• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2011 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "base/rand_util.h"
6 
7 #include <stddef.h>
8 #include <stdint.h>
9 
10 #include <algorithm>
11 #include <cmath>
12 #include <limits>
13 #include <memory>
14 #include <vector>
15 
16 #include "base/logging.h"
17 #include "base/time/time.h"
18 #include "testing/gtest/include/gtest/gtest.h"
19 
20 namespace base {
21 
22 namespace {
23 
24 const int kIntMin = std::numeric_limits<int>::min();
25 const int kIntMax = std::numeric_limits<int>::max();
26 
27 }  // namespace
28 
TEST(RandUtilTest,RandInt)29 TEST(RandUtilTest, RandInt) {
30   EXPECT_EQ(base::RandInt(0, 0), 0);
31   EXPECT_EQ(base::RandInt(kIntMin, kIntMin), kIntMin);
32   EXPECT_EQ(base::RandInt(kIntMax, kIntMax), kIntMax);
33 
34   // Check that the DCHECKS in RandInt() don't fire due to internal overflow.
35   // There was a 50% chance of that happening, so calling it 40 times means
36   // the chances of this passing by accident are tiny (9e-13).
37   for (int i = 0; i < 40; ++i)
38     base::RandInt(kIntMin, kIntMax);
39 }
40 
TEST(RandUtilTest,RandDouble)41 TEST(RandUtilTest, RandDouble) {
42   // Force 64-bit precision, making sure we're not in a 80-bit FPU register.
43   volatile double number = base::RandDouble();
44   EXPECT_GT(1.0, number);
45   EXPECT_LE(0.0, number);
46 }
47 
TEST(RandUtilTest,RandFloat)48 TEST(RandUtilTest, RandFloat) {
49   // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
50   volatile float number = base::RandFloat();
51   EXPECT_GT(1.f, number);
52   EXPECT_LE(0.f, number);
53 }
54 
TEST(RandUtilTest,BitsToOpenEndedUnitInterval)55 TEST(RandUtilTest, BitsToOpenEndedUnitInterval) {
56   // Force 64-bit precision, making sure we're not in an 80-bit FPU register.
57   volatile double all_zeros = BitsToOpenEndedUnitInterval(0x0);
58   EXPECT_EQ(0.0, all_zeros);
59 
60   // Force 64-bit precision, making sure we're not in an 80-bit FPU register.
61   volatile double smallest_nonzero = BitsToOpenEndedUnitInterval(0x1);
62   EXPECT_LT(0.0, smallest_nonzero);
63 
64   for (uint64_t i = 0x2; i < 0x10; ++i) {
65     // Force 64-bit precision, making sure we're not in an 80-bit FPU register.
66     volatile double number = BitsToOpenEndedUnitInterval(i);
67     EXPECT_EQ(i * smallest_nonzero, number);
68   }
69 
70   // Force 64-bit precision, making sure we're not in an 80-bit FPU register.
71   volatile double all_ones = BitsToOpenEndedUnitInterval(UINT64_MAX);
72   EXPECT_GT(1.0, all_ones);
73 }
74 
TEST(RandUtilTest,BitsToOpenEndedUnitIntervalF)75 TEST(RandUtilTest, BitsToOpenEndedUnitIntervalF) {
76   // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
77   volatile float all_zeros = BitsToOpenEndedUnitIntervalF(0x0);
78   EXPECT_EQ(0.f, all_zeros);
79 
80   // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
81   volatile float smallest_nonzero = BitsToOpenEndedUnitIntervalF(0x1);
82   EXPECT_LT(0.f, smallest_nonzero);
83 
84   for (uint64_t i = 0x2; i < 0x10; ++i) {
85     // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
86     volatile float number = BitsToOpenEndedUnitIntervalF(i);
87     EXPECT_EQ(i * smallest_nonzero, number);
88   }
89 
90   // Force 32-bit precision, making sure we're not in an 80-bit FPU register.
91   volatile float all_ones = BitsToOpenEndedUnitIntervalF(UINT64_MAX);
92   EXPECT_GT(1.f, all_ones);
93 }
94 
TEST(RandUtilTest,RandBytes)95 TEST(RandUtilTest, RandBytes) {
96   const size_t buffer_size = 50;
97   char buffer[buffer_size];
98   memset(buffer, 0, buffer_size);
99   base::RandBytes(buffer, buffer_size);
100   std::sort(buffer, buffer + buffer_size);
101   // Probability of occurrence of less than 25 unique bytes in 50 random bytes
102   // is below 10^-25.
103   EXPECT_GT(std::unique(buffer, buffer + buffer_size) - buffer, 25);
104 }
105 
106 // Verify that calling base::RandBytes with an empty buffer doesn't fail.
TEST(RandUtilTest,RandBytes0)107 TEST(RandUtilTest, RandBytes0) {
108   base::RandBytes(nullptr, 0);
109 }
110 
TEST(RandUtilTest,RandBytesAsString)111 TEST(RandUtilTest, RandBytesAsString) {
112   std::string random_string = base::RandBytesAsString(1);
113   EXPECT_EQ(1U, random_string.size());
114   random_string = base::RandBytesAsString(145);
115   EXPECT_EQ(145U, random_string.size());
116   char accumulator = 0;
117   for (auto i : random_string)
118     accumulator |= i;
119   // In theory this test can fail, but it won't before the universe dies of
120   // heat death.
121   EXPECT_NE(0, accumulator);
122 }
123 
124 // Make sure that it is still appropriate to use RandGenerator in conjunction
125 // with std::random_shuffle().
TEST(RandUtilTest,RandGeneratorForRandomShuffle)126 TEST(RandUtilTest, RandGeneratorForRandomShuffle) {
127   EXPECT_EQ(base::RandGenerator(1), 0U);
128   EXPECT_LE(std::numeric_limits<ptrdiff_t>::max(),
129             std::numeric_limits<int64_t>::max());
130 }
131 
TEST(RandUtilTest,RandGeneratorIsUniform)132 TEST(RandUtilTest, RandGeneratorIsUniform) {
133   // Verify that RandGenerator has a uniform distribution. This is a
134   // regression test that consistently failed when RandGenerator was
135   // implemented this way:
136   //
137   //   return base::RandUint64() % max;
138   //
139   // A degenerate case for such an implementation is e.g. a top of
140   // range that is 2/3rds of the way to MAX_UINT64, in which case the
141   // bottom half of the range would be twice as likely to occur as the
142   // top half. A bit of calculus care of jar@ shows that the largest
143   // measurable delta is when the top of the range is 3/4ths of the
144   // way, so that's what we use in the test.
145   constexpr uint64_t kTopOfRange =
146       (std::numeric_limits<uint64_t>::max() / 4ULL) * 3ULL;
147   constexpr double kExpectedAverage = static_cast<double>(kTopOfRange / 2);
148   constexpr double kAllowedVariance = kExpectedAverage / 50.0;  // +/- 2%
149   constexpr int kMinAttempts = 1000;
150   constexpr int kMaxAttempts = 1000000;
151 
152   double cumulative_average = 0.0;
153   int count = 0;
154   while (count < kMaxAttempts) {
155     uint64_t value = base::RandGenerator(kTopOfRange);
156     cumulative_average = (count * cumulative_average + value) / (count + 1);
157 
158     // Don't quit too quickly for things to start converging, or we may have
159     // a false positive.
160     if (count > kMinAttempts &&
161         kExpectedAverage - kAllowedVariance < cumulative_average &&
162         cumulative_average < kExpectedAverage + kAllowedVariance) {
163       break;
164     }
165 
166     ++count;
167   }
168 
169   ASSERT_LT(count, kMaxAttempts) << "Expected average was " << kExpectedAverage
170                                  << ", average ended at " << cumulative_average;
171 }
172 
TEST(RandUtilTest,RandUint64ProducesBothValuesOfAllBits)173 TEST(RandUtilTest, RandUint64ProducesBothValuesOfAllBits) {
174   // This tests to see that our underlying random generator is good
175   // enough, for some value of good enough.
176   uint64_t kAllZeros = 0ULL;
177   uint64_t kAllOnes = ~kAllZeros;
178   uint64_t found_ones = kAllZeros;
179   uint64_t found_zeros = kAllOnes;
180 
181   for (size_t i = 0; i < 1000; ++i) {
182     uint64_t value = base::RandUint64();
183     found_ones |= value;
184     found_zeros &= value;
185 
186     if (found_zeros == kAllZeros && found_ones == kAllOnes)
187       return;
188   }
189 
190   FAIL() << "Didn't achieve all bit values in maximum number of tries.";
191 }
192 
TEST(RandUtilTest,RandBytesLonger)193 TEST(RandUtilTest, RandBytesLonger) {
194   // Fuchsia can only retrieve 256 bytes of entropy at a time, so make sure we
195   // handle longer requests than that.
196   std::string random_string0 = base::RandBytesAsString(255);
197   EXPECT_EQ(255u, random_string0.size());
198   std::string random_string1 = base::RandBytesAsString(1023);
199   EXPECT_EQ(1023u, random_string1.size());
200   std::string random_string2 = base::RandBytesAsString(4097);
201   EXPECT_EQ(4097u, random_string2.size());
202 }
203 
204 // Benchmark test for RandBytes().  Disabled since it's intentionally slow and
205 // does not test anything that isn't already tested by the existing RandBytes()
206 // tests.
TEST(RandUtilTest,DISABLED_RandBytesPerf)207 TEST(RandUtilTest, DISABLED_RandBytesPerf) {
208   // Benchmark the performance of |kTestIterations| of RandBytes() using a
209   // buffer size of |kTestBufferSize|.
210   const int kTestIterations = 10;
211   const size_t kTestBufferSize = 1 * 1024 * 1024;
212 
213   std::unique_ptr<uint8_t[]> buffer(new uint8_t[kTestBufferSize]);
214   const base::TimeTicks now = base::TimeTicks::Now();
215   for (int i = 0; i < kTestIterations; ++i)
216     base::RandBytes(buffer.get(), kTestBufferSize);
217   const base::TimeTicks end = base::TimeTicks::Now();
218 
219   LOG(INFO) << "RandBytes(" << kTestBufferSize
220             << ") took: " << (end - now).InMicroseconds() << "µs";
221 }
222 
TEST(RandUtilTest,InsecureRandomGeneratorProducesBothValuesOfAllBits)223 TEST(RandUtilTest, InsecureRandomGeneratorProducesBothValuesOfAllBits) {
224   // This tests to see that our underlying random generator is good
225   // enough, for some value of good enough.
226   uint64_t kAllZeros = 0ULL;
227   uint64_t kAllOnes = ~kAllZeros;
228   uint64_t found_ones = kAllZeros;
229   uint64_t found_zeros = kAllOnes;
230 
231   InsecureRandomGenerator generator;
232 
233   for (size_t i = 0; i < 1000; ++i) {
234     uint64_t value = generator.RandUint64();
235     found_ones |= value;
236     found_zeros &= value;
237 
238     if (found_zeros == kAllZeros && found_ones == kAllOnes)
239       return;
240   }
241 
242   FAIL() << "Didn't achieve all bit values in maximum number of tries.";
243 }
244 
245 namespace {
246 
247 constexpr double kXp1Percent = -2.33;
248 constexpr double kXp99Percent = 2.33;
249 
ChiSquaredCriticalValue(double nu,double x_p)250 double ChiSquaredCriticalValue(double nu, double x_p) {
251   // From "The Art Of Computer Programming" (TAOCP), Volume 2, Section 3.3.1,
252   // Table 1. This is the asymptotic value for nu > 30, up to O(1 / sqrt(nu)).
253   return nu + sqrt(2. * nu) * x_p + 2. / 3. * (x_p * x_p) - 2. / 3.;
254 }
255 
ExtractBits(uint64_t value,int from_bit,int num_bits)256 int ExtractBits(uint64_t value, int from_bit, int num_bits) {
257   return (value >> from_bit) & ((1 << num_bits) - 1);
258 }
259 
260 // Performs a Chi-Squared test on a subset of |num_bits| extracted starting from
261 // |from_bit| in the generated value.
262 //
263 // See TAOCP, Volume 2, Section 3.3.1, and
264 // https://en.wikipedia.org/wiki/Pearson%27s_chi-squared_test for details.
265 //
266 // This is only one of the many, many random number generator test we could do,
267 // but they are cumbersome, as they are typically very slow, and expected to
268 // fail from time to time, due to their probabilistic nature.
269 //
270 // The generator we use has however been vetted with the BigCrush test suite
271 // from Marsaglia, so this should suffice as a smoke test that our
272 // implementation is wrong.
ChiSquaredTest(InsecureRandomGenerator & gen,size_t n,int from_bit,int num_bits)273 bool ChiSquaredTest(InsecureRandomGenerator& gen,
274                     size_t n,
275                     int from_bit,
276                     int num_bits) {
277   const int range = 1 << num_bits;
278   CHECK_EQ(static_cast<int>(n % range), 0) << "Makes computations simpler";
279   std::vector<size_t> samples(range, 0);
280 
281   // Count how many samples pf each value are found. All buckets should be
282   // almost equal if the generator is suitably uniformly random.
283   for (size_t i = 0; i < n; i++) {
284     int sample = ExtractBits(gen.RandUint64(), from_bit, num_bits);
285     samples[sample] += 1;
286   }
287 
288   // Compute the Chi-Squared statistic, which is:
289   // \Sum_{k=0}^{range-1} \frac{(count - expected)^2}{expected}
290   double chi_squared = 0.;
291   double expected_count = n / range;
292   for (size_t sample_count : samples) {
293     double deviation = sample_count - expected_count;
294     chi_squared += (deviation * deviation) / expected_count;
295   }
296 
297   // The generator should produce numbers that are not too far of (chi_squared
298   // lower than a given quantile), but not too close to the ideal distribution
299   // either (chi_squared is too low).
300   //
301   // See The Art Of Computer Programming, Volume 2, Section 3.3.1 for details.
302   return chi_squared > ChiSquaredCriticalValue(range - 1, kXp1Percent) &&
303          chi_squared < ChiSquaredCriticalValue(range - 1, kXp99Percent);
304 }
305 
306 }  // namespace
307 
TEST(RandUtilTest,InsecureRandomGeneratorChiSquared)308 TEST(RandUtilTest, InsecureRandomGeneratorChiSquared) {
309   constexpr int kIterations = 50;
310 
311   // Specifically test the low bits, which are usually weaker in random number
312   // generators. We don't use them for the 32 bit number generation, but let's
313   // make sure they are still suitable.
314   for (int start_bit : {1, 2, 3, 8, 12, 20, 32, 48, 54}) {
315     int pass_count = 0;
316     for (int i = 0; i < kIterations; i++) {
317       size_t samples = 1 << 16;
318       InsecureRandomGenerator gen;
319       // Fix the seed to make the test non-flaky.
320       gen.ReseedForTesting(kIterations + 1);
321       bool pass = ChiSquaredTest(gen, samples, start_bit, 8);
322       pass_count += pass;
323     }
324 
325     // We exclude 1% on each side, so we expect 98% of tests to pass, meaning 98
326     // * kIterations / 100. However this is asymptotic, so add a bit of leeway.
327     int expected_pass_count = (kIterations * 98) / 100;
328     EXPECT_GE(pass_count, expected_pass_count - ((kIterations * 2) / 100))
329         << "For start_bit = " << start_bit;
330   }
331 }
332 
TEST(RandUtilTest,InsecureRandomGeneratorRandDouble)333 TEST(RandUtilTest, InsecureRandomGeneratorRandDouble) {
334   InsecureRandomGenerator gen;
335 
336   for (int i = 0; i < 1000; i++) {
337     volatile double x = gen.RandDouble();
338     EXPECT_GE(x, 0.);
339     EXPECT_LT(x, 1.);
340   }
341 }
342 }  // namespace base
343