• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2019 Google LLC
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "src/gpu/ganesh/geometry/GrQuadUtils.h"
9 
10 #include "include/core/SkRect.h"
11 #include "include/private/gpu/ganesh/GrTypesPriv.h"
12 #include "src/base/SkVx.h"
13 #include "src/core/SkPathPriv.h"
14 #include "src/gpu/ganesh/geometry/GrQuad.h"
15 
16 #include <cmath>
17 
18 using float4 = skvx::float4;
19 using mask4  = skvx::int4; // aliased to 'mask' to emphasize that it will hold boolean SIMD masks.
20 
21 #define AI SK_ALWAYS_INLINE
22 
23 // General tolerance used for denominators, checking div-by-0
24 static constexpr float kTolerance = 1e-9f;
25 // Increased slop when comparing signed distances / lengths
26 static constexpr float kDistTolerance = 1e-2f;
27 static constexpr float kDist2Tolerance = kDistTolerance * kDistTolerance;
28 static constexpr float kInvDistTolerance = 1.f / kDistTolerance;
29 
30 // These rotate the points/edge values either clockwise or counterclockwise assuming tri strip
31 // order.
32 template<typename T>
next_cw(const skvx::Vec<4,T> & v)33 static AI skvx::Vec<4, T> next_cw(const skvx::Vec<4, T>& v) {
34     return skvx::shuffle<2, 0, 3, 1>(v);
35 }
36 
37 template<typename T>
next_ccw(const skvx::Vec<4,T> & v)38 static AI skvx::Vec<4, T> next_ccw(const skvx::Vec<4, T>& v) {
39     return skvx::shuffle<1, 3, 0, 2>(v);
40 }
41 
next_diag(const float4 & v)42 static AI float4 next_diag(const float4& v) {
43     // Same as next_ccw(next_ccw(v)), or next_cw(next_cw(v)), e.g. two rotations either direction.
44     return skvx::shuffle<3, 2, 1, 0>(v);
45 }
46 
47 // Replaces zero-length 'bad' edge vectors with the reversed opposite edge vector.
48 // e3 may be null if only 2D edges need to be corrected for.
correct_bad_edges(const mask4 & bad,float4 * e1,float4 * e2,float4 * e3)49 static AI void correct_bad_edges(const mask4& bad, float4* e1, float4* e2, float4* e3) {
50     if (any(bad)) {
51         // Want opposite edges, L B T R -> R T B L but with flipped sign to preserve winding
52         *e1 = if_then_else(bad, -next_diag(*e1), *e1);
53         *e2 = if_then_else(bad, -next_diag(*e2), *e2);
54         if (e3) {
55             *e3 = if_then_else(bad, -next_diag(*e3), *e3);
56         }
57     }
58 }
59 
60 // Replace 'bad' coordinates by rotating CCW to get the next point. c3 may be null for 2D points.
correct_bad_coords(const mask4 & bad,float4 * c1,float4 * c2,float4 * c3)61 static AI void correct_bad_coords(const mask4& bad, float4* c1, float4* c2, float4* c3) {
62     if (any(bad)) {
63         *c1 = if_then_else(bad, next_ccw(*c1), *c1);
64         *c2 = if_then_else(bad, next_ccw(*c2), *c2);
65         if (c3) {
66             *c3 = if_then_else(bad, next_ccw(*c3), *c3);
67         }
68     }
69 }
70 
71 // Since the local quad may not be type kRect, this uses the opposites for each vertex when
72 // interpolating, and calculates new ws in addition to new xs, ys.
interpolate_local(float alpha,int v0,int v1,int v2,int v3,float lx[4],float ly[4],float lw[4])73 static void interpolate_local(float alpha, int v0, int v1, int v2, int v3,
74                               float lx[4], float ly[4], float lw[4]) {
75     SkASSERT(v0 >= 0 && v0 < 4);
76     SkASSERT(v1 >= 0 && v1 < 4);
77     SkASSERT(v2 >= 0 && v2 < 4);
78     SkASSERT(v3 >= 0 && v3 < 4);
79 
80     float beta = 1.f - alpha;
81     lx[v0] = alpha * lx[v0] + beta * lx[v2];
82     ly[v0] = alpha * ly[v0] + beta * ly[v2];
83     lw[v0] = alpha * lw[v0] + beta * lw[v2];
84 
85     lx[v1] = alpha * lx[v1] + beta * lx[v3];
86     ly[v1] = alpha * ly[v1] + beta * ly[v3];
87     lw[v1] = alpha * lw[v1] + beta * lw[v3];
88 }
89 
90 // Crops v0 to v1 based on the clipDevRect. v2 is opposite of v0, v3 is opposite of v1.
91 // It is written to not modify coordinates if there's no intersection along the edge.
92 // Ideally this would have been detected earlier and the entire draw is skipped.
crop_rect_edge(const SkRect & clipDevRect,int v0,int v1,int v2,int v3,float x[4],float y[4],float lx[4],float ly[4],float lw[4])93 static bool crop_rect_edge(const SkRect& clipDevRect, int v0, int v1, int v2, int v3,
94                            float x[4], float y[4], float lx[4], float ly[4], float lw[4]) {
95     SkASSERT(v0 >= 0 && v0 < 4);
96     SkASSERT(v1 >= 0 && v1 < 4);
97     SkASSERT(v2 >= 0 && v2 < 4);
98     SkASSERT(v3 >= 0 && v3 < 4);
99 
100     if (SkScalarNearlyEqual(x[v0], x[v1])) {
101         // A vertical edge
102         if (x[v0] < clipDevRect.fLeft && x[v2] >= clipDevRect.fLeft) {
103             // Overlapping with left edge of clipDevRect
104             if (lx) {
105                 float alpha = (x[v2] - clipDevRect.fLeft) / (x[v2] - x[v0]);
106                 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
107             }
108             x[v0] = clipDevRect.fLeft;
109             x[v1] = clipDevRect.fLeft;
110             return true;
111         } else if (x[v0] > clipDevRect.fRight && x[v2] <= clipDevRect.fRight) {
112             // Overlapping with right edge of clipDevRect
113             if (lx) {
114                 float alpha = (clipDevRect.fRight - x[v2]) / (x[v0] - x[v2]);
115                 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
116             }
117             x[v0] = clipDevRect.fRight;
118             x[v1] = clipDevRect.fRight;
119             return true;
120         }
121     } else {
122         // A horizontal edge
123         SkASSERT(SkScalarNearlyEqual(y[v0], y[v1]));
124         if (y[v0] < clipDevRect.fTop && y[v2] >= clipDevRect.fTop) {
125             // Overlapping with top edge of clipDevRect
126             if (lx) {
127                 float alpha = (y[v2] - clipDevRect.fTop) / (y[v2] - y[v0]);
128                 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
129             }
130             y[v0] = clipDevRect.fTop;
131             y[v1] = clipDevRect.fTop;
132             return true;
133         } else if (y[v0] > clipDevRect.fBottom && y[v2] <= clipDevRect.fBottom) {
134             // Overlapping with bottom edge of clipDevRect
135             if (lx) {
136                 float alpha = (clipDevRect.fBottom - y[v2]) / (y[v0] - y[v2]);
137                 interpolate_local(alpha, v0, v1, v2, v3, lx, ly, lw);
138             }
139             y[v0] = clipDevRect.fBottom;
140             y[v1] = clipDevRect.fBottom;
141             return true;
142         }
143     }
144 
145     // No overlap so don't crop it
146     return false;
147 }
148 
149 // Updates x and y to intersect with clipDevRect.  lx, ly, and lw are updated appropriately and may
150 // be null to skip calculations. Returns bit mask of edges that were clipped.
crop_rect(const SkRect & clipDevRect,float x[4],float y[4],float lx[4],float ly[4],float lw[4])151 static GrQuadAAFlags crop_rect(const SkRect& clipDevRect, float x[4], float y[4],
152                                float lx[4], float ly[4], float lw[4]) {
153     GrQuadAAFlags clipEdgeFlags = GrQuadAAFlags::kNone;
154 
155     // The quad's left edge may not align with the SkRect notion of left due to 90 degree rotations
156     // or mirrors. So, this processes the logical edges of the quad and clamps it to the 4 sides of
157     // clipDevRect.
158 
159     // Quad's left is v0 to v1 (op. v2 and v3)
160     if (crop_rect_edge(clipDevRect, 0, 1, 2, 3, x, y, lx, ly, lw)) {
161         clipEdgeFlags |= GrQuadAAFlags::kLeft;
162     }
163     // Quad's top edge is v0 to v2 (op. v1 and v3)
164     if (crop_rect_edge(clipDevRect, 0, 2, 1, 3, x, y, lx, ly, lw)) {
165         clipEdgeFlags |= GrQuadAAFlags::kTop;
166     }
167     // Quad's right edge is v2 to v3 (op. v0 and v1)
168     if (crop_rect_edge(clipDevRect, 2, 3, 0, 1, x, y, lx, ly, lw)) {
169         clipEdgeFlags |= GrQuadAAFlags::kRight;
170     }
171     // Quad's bottom edge is v1 to v3 (op. v0 and v2)
172     if (crop_rect_edge(clipDevRect, 1, 3, 0, 2, x, y, lx, ly, lw)) {
173         clipEdgeFlags |= GrQuadAAFlags::kBottom;
174     }
175 
176     return clipEdgeFlags;
177 }
178 
179 // Similar to crop_rect, but assumes that both the device coordinates and optional local coordinates
180 // geometrically match the TL, BL, TR, BR vertex ordering, i.e. axis-aligned but not flipped, etc.
crop_simple_rect(const SkRect & clipDevRect,float x[4],float y[4],float lx[4],float ly[4])181 static GrQuadAAFlags crop_simple_rect(const SkRect& clipDevRect, float x[4], float y[4],
182                                       float lx[4], float ly[4]) {
183     GrQuadAAFlags clipEdgeFlags = GrQuadAAFlags::kNone;
184 
185     // Update local coordinates proportionately to how much the device rect edge was clipped
186     const SkScalar dx = lx ? (lx[2] - lx[0]) / (x[2] - x[0]) : 0.f;
187     const SkScalar dy = ly ? (ly[1] - ly[0]) / (y[1] - y[0]) : 0.f;
188     if (clipDevRect.fLeft > x[0]) {
189         if (lx) {
190             lx[0] += (clipDevRect.fLeft - x[0]) * dx;
191             lx[1] = lx[0];
192         }
193         x[0] = clipDevRect.fLeft;
194         x[1] = clipDevRect.fLeft;
195         clipEdgeFlags |= GrQuadAAFlags::kLeft;
196     }
197     if (clipDevRect.fTop > y[0]) {
198         if (ly) {
199             ly[0] += (clipDevRect.fTop - y[0]) * dy;
200             ly[2] = ly[0];
201         }
202         y[0] = clipDevRect.fTop;
203         y[2] = clipDevRect.fTop;
204         clipEdgeFlags |= GrQuadAAFlags::kTop;
205     }
206     if (clipDevRect.fRight < x[2]) {
207         if (lx) {
208             lx[2] -= (x[2] - clipDevRect.fRight) * dx;
209             lx[3] = lx[2];
210         }
211         x[2] = clipDevRect.fRight;
212         x[3] = clipDevRect.fRight;
213         clipEdgeFlags |= GrQuadAAFlags::kRight;
214     }
215     if (clipDevRect.fBottom < y[1]) {
216         if (ly) {
217             ly[1] -= (y[1] - clipDevRect.fBottom) * dy;
218             ly[3] = ly[1];
219         }
220         y[1] = clipDevRect.fBottom;
221         y[3] = clipDevRect.fBottom;
222         clipEdgeFlags |= GrQuadAAFlags::kBottom;
223     }
224 
225     return clipEdgeFlags;
226 }
227 // Consistent with GrQuad::asRect()'s return value but requires fewer operations since we don't need
228 // to calculate the bounds of the quad.
is_simple_rect(const GrQuad & quad)229 static bool is_simple_rect(const GrQuad& quad) {
230     if (quad.quadType() != GrQuad::Type::kAxisAligned) {
231         return false;
232     }
233     // v0 at the geometric top-left is unique, so we only need to compare x[0] < x[2] for left
234     // and y[0] < y[1] for top, but add a little padding to protect against numerical precision
235     // on R90 and R270 transforms tricking this check.
236     return ((quad.x(0) + SK_ScalarNearlyZero) < quad.x(2)) &&
237            ((quad.y(0) + SK_ScalarNearlyZero) < quad.y(1));
238 }
239 
240 // Calculates barycentric coordinates for each point in (testX, testY) in the triangle formed by
241 // (x0,y0) - (x1,y1) - (x2, y2) and stores them in u, v, w.
barycentric_coords(float x0,float y0,float x1,float y1,float x2,float y2,const float4 & testX,const float4 & testY,float4 * u,float4 * v,float4 * w)242 static bool barycentric_coords(float x0, float y0, float x1, float y1, float x2, float y2,
243                                const float4& testX, const float4& testY,
244                                float4* u, float4* v, float4* w) {
245     // The 32-bit calculations can have catastrophic cancellation if the device-space coordinates
246     // are really big, and this code needs to handle that because we evaluate barycentric coords
247     // pre-cropping to the render target bounds. This preserves some precision by shrinking the
248     // coordinate space if the bounds are large.
249     static constexpr float kCoordLimit = 1e7f; // Big but somewhat arbitrary, fixes crbug:10141204
250     float scaleX = std::max(std::max(x0, x1), x2) - std::min(std::min(x0, x1), x2);
251     float scaleY = std::max(std::max(y0, y1), y2) - std::min(std::min(y0, y1), y2);
252     if (scaleX > kCoordLimit) {
253         scaleX = kCoordLimit / scaleX;
254         x0 *= scaleX;
255         x1 *= scaleX;
256         x2 *= scaleX;
257     } else {
258         // Don't scale anything
259         scaleX = 1.f;
260     }
261     if (scaleY > kCoordLimit) {
262         scaleY = kCoordLimit / scaleY;
263         y0 *= scaleY;
264         y1 *= scaleY;
265         y2 *= scaleY;
266     } else {
267         scaleY = 1.f;
268     }
269 
270     // Modeled after SkPathOpsQuad::pointInTriangle() but uses float instead of double, is
271     // vectorized and outputs normalized barycentric coordinates instead of inside/outside test
272     float v0x = x2 - x0;
273     float v0y = y2 - y0;
274     float v1x = x1 - x0;
275     float v1y = y1 - y0;
276 
277     float dot00 = v0x * v0x + v0y * v0y;
278     float dot01 = v0x * v1x + v0y * v1y;
279     float dot11 = v1x * v1x + v1y * v1y;
280 
281     // Not yet 1/d, first check d != 0 with a healthy tolerance (worst case is we end up not
282     // cropping something we could have, which is better than cropping something we shouldn't have).
283     // The tolerance is partly so large because these comparisons operate in device px^4 units,
284     // with plenty of subtractions thrown in. The SkPathOpsQuad code's use of doubles helped, and
285     // because it only needed to return "inside triangle", it could compare against [0, denom] and
286     // skip the normalization entirely.
287     float invDenom = dot00 * dot11 - dot01 * dot01;
288     static constexpr SkScalar kEmptyTriTolerance = SK_Scalar1 / (1 << 5);
289     if (SkScalarNearlyZero(invDenom, kEmptyTriTolerance)) {
290         // The triangle was degenerate/empty, which can cause the following UVW calculations to
291         // return (0,0,1) for every test point. This in turn makes the cropping code think that the
292         // empty triangle contains the crop rect and we turn the draw into a fullscreen clear, which
293         // is definitely the utter opposite of what we'd expect for an empty shape.
294         return false;
295     } else {
296         // Safe to divide
297         invDenom = sk_ieee_float_divide(1.f, invDenom);
298     }
299 
300     float4 v2x = (scaleX * testX) - x0;
301     float4 v2y = (scaleY * testY) - y0;
302 
303     float4 dot02 = v0x * v2x + v0y * v2y;
304     float4 dot12 = v1x * v2x + v1y * v2y;
305 
306     // These are relative to the vertices, so there's no need to undo the scale factor
307     *u = (dot11 * dot02 - dot01 * dot12) * invDenom;
308     *v = (dot00 * dot12 - dot01 * dot02) * invDenom;
309     *w = 1.f - *u - *v;
310 
311     return true;
312 }
313 
inside_triangle(const float4 & u,const float4 & v,const float4 & w)314 static mask4 inside_triangle(const float4& u, const float4& v, const float4& w) {
315     return ((u >= 0.f) & (u <= 1.f)) & ((v >= 0.f) & (v <= 1.f)) & ((w >= 0.f) & (w <= 1.f));
316 }
317 
318 ///////////////////////////////////////////////////////////////////////////////////////////////////
319 
projectedBounds() const320 SkRect GrQuad::projectedBounds() const {
321     float4 xs = this->x4f();
322     float4 ys = this->y4f();
323     float4 ws = this->w4f();
324     mask4 clipW = ws < SkPathPriv::kW0PlaneDistance;
325     if (any(clipW)) {
326         float4 x2d = xs / ws;
327         float4 y2d = ys / ws;
328         // Bounds of just the projected points in front of w = epsilon
329         SkRect frontBounds = {
330             min(if_then_else(clipW, float4(SK_ScalarInfinity), x2d)),
331             min(if_then_else(clipW, float4(SK_ScalarInfinity), y2d)),
332             max(if_then_else(clipW, float4(SK_ScalarNegativeInfinity), x2d)),
333             max(if_then_else(clipW, float4(SK_ScalarNegativeInfinity), y2d))
334         };
335         // Calculate clipped coordinates by following CCW edges, only keeping points where the w
336         // actually changes sign between the vertices.
337         float4 t = (SkPathPriv::kW0PlaneDistance - ws) / (next_ccw(ws) - ws);
338         x2d = (t * next_ccw(xs) + (1.f - t) * xs) / SkPathPriv::kW0PlaneDistance;
339         y2d = (t * next_ccw(ys) + (1.f - t) * ys) / SkPathPriv::kW0PlaneDistance;
340         // True if (w < e) xor (ccw(w) < e), i.e. crosses the w = epsilon plane
341         clipW = clipW ^ (next_ccw(ws) < SkPathPriv::kW0PlaneDistance);
342         return {
343             min(if_then_else(clipW, x2d, float4(frontBounds.fLeft))),
344             min(if_then_else(clipW, y2d, float4(frontBounds.fTop))),
345             max(if_then_else(clipW, x2d, float4(frontBounds.fRight))),
346             max(if_then_else(clipW, y2d, float4(frontBounds.fBottom)))
347         };
348     } else {
349         // Nothing is behind the viewer, so the projection is straight forward and valid
350         ws = 1.f / ws;
351         float4 x2d = xs * ws;
352         float4 y2d = ys * ws;
353         return {min(x2d), min(y2d), max(x2d), max(y2d)};
354     }
355 }
356 
357 ///////////////////////////////////////////////////////////////////////////////////////////////////
358 
359 namespace GrQuadUtils {
360 
ResolveAAType(GrAAType requestedAAType,GrQuadAAFlags requestedEdgeFlags,const GrQuad & quad,GrAAType * outAAType,GrQuadAAFlags * outEdgeFlags)361 void ResolveAAType(GrAAType requestedAAType, GrQuadAAFlags requestedEdgeFlags, const GrQuad& quad,
362                    GrAAType* outAAType, GrQuadAAFlags* outEdgeFlags) {
363     // Most cases will keep the requested types unchanged
364     *outAAType = requestedAAType;
365     *outEdgeFlags = requestedEdgeFlags;
366 
367     switch (requestedAAType) {
368         // When aa type is coverage, disable AA if the edge configuration doesn't actually need it
369         case GrAAType::kCoverage:
370             if (requestedEdgeFlags == GrQuadAAFlags::kNone) {
371                 // This can happen when quads are drawn in bulk, where the requestedAAType was
372                 // conservatively enabled and the edge flags are per-entry.
373                 *outAAType = GrAAType::kNone;
374             } else if (quad.quadType() == GrQuad::Type::kAxisAligned &&
375                        !quad.aaHasEffectOnRect(requestedEdgeFlags)) {
376                 // For coverage AA, if the quad is a rect and AA-enabled edges line up with pixel
377                 // boundaries, then overall AA and per-edge AA can be completely disabled.
378                 *outAAType = GrAAType::kNone;
379                 *outEdgeFlags = GrQuadAAFlags::kNone;
380             }
381 
382             break;
383         // For no or msaa anti aliasing, override the edge flags since edge flags only make sense
384         // when coverage aa is being used.
385         case GrAAType::kNone:
386             *outEdgeFlags = GrQuadAAFlags::kNone;
387             break;
388         case GrAAType::kMSAA:
389             *outEdgeFlags = GrQuadAAFlags::kAll;
390             break;
391     }
392 }
393 
ClipToW0(DrawQuad * quad,DrawQuad * extraVertices)394 int ClipToW0(DrawQuad* quad, DrawQuad* extraVertices) {
395     using Vertices = TessellationHelper::Vertices;
396 
397     SkASSERT(quad && extraVertices);
398 
399     if (quad->fDevice.quadType() < GrQuad::Type::kPerspective) {
400         // W implicitly 1s for each vertex, so nothing to do but draw unmodified 'quad'
401         return 1;
402     }
403 
404     mask4 validW = quad->fDevice.w4f() >= SkPathPriv::kW0PlaneDistance;
405     if (all(validW)) {
406         // Nothing to clip, can proceed normally drawing just 'quad'
407         return 1;
408     } else if (!any(validW)) {
409         // Everything is clipped, so draw nothing
410         return 0;
411     }
412 
413     // The clipped local coordinates will most likely not remain rectilinear
414     GrQuad::Type localType = quad->fLocal.quadType();
415     if (localType < GrQuad::Type::kGeneral) {
416         localType = GrQuad::Type::kGeneral;
417     }
418 
419     // If we got here, there are 1, 2, or 3 points behind the w = 0 plane. If 2 or 3 points are
420     // clipped we can define a new quad that covers the clipped shape directly. If there's 1 clipped
421     // out, the new geometry is a pentagon.
422     Vertices v;
423     v.reset(quad->fDevice, &quad->fLocal);
424 
425     int clipCount = (validW[0] ? 0 : 1) + (validW[1] ? 0 : 1) +
426                     (validW[2] ? 0 : 1) + (validW[3] ? 0 : 1);
427     SkASSERT(clipCount >= 1 && clipCount <= 3);
428 
429     // FIXME de-duplicate from the projectedBounds() calculations.
430     float4 t = (SkPathPriv::kW0PlaneDistance - v.fW) / (next_ccw(v.fW) - v.fW);
431 
432     Vertices clip;
433     clip.fX = (t * next_ccw(v.fX) + (1.f - t) * v.fX);
434     clip.fY = (t * next_ccw(v.fY) + (1.f - t) * v.fY);
435     clip.fW = SkPathPriv::kW0PlaneDistance;
436 
437     clip.fU = (t * next_ccw(v.fU) + (1.f - t) * v.fU);
438     clip.fV = (t * next_ccw(v.fV) + (1.f - t) * v.fV);
439     clip.fR = (t * next_ccw(v.fR) + (1.f - t) * v.fR);
440 
441     mask4 ccwValid = next_ccw(v.fW) >= SkPathPriv::kW0PlaneDistance;
442     mask4 cwValid  = next_cw(v.fW)  >= SkPathPriv::kW0PlaneDistance;
443 
444     if (clipCount != 1) {
445         // Simplest case, replace behind-w0 points with their clipped points by following CCW edge
446         // or CW edge, depending on if the edge crosses from neg. to pos. w or pos. to neg.
447         SkASSERT(clipCount == 2 || clipCount == 3);
448 
449         // NOTE: when 3 vertices are clipped, this results in a degenerate quad where one vertex
450         // is replicated. This is preferably to inserting a 3rd vertex on the w = 0 intersection
451         // line because two parallel edges make inset/outset math unstable for large quads.
452         v.fX = if_then_else(validW, v.fX,
453                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fX),
454                                if_then_else(ccwValid, clip.fX, /* cwValid */ next_cw(clip.fX))));
455         v.fY = if_then_else(validW, v.fY,
456                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fY),
457                                if_then_else(ccwValid, clip.fY, /* cwValid */ next_cw(clip.fY))));
458         v.fW = if_then_else(validW, v.fW, clip.fW);
459 
460         v.fU = if_then_else(validW, v.fU,
461                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fU),
462                                if_then_else(ccwValid, clip.fU, /* cwValid */ next_cw(clip.fU))));
463         v.fV = if_then_else(validW, v.fV,
464                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fV),
465                                if_then_else(ccwValid, clip.fV, /* cwValid */ next_cw(clip.fV))));
466         v.fR = if_then_else(validW, v.fR,
467                        if_then_else((!ccwValid) & (!cwValid), next_ccw(clip.fR),
468                                if_then_else(ccwValid, clip.fR, /* cwValid */ next_cw(clip.fR))));
469 
470         // For 2 or 3 clipped vertices, the resulting shape is a quad or a triangle, so it can be
471         // entirely represented in 'quad'.
472         v.asGrQuads(&quad->fDevice, GrQuad::Type::kPerspective,
473                     &quad->fLocal, localType);
474         return 1;
475     } else {
476         // The clipped geometry is a pentagon, so it will be represented as two quads connected by
477         // a new non-AA edge. Use the midpoint along one of the unclipped edges as a split vertex.
478         Vertices mid;
479         mid.fX = 0.5f * (v.fX + next_ccw(v.fX));
480         mid.fY = 0.5f * (v.fY + next_ccw(v.fY));
481         mid.fW = 0.5f * (v.fW + next_ccw(v.fW));
482 
483         mid.fU = 0.5f * (v.fU + next_ccw(v.fU));
484         mid.fV = 0.5f * (v.fV + next_ccw(v.fV));
485         mid.fR = 0.5f * (v.fR + next_ccw(v.fR));
486 
487         // Make a quad formed by the 2 clipped points, the inserted mid point, and the good vertex
488         // that is CCW rotated from the clipped vertex.
489         Vertices v2;
490         v2.fUVRCount = v.fUVRCount;
491         v2.fX = if_then_else((!validW) | (!ccwValid), clip.fX,
492                         if_then_else(cwValid, next_cw(mid.fX), v.fX));
493         v2.fY = if_then_else((!validW) | (!ccwValid), clip.fY,
494                         if_then_else(cwValid, next_cw(mid.fY), v.fY));
495         v2.fW = if_then_else((!validW) | (!ccwValid), clip.fW,
496                         if_then_else(cwValid, next_cw(mid.fW), v.fW));
497 
498         v2.fU = if_then_else((!validW) | (!ccwValid), clip.fU,
499                         if_then_else(cwValid, next_cw(mid.fU), v.fU));
500         v2.fV = if_then_else((!validW) | (!ccwValid), clip.fV,
501                         if_then_else(cwValid, next_cw(mid.fV), v.fV));
502         v2.fR = if_then_else((!validW) | (!ccwValid), clip.fR,
503                         if_then_else(cwValid, next_cw(mid.fR), v.fR));
504         // The non-AA edge for this quad is the opposite of the clipped vertex's edge
505         GrQuadAAFlags v2EdgeFlag = (!validW[0] ? GrQuadAAFlags::kRight  : // left clipped -> right
506                                    (!validW[1] ? GrQuadAAFlags::kTop    : // bottom clipped -> top
507                                    (!validW[2] ? GrQuadAAFlags::kBottom : // top clipped -> bottom
508                                                  GrQuadAAFlags::kLeft))); // right clipped -> left
509         extraVertices->fEdgeFlags = quad->fEdgeFlags & ~v2EdgeFlag;
510 
511         // Make a quad formed by the remaining two good vertices, one clipped point, and the
512         // inserted mid point.
513         v.fX = if_then_else(!validW, next_cw(clip.fX),
514                        if_then_else(!cwValid, mid.fX, v.fX));
515         v.fY = if_then_else(!validW, next_cw(clip.fY),
516                        if_then_else(!cwValid, mid.fY, v.fY));
517         v.fW = if_then_else(!validW, clip.fW,
518                        if_then_else(!cwValid, mid.fW, v.fW));
519 
520         v.fU = if_then_else(!validW, next_cw(clip.fU),
521                        if_then_else(!cwValid, mid.fU, v.fU));
522         v.fV = if_then_else(!validW, next_cw(clip.fV),
523                        if_then_else(!cwValid, mid.fV, v.fV));
524         v.fR = if_then_else(!validW, next_cw(clip.fR),
525                        if_then_else(!cwValid, mid.fR, v.fR));
526         // The non-AA edge for this quad is the clipped vertex's edge
527         GrQuadAAFlags v1EdgeFlag = (!validW[0] ? GrQuadAAFlags::kLeft   :
528                                    (!validW[1] ? GrQuadAAFlags::kBottom :
529                                    (!validW[2] ? GrQuadAAFlags::kTop    :
530                                                  GrQuadAAFlags::kRight)));
531 
532         v.asGrQuads(&quad->fDevice, GrQuad::Type::kPerspective,
533                     &quad->fLocal, localType);
534         quad->fEdgeFlags &= ~v1EdgeFlag;
535 
536         v2.asGrQuads(&extraVertices->fDevice, GrQuad::Type::kPerspective,
537                      &extraVertices->fLocal, localType);
538         // Caller must draw both 'quad' and 'extraVertices' to cover the clipped geometry
539         return 2;
540     }
541 }
542 
CropToRect(const SkRect & cropRect,GrAA cropAA,DrawQuad * quad,bool computeLocal)543 bool CropToRect(const SkRect& cropRect, GrAA cropAA, DrawQuad* quad, bool computeLocal) {
544     SkASSERT(quad->fDevice.isFinite());
545 
546     if (quad->fDevice.quadType() == GrQuad::Type::kAxisAligned) {
547         // crop_rect and crop_rect_simple keep the rectangles as rectangles, so the intersection
548         // of the crop and quad can be calculated exactly. Some care must be taken if the quad
549         // is axis-aligned but does not satisfy asRect() due to flips, etc.
550         GrQuadAAFlags clippedEdges;
551         if (computeLocal) {
552             if (is_simple_rect(quad->fDevice) && is_simple_rect(quad->fLocal)) {
553                 clippedEdges = crop_simple_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
554                                                 quad->fLocal.xs(), quad->fLocal.ys());
555             } else {
556                 clippedEdges = crop_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
557                                          quad->fLocal.xs(), quad->fLocal.ys(), quad->fLocal.ws());
558             }
559         } else {
560             if (is_simple_rect(quad->fDevice)) {
561                 clippedEdges = crop_simple_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
562                                                 nullptr, nullptr);
563             } else {
564                 clippedEdges = crop_rect(cropRect, quad->fDevice.xs(), quad->fDevice.ys(),
565                                          nullptr, nullptr, nullptr);
566             }
567         }
568 
569         // Apply the clipped edge updates to the original edge flags
570         if (cropAA == GrAA::kYes) {
571             // Turn on all edges that were clipped
572             quad->fEdgeFlags |= clippedEdges;
573         } else {
574             // Turn off all edges that were clipped
575             quad->fEdgeFlags &= ~clippedEdges;
576         }
577         return true;
578     }
579 
580     if (computeLocal || quad->fDevice.quadType() == GrQuad::Type::kPerspective) {
581         // FIXME (michaelludwig) Calculate cropped local coordinates when not kAxisAligned
582         // FIXME (michaelludwig) crbug.com/1204347 and skbug.com/9906 - disable this when there's
583         // perspective; it does not prove numerical robust enough in the wild and should be
584         // revisited.
585         return false;
586     }
587 
588     float4 devX = quad->fDevice.x4f();
589     float4 devY = quad->fDevice.y4f();
590 
591     float4 clipX = {cropRect.fLeft, cropRect.fLeft, cropRect.fRight, cropRect.fRight};
592     float4 clipY = {cropRect.fTop, cropRect.fBottom, cropRect.fTop, cropRect.fBottom};
593 
594     // Calculate barycentric coordinates for the 4 rect corners in the 2 triangles that the quad
595     // is tessellated into when drawn.
596     float4 u1, v1, w1;
597     float4 u2, v2, w2;
598     if (!barycentric_coords(devX[0], devY[0], devX[1], devY[1], devX[2], devY[2], clipX, clipY,
599                             &u1, &v1, &w1) ||
600         !barycentric_coords(devX[1], devY[1], devX[3], devY[3], devX[2], devY[2], clipX, clipY,
601                             &u2, &v2, &w2)) {
602         // Bad triangles, skip cropping
603         return false;
604     }
605 
606     // clipDevRect is completely inside this quad if each corner is in at least one of two triangles
607     mask4 inTri1 = inside_triangle(u1, v1, w1);
608     mask4 inTri2 = inside_triangle(u2, v2, w2);
609     if (all(inTri1 | inTri2)) {
610         // We can crop to exactly the clipDevRect.
611         // FIXME (michaelludwig) - there are other ways to have determined quad covering the clip
612         // rect, but the barycentric coords will be useful to derive local coordinates in the future
613 
614         // Since we are cropped to exactly clipDevRect, we have discarded any perspective and the
615         // type becomes kRect. If updated locals were requested, they will incorporate perspective.
616         // FIXME (michaelludwig) - once we have local coordinates handled, it may be desirable to
617         // keep the draw as perspective so that the hardware does perspective interpolation instead
618         // of pushing it into a local coord w and having the shader do an extra divide.
619         clipX.store(quad->fDevice.xs());
620         clipY.store(quad->fDevice.ys());
621         quad->fDevice.setQuadType(GrQuad::Type::kAxisAligned);
622 
623         // Update the edge flags to match the clip setting since all 4 edges have been clipped
624         quad->fEdgeFlags = cropAA == GrAA::kYes ? GrQuadAAFlags::kAll : GrQuadAAFlags::kNone;
625 
626         return true;
627     }
628 
629     // FIXME (michaelludwig) - use TessellationHelper's inset/outset math to move
630     // edges to the closest clip corner they are outside of
631 
632     return false;
633 }
634 
WillUseHairline(const GrQuad & quad,GrAAType aaType,GrQuadAAFlags edgeFlags)635 bool WillUseHairline(const GrQuad& quad, GrAAType aaType, GrQuadAAFlags edgeFlags) {
636     if (aaType != GrAAType::kCoverage || edgeFlags != GrQuadAAFlags::kAll) {
637         // Non-aa or msaa don't do any outsetting so they will not be hairlined; mixed edge flags
638         // could be hairlined in theory, but applying hairline bloat would extend beyond the
639         // original tiled shape.
640         return false;
641     }
642 
643     if (quad.quadType() == GrQuad::Type::kAxisAligned) {
644         // Fast path that avoids computing edge properties via TessellationHelper.
645         // Taking the absolute value of the diagonals always produces the minimum of width or
646         // height given that this is axis-aligned, regardless of mirror or 90/180-degree rotations.
647         float d = std::min(std::abs(quad.x(3) - quad.x(0)), std::abs(quad.y(3) - quad.y(0)));
648         return d < 1.f;
649     } else {
650         TessellationHelper helper;
651         helper.reset(quad, nullptr);
652         return helper.isSubpixel();
653     }
654 }
655 
656 ///////////////////////////////////////////////////////////////////////////////////////////////////
657 // TessellationHelper implementation and helper struct implementations
658 ///////////////////////////////////////////////////////////////////////////////////////////////////
659 
660 //** EdgeVectors implementation
661 
reset(const skvx::Vec<4,float> & xs,const skvx::Vec<4,float> & ys,const skvx::Vec<4,float> & ws,GrQuad::Type quadType)662 void TessellationHelper::EdgeVectors::reset(const skvx::Vec<4, float>& xs,
663                                             const skvx::Vec<4, float>& ys,
664                                             const skvx::Vec<4, float>& ws,
665                                             GrQuad::Type quadType) {
666     // Calculate all projected edge vector values for this quad.
667     if (quadType == GrQuad::Type::kPerspective) {
668         float4 iw = 1.f / ws;
669         fX2D = xs * iw;
670         fY2D = ys * iw;
671     } else {
672         fX2D = xs;
673         fY2D = ys;
674     }
675 
676     fDX = next_ccw(fX2D) - fX2D;
677     fDY = next_ccw(fY2D) - fY2D;
678     fInvLengths = 1.f / sqrt(fDX*fDX + fDY*fDY);
679 
680     // Normalize edge vectors
681     fDX *= fInvLengths;
682     fDY *= fInvLengths;
683 
684     // Calculate angles between vectors
685     if (quadType <= GrQuad::Type::kRectilinear) {
686         fCosTheta = 0.f;
687         fInvSinTheta = 1.f;
688     } else {
689         fCosTheta = fDX*next_cw(fDX) + fDY*next_cw(fDY);
690         // NOTE: if cosTheta is close to 1, inset/outset math will avoid the fast paths that rely
691         // on thefInvSinTheta since it will approach infinity.
692         fInvSinTheta = 1.f / sqrt(1.f - fCosTheta * fCosTheta);
693     }
694 }
695 
696 //** EdgeEquations implementation
697 
reset(const EdgeVectors & edgeVectors)698 void TessellationHelper::EdgeEquations::reset(const EdgeVectors& edgeVectors) {
699     float4 dx = edgeVectors.fDX;
700     float4 dy = edgeVectors.fDY;
701     // Correct for bad edges by copying adjacent edge information into the bad component
702     correct_bad_edges(edgeVectors.fInvLengths >= kInvDistTolerance, &dx, &dy, nullptr);
703 
704     float4 c = dx*edgeVectors.fY2D - dy*edgeVectors.fX2D;
705     // Make sure normals point into the shape
706     float4 test = dy * next_cw(edgeVectors.fX2D) + (-dx * next_cw(edgeVectors.fY2D) + c);
707     if (any(test < -kDistTolerance)) {
708         fA = -dy;
709         fB = dx;
710         fC = -c;
711     } else {
712         fA = dy;
713         fB = -dx;
714         fC = c;
715     }
716 }
717 
estimateCoverage(const float4 & x2d,const float4 & y2d) const718 float4 TessellationHelper::EdgeEquations::estimateCoverage(const float4& x2d,
719                                                            const float4& y2d) const {
720     // Calculate distance of the 4 inset points (px, py) to the 4 edges
721     float4 d0 = fA[0]*x2d + (fB[0]*y2d + fC[0]);
722     float4 d1 = fA[1]*x2d + (fB[1]*y2d + fC[1]);
723     float4 d2 = fA[2]*x2d + (fB[2]*y2d + fC[2]);
724     float4 d3 = fA[3]*x2d + (fB[3]*y2d + fC[3]);
725 
726     // For each point, pretend that there's a rectangle that touches e0 and e3 on the horizontal
727     // axis, so its width is "approximately" d0 + d3, and it touches e1 and e2 on the vertical axis
728     // so its height is d1 + d2. Pin each of these dimensions to [0, 1] and approximate the coverage
729     // at each point as clamp(d0+d3, 0, 1) x clamp(d1+d2, 0, 1). For rectilinear quads this is an
730     // accurate calculation of its area clipped to an aligned pixel. For arbitrary quads it is not
731     // mathematically accurate but qualitatively provides a stable value proportional to the size of
732     // the shape.
733     float4 w = max(0.f, min(1.f, d0 + d3));
734     float4 h = max(0.f, min(1.f, d1 + d2));
735     return w * h;
736 }
737 
isSubpixel(const float4 & x2d,const float4 & y2d) const738 bool TessellationHelper::EdgeEquations::isSubpixel(const float4& x2d, const float4& y2d) const {
739     // Compute the minimum distances from vertices to opposite edges. If all 4 minimum distances
740     // are less than 1px, then the inset geometry would be a point or line and quad rendering
741     // will switch to hairline mode.
742     float4 d = min(x2d * skvx::shuffle<1,2,1,2>(fA) + y2d * skvx::shuffle<1,2,1,2>(fB)
743                            + skvx::shuffle<1,2,1,2>(fC),
744                    x2d * skvx::shuffle<3,3,0,0>(fA) + y2d * skvx::shuffle<3,3,0,0>(fB)
745                            + skvx::shuffle<3,3,0,0>(fC));
746     return all(d < 1.f);
747 }
748 
computeDegenerateQuad(const float4 & signedEdgeDistances,float4 * x2d,float4 * y2d,mask4 * aaMask) const749 int TessellationHelper::EdgeEquations::computeDegenerateQuad(const float4& signedEdgeDistances,
750                                                              float4* x2d, float4* y2d,
751                                                              mask4* aaMask) const {
752     // If the original points form a line in the 2D projection then give up on antialiasing.
753     for (int i = 0; i < 4; ++i) {
754         float4 d = (*x2d)*fA[i] + (*y2d)*fB[i] + fC[i];
755         if (all(abs(d) < kDistTolerance)) {
756             *aaMask = mask4(0);
757             return 4;
758         }
759     }
760 
761     *aaMask = signedEdgeDistances != 0.f;
762 
763     // Move the edge by the signed edge adjustment.
764     float4 oc = fC + signedEdgeDistances;
765 
766     // There are 6 points that we care about to determine the final shape of the polygon, which
767     // are the intersections between (e0,e2), (e1,e0), (e2,e3), (e3,e1) (corresponding to the
768     // 4 corners), and (e1, e2), (e0, e3) (representing the intersections of opposite edges).
769     float4 denom = fA * next_cw(fB) - fB * next_cw(fA);
770     float4 px = (fB * next_cw(oc) - oc * next_cw(fB)) / denom;
771     float4 py = (oc * next_cw(fA) - fA * next_cw(oc)) / denom;
772     correct_bad_coords(abs(denom) < kTolerance, &px, &py, nullptr);
773 
774     // Calculate the signed distances from these 4 corners to the other two edges that did not
775     // define the intersection. So p(0) is compared to e3,e1, p(1) to e3,e2 , p(2) to e0,e1, and
776     // p(3) to e0,e2
777     float4 dists1 = px * skvx::shuffle<3, 3, 0, 0>(fA) +
778                     py * skvx::shuffle<3, 3, 0, 0>(fB) +
779                     skvx::shuffle<3, 3, 0, 0>(oc);
780     float4 dists2 = px * skvx::shuffle<1, 2, 1, 2>(fA) +
781                     py * skvx::shuffle<1, 2, 1, 2>(fB) +
782                     skvx::shuffle<1, 2, 1, 2>(oc);
783 
784     // If all the distances are >= 0, the 4 corners form a valid quadrilateral, so use them as
785     // the 4 points. If any point is on the wrong side of both edges, the interior has collapsed
786     // and we need to use a central point to represent it. If all four points are only on the
787     // wrong side of 1 edge, one edge has crossed over another and we use a line to represent it.
788     // Otherwise, use a triangle that replaces the bad points with the intersections of
789     // (e1, e2) or (e0, e3) as needed.
790     mask4 d1v0 = dists1 < kDistTolerance;
791     mask4 d2v0 = dists2 < kDistTolerance;
792     mask4 d1And2 = d1v0 & d2v0;
793     mask4 d1Or2 = d1v0 | d2v0;
794 
795     if (!any(d1Or2)) {
796         // Every dists1 and dists2 >= kTolerance so it's not degenerate, use all 4 corners as-is
797         // and use full coverage
798         *x2d = px;
799         *y2d = py;
800         return 4;
801     } else if (any(d1And2)) {
802         // A point failed against two edges, so reduce the shape to a single point, which we take as
803         // the center of the original quad to ensure it is contained in the intended geometry. Since
804         // it has collapsed, we know the shape cannot cover a pixel so update the coverage.
805         SkPoint center = {0.25f * ((*x2d)[0] + (*x2d)[1] + (*x2d)[2] + (*x2d)[3]),
806                           0.25f * ((*y2d)[0] + (*y2d)[1] + (*y2d)[2] + (*y2d)[3])};
807         *x2d = center.fX;
808         *y2d = center.fY;
809         *aaMask = any(*aaMask);
810         return 1;
811     } else if (all(d1Or2)) {
812         // Degenerates to a line. Compare p[2] and p[3] to edge 0. If they are on the wrong side,
813         // that means edge 0 and 3 crossed, and otherwise edge 1 and 2 crossed.
814         if (dists1[2] < kDistTolerance && dists1[3] < kDistTolerance) {
815             // Edges 0 and 3 have crossed over, so make the line from average of (p0,p2) and (p1,p3)
816             *x2d = 0.5f * (skvx::shuffle<0, 1, 0, 1>(px) + skvx::shuffle<2, 3, 2, 3>(px));
817             *y2d = 0.5f * (skvx::shuffle<0, 1, 0, 1>(py) + skvx::shuffle<2, 3, 2, 3>(py));
818             // If edges 0 and 3 crossed then one must have AA but we moved both 2D points on the
819             // edge so we need moveTo() to be able to move both 3D points along the shared edge. So
820             // ensure both have AA.
821             *aaMask = *aaMask | mask4({1, 0, 0, 1});
822         } else {
823             // Edges 1 and 2 have crossed over, so make the line from average of (p0,p1) and (p2,p3)
824             *x2d = 0.5f * (skvx::shuffle<0, 0, 2, 2>(px) + skvx::shuffle<1, 1, 3, 3>(px));
825             *y2d = 0.5f * (skvx::shuffle<0, 0, 2, 2>(py) + skvx::shuffle<1, 1, 3, 3>(py));
826             *aaMask = *aaMask | mask4({0, 1, 1, 0});
827         }
828         return 2;
829     } else {
830         // This turns into a triangle. Replace corners as needed with the intersections between
831         // (e0,e3) and (e1,e2), which must now be calculated. Because of kDistTolarance we can
832         // have cases where the intersection lies far outside the quad. For example, consider top
833         // and bottom edges that are nearly parallel and their intersections with the right edge are
834         // nearly but not quite swapped (top edge intersection is barely above bottom edge
835         // intersection). In this case we replace the point with the average of itself and the point
836         // calculated using the edge equation it failed (in the example case this would be the
837         // average of the points calculated by the top and bottom edges intersected with the right
838         // edge.)
839         using V2f = skvx::Vec<2, float>;
840         V2f eDenom = skvx::shuffle<0, 1>(fA) * skvx::shuffle<3, 2>(fB) -
841                      skvx::shuffle<0, 1>(fB) * skvx::shuffle<3, 2>(fA);
842         V2f ex = (skvx::shuffle<0, 1>(fB) * skvx::shuffle<3, 2>(oc) -
843                   skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(fB)) / eDenom;
844         V2f ey = (skvx::shuffle<0, 1>(oc) * skvx::shuffle<3, 2>(fA) -
845                   skvx::shuffle<0, 1>(fA) * skvx::shuffle<3, 2>(oc)) / eDenom;
846 
847         float4 avgX = 0.5f * (skvx::shuffle<0, 1, 0, 2>(px) + skvx::shuffle<2, 3, 1, 3>(px));
848         float4 avgY = 0.5f * (skvx::shuffle<0, 1, 0, 2>(py) + skvx::shuffle<2, 3, 1, 3>(py));
849         for (int i = 0; i < 4; ++i) {
850             // Note that we would not have taken this branch if any point failed both of its edges
851             // tests. That is, it can't be the case that d1v0[i] and d2v0[i] are both true.
852             if (dists1[i] < -kDistTolerance && std::abs(eDenom[0]) > kTolerance) {
853                 px[i] = ex[0];
854                 py[i] = ey[0];
855             } else if (d1v0[i]) {
856                 px[i] = avgX[i % 2];
857                 py[i] = avgY[i % 2];
858             } else if (dists2[i] < -kDistTolerance && std::abs(eDenom[1]) > kTolerance) {
859                 px[i] = ex[1];
860                 py[i] = ey[1];
861             } else if (d2v0[i]) {
862                 px[i] = avgX[i / 2 + 2];
863                 py[i] = avgY[i / 2 + 2];
864             }
865         }
866 
867         // If we replace a vertex with an intersection then it will not fall along the
868         // edges that intersect at the original vertex. When we apply AA later to the
869         // original points we move along the original 3d edges to move towards the 2d
870         // points we're computing here. If we have an AA edge and a non-AA edge we
871         // can only move along 1 edge, but now the point we're moving toward isn't
872         // on that edge. Thus, we provide an additional degree of freedom by turning
873         // AA on for both edges if either edge is AA at each point.
874         *aaMask = *aaMask | (d1Or2 & next_cw(*aaMask)) | (next_ccw(d1Or2) & next_ccw(*aaMask));
875         *x2d = px;
876         *y2d = py;
877         return 3;
878     }
879 }
880 
881 //** OutsetRequest implementation
882 
reset(const EdgeVectors & edgeVectors,GrQuad::Type quadType,const skvx::Vec<4,float> & edgeDistances)883 void TessellationHelper::OutsetRequest::reset(const EdgeVectors& edgeVectors, GrQuad::Type quadType,
884                                               const skvx::Vec<4, float>& edgeDistances) {
885     fEdgeDistances = edgeDistances;
886 
887     // Based on the edge distances, determine if it's acceptable to use fInvSinTheta to
888     // calculate the inset or outset geometry.
889     if (quadType <= GrQuad::Type::kRectilinear) {
890         // Since it's rectangular, the width (edge[1] or edge[2]) collapses if subtracting
891         // (dist[0] + dist[3]) makes the new width negative (minus for inset, outsetting will
892         // never be degenerate in this case). The same applies for height (edge[0] or edge[3])
893         // and (dist[1] + dist[2]).
894         fOutsetDegenerate = false;
895         float widthChange = edgeDistances[0] + edgeDistances[3];
896         float heightChange = edgeDistances[1] + edgeDistances[2];
897         // (1/len > 1/(edge sum) implies len - edge sum < 0.
898         fInsetDegenerate =
899                 (widthChange > 0.f  && edgeVectors.fInvLengths[1] > 1.f / widthChange) ||
900                 (heightChange > 0.f && edgeVectors.fInvLengths[0] > 1.f / heightChange);
901     } else if (any(edgeVectors.fInvLengths >= kInvDistTolerance)) {
902         // Have an edge that is effectively length 0, so we're dealing with a triangle, which
903         // must always go through the degenerate code path.
904         fOutsetDegenerate = true;
905         fInsetDegenerate = true;
906     } else {
907         // If possible, the corners will move +/-edgeDistances * 1/sin(theta). The entire
908         // request is degenerate if 1/sin(theta) -> infinity (or cos(theta) -> 1).
909         if (any(abs(edgeVectors.fCosTheta) >= 0.9f)) {
910             fOutsetDegenerate = true;
911             fInsetDegenerate = true;
912         } else {
913             // With an edge-centric view, an edge's length changes by
914             // edgeDistance * cos(pi - theta) / sin(theta) for each of its corners (the second
915             // corner uses ccw theta value). An edge's length also changes when its adjacent
916             // edges move, in which case it's updated by edgeDistance / sin(theta)
917             // (or cos(theta) for the other edge).
918 
919             // cos(pi - theta) = -cos(theta)
920             float4 halfTanTheta = -edgeVectors.fCosTheta * edgeVectors.fInvSinTheta;
921             float4 edgeAdjust = edgeDistances * (halfTanTheta + next_ccw(halfTanTheta)) +
922                                 next_ccw(edgeDistances) * next_ccw(edgeVectors.fInvSinTheta) +
923                                 next_cw(edgeDistances) * edgeVectors.fInvSinTheta;
924 
925             // If either outsetting (plus edgeAdjust) or insetting (minus edgeAdjust) make
926             // the edge lengths negative, then it's degenerate.
927             float4 threshold = 0.1f - (1.f / edgeVectors.fInvLengths);
928             fOutsetDegenerate = any(edgeAdjust < threshold);
929             fInsetDegenerate = any(edgeAdjust > -threshold);
930         }
931     }
932 }
933 
934 //** Vertices implementation
935 
reset(const GrQuad & deviceQuad,const GrQuad * localQuad)936 void TessellationHelper::Vertices::reset(const GrQuad& deviceQuad, const GrQuad* localQuad) {
937     // Set vertices to match the device and local quad
938     fX = deviceQuad.x4f();
939     fY = deviceQuad.y4f();
940     fW = deviceQuad.w4f();
941 
942     if (localQuad) {
943         fU = localQuad->x4f();
944         fV = localQuad->y4f();
945         fR = localQuad->w4f();
946         fUVRCount = localQuad->hasPerspective() ? 3 : 2;
947     } else {
948         fUVRCount = 0;
949     }
950 }
951 
asGrQuads(GrQuad * deviceOut,GrQuad::Type deviceType,GrQuad * localOut,GrQuad::Type localType) const952 void TessellationHelper::Vertices::asGrQuads(GrQuad* deviceOut, GrQuad::Type deviceType,
953                                              GrQuad* localOut, GrQuad::Type localType) const {
954     SkASSERT(deviceOut);
955     SkASSERT(fUVRCount == 0 || localOut);
956 
957     fX.store(deviceOut->xs());
958     fY.store(deviceOut->ys());
959     if (deviceType == GrQuad::Type::kPerspective) {
960         fW.store(deviceOut->ws());
961     }
962     deviceOut->setQuadType(deviceType); // This sets ws == 1 when device type != perspective
963 
964     if (fUVRCount > 0) {
965         fU.store(localOut->xs());
966         fV.store(localOut->ys());
967         if (fUVRCount == 3) {
968             fR.store(localOut->ws());
969         }
970         localOut->setQuadType(localType);
971     }
972 }
973 
moveAlong(const EdgeVectors & edgeVectors,const float4 & signedEdgeDistances)974 void TessellationHelper::Vertices::moveAlong(const EdgeVectors& edgeVectors,
975                                              const float4& signedEdgeDistances) {
976     // This shouldn't be called if fInvSinTheta is close to infinity (cosTheta close to 1).
977     // FIXME (michaelludwig) - Temporarily allow NaNs on debug builds here, for crbug:224618's GM
978     // Once W clipping is implemented, shouldn't see NaNs unless it's actually time to fail.
979     SkASSERT(all(abs(edgeVectors.fCosTheta) < 0.9f) ||
980              any(edgeVectors.fCosTheta != edgeVectors.fCosTheta));
981 
982     // When the projected device quad is not degenerate, the vertex corners can move
983     // cornerOutsetLen along their edge and their cw-rotated edge. The vertex's edge points
984     // inwards and the cw-rotated edge points outwards, hence the minus-sign.
985     // The edge distances are rotated compared to the corner outsets and (dx, dy), since if
986     // the edge is "on" both its corners need to be moved along their other edge vectors.
987     float4 signedOutsets = -edgeVectors.fInvSinTheta * next_cw(signedEdgeDistances);
988     float4 signedOutsetsCW = edgeVectors.fInvSinTheta * signedEdgeDistances;
989 
990     // x = x + outset * mask * next_cw(xdiff) - outset * next_cw(mask) * xdiff
991     fX += signedOutsetsCW * next_cw(edgeVectors.fDX) + signedOutsets * edgeVectors.fDX;
992     fY += signedOutsetsCW * next_cw(edgeVectors.fDY) + signedOutsets * edgeVectors.fDY;
993     if (fUVRCount > 0) {
994         // We want to extend the texture coords by the same proportion as the positions.
995         signedOutsets *= edgeVectors.fInvLengths;
996         signedOutsetsCW *= next_cw(edgeVectors.fInvLengths);
997         float4 du = next_ccw(fU) - fU;
998         float4 dv = next_ccw(fV) - fV;
999         fU += signedOutsetsCW * next_cw(du) + signedOutsets * du;
1000         fV += signedOutsetsCW * next_cw(dv) + signedOutsets * dv;
1001         if (fUVRCount == 3) {
1002             float4 dr = next_ccw(fR) - fR;
1003             fR += signedOutsetsCW * next_cw(dr) + signedOutsets * dr;
1004         }
1005     }
1006 }
1007 
moveTo(const float4 & x2d,const float4 & y2d,const mask4 & mask)1008 void TessellationHelper::Vertices::moveTo(const float4& x2d, const float4& y2d, const mask4& mask) {
1009     // Left to right, in device space, for each point
1010     float4 e1x = skvx::shuffle<2, 3, 2, 3>(fX) - skvx::shuffle<0, 1, 0, 1>(fX);
1011     float4 e1y = skvx::shuffle<2, 3, 2, 3>(fY) - skvx::shuffle<0, 1, 0, 1>(fY);
1012     float4 e1w = skvx::shuffle<2, 3, 2, 3>(fW) - skvx::shuffle<0, 1, 0, 1>(fW);
1013     mask4 e1Bad = e1x*e1x + e1y*e1y < kDist2Tolerance;
1014     correct_bad_edges(e1Bad, &e1x, &e1y, &e1w);
1015 
1016     // // Top to bottom, in device space, for each point
1017     float4 e2x = skvx::shuffle<1, 1, 3, 3>(fX) - skvx::shuffle<0, 0, 2, 2>(fX);
1018     float4 e2y = skvx::shuffle<1, 1, 3, 3>(fY) - skvx::shuffle<0, 0, 2, 2>(fY);
1019     float4 e2w = skvx::shuffle<1, 1, 3, 3>(fW) - skvx::shuffle<0, 0, 2, 2>(fW);
1020     mask4 e2Bad = e2x*e2x + e2y*e2y < kDist2Tolerance;
1021     correct_bad_edges(e2Bad, &e2x, &e2y, &e2w);
1022 
1023     // Can only move along e1 and e2 to reach the new 2D point, so we have
1024     // x2d = (x + a*e1x + b*e2x) / (w + a*e1w + b*e2w) and
1025     // y2d = (y + a*e1y + b*e2y) / (w + a*e1w + b*e2w) for some a, b
1026     // This can be rewritten to a*c1x + b*c2x + c3x = 0; a * c1y + b*c2y + c3y = 0, where
1027     // the cNx and cNy coefficients are:
1028     float4 c1x = e1w * x2d - e1x;
1029     float4 c1y = e1w * y2d - e1y;
1030     float4 c2x = e2w * x2d - e2x;
1031     float4 c2y = e2w * y2d - e2y;
1032     float4 c3x = fW * x2d - fX;
1033     float4 c3y = fW * y2d - fY;
1034 
1035     // Solve for a and b
1036     float4 a, b, denom;
1037     if (all(mask)) {
1038         // When every edge is outset/inset, each corner can use both edge vectors
1039         denom = c1x * c2y - c2x * c1y;
1040         a = (c2x * c3y - c3x * c2y) / denom;
1041         b = (c3x * c1y - c1x * c3y) / denom;
1042     } else {
1043         // Force a or b to be 0 if that edge cannot be used due to non-AA
1044         mask4 aMask = skvx::shuffle<0, 0, 3, 3>(mask);
1045         mask4 bMask = skvx::shuffle<2, 1, 2, 1>(mask);
1046 
1047         // When aMask[i]&bMask[i], then a[i], b[i], denom[i] match the kAll case.
1048         // When aMask[i]&!bMask[i], then b[i] = 0, a[i] = -c3x/c1x or -c3y/c1y, using better denom
1049         // When !aMask[i]&bMask[i], then a[i] = 0, b[i] = -c3x/c2x or -c3y/c2y, ""
1050         // When !aMask[i]&!bMask[i], then both a[i] = 0 and b[i] = 0
1051         mask4 useC1x = abs(c1x) > abs(c1y);
1052         mask4 useC2x = abs(c2x) > abs(c2y);
1053 
1054         denom = if_then_else(aMask,
1055                         if_then_else(bMask,
1056                                 c1x * c2y - c2x * c1y,            /* A & B   */
1057                                 if_then_else(useC1x, c1x, c1y)),  /* A & !B  */
1058                         if_then_else(bMask,
1059                                 if_then_else(useC2x, c2x, c2y),   /* !A & B  */
1060                                 float4(1.f)));                    /* !A & !B */
1061 
1062         a = if_then_else(aMask,
1063                     if_then_else(bMask,
1064                             c2x * c3y - c3x * c2y,                /* A & B   */
1065                             if_then_else(useC1x, -c3x, -c3y)),    /* A & !B  */
1066                     float4(0.f)) / denom;                         /* !A      */
1067         b = if_then_else(bMask,
1068                     if_then_else(aMask,
1069                             c3x * c1y - c1x * c3y,                /* A & B   */
1070                             if_then_else(useC2x, -c3x, -c3y)),    /* !A & B  */
1071                     float4(0.f)) / denom;                         /* !B      */
1072     }
1073 
1074     fX += a * e1x + b * e2x;
1075     fY += a * e1y + b * e2y;
1076     fW += a * e1w + b * e2w;
1077 
1078     // If fW has gone negative, flip the point to the other side of w=0. This only happens if the
1079     // edge was approaching a vanishing point and it was physically impossible to outset 1/2px in
1080     // screen space w/o going behind the viewer and being mirrored. Scaling by -1 preserves the
1081     // computed screen space position but moves the 3D point off of the original quad. So far, this
1082     // seems to be a reasonable compromise.
1083     if (any(fW < 0.f)) {
1084         float4 scale = if_then_else(fW < 0.f, float4(-1.f), float4(1.f));
1085         fX *= scale;
1086         fY *= scale;
1087         fW *= scale;
1088     }
1089 
1090     correct_bad_coords(abs(denom) < kTolerance, &fX, &fY, &fW);
1091 
1092     if (fUVRCount > 0) {
1093         // Calculate R here so it can be corrected with U and V in case it's needed later
1094         float4 e1u = skvx::shuffle<2, 3, 2, 3>(fU) - skvx::shuffle<0, 1, 0, 1>(fU);
1095         float4 e1v = skvx::shuffle<2, 3, 2, 3>(fV) - skvx::shuffle<0, 1, 0, 1>(fV);
1096         float4 e1r = skvx::shuffle<2, 3, 2, 3>(fR) - skvx::shuffle<0, 1, 0, 1>(fR);
1097         correct_bad_edges(e1Bad, &e1u, &e1v, &e1r);
1098 
1099         float4 e2u = skvx::shuffle<1, 1, 3, 3>(fU) - skvx::shuffle<0, 0, 2, 2>(fU);
1100         float4 e2v = skvx::shuffle<1, 1, 3, 3>(fV) - skvx::shuffle<0, 0, 2, 2>(fV);
1101         float4 e2r = skvx::shuffle<1, 1, 3, 3>(fR) - skvx::shuffle<0, 0, 2, 2>(fR);
1102         correct_bad_edges(e2Bad, &e2u, &e2v, &e2r);
1103 
1104         fU += a * e1u + b * e2u;
1105         fV += a * e1v + b * e2v;
1106         if (fUVRCount == 3) {
1107             fR += a * e1r + b * e2r;
1108             correct_bad_coords(abs(denom) < kTolerance, &fU, &fV, &fR);
1109         } else {
1110             correct_bad_coords(abs(denom) < kTolerance, &fU, &fV, nullptr);
1111         }
1112     }
1113 }
1114 
1115 //** TessellationHelper implementation
1116 
reset(const GrQuad & deviceQuad,const GrQuad * localQuad)1117 void TessellationHelper::reset(const GrQuad& deviceQuad, const GrQuad* localQuad) {
1118     // Record basic state that isn't recorded on the Vertices struct itself
1119     fDeviceType = deviceQuad.quadType();
1120     fLocalType = localQuad ? localQuad->quadType() : GrQuad::Type::kAxisAligned;
1121 
1122     // Reset metadata validity
1123     fOutsetRequestValid = false;
1124     fEdgeEquationsValid = false;
1125 
1126     // Compute vertex properties that are always needed for a quad, so no point in doing it lazily.
1127     fOriginal.reset(deviceQuad, localQuad);
1128     fEdgeVectors.reset(fOriginal.fX, fOriginal.fY, fOriginal.fW, fDeviceType);
1129 
1130     fVerticesValid = true;
1131 }
1132 
inset(const skvx::Vec<4,float> & edgeDistances,GrQuad * deviceInset,GrQuad * localInset)1133 float4 TessellationHelper::inset(const skvx::Vec<4, float>& edgeDistances,
1134                                  GrQuad* deviceInset, GrQuad* localInset) {
1135     SkASSERT(fVerticesValid);
1136 
1137     Vertices inset = fOriginal;
1138     const OutsetRequest& request = this->getOutsetRequest(edgeDistances);
1139     int vertexCount;
1140     if (request.fInsetDegenerate) {
1141         vertexCount = this->adjustDegenerateVertices(-request.fEdgeDistances, &inset);
1142     } else {
1143         this->adjustVertices(-request.fEdgeDistances, &inset);
1144         vertexCount = 4;
1145     }
1146 
1147     inset.asGrQuads(deviceInset, fDeviceType, localInset, fLocalType);
1148     if (vertexCount < 3) {
1149         // The interior has less than a full pixel's area so estimate reduced coverage using
1150         // the distance of the inset's projected corners to the original edges.
1151         return this->getEdgeEquations().estimateCoverage(inset.fX / inset.fW,
1152                                                          inset.fY / inset.fW);
1153     } else {
1154         return 1.f;
1155     }
1156 }
1157 
outset(const skvx::Vec<4,float> & edgeDistances,GrQuad * deviceOutset,GrQuad * localOutset)1158 void TessellationHelper::outset(const skvx::Vec<4, float>& edgeDistances,
1159                                 GrQuad* deviceOutset, GrQuad* localOutset) {
1160     SkASSERT(fVerticesValid);
1161 
1162     Vertices outset = fOriginal;
1163     const OutsetRequest& request = this->getOutsetRequest(edgeDistances);
1164     if (request.fOutsetDegenerate) {
1165         this->adjustDegenerateVertices(request.fEdgeDistances, &outset);
1166     } else {
1167         this->adjustVertices(request.fEdgeDistances, &outset);
1168     }
1169 
1170     outset.asGrQuads(deviceOutset, fDeviceType, localOutset, fLocalType);
1171 }
1172 
getEdgeEquations(skvx::Vec<4,float> * a,skvx::Vec<4,float> * b,skvx::Vec<4,float> * c)1173 void TessellationHelper::getEdgeEquations(skvx::Vec<4, float>* a,
1174                                           skvx::Vec<4, float>* b,
1175                                           skvx::Vec<4, float>* c) {
1176     SkASSERT(a && b && c);
1177     SkASSERT(fVerticesValid);
1178     const EdgeEquations& eq = this->getEdgeEquations();
1179     *a = eq.fA;
1180     *b = eq.fB;
1181     *c = eq.fC;
1182 }
1183 
getEdgeLengths()1184 skvx::Vec<4, float> TessellationHelper::getEdgeLengths() {
1185     SkASSERT(fVerticesValid);
1186     return 1.f / fEdgeVectors.fInvLengths;
1187 }
1188 
getOutsetRequest(const skvx::Vec<4,float> & edgeDistances)1189 const TessellationHelper::OutsetRequest& TessellationHelper::getOutsetRequest(
1190         const skvx::Vec<4, float>& edgeDistances) {
1191     // Much of the code assumes that we start from positive distances and apply it unmodified to
1192     // create an outset; knowing that it's outset simplifies degeneracy checking.
1193     SkASSERT(all(edgeDistances >= 0.f));
1194 
1195     // Rebuild outset request if invalid or if the edge distances have changed.
1196     if (!fOutsetRequestValid || any(edgeDistances != fOutsetRequest.fEdgeDistances)) {
1197         fOutsetRequest.reset(fEdgeVectors, fDeviceType, edgeDistances);
1198         fOutsetRequestValid = true;
1199     }
1200     return fOutsetRequest;
1201 }
1202 
isSubpixel()1203 bool TessellationHelper::isSubpixel() {
1204     SkASSERT(fVerticesValid);
1205     if (fDeviceType <= GrQuad::Type::kRectilinear) {
1206         // Check the edge lengths, if the shortest is less than 1px it's degenerate, which is the
1207         // same as if the max 1/length is greater than 1px.
1208         return any(fEdgeVectors.fInvLengths > 1.f);
1209     } else {
1210         // Compute edge equations and then distance from each vertex to the opposite edges.
1211         return this->getEdgeEquations().isSubpixel(fEdgeVectors.fX2D, fEdgeVectors.fY2D);
1212     }
1213 }
1214 
getEdgeEquations()1215 const TessellationHelper::EdgeEquations& TessellationHelper::getEdgeEquations() {
1216     if (!fEdgeEquationsValid) {
1217         fEdgeEquations.reset(fEdgeVectors);
1218         fEdgeEquationsValid = true;
1219     }
1220     return fEdgeEquations;
1221 }
1222 
adjustVertices(const skvx::Vec<4,float> & signedEdgeDistances,Vertices * vertices)1223 void TessellationHelper::adjustVertices(const skvx::Vec<4, float>& signedEdgeDistances,
1224                                         Vertices* vertices) {
1225     SkASSERT(vertices);
1226     SkASSERT(vertices->fUVRCount == 0 || vertices->fUVRCount == 2 || vertices->fUVRCount == 3);
1227 
1228     if (fDeviceType < GrQuad::Type::kPerspective) {
1229         // For non-perspective, non-degenerate quads, moveAlong is correct and most efficient
1230         vertices->moveAlong(fEdgeVectors, signedEdgeDistances);
1231     } else {
1232         // For perspective, non-degenerate quads, use moveAlong for the projected points and then
1233         // reconstruct Ws with moveTo.
1234         Vertices projected = { fEdgeVectors.fX2D, fEdgeVectors.fY2D, /*w*/ 1.f, 0.f, 0.f, 0.f, 0 };
1235         projected.moveAlong(fEdgeVectors, signedEdgeDistances);
1236         vertices->moveTo(projected.fX, projected.fY, signedEdgeDistances != 0.f);
1237     }
1238 }
1239 
adjustDegenerateVertices(const skvx::Vec<4,float> & signedEdgeDistances,Vertices * vertices)1240 int TessellationHelper::adjustDegenerateVertices(const skvx::Vec<4, float>& signedEdgeDistances,
1241                                                  Vertices* vertices) {
1242     SkASSERT(vertices);
1243     SkASSERT(vertices->fUVRCount == 0 || vertices->fUVRCount == 2 || vertices->fUVRCount == 3);
1244 
1245     if (fDeviceType <= GrQuad::Type::kRectilinear) {
1246         // For rectilinear, degenerate quads, can use moveAlong if the edge distances are adjusted
1247         // to not cross over each other.
1248         SkASSERT(all(signedEdgeDistances <= 0.f)); // Only way rectilinear can degenerate is insets
1249         float4 halfLengths = -0.5f / next_cw(fEdgeVectors.fInvLengths); // Negate to inset
1250         mask4 crossedEdges = halfLengths > signedEdgeDistances;
1251         float4 safeInsets = if_then_else(crossedEdges, halfLengths, signedEdgeDistances);
1252         vertices->moveAlong(fEdgeVectors, safeInsets);
1253 
1254         // A degenerate rectilinear quad is either a point (both w and h crossed), or a line
1255         return all(crossedEdges) ? 1 : 2;
1256     } else {
1257         // Degenerate non-rectangular shape, must go through slowest path (which automatically
1258         // handles perspective).
1259         float4 x2d = fEdgeVectors.fX2D;
1260         float4 y2d = fEdgeVectors.fY2D;
1261 
1262         mask4 aaMask;
1263         int vertexCount = this->getEdgeEquations().computeDegenerateQuad(signedEdgeDistances,
1264                                                                          &x2d, &y2d, &aaMask);
1265         vertices->moveTo(x2d, y2d, aaMask);
1266         return vertexCount;
1267     }
1268 }
1269 
1270 } // namespace GrQuadUtils
1271