TensorFlow Authors. All Rights Reserved. 2 3 Licensed under the Apache License, Version 2.0 (the "License"); 4 you may not use this file except in compliance with the License. 5 You may obtain a copy of the License at 6 7 http://www.apache.org/licenses/LICENSE-2.0 8 9 Unless required by applicable law or agreed to in writing, software 10 distributed under the License is distributed on an "AS IS" BASIS, 11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 See the License for the specific language governing permissions and 13 limitations under the License. 14 ==============================================================================*/ 15 16 // This file defines common C types and APIs for implementing operations, 17 // delegates and other constructs in TensorFlow Lite. The actual operations and 18 // delegates can be defined using C++, but the interface between the interpreter 19 // and the operations are C. 20 // 21 // Summary of abstractions 22 // TF_LITE_ENSURE - Self-sufficient error checking 23 // TfLiteStatus - Status reporting 24 // TfLiteIntArray - stores tensor shapes (dims), 25 // TfLiteContext - allows an op to access the tensors 26 // TfLiteTensor - tensor (a multidimensional array) 27 // TfLiteNode - a single node or operation 28 // TfLiteRegistration - the implementation of a conceptual operation. 29 // TfLiteDelegate - allows delegation of nodes to alternative backends. 30 // 31 // Some abstractions in this file are created and managed by Interpreter. 32 // 33 // NOTE: The order of values in these structs are "semi-ABI stable". New values 34 // should be added only to the end of structs and never reordered. 35 36 #ifndef TENSORFLOW_LITE_C_COMMON_H_ 37 #define TENSORFLOW_LITE_C_COMMON_H_ 38 39 #include <stdbool.h> 40 #include <stddef.h> 41 #include <stdint.h> 42 43 #include "tensorflow/lite/c/c_api_types.h" // IWYU pragma: export 44 45 #ifdef __cplusplus 46 extern "C" { 47 #endif // __cplusplus 48 49 // The list of external context types known to TF Lite. This list exists solely 50 // to avoid conflicts and to ensure ops can share the external contexts they 51 // need. Access to the external contexts is controlled by one of the 52 // corresponding support files. 53 typedef enum TfLiteExternalContextType { 54 kTfLiteEigenContext = 0, // include eigen_support.h to use. 55 kTfLiteGemmLowpContext = 1, // include gemm_support.h to use. 56 kTfLiteEdgeTpuContext = 2, // Placeholder for Edge TPU support. 57 kTfLiteCpuBackendContext = 3, // include cpu_backend_context.h to use. 58 kTfLiteMaxExternalContexts = 4 59 } TfLiteExternalContextType; 60 61 // Forward declare so dependent structs and methods can reference these types 62 // prior to the struct definitions. 63 struct TfLiteContext; 64 struct TfLiteDelegate; 65 struct TfLiteRegistration; 66 67 // An external context is a collection of information unrelated to the TF Lite 68 // framework, but useful to a subset of the ops. TF Lite knows very little 69 // about the actual contexts, but it keeps a list of them, and is able to 70 // refresh them if configurations like the number of recommended threads 71 // change. 72 typedef struct TfLiteExternalContext { 73 TfLiteExternalContextType type; 74 TfLiteStatus (*Refresh)(struct TfLiteContext* context); 75 } TfLiteExternalContext; 76 77 #define kTfLiteOptionalTensor (-1) 78 79 // Fixed size list of integers. Used for dimensions and inputs/outputs tensor 80 // indices 81 typedef struct TfLiteIntArray { 82 int size; 83 84 #if defined(_MSC_VER) 85 // Context for why this is needed is in http://b/189926408#comment21 86 int data[1]; 87 #elif (!defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \ 88 __GNUC_MINOR__ >= 1) || \ 89 defined(HEXAGON) || \ 90 (defined(__clang__) && __clang_major__ == 7 && __clang_minor__ == 1) 91 // gcc 6.1+ have a bug where flexible members aren't properly handled 92 // https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c 93 int data[0]; 94 #else 95 int data[]; 96 #endif 97 } TfLiteIntArray; 98 99 // Given the size (number of elements) in a TfLiteIntArray, calculate its size 100 // in bytes. 101 size_t TfLiteIntArrayGetSizeInBytes(int size); 102 103 #ifndef TF_LITE_STATIC_MEMORY 104 // Create a array of a given `size` (uninitialized entries). 105 // This returns a pointer, that you must free using TfLiteIntArrayFree(). 106 TfLiteIntArray* TfLiteIntArrayCreate(int size); 107 #endif 108 109 // Check if two intarrays are equal. Returns 1 if they are equal, 0 otherwise. 110 int TfLiteIntArrayEqual(const TfLiteIntArray* a, const TfLiteIntArray* b); 111 112 // Check if an intarray equals an array. Returns 1 if equals, 0 otherwise. 113 int TfLiteIntArrayEqualsArray(const TfLiteIntArray* a, int b_size, 114 const int b_data[]); 115 116 #ifndef TF_LITE_STATIC_MEMORY 117 // Create a copy of an array passed as `src`. 118 // You are expected to free memory with TfLiteIntArrayFree 119 TfLiteIntArray* TfLiteIntArrayCopy(const TfLiteIntArray* src); 120 121 // Free memory of array `a`. 122 void TfLiteIntArrayFree(TfLiteIntArray* a); 123 #endif // TF_LITE_STATIC_MEMORY 124 125 // Fixed size list of floats. Used for per-channel quantization. 126 typedef struct TfLiteFloatArray { 127 int size; 128 #if defined(_MSC_VER) 129 // Context for why this is needed is in http://b/189926408#comment21 130 float data[1]; 131 #elif (!defined(__clang__) && defined(__GNUC__) && __GNUC__ == 6 && \ 132 __GNUC_MINOR__ >= 1) || \ 133 defined(HEXAGON) || \ 134 (defined(__clang__) && __clang_major__ == 7 && __clang_minor__ == 1) 135 // gcc 6.1+ have a bug where flexible members aren't properly handled 136 // https://github.com/google/re2/commit/b94b7cd42e9f02673cd748c1ac1d16db4052514c 137 float data[0]; 138 #else 139 float data[]; 140 #endif 141 } TfLiteFloatArray; 142 143 // Given the size (number of elements) in a TfLiteFloatArray, calculate its size 144 // in bytes. 145 int TfLiteFloatArrayGetSizeInBytes(int size); 146 147 #ifndef TF_LITE_STATIC_MEMORY 148 // Create a array of a given `size` (uninitialized entries). 149 // This returns a pointer, that you must free using TfLiteFloatArrayFree(). 150 TfLiteFloatArray* TfLiteFloatArrayCreate(int size); 151 152 // Free memory of array `a`. 153 void TfLiteFloatArrayFree(TfLiteFloatArray* a); 154 #endif // TF_LITE_STATIC_MEMORY 155 156 // Since we must not depend on any libraries, define a minimal subset of 157 // error macros while avoiding names that have pre-conceived meanings like 158 // assert and check. 159 160 // Try to make all reporting calls through TF_LITE_KERNEL_LOG rather than 161 // calling the context->ReportError function directly, so that message strings 162 // can be stripped out if the binary size needs to be severely optimized. 163 #ifndef TF_LITE_STRIP_ERROR_STRINGS 164 #define TF_LITE_KERNEL_LOG(context, ...) \ 165 do { \ 166 (context)->ReportError((context), __VA_ARGS__); \ 167 } while (false) 168 169 #define TF_LITE_MAYBE_KERNEL_LOG(context, ...) \ 170 do { \ 171 if ((context) != nullptr) { \ 172 (context)->ReportError((context), __VA_ARGS__); \ 173 } \ 174 } while (false) 175 #else // TF_LITE_STRIP_ERROR_STRINGS 176 #define ARGS_UNUSED(...) (void)sizeof(#__VA_ARGS__) 177 #define TF_LITE_KERNEL_LOG(context, ...) ARGS_UNUSED(__VA_ARGS__) 178 #define TF_LITE_MAYBE_KERNEL_LOG(context, ...) ARGS_UNUSED(__VA_ARGS__) 179 #endif // TF_LITE_STRIP_ERROR_STRINGS 180 181 // Check whether value is true, and if not return kTfLiteError from 182 // the current function (and report the error string msg). 183 #define TF_LITE_ENSURE_MSG(context, value, msg) \ 184 do { \ 185 if (!(value)) { \ 186 TF_LITE_KERNEL_LOG((context), __FILE__ " " msg); \ 187 return kTfLiteError; \ 188 } \ 189 } while (0) 190 191 // Check whether the value `a` is true, and if not return kTfLiteError from 192 // the current function, while also reporting the location of the error. 193 #define TF_LITE_ENSURE(context, a) \ 194 do { \ 195 if (!(a)) { \ 196 TF_LITE_KERNEL_LOG((context), "%s:%d %s was not true.", __FILE__, \ 197 __LINE__, #a); \ 198 return kTfLiteError; \ 199 } \ 200 } while (0) 201 202 #define TF_LITE_ENSURE_STATUS(a) \ 203 do { \ 204 const TfLiteStatus s = (a); \ 205 if (s != kTfLiteOk) { \ 206 return s; \ 207 } \ 208 } while (0) 209 210 // Check whether the value `a == b` is true, and if not return kTfLiteError from 211 // the current function, while also reporting the location of the error. 212 // `a` and `b` may be evaluated more than once, so no side effects or 213 // extremely expensive computations should be done. 214 // NOTE: Use TF_LITE_ENSURE_TYPES_EQ if comparing TfLiteTypes. 215 #define TF_LITE_ENSURE_EQ(context, a, b) \ 216 do { \ 217 if ((a) != (b)) { \ 218 TF_LITE_KERNEL_LOG((context), "%s:%d %s != %s (%d != %d)", __FILE__, \ 219 __LINE__, #a, #b, (a), (b)); \ 220 return kTfLiteError; \ 221 } \ 222 } while (0) 223 224 #define TF_LITE_ENSURE_TYPES_EQ(context, a, b) \ 225 do { \ 226 if ((a) != (b)) { \ 227 TF_LITE_KERNEL_LOG((context), "%s:%d %s != %s (%s != %s)", __FILE__, \ 228 __LINE__, #a, #b, TfLiteTypeGetName(a), \ 229 TfLiteTypeGetName(b)); \ 230 return kTfLiteError; \ 231 } \ 232 } while (0) 233 234 #define TF_LITE_ENSURE_NEAR(context, a, b, epsilon) \ 235 do { \ 236 auto delta = ((a) > (b)) ? ((a) - (b)) : ((b) - (a)); \ 237 if (delta > epsilon) { \ 238 TF_LITE_KERNEL_LOG((context), "%s:%d %s not near %s (%f != %f)", \ 239 __FILE__, __LINE__, #a, #b, static_cast<double>(a), \ 240 static_cast<double>(b)); \ 241 return kTfLiteError; \ 242 } \ 243 } while (0) 244 245 #define TF_LITE_ENSURE_OK(context, status) \ 246 do { \ 247 const TfLiteStatus s = (status); \ 248 if ((s) != kTfLiteOk) { \ 249 return s; \ 250 } \ 251 } while (0) 252 253 // Single-precision complex data type compatible with the C99 definition. 254 typedef struct TfLiteComplex64 { 255 float re, im; // real and imaginary parts, respectively. 256 } TfLiteComplex64; 257 258 // Double-precision complex data type compatible with the C99 definition. 259 typedef struct TfLiteComplex128 { 260 double re, im; // real and imaginary parts, respectively. 261 } TfLiteComplex128; 262 263 // Half precision data type compatible with the C99 definition. 264 typedef struct TfLiteFloat16 { 265 uint16_t data; 266 } TfLiteFloat16; 267 268 // Return the name of a given type, for error reporting purposes. 269 const char* TfLiteTypeGetName(TfLiteType type); 270 271 // SupportedQuantizationTypes. 272 typedef enum TfLiteQuantizationType { 273 // No quantization. 274 kTfLiteNoQuantization = 0, 275 // Affine quantization (with support for per-channel quantization). 276 // Corresponds to TfLiteAffineQuantization. 277 kTfLiteAffineQuantization = 1, 278 } TfLiteQuantizationType; 279 280 // Structure specifying the quantization used by the tensor, if-any. 281 typedef struct TfLiteQuantization { 282 // The type of quantization held by params. 283 TfLiteQuantizationType type; 284 // Holds an optional reference to a quantization param structure. The actual 285 // type depends on the value of the `type` field (see the comment there for 286 // the values and corresponding types). 287 void* params; 288 } TfLiteQuantization; 289 290 // Parameters for asymmetric quantization across a dimension (i.e per output 291 // channel quantization). 292 // quantized_dimension specifies which dimension the scales and zero_points 293 // correspond to. 294 // For a particular value in quantized_dimension, quantized values can be 295 // converted back to float using: 296 // real_value = scale * (quantized_value - zero_point) 297 typedef struct TfLiteAffineQuantization { 298 TfLiteFloatArray* scale; 299 TfLiteIntArray* zero_point; 300 int32_t quantized_dimension; 301 } TfLiteAffineQuantization; 302 303 /* A union of pointers that points to memory for a given tensor. */ 304 typedef union TfLitePtrUnion { 305 /* Do not access these members directly, if possible, use 306 * GetTensorData<TYPE>(tensor) instead, otherwise only access .data, as other 307 * members are deprecated. */ 308 int32_t* i32; 309 uint32_t* u32; 310 int64_t* i64; 311 uint64_t* u64; 312 float* f; 313 TfLiteFloat16* f16; 314 double* f64; 315 char* raw; 316 const char* raw_const; 317 uint8_t* uint8; 318 bool* b; 319 int16_t* i16; 320 uint16_t* ui16; 321 TfLiteComplex64* c64; 322 TfLiteComplex128* c128; 323 int8_t* int8; 324 /* Only use this member. */ 325 void* data; 326 } TfLitePtrUnion; 327 328 // Memory allocation strategies. 329 // * kTfLiteMmapRo: Read-only memory-mapped data, or data externally allocated. 330 // * kTfLiteArenaRw: Arena allocated with no guarantees about persistence, 331 // and available during eval. 332 // * kTfLiteArenaRwPersistent: Arena allocated but persistent across eval, and 333 // only available during eval. 334 // * kTfLiteDynamic: Allocated during eval, or for string tensors. 335 // * kTfLitePersistentRo: Allocated and populated during prepare. This is 336 // useful for tensors that can be computed during prepare and treated 337 // as constant inputs for downstream ops (also in prepare). 338 // * kTfLiteCustom: Custom memory allocation provided by the user. See 339 // TfLiteCustomAllocation below. 340 typedef enum TfLiteAllocationType { 341 kTfLiteMemNone = 0, 342 kTfLiteMmapRo, 343 kTfLiteArenaRw, 344 kTfLiteArenaRwPersistent, 345 kTfLiteDynamic, 346 kTfLitePersistentRo, 347 kTfLiteCustom, 348 } TfLiteAllocationType; 349 350 // The delegates should use zero or positive integers to represent handles. 351 // -1 is reserved from unallocated status. 352 typedef int TfLiteBufferHandle; 353 enum { 354 kTfLiteNullBufferHandle = -1, 355 }; 356 357 // Storage format of each dimension in a sparse tensor. 358 typedef enum TfLiteDimensionType { 359 kTfLiteDimDense = 0, 360 kTfLiteDimSparseCSR, 361 } TfLiteDimensionType; 362 363 // Metadata to encode each dimension in a sparse tensor. 364 typedef struct TfLiteDimensionMetadata { 365 TfLiteDimensionType format; 366 int dense_size; 367 TfLiteIntArray* array_segments; 368 TfLiteIntArray* array_indices; 369 } TfLiteDimensionMetadata; 370 371 // Parameters used to encode a sparse tensor. For detailed explanation of each 372 // field please refer to lite/schema/schema.fbs. 373 typedef struct TfLiteSparsity { 374 TfLiteIntArray* traversal_order; 375 TfLiteIntArray* block_map; 376 TfLiteDimensionMetadata* dim_metadata; 377 int dim_metadata_size; 378 } TfLiteSparsity; 379 380 // Defines a custom memory allocation not owned by the runtime. 381 // `data` should be aligned to kDefaultTensorAlignment defined in 382 // lite/util.h. (Currently 64 bytes) 383 // NOTE: See Interpreter.SetCustomAllocationForTensor for details on usage. 384 typedef struct TfLiteCustomAllocation { 385 void* data; 386 size_t bytes; 387 } TfLiteCustomAllocation; 388 389 // The flags used in `Interpreter::SetCustomAllocationForTensor`. 390 // Note that this is a bitmask, so the values should be 1, 2, 4, 8, ...etc. 391 typedef enum TfLiteCustomAllocationFlags { 392 kTfLiteCustomAllocationFlagsNone = 0, 393 // Skips checking whether allocation.data points to an aligned buffer as 394 // expected by the TFLite runtime. 395 // NOTE: Setting this flag can cause crashes when calling Invoke(). 396 // Use with caution. 397 kTfLiteCustomAllocationFlagsSkipAlignCheck = 1, 398 } TfLiteCustomAllocationFlags; 399 400 // A tensor in the interpreter system which is a wrapper around a buffer of 401 // data including a dimensionality (or NULL if not currently defined). 402 #ifndef TF_LITE_STATIC_MEMORY 403 typedef struct TfLiteTensor { 404 // The data type specification for data stored in `data`. This affects 405 // what member of `data` union should be used. 406 TfLiteType type; 407 // A union of data pointers. The appropriate type should be used for a typed 408 // tensor based on `type`. 409 TfLitePtrUnion data; 410 // A pointer to a structure representing the dimensionality interpretation 411 // that the buffer should have. NOTE: the product of elements of `dims` 412 // and the element datatype size should be equal to `bytes` below. 413 TfLiteIntArray* dims; 414 // Quantization information. 415 TfLiteQuantizationParams params; 416 // How memory is mapped 417 // kTfLiteMmapRo: Memory mapped read only. 418 // i.e. weights 419 // kTfLiteArenaRw: Arena allocated read write memory 420 // (i.e. temporaries, outputs). 421 TfLiteAllocationType allocation_type; 422 // The number of bytes required to store the data of this Tensor. I.e. 423 // (bytes of each element) * dims[0] * ... * dims[n-1]. For example, if 424 // type is kTfLiteFloat32 and dims = {3, 2} then 425 // bytes = sizeof(float) * 3 * 2 = 4 * 3 * 2 = 24. 426 size_t bytes; 427 428 // An opaque pointer to a tflite::MMapAllocation 429 const void* allocation; 430 431 // Null-terminated name of this tensor. 432 const char* name; 433 434 // The delegate which knows how to handle `buffer_handle`. 435 // WARNING: This is an experimental interface that is subject to change. 436 struct TfLiteDelegate* delegate; 437 438 // An integer buffer handle that can be handled by `delegate`. 439 // The value is valid only when delegate is not null. 440 // WARNING: This is an experimental interface that is subject to change. 441 TfLiteBufferHandle buffer_handle; 442 443 // If the delegate uses its own buffer (e.g. GPU memory), the delegate is 444 // responsible to set data_is_stale to true. 445 // `delegate->CopyFromBufferHandle` can be called to copy the data from 446 // delegate buffer. 447 // WARNING: This is an // experimental interface that is subject to change. 448 bool data_is_stale; 449 450 // True if the tensor is a variable. 451 bool is_variable; 452 453 // Quantization information. Replaces params field above. 454 TfLiteQuantization quantization; 455 456 // Parameters used to encode a sparse tensor. 457 // This is optional. The field is NULL if a tensor is dense. 458 // WARNING: This is an experimental interface that is subject to change. 459 TfLiteSparsity* sparsity; 460 461 // Optional. Encodes shapes with unknown dimensions with -1. This field is 462 // only populated when unknown dimensions exist in a read-write tensor (i.e. 463 // an input or output tensor). (e.g. `dims` contains [1, 1, 1, 3] and 464 // `dims_signature` contains [1, -1, -1, 3]). Note that this field only 465 // exists when TF_LITE_STATIC_MEMORY is not defined. 466 const TfLiteIntArray* dims_signature; 467 } TfLiteTensor; 468 469 // A structure representing an instance of a node. 470 // This structure only exhibits the inputs, outputs, user defined data and some 471 // node properties (like statefulness), not other features like the type. 472 typedef struct TfLiteNode { 473 // Inputs to this node expressed as indices into the simulator's tensors. 474 TfLiteIntArray* inputs; 475 476 // Outputs to this node expressed as indices into the simulator's tensors. 477 TfLiteIntArray* outputs; 478 479 // intermediate tensors to this node expressed as indices into the simulator's 480 // tensors. 481 TfLiteIntArray* intermediates; 482 483 // Temporary tensors uses during the computations. This usually contains no 484 // tensors, but ops are allowed to change that if they need scratch space of 485 // any sort. 486 TfLiteIntArray* temporaries; 487 488 // Opaque data provided by the node implementer through `Registration.init`. 489 void* user_data; 490 491 // Opaque data provided to the node if the node is a builtin. This is usually 492 // a structure defined in builtin_op_data.h 493 void* builtin_data; 494 495 // Custom initial data. This is the opaque data provided in the flatbuffer. 496 // WARNING: This is an experimental interface that is subject to change. 497 const void* custom_initial_data; 498 int custom_initial_data_size; 499 500 // The pointer to the delegate. This is non-null only when the node is 501 // created by calling `interpreter.ModifyGraphWithDelegate`. 502 // WARNING: This is an experimental interface that is subject to change. 503 struct TfLiteDelegate* delegate; 504 505 // Whether this op might have side effect (e.g. stateful op). 506 bool might_have_side_effect; 507 } TfLiteNode; 508 #else // defined(TF_LITE_STATIC_MEMORY)? 509 // NOTE: This flag is opt-in only at compile time. 510 // 511 // Specific reduced TfLiteTensor struct for TF Micro runtime. This struct 512 // contains only the minimum fields required to initialize and prepare a micro 513 // inference graph. The fields in this struct have been ordered from 514 // largest-to-smallest for optimal struct sizeof. 515 // 516 // This struct does not use: 517 // - allocation 518 // - buffer_handle 519 // - data_is_stale 520 // - delegate 521 // - dims_signature 522 // - name 523 // - sparsity 524 typedef struct TfLiteTensor { 525 // TODO(b/155784997): Consider consolidating these quantization fields: 526 // Quantization information. Replaces params field above. 527 TfLiteQuantization quantization; 528 529 // Quantization information. 530 TfLiteQuantizationParams params; 531 532 // A union of data pointers. The appropriate type should be used for a typed 533 // tensor based on `type`. 534 TfLitePtrUnion data; 535 536 // A pointer to a structure representing the dimensionality interpretation 537 // that the buffer should have. NOTE: the product of elements of `dims` 538 // and the element datatype size should be equal to `bytes` below. 539 TfLiteIntArray* dims; 540 541 // The number of bytes required to store the data of this Tensor. I.e. 542 // (bytes of each element) * dims[0] * ... * dims[n-1]. For example, if 543 // type is kTfLiteFloat32 and dims = {3, 2} then 544 // bytes = sizeof(float) * 3 * 2 = 4 * 3 * 2 = 24. 545 size_t bytes; 546 547 // The data type specification for data stored in `data`. This affects 548 // what member of `data` union should be used. 549 TfLiteType type; 550 551 // How memory is mapped 552 // kTfLiteMmapRo: Memory mapped read only. 553 // i.e. weights 554 // kTfLiteArenaRw: Arena allocated read write memory 555 // (i.e. temporaries, outputs). 556 TfLiteAllocationType allocation_type; 557 558 // True if the tensor is a variable. 559 bool is_variable; 560 } TfLiteTensor; 561 562 // Specific reduced TfLiteNode struct for TF Micro runtime. This struct contains 563 // only the minimum fields required to represent a node. 564 // 565 // This struct does not use: 566 // - delegate 567 // - intermediates 568 // - temporaries 569 typedef struct TfLiteNode { 570 // Inputs to this node expressed as indices into the simulator's tensors. 571 TfLiteIntArray* inputs; 572 573 // Outputs to this node expressed as indices into the simulator's tensors. 574 TfLiteIntArray* outputs; 575 576 // intermediate tensors to this node expressed as indices into the simulator's 577 // tensors. 578 TfLiteIntArray* intermediates; 579 580 // Opaque data provided by the node implementer through `Registration.init`. 581 void* user_data; 582 583 // Opaque data provided to the node if the node is a builtin. This is usually 584 // a structure defined in builtin_op_data.h 585 void* builtin_data; 586 587 // Custom initial data. This is the opaque data provided in the flatbuffer. 588 // WARNING: This is an experimental interface that is subject to change. 589 const void* custom_initial_data; 590 int custom_initial_data_size; 591 } TfLiteNode; 592 #endif // TF_LITE_STATIC_MEMORY 593 594 // Light-weight tensor struct for TF Micro runtime. Provides the minimal amount 595 // of information required for a kernel to run during TfLiteRegistration::Eval. 596 // TODO(b/160955687): Move this field into TF_LITE_STATIC_MEMORY when TFLM 597 // builds with this flag by default internally. 598 typedef struct TfLiteEvalTensor { 599 // A union of data pointers. The appropriate type should be used for a typed 600 // tensor based on `type`. 601 TfLitePtrUnion data; 602 603 // A pointer to a structure representing the dimensionality interpretation 604 // that the buffer should have. 605 TfLiteIntArray* dims; 606 607 // The data type specification for data stored in `data`. This affects 608 // what member of `data` union should be used. 609 TfLiteType type; 610 } TfLiteEvalTensor; 611 612 #ifndef TF_LITE_STATIC_MEMORY 613 // Free data memory of tensor `t`. 614 void TfLiteTensorDataFree(TfLiteTensor* t); 615 616 // Free quantization data. 617 void TfLiteQuantizationFree(TfLiteQuantization* quantization); 618 619 // Free sparsity parameters. 620 void TfLiteSparsityFree(TfLiteSparsity* sparsity); 621 622 // Free memory of tensor `t`. 623 void TfLiteTensorFree(TfLiteTensor* t); 624 625 // Set all of a tensor's fields (and free any previously allocated data). 626 void TfLiteTensorReset(TfLiteType type, const char* name, TfLiteIntArray* dims, 627 TfLiteQuantizationParams quantization, char* buffer, 628 size_t size, TfLiteAllocationType allocation_type, 629 const void* allocation, bool is_variable, 630 TfLiteTensor* tensor); 631 632 // Copies the contents of 'src' in 'dst'. 633 // Function does nothing if either 'src' or 'dst' is passed as nullptr and 634 // return kTfLiteOk. 635 // Returns kTfLiteError if 'src' and 'dst' doesn't have matching data size. 636 // Note function copies contents, so it won't create new data pointer 637 // or change allocation type. 638 // All Tensor related properties will be copied from 'src' to 'dst' like 639 // quantization, sparsity, ... 640 TfLiteStatus TfLiteTensorCopy(const TfLiteTensor* src, TfLiteTensor* dst); 641 642 // Resize the allocated data of a (dynamic) tensor. Tensors with allocation 643 // types other than kTfLiteDynamic will be ignored. 644 void TfLiteTensorRealloc(size_t num_bytes, TfLiteTensor* tensor); 645 #endif // TF_LITE_STATIC_MEMORY 646 647 // WARNING: This is an experimental interface that is subject to change. 648 // 649 // Currently, TfLiteDelegateParams has to be allocated in a way that it's 650 // trivially destructable. It will be stored as `builtin_data` field in 651 // `TfLiteNode` of the delegate node. 652 // 653 // See also the `CreateDelegateParams` function in `interpreter.cc` details. 654 typedef struct TfLiteDelegateParams { 655 struct TfLiteDelegate* delegate; 656 TfLiteIntArray* nodes_to_replace; 657 TfLiteIntArray* input_tensors; 658 TfLiteIntArray* output_tensors; 659 } TfLiteDelegateParams; 660 661 typedef struct TfLiteContext { 662 // Number of tensors in the context. 663 size_t tensors_size; 664 665 // The execution plan contains a list of the node indices in execution 666 // order. execution_plan->size is the current number of nodes. And, 667 // execution_plan->data[0] is the first node that needs to be run. 668 // TfLiteDelegates can traverse the current execution plan by iterating 669 // through each member of this array and using GetNodeAndRegistration() to 670 // access details about a node. i.e. 671 // 672 // TfLiteIntArray* execution_plan; 673 // TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &execution_plan)); 674 // for (int exec_index = 0; exec_index < execution_plan->size; exec_index++) { 675 // int node_index = execution_plan->data[exec_index]; 676 // TfLiteNode* node; 677 // TfLiteRegistration* reg; 678 // context->GetNodeAndRegistration(context, node_index, &node, ®); 679 // } 680 // Note: the memory pointed by '`*execution_plan` is OWNED by TfLite runtime. 681 // Future calls to GetExecutionPlan invalidates earlier outputs. The following 682 // code snippet shows the issue of such an invocation pattern. After calling 683 // CheckNode, subsequent access to `plan_1st` is undefined. 684 // 685 // void CheckNode(const TfLiteNode* node) { 686 // ... 687 // TfLiteIntArray* plan_2nd; 688 // TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &plan_2nd)); 689 // ... 690 // } 691 // 692 // TfLiteIntArray* plan_1st; 693 // TF_LITE_ENSURE_STATUS(context->GetExecutionPlan(context, &plan_1st)); 694 // for (int exec_index = 0; exec_index < plan_1st->size; exec_index++) { 695 // int node_index = plan_1st->data[exec_index]; 696 // TfLiteNode* node; 697 // TfLiteRegistration* reg; 698 // context->GetNodeAndRegistration(context, node_index, &node, ®); 699 // CheckNode(node); 700 // } 701 // 702 // WARNING: This is an experimental interface that is subject to change. 703 TfLiteStatus (*GetExecutionPlan)(struct TfLiteContext* context, 704 TfLiteIntArray** execution_plan); 705 706 // An array of tensors in the interpreter context (of length `tensors_size`) 707 TfLiteTensor* tensors; 708 709 // opaque full context ptr (an opaque c++ data structure) 710 void* impl_; 711 712 // Request memory pointer be resized. Updates dimensions on the tensor. 713 // NOTE: ResizeTensor takes ownership of newSize. 714 TfLiteStatus (*ResizeTensor)(struct TfLiteContext*, TfLiteTensor* tensor, 715 TfLiteIntArray* new_size); 716 // Request that an error be reported with format string msg. 717 void (*ReportError)(struct TfLiteContext*, const char* msg, ...); 718 719 // Add `tensors_to_add` tensors, preserving pre-existing Tensor entries. If 720 // non-null, the value pointed to by `first_new_tensor_index` will be set to 721 // the index of the first new tensor. 722 TfLiteStatus (*AddTensors)(struct TfLiteContext*, int tensors_to_add, 723 int* first_new_tensor_index); 724 725 // Get a Tensor node by node_index. 726 // WARNING: This is an experimental interface that is subject to change. 727 TfLiteStatus (*GetNodeAndRegistration)( 728 struct TfLiteContext*, int node_index, TfLiteNode** node, 729 struct TfLiteRegistration** registration); 730 731 // Replace ops with one or more stub delegate operations. This function 732 // does not take ownership of `nodes_to_replace`. 733 TfLiteStatus (*ReplaceNodeSubsetsWithDelegateKernels)( 734 struct TfLiteContext*, struct TfLiteRegistration registration, 735 const TfLiteIntArray* nodes_to_replace, struct TfLiteDelegate* delegate); 736 737 // Number of threads that are recommended to subsystems like gemmlowp and 738 // eigen. 739 int recommended_num_threads; 740 741 // Access external contexts by type. 742 // WARNING: This is an experimental interface that is subject to change. 743 TfLiteExternalContext* (*GetExternalContext)(struct TfLiteContext*, 744 TfLiteExternalContextType); 745 // Set the value of a external context. Does not take ownership of the 746 // pointer. 747 // WARNING: This is an experimental interface that is subject to change. 748 void (*SetExternalContext)(struct TfLiteContext*, TfLiteExternalContextType, 749 TfLiteExternalContext*); 750 751 // Flag for allowing float16 precision for FP32 calculation. 752 // default: false. 753 // WARNING: This is an experimental API and subject to change. 754 bool allow_fp32_relax_to_fp16; 755 756 // Pointer to the op-level profiler, if set; nullptr otherwise. 757 void* profiler; 758 759 // Allocate persistent buffer which has the same life time as the interpreter. 760 // Returns nullptr on failure. 761 // The memory is allocated from heap for TFL, and from tail in TFLM. 762 // This method is only available in Init or Prepare stage. 763 // WARNING: This is an experimental interface that is subject to change. 764 void* (*AllocatePersistentBuffer)(struct TfLiteContext* ctx, size_t bytes); 765 766 // Allocate a buffer which will be deallocated right after invoke phase. 767 // The memory is allocated from heap in TFL, and from volatile arena in TFLM. 768 // This method is only available in invoke stage. 769 // NOTE: If possible use RequestScratchBufferInArena method to avoid memory 770 // allocation during inference time. 771 // WARNING: This is an experimental interface that is subject to change. 772 TfLiteStatus (*AllocateBufferForEval)(struct TfLiteContext* ctx, size_t bytes, 773 void** ptr); 774 775 // Request a scratch buffer in the arena through static memory planning. 776 // This method is only available in Prepare stage and the buffer is allocated 777 // by the interpreter between Prepare and Eval stage. In Eval stage, 778 // GetScratchBuffer API can be used to fetch the address. 779 // WARNING: This is an experimental interface that is subject to change. 780 TfLiteStatus (*RequestScratchBufferInArena)(struct TfLiteContext* ctx, 781 size_t bytes, int* buffer_idx); 782 783 // Get the scratch buffer pointer. 784 // This method is only available in Eval stage. 785 // WARNING: This is an experimental interface that is subject to change. 786 void* (*GetScratchBuffer)(struct TfLiteContext* ctx, int buffer_idx); 787 788 // Resize the memory pointer of the `tensor`. This method behaves the same as 789 // `ResizeTensor`, except that it makes a copy of the shape array internally 790 // so the shape array could be deallocated right afterwards. 791 // WARNING: This is an experimental interface that is subject to change. 792 TfLiteStatus (*ResizeTensorExplicit)(struct TfLiteContext* ctx, 793 TfLiteTensor* tensor, int dims, 794 const int* shape); 795 796 // This method provides a preview of post-delegation partitioning. Each 797 // TfLiteDelegateParams in the referenced array corresponds to one instance of 798 // the delegate kernel. 799 // Example usage: 800 // 801 // TfLiteIntArray* nodes_to_replace = ...; 802 // TfLiteDelegateParams* params_array; 803 // int num_partitions = 0; 804 // TF_LITE_ENSURE_STATUS(context->PreviewDelegatePartitioning( 805 // context, delegate, nodes_to_replace, ¶ms_array, &num_partitions)); 806 // for (int idx = 0; idx < num_partitions; idx++) { 807 // const auto& partition_params = params_array[idx]; 808 // ... 809 // } 810 // 811 // NOTE: The context owns the memory referenced by partition_params_array. It 812 // will be cleared with another call to PreviewDelegateParitioning, or after 813 // TfLiteDelegateParams::Prepare returns. 814 // 815 // WARNING: This is an experimental interface that is subject to change. 816 TfLiteStatus (*PreviewDelegatePartitioning)( 817 struct TfLiteContext* context, const TfLiteIntArray* nodes_to_replace, 818 TfLiteDelegateParams** partition_params_array, int* num_partitions); 819 820 // Returns a TfLiteTensor struct for a given index. 821 // WARNING: This is an experimental interface that is subject to change. 822 // WARNING: This method may not be available on all platforms. 823 TfLiteTensor* (*GetTensor)(const struct TfLiteContext* context, 824 int tensor_idx); 825 826 // Returns a TfLiteEvalTensor struct for a given index. 827 // WARNING: This is an experimental interface that is subject to change. 828 // WARNING: This method may not be available on all platforms. 829 TfLiteEvalTensor* (*GetEvalTensor)(const struct TfLiteContext* context, 830 int tensor_idx); 831 832 // Retrieves named metadata buffer from the TFLite model. 833 // Returns kTfLiteOk if metadata is successfully obtained from the flatbuffer 834 // Model: that is, there exists a `metadata` entry with given `name` string. 835 // (see TFLite's schema.fbs). 836 // The corresponding `buffer` information is populated in `ptr` & `bytes`. 837 // The data from `ptr` is valid for the lifetime of the Interpreter. 838 // 839 // WARNING: This is an experimental interface that is subject to change. 840 TfLiteStatus (*GetModelMetadata)(const struct TfLiteContext* context, 841 const char* name, const char** ptr, 842 size_t* bytes); 843 } TfLiteContext; 844 845 // `TfLiteRegistrationExternal` is an external version of `TfLiteRegistration` 846 // for C API which doesn't use internal types (such as `TfLiteContext`) but only 847 // uses stable API types (such as `TfLiteOpaqueContext`). The purpose of each 848 // field is the exactly the same as with `TfLiteRegistration`. 849 typedef struct TfLiteRegistrationExternal TfLiteRegistrationExternal; 850 851 typedef struct TfLiteRegistration { 852 // Initializes the op from serialized data. 853 // Called only *once* for the lifetime of the op, so any one-time allocations 854 // should be made here (unless they depend on tensor sizes). 855 // 856 // If a built-in op: 857 // `buffer` is the op's params data (TfLiteLSTMParams*). 858 // `length` is zero. 859 // If custom op: 860 // `buffer` is the op's `custom_options`. 861 // `length` is the size of the buffer. 862 // 863 // Returns a type-punned (i.e. void*) opaque data (e.g. a primitive pointer 864 // or an instance of a struct). 865 // 866 // The returned pointer will be stored with the node in the `user_data` field, 867 // accessible within prepare and invoke functions below. 868 // NOTE: if the data is already in the desired format, simply implement this 869 // function to return `nullptr` and implement the free function to be a no-op. 870 void* (*init)(TfLiteContext* context, const char* buffer, size_t length); 871 872 // The pointer `buffer` is the data previously returned by an init invocation. 873 void (*free)(TfLiteContext* context, void* buffer); 874 875 // prepare is called when the inputs this node depends on have been resized. 876 // context->ResizeTensor() can be called to request output tensors to be 877 // resized. 878 // Can be called multiple times for the lifetime of the op. 879 // 880 // Returns kTfLiteOk on success. 881 TfLiteStatus (*prepare)(TfLiteContext* context, TfLiteNode* node); 882 883 // Execute the node (should read node->inputs and output to node->outputs). 884 // Returns kTfLiteOk on success. 885 TfLiteStatus (*invoke)(TfLiteContext* context, TfLiteNode* node); 886 887 // profiling_string is called during summarization of profiling information 888 // in order to group executions together. Providing a value here will cause a 889 // given op to appear multiple times is the profiling report. This is 890 // particularly useful for custom ops that can perform significantly 891 // different calculations depending on their `user-data`. 892 const char* (*profiling_string)(const TfLiteContext* context, 893 const TfLiteNode* node); 894 895 // Builtin codes. If this kernel refers to a builtin this is the code 896 // of the builtin. This is so we can do marshaling to other frameworks like 897 // NN API. 898 // Note: It is the responsibility of the registration binder to set this 899 // properly. 900 int32_t builtin_code; 901 902 // Custom op name. If the op is a builtin, this will be null. 903 // Note: It is the responsibility of the registration binder to set this 904 // properly. 905 // WARNING: This is an experimental interface that is subject to change. 906 const char* custom_name; 907 908 // The version of the op. 909 // Note: It is the responsibility of the registration binder to set this 910 // properly. 911 int version; 912 913 // The external version of `TfLiteRegistration`. Since we can't use internal 914 // types (such as `TfLiteContext`) for C API to maintain ABI stability. 915 // C API user will provide `TfLiteRegistrationExternal` to implement custom 916 // ops. We keep it inside of `TfLiteRegistration` and use it to route 917 // callbacks properly. 918 TfLiteRegistrationExternal* registration_external; 919 } TfLiteRegistration; 920 921 // Old version of `TfLiteRegistration` to maintain binary backward 922 // compatibility. 923 // WARNING: This structure is deprecated / not an official part of the API. 924 // It should be only used for binary backward compatibility. 925 typedef struct TfLiteRegistration_V1 { 926 void* (*init)(TfLiteContext* context, const char* buffer, size_t length); 927 void (*free)(TfLiteContext* context, void* buffer); 928 TfLiteStatus (*prepare)(TfLiteContext* context, TfLiteNode* node); 929 TfLiteStatus (*invoke)(TfLiteContext* context, TfLiteNode* node); 930 const char* (*profiling_string)(const TfLiteContext* context, 931 const TfLiteNode* node); 932 int32_t builtin_code; 933 const char* custom_name; 934 int version; 935 } TfLiteRegistration_V1; 936 937 // The flags used in `TfLiteDelegate`. Note that this is a bitmask, so the 938 // values should be 1, 2, 4, 8, ...etc. 939 typedef enum TfLiteDelegateFlags { 940 kTfLiteDelegateFlagsNone = 0, 941 // The flag is set if the delegate can handle dynamic sized tensors. 942 // For example, the output shape of a `Resize` op with non-constant shape 943 // can only be inferred when the op is invoked. 944 // In this case, the Delegate is responsible for calling 945 // `SetTensorToDynamic` to mark the tensor as a dynamic tensor, and calling 946 // `ResizeTensor` when invoking the op. 947 // 948 // If the delegate isn't capable to handle dynamic tensors, this flag need 949 // to be set to false. 950 kTfLiteDelegateFlagsAllowDynamicTensors = 1, 951 952 // This flag can be used by delegates (that allow dynamic tensors) to ensure 953 // applicable tensor shapes are automatically propagated in the case of tensor 954 // resizing. 955 // This means that non-dynamic (allocation_type != kTfLiteDynamic) I/O tensors 956 // of a delegate kernel will have correct shapes before its Prepare() method 957 // is called. The runtime leverages TFLite builtin ops in the original 958 // execution plan to propagate shapes. 959 // 960 // A few points to note: 961 // 1. This requires kTfLiteDelegateFlagsAllowDynamicTensors. If that flag is 962 // false, this one is redundant since the delegate kernels are re-initialized 963 // every time tensors are resized. 964 // 2. Enabling this flag adds some overhead to AllocateTensors(), since extra 965 // work is required to prepare the original execution plan. 966 // 3. This flag requires that the original execution plan only have ops with 967 // valid registrations (and not 'dummy' custom ops like with Flex). 968 // WARNING: This feature is experimental and subject to change. 969 kTfLiteDelegateFlagsRequirePropagatedShapes = 2 970 } TfLiteDelegateFlags; 971 972 // WARNING: This is an experimental interface that is subject to change. 973 typedef struct TfLiteDelegate { 974 // Data that delegate needs to identify itself. This data is owned by the 975 // delegate. The delegate is owned in the user code, so the delegate is 976 // responsible for doing this when it is destroyed. 977 void* data_; 978 979 // Invoked by ModifyGraphWithDelegate. This prepare is called, giving the 980 // delegate a view of the current graph through TfLiteContext*. It typically 981 // will look at the nodes and call ReplaceNodeSubsetsWithDelegateKernels() 982 // to ask the TensorFlow lite runtime to create macro-nodes to represent 983 // delegated subgraphs of the original graph. 984 TfLiteStatus (*Prepare)(TfLiteContext* context, 985 struct TfLiteDelegate* delegate); 986 987 // Copy the data from delegate buffer handle into raw memory of the given 988 // 'tensor'. Note that the delegate is allowed to allocate the raw bytes as 989 // long as it follows the rules for kTfLiteDynamic tensors, in which case this 990 // cannot be null. 991 TfLiteStatus (*CopyFromBufferHandle)(TfLiteContext* context, 992 struct TfLiteDelegate* delegate, 993 TfLiteBufferHandle buffer_handle, 994 TfLiteTensor* tensor); 995 996 // Copy the data from raw memory of the given 'tensor' to delegate buffer 997 // handle. This can be null if the delegate doesn't use its own buffer. 998 TfLiteStatus (*CopyToBufferHandle)(TfLiteContext* context, 999 struct TfLiteDelegate* delegate, 1000 TfLiteBufferHandle buffer_handle, 1001 TfLiteTensor* tensor); 1002 1003 // Free the Delegate Buffer Handle. Note: This only frees the handle, but 1004 // this doesn't release the underlying resource (e.g. textures). The 1005 // resources are either owned by application layer or the delegate. 1006 // This can be null if the delegate doesn't use its own buffer. 1007 void (*FreeBufferHandle)(TfLiteContext* context, 1008 struct TfLiteDelegate* delegate, 1009 TfLiteBufferHandle* handle); 1010 1011 // Bitmask flags. See the comments in `TfLiteDelegateFlags`. 1012 int64_t flags; 1013 } TfLiteDelegate; 1014 1015 // Build a 'null' delegate, with all the fields properly set to their default 1016 // values. 1017 TfLiteDelegate TfLiteDelegateCreate(void); 1018 1019 #ifdef __cplusplus 1020 } // extern "C" 1021 #endif // __cplusplus 1022 #endif // TENSORFLOW_LITE_C_COMMON_H_ 1023