1 // Copyright 2012 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 // `Time` represents an absolute point in coordinated universal time (UTC),
6 // internally represented as microseconds (s/1,000,000) since the Windows epoch
7 // (1601-01-01 00:00:00 UTC). System-dependent clock interface routines are
8 // defined in time_PLATFORM.cc. Note that values for `Time` may skew and jump
9 // around as the operating system makes adjustments to synchronize (e.g., with
10 // NTP servers). Thus, client code that uses the `Time` class must account for
11 // this.
12 //
13 // `TimeDelta` represents a duration of time, internally represented in
14 // microseconds.
15 //
16 // `TimeTicks` and `ThreadTicks` represent an abstract time that is most of the
17 // time incrementing, for use in measuring time durations. Internally, they are
18 // represented in microseconds. They cannot be converted to a human-readable
19 // time, but are guaranteed not to decrease (unlike the `Time` class). Note
20 // that `TimeTicks` may "stand still" (e.g., if the computer is suspended), and
21 // `ThreadTicks` will "stand still" whenever the thread has been de-scheduled
22 // by the operating system.
23 //
24 // All time classes are copyable, assignable, and occupy 64 bits per instance.
25 // Prefer to pass them by value, e.g.:
26 //
27 // void MyFunction(TimeDelta arg);
28 //
29 // All time classes support `operator<<` with logging streams, e.g. `LOG(INFO)`.
30 // For human-readable formatting, use //base/i18n/time_formatting.h.
31 //
32 // Example use cases for different time classes:
33 //
34 // Time: Interpreting the wall-clock time provided by a remote system.
35 // Detecting whether cached resources have expired. Providing the
36 // user with a display of the current date and time. Determining
37 // the amount of time between events across re-boots of the
38 // machine.
39 //
40 // TimeTicks: Tracking the amount of time a task runs. Executing delayed
41 // tasks at the right time. Computing presentation timestamps.
42 // Synchronizing audio and video using TimeTicks as a common
43 // reference clock (lip-sync). Measuring network round-trip
44 // latency.
45 //
46 // ThreadTicks: Benchmarking how long the current thread has been doing actual
47 // work.
48 //
49 // Serialization:
50 //
51 // Use the helpers in //base/json/values_util.h when serializing `Time`
52 // or `TimeDelta` to/from `base::Value`.
53 //
54 // Otherwise:
55 //
56 // - Time: use `FromDeltaSinceWindowsEpoch()`/`ToDeltaSinceWindowsEpoch()`.
57 // - TimeDelta: use `base::Microseconds()`/`InMicroseconds()`.
58 //
59 // `TimeTicks` and `ThreadTicks` do not have a stable origin; serialization for
60 // the purpose of persistence is not supported.
61
62 #ifndef BASE_TIME_TIME_H_
63 #define BASE_TIME_TIME_H_
64
65 #include <stdint.h>
66 #include <time.h>
67
68 #include <iosfwd>
69 #include <limits>
70 #include <ostream>
71
72 #include "base/base_export.h"
73 #include "base/check.h"
74 #include "base/check_op.h"
75 #include "base/compiler_specific.h"
76 #include "base/numerics/clamped_math.h"
77 #include "build/build_config.h"
78 #include "build/chromeos_buildflags.h"
79
80 #if BUILDFLAG(IS_APPLE)
81 #include "base/time/buildflags/buildflags.h"
82 #endif
83
84 #if BUILDFLAG(IS_FUCHSIA)
85 #include <zircon/types.h>
86 #endif
87
88 #if BUILDFLAG(IS_APPLE)
89 #include <CoreFoundation/CoreFoundation.h>
90 #include <mach/mach_time.h>
91 // Avoid Mac system header macro leak.
92 #undef TYPE_BOOL
93 #endif
94
95 #if BUILDFLAG(IS_ANDROID)
96 #include <jni.h>
97 #endif
98
99 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
100 #include <unistd.h>
101 #include <sys/time.h>
102 #endif
103
104 #if BUILDFLAG(IS_WIN)
105 #include "base/gtest_prod_util.h"
106 #include "base/win/windows_types.h"
107
108 namespace ABI {
109 namespace Windows {
110 namespace Foundation {
111 struct DateTime;
112 struct TimeSpan;
113 } // namespace Foundation
114 } // namespace Windows
115 } // namespace ABI
116 #endif
117
118 namespace base {
119
120 class PlatformThreadHandle;
121 class TimeDelta;
122
123 template <typename T>
124 constexpr TimeDelta Microseconds(T n);
125
126 // TimeDelta ------------------------------------------------------------------
127
128 class BASE_EXPORT TimeDelta {
129 public:
130 constexpr TimeDelta() = default;
131
132 #if BUILDFLAG(IS_WIN)
133 static TimeDelta FromQPCValue(LONGLONG qpc_value);
134 // TODO(crbug.com/989694): Avoid base::TimeDelta factory functions
135 // based on absolute time
136 static TimeDelta FromFileTime(FILETIME ft);
137 static TimeDelta FromWinrtDateTime(ABI::Windows::Foundation::DateTime dt);
138 static TimeDelta FromWinrtTimeSpan(ABI::Windows::Foundation::TimeSpan ts);
139 #elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
140 static TimeDelta FromTimeSpec(const timespec& ts);
141 #endif
142 #if BUILDFLAG(IS_FUCHSIA)
143 static TimeDelta FromZxDuration(zx_duration_t nanos);
144 #endif
145 #if BUILDFLAG(IS_APPLE)
146 #if BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS)
147 static TimeDelta FromMachTime(uint64_t mach_time);
148 #endif // BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS)
149 #endif // BUILDFLAG(IS_APPLE)
150
151 // Converts an integer value representing TimeDelta to a class. This is used
152 // when deserializing a |TimeDelta| structure, using a value known to be
153 // compatible. It is not provided as a constructor because the integer type
154 // may be unclear from the perspective of a caller.
155 //
156 // DEPRECATED - Do not use in new code. http://crbug.com/634507
FromInternalValue(int64_t delta)157 static constexpr TimeDelta FromInternalValue(int64_t delta) {
158 return TimeDelta(delta);
159 }
160
161 // Returns the maximum time delta, which should be greater than any reasonable
162 // time delta we might compare it to. If converted to double with ToDouble()
163 // it becomes an IEEE double infinity. Use FiniteMax() if you want a very
164 // large number that doesn't do this. TimeDelta math saturates at the end
165 // points so adding to TimeDelta::Max() leaves the value unchanged.
166 // Subtracting should leave the value unchanged but currently changes it
167 // TODO(https://crbug.com/869387).
168 static constexpr TimeDelta Max();
169
170 // Returns the minimum time delta, which should be less than than any
171 // reasonable time delta we might compare it to. For more details see the
172 // comments for Max().
173 static constexpr TimeDelta Min();
174
175 // Returns the maximum time delta which is not equivalent to infinity. Only
176 // subtracting a finite time delta from this time delta has a defined result.
177 static constexpr TimeDelta FiniteMax();
178
179 // Returns the minimum time delta which is not equivalent to -infinity. Only
180 // adding a finite time delta to this time delta has a defined result.
181 static constexpr TimeDelta FiniteMin();
182
183 // Returns the internal numeric value of the TimeDelta object. Please don't
184 // use this and do arithmetic on it, as it is more error prone than using the
185 // provided operators.
186 // For serializing, use FromInternalValue to reconstitute.
187 //
188 // DEPRECATED - Do not use in new code. http://crbug.com/634507
ToInternalValue()189 constexpr int64_t ToInternalValue() const { return delta_; }
190
191 // Returns the magnitude (absolute value) of this TimeDelta.
magnitude()192 constexpr TimeDelta magnitude() const { return TimeDelta(delta_.Abs()); }
193
194 // Returns true if the time delta is a zero, positive or negative time delta.
is_zero()195 constexpr bool is_zero() const { return delta_ == 0; }
is_positive()196 constexpr bool is_positive() const { return delta_ > 0; }
is_negative()197 constexpr bool is_negative() const { return delta_ < 0; }
198
199 // Returns true if the time delta is the maximum/minimum time delta.
is_max()200 constexpr bool is_max() const { return *this == Max(); }
is_min()201 constexpr bool is_min() const { return *this == Min(); }
is_inf()202 constexpr bool is_inf() const { return is_min() || is_max(); }
203
204 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
205 struct timespec ToTimeSpec() const;
206 #endif
207 #if BUILDFLAG(IS_FUCHSIA)
208 zx_duration_t ToZxDuration() const;
209 #endif
210 #if BUILDFLAG(IS_WIN)
211 ABI::Windows::Foundation::DateTime ToWinrtDateTime() const;
212 ABI::Windows::Foundation::TimeSpan ToWinrtTimeSpan() const;
213 #endif
214
215 // Returns the frequency in Hertz (cycles per second) that has a period of
216 // *this.
217 constexpr double ToHz() const;
218
219 // Returns the time delta in some unit. Minimum argument values return as
220 // -inf for doubles and min type values otherwise. Maximum ones are treated as
221 // +inf for doubles and max type values otherwise. Their results will produce
222 // an is_min() or is_max() TimeDelta. The InXYZF versions return a floating
223 // point value. The InXYZ versions return a truncated value (aka rounded
224 // towards zero, std::trunc() behavior). The InXYZFloored() versions round to
225 // lesser integers (std::floor() behavior). The XYZRoundedUp() versions round
226 // up to greater integers (std::ceil() behavior). WARNING: Floating point
227 // arithmetic is such that XXX(t.InXXXF()) may not precisely equal |t|.
228 // Hence, floating point values should not be used for storage.
229 int InDays() const;
230 int InDaysFloored() const;
231 constexpr int InHours() const;
232 constexpr int InMinutes() const;
233 constexpr double InSecondsF() const;
234 constexpr int64_t InSeconds() const;
235 double InMillisecondsF() const;
236 int64_t InMilliseconds() const;
237 int64_t InMillisecondsRoundedUp() const;
InMicroseconds()238 constexpr int64_t InMicroseconds() const { return delta_; }
239 double InMicrosecondsF() const;
240 constexpr int64_t InNanoseconds() const;
241
242 // Computations with other deltas.
243 constexpr TimeDelta operator+(TimeDelta other) const;
244 constexpr TimeDelta operator-(TimeDelta other) const;
245
246 constexpr TimeDelta& operator+=(TimeDelta other) {
247 return *this = (*this + other);
248 }
249 constexpr TimeDelta& operator-=(TimeDelta other) {
250 return *this = (*this - other);
251 }
252 constexpr TimeDelta operator-() const {
253 if (!is_inf())
254 return TimeDelta(-delta_);
255 return (delta_ < 0) ? Max() : Min();
256 }
257
258 // Computations with numeric types.
259 template <typename T>
260 constexpr TimeDelta operator*(T a) const {
261 return TimeDelta(int64_t{delta_ * a});
262 }
263 template <typename T>
264 constexpr TimeDelta operator/(T a) const {
265 return TimeDelta(int64_t{delta_ / a});
266 }
267 template <typename T>
268 constexpr TimeDelta& operator*=(T a) {
269 return *this = (*this * a);
270 }
271 template <typename T>
272 constexpr TimeDelta& operator/=(T a) {
273 return *this = (*this / a);
274 }
275
276 // This does floating-point division. For an integer result, either call
277 // IntDiv(), or (possibly clearer) use this operator with
278 // base::Clamp{Ceil,Floor,Round}() or base::saturated_cast() (for truncation).
279 // Note that converting to double here drops precision to 53 bits.
280 constexpr double operator/(TimeDelta a) const {
281 // 0/0 and inf/inf (any combination of positive and negative) are invalid
282 // (they are almost certainly not intentional, and result in NaN, which
283 // turns into 0 if clamped to an integer; this makes introducing subtle bugs
284 // too easy).
285 CHECK(!is_zero() || !a.is_zero());
286 CHECK(!is_inf() || !a.is_inf());
287
288 return ToDouble() / a.ToDouble();
289 }
IntDiv(TimeDelta a)290 constexpr int64_t IntDiv(TimeDelta a) const {
291 if (!is_inf() && !a.is_zero())
292 return int64_t{delta_ / a.delta_};
293
294 // For consistency, use the same edge case CHECKs and behavior as the code
295 // above.
296 CHECK(!is_zero() || !a.is_zero());
297 CHECK(!is_inf() || !a.is_inf());
298 return ((delta_ < 0) == (a.delta_ < 0))
299 ? std::numeric_limits<int64_t>::max()
300 : std::numeric_limits<int64_t>::min();
301 }
302
303 constexpr TimeDelta operator%(TimeDelta a) const {
304 return TimeDelta(
305 (is_inf() || a.is_zero() || a.is_inf()) ? delta_ : (delta_ % a.delta_));
306 }
307 constexpr TimeDelta& operator%=(TimeDelta other) {
308 return *this = (*this % other);
309 }
310
311 // Comparison operators.
312 constexpr bool operator==(TimeDelta other) const {
313 return delta_ == other.delta_;
314 }
315 constexpr bool operator!=(TimeDelta other) const {
316 return delta_ != other.delta_;
317 }
318 constexpr bool operator<(TimeDelta other) const {
319 return delta_ < other.delta_;
320 }
321 constexpr bool operator<=(TimeDelta other) const {
322 return delta_ <= other.delta_;
323 }
324 constexpr bool operator>(TimeDelta other) const {
325 return delta_ > other.delta_;
326 }
327 constexpr bool operator>=(TimeDelta other) const {
328 return delta_ >= other.delta_;
329 }
330
331 // Returns this delta, ceiled/floored/rounded-away-from-zero to the nearest
332 // multiple of |interval|.
333 TimeDelta CeilToMultiple(TimeDelta interval) const;
334 TimeDelta FloorToMultiple(TimeDelta interval) const;
335 TimeDelta RoundToMultiple(TimeDelta interval) const;
336
337 private:
338 // Constructs a delta given the duration in microseconds. This is private
339 // to avoid confusion by callers with an integer constructor. Use
340 // base::Seconds, base::Milliseconds, etc. instead.
TimeDelta(int64_t delta_us)341 constexpr explicit TimeDelta(int64_t delta_us) : delta_(delta_us) {}
TimeDelta(ClampedNumeric<int64_t> delta_us)342 constexpr explicit TimeDelta(ClampedNumeric<int64_t> delta_us)
343 : delta_(delta_us) {}
344
345 // Returns a double representation of this TimeDelta's tick count. In
346 // particular, Max()/Min() are converted to +/-infinity.
ToDouble()347 constexpr double ToDouble() const {
348 if (!is_inf())
349 return static_cast<double>(delta_);
350 return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
351 : std::numeric_limits<double>::infinity();
352 }
353
354 // Delta in microseconds.
355 ClampedNumeric<int64_t> delta_ = 0;
356 };
357
358 constexpr TimeDelta TimeDelta::operator+(TimeDelta other) const {
359 if (!other.is_inf())
360 return TimeDelta(delta_ + other.delta_);
361
362 // Additions involving two infinities are only valid if signs match.
363 CHECK(!is_inf() || (delta_ == other.delta_));
364 return other;
365 }
366
367 constexpr TimeDelta TimeDelta::operator-(TimeDelta other) const {
368 if (!other.is_inf())
369 return TimeDelta(delta_ - other.delta_);
370
371 // Subtractions involving two infinities are only valid if signs differ.
372 CHECK_NE(int64_t{delta_}, int64_t{other.delta_});
373 return (other.delta_ < 0) ? Max() : Min();
374 }
375
376 template <typename T>
377 constexpr TimeDelta operator*(T a, TimeDelta td) {
378 return td * a;
379 }
380
381 // For logging use only.
382 BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeDelta time_delta);
383
384 // TimeBase--------------------------------------------------------------------
385
386 // Do not reference the time_internal::TimeBase template class directly. Please
387 // use one of the time subclasses instead, and only reference the public
388 // TimeBase members via those classes.
389 namespace time_internal {
390
391 // Provides value storage and comparison/math operations common to all time
392 // classes. Each subclass provides for strong type-checking to ensure
393 // semantically meaningful comparison/math of time values from the same clock
394 // source or timeline.
395 template<class TimeClass>
396 class TimeBase {
397 public:
398 static constexpr int64_t kHoursPerDay = 24;
399 static constexpr int64_t kSecondsPerMinute = 60;
400 static constexpr int64_t kMinutesPerHour = 60;
401 static constexpr int64_t kSecondsPerHour =
402 kSecondsPerMinute * kMinutesPerHour;
403 static constexpr int64_t kMillisecondsPerSecond = 1000;
404 static constexpr int64_t kMillisecondsPerDay =
405 kMillisecondsPerSecond * kSecondsPerHour * kHoursPerDay;
406 static constexpr int64_t kMicrosecondsPerMillisecond = 1000;
407 static constexpr int64_t kMicrosecondsPerSecond =
408 kMicrosecondsPerMillisecond * kMillisecondsPerSecond;
409 static constexpr int64_t kMicrosecondsPerMinute =
410 kMicrosecondsPerSecond * kSecondsPerMinute;
411 static constexpr int64_t kMicrosecondsPerHour =
412 kMicrosecondsPerMinute * kMinutesPerHour;
413 static constexpr int64_t kMicrosecondsPerDay =
414 kMicrosecondsPerHour * kHoursPerDay;
415 static constexpr int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7;
416 static constexpr int64_t kNanosecondsPerMicrosecond = 1000;
417 static constexpr int64_t kNanosecondsPerSecond =
418 kNanosecondsPerMicrosecond * kMicrosecondsPerSecond;
419
420 // TODO(https://crbug.com/1392437): Remove concept of "null" from base::Time.
421 //
422 // Warning: Be careful when writing code that performs math on time values,
423 // since it's possible to produce a valid "zero" result that should not be
424 // interpreted as a "null" value. If you find yourself using this method or
425 // the zero-arg default constructor, please consider using an optional to
426 // express the null state.
427 //
428 // Returns true if this object has not been initialized (probably).
is_null()429 constexpr bool is_null() const { return us_ == 0; }
430
431 // Returns true if this object represents the maximum/minimum time.
is_max()432 constexpr bool is_max() const { return *this == Max(); }
is_min()433 constexpr bool is_min() const { return *this == Min(); }
is_inf()434 constexpr bool is_inf() const { return is_min() || is_max(); }
435
436 // Returns the maximum/minimum times, which should be greater/less than than
437 // any reasonable time with which we might compare it.
Max()438 static constexpr TimeClass Max() {
439 return TimeClass(std::numeric_limits<int64_t>::max());
440 }
441
Min()442 static constexpr TimeClass Min() {
443 return TimeClass(std::numeric_limits<int64_t>::min());
444 }
445
446 // For legacy serialization only. When serializing to `base::Value`, prefer
447 // the helpers from //base/json/values_util.h instead. Otherwise, use
448 // `Time::ToDeltaSinceWindowsEpoch()` for `Time` and
449 // `TimeDelta::InMiseconds()` for `TimeDelta`. See http://crbug.com/634507.
ToInternalValue()450 constexpr int64_t ToInternalValue() const { return us_; }
451
452 // The amount of time since the origin (or "zero") point. This is a syntactic
453 // convenience to aid in code readability, mainly for debugging/testing use
454 // cases.
455 //
456 // Warning: While the Time subclass has a fixed origin point, the origin for
457 // the other subclasses can vary each time the application is restarted.
458 constexpr TimeDelta since_origin() const;
459
460 // Compute the difference between two times.
461 #if !defined(__aarch64__) && BUILDFLAG(IS_ANDROID)
462 NOINLINE // https://crbug.com/1369775
463 #endif
464 constexpr TimeDelta operator-(const TimeBase<TimeClass>& other) const;
465
466 // Return a new time modified by some delta.
467 constexpr TimeClass operator+(TimeDelta delta) const;
468 constexpr TimeClass operator-(TimeDelta delta) const;
469
470 // Modify by some time delta.
471 constexpr TimeClass& operator+=(TimeDelta delta) {
472 return static_cast<TimeClass&>(*this = (*this + delta));
473 }
474 constexpr TimeClass& operator-=(TimeDelta delta) {
475 return static_cast<TimeClass&>(*this = (*this - delta));
476 }
477
478 // Comparison operators
479 constexpr bool operator==(const TimeBase<TimeClass>& other) const {
480 return us_ == other.us_;
481 }
482 constexpr bool operator!=(const TimeBase<TimeClass>& other) const {
483 return us_ != other.us_;
484 }
485 constexpr bool operator<(const TimeBase<TimeClass>& other) const {
486 return us_ < other.us_;
487 }
488 constexpr bool operator<=(const TimeBase<TimeClass>& other) const {
489 return us_ <= other.us_;
490 }
491 constexpr bool operator>(const TimeBase<TimeClass>& other) const {
492 return us_ > other.us_;
493 }
494 constexpr bool operator>=(const TimeBase<TimeClass>& other) const {
495 return us_ >= other.us_;
496 }
497
498 protected:
TimeBase(int64_t us)499 constexpr explicit TimeBase(int64_t us) : us_(us) {}
500
501 // Time value in a microsecond timebase.
502 ClampedNumeric<int64_t> us_;
503 };
504
505 #if BUILDFLAG(IS_WIN)
506 #if defined(ARCH_CPU_ARM64)
507 // TSCTicksPerSecond is not supported on Windows on Arm systems because the
508 // cycle-counting methods use the actual CPU cycle count, and not a consistent
509 // incrementing counter.
510 #else
511 // Returns true if the CPU support constant rate TSC.
512 [[nodiscard]] BASE_EXPORT bool HasConstantRateTSC();
513
514 // Returns the frequency of the TSC in ticks per second, or 0 if it hasn't
515 // been measured yet. Needs to be guarded with a call to HasConstantRateTSC().
516 [[nodiscard]] BASE_EXPORT double TSCTicksPerSecond();
517 #endif
518 #endif // BUILDFLAG(IS_WIN)
519
520 } // namespace time_internal
521
522 template <class TimeClass>
523 inline constexpr TimeClass operator+(TimeDelta delta, TimeClass t) {
524 return t + delta;
525 }
526
527 // Time -----------------------------------------------------------------------
528
529 // Represents a wall clock time in UTC. Values are not guaranteed to be
530 // monotonically non-decreasing and are subject to large amounts of skew.
531 // Time is stored internally as microseconds since the Windows epoch (1601).
532 class BASE_EXPORT Time : public time_internal::TimeBase<Time> {
533 public:
534 // Offset of UNIX epoch (1970-01-01 00:00:00 UTC) from Windows FILETIME epoch
535 // (1601-01-01 00:00:00 UTC), in microseconds. This value is derived from the
536 // following: ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the number
537 // of leap year days between 1601 and 1970: (1970-1601)/4 excluding 1700,
538 // 1800, and 1900.
539 static constexpr int64_t kTimeTToMicrosecondsOffset =
540 INT64_C(11644473600000000);
541
542 #if BUILDFLAG(IS_WIN)
543 // To avoid overflow in QPC to Microseconds calculations, since we multiply
544 // by kMicrosecondsPerSecond, then the QPC value should not exceed
545 // (2^63 - 1) / 1E6. If it exceeds that threshold, we divide then multiply.
546 static constexpr int64_t kQPCOverflowThreshold = INT64_C(0x8637BD05AF7);
547 #endif
548
549 // kExplodedMinYear and kExplodedMaxYear define the platform-specific limits
550 // for values passed to FromUTCExploded() and FromLocalExploded(). Those
551 // functions will return false if passed values outside these limits. The limits
552 // are inclusive, meaning that the API should support all dates within a given
553 // limit year.
554 //
555 // WARNING: These are not the same limits for the inverse functionality,
556 // UTCExplode() and LocalExplode(). See method comments for further details.
557 #if BUILDFLAG(IS_WIN)
558 static constexpr int kExplodedMinYear = 1601;
559 static constexpr int kExplodedMaxYear = 30827;
560 #elif BUILDFLAG(IS_IOS) && !__LP64__
561 static constexpr int kExplodedMinYear = std::numeric_limits<int>::min();
562 static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
563 #elif BUILDFLAG(IS_APPLE)
564 static constexpr int kExplodedMinYear = 1902;
565 static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
566 #elif BUILDFLAG(IS_ANDROID)
567 // Though we use 64-bit time APIs on both 32 and 64 bit Android, some OS
568 // versions like KitKat (ARM but not x86 emulator) can't handle some early
569 // dates (e.g. before 1170). So we set min conservatively here.
570 static constexpr int kExplodedMinYear = 1902;
571 static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
572 #else
573 static constexpr int kExplodedMinYear =
574 (sizeof(time_t) == 4 ? 1902 : std::numeric_limits<int>::min());
575 static constexpr int kExplodedMaxYear =
576 (sizeof(time_t) == 4 ? 2037 : std::numeric_limits<int>::max());
577 #endif
578
579 // Represents an exploded time that can be formatted nicely. This is kind of
580 // like the Win32 SYSTEMTIME structure or the Unix "struct tm" with a few
581 // additions and changes to prevent errors.
582 // This structure always represents dates in the Gregorian calendar and always
583 // encodes day_of_week as Sunday==0, Monday==1, .., Saturday==6. This means
584 // that base::Time::LocalExplode and base::Time::FromLocalExploded only
585 // respect the current local time zone in the conversion and do *not* use a
586 // calendar or day-of-week encoding from the current locale.
587 struct BASE_EXPORT Exploded {
588 int year; // Four digit year "2007"
589 int month; // 1-based month (values 1 = January, etc.)
590 int day_of_week; // 0-based day of week (0 = Sunday, etc.)
591 int day_of_month; // 1-based day of month (1-31)
592 int hour; // Hour within the current day (0-23)
593 int minute; // Minute within the current hour (0-59)
594 int second; // Second within the current minute (0-59 plus leap
595 // seconds which may take it up to 60).
596 int millisecond; // Milliseconds within the current second (0-999)
597
598 // A cursory test for whether the data members are within their
599 // respective ranges. A 'true' return value does not guarantee the
600 // Exploded value can be successfully converted to a Time value.
601 bool HasValidValues() const;
602 };
603
604 // TODO(https://crbug.com/1392437): Remove concept of "null" from base::Time.
605 //
606 // Warning: Be careful when writing code that performs math on time values,
607 // since it's possible to produce a valid "zero" result that should not be
608 // interpreted as a "null" value. If you find yourself using this constructor
609 // or the is_null() method, please consider using an optional to express the
610 // null state.
611 //
612 // Contains the NULL time. Use Time::Now() to get the current time.
Time()613 constexpr Time() : TimeBase(0) {}
614
615 // Returns the time for epoch in Unix-like system (Jan 1, 1970).
UnixEpoch()616 static constexpr Time UnixEpoch() { return Time(kTimeTToMicrosecondsOffset); }
617
618 // Returns the current time. Watch out, the system might adjust its clock
619 // in which case time will actually go backwards. We don't guarantee that
620 // times are increasing, or that two calls to Now() won't be the same.
621 static Time Now();
622
623 // Returns the current time. Same as Now() except that this function always
624 // uses system time so that there are no discrepancies between the returned
625 // time and system time even on virtual environments including our test bot.
626 // For timing sensitive unittests, this function should be used.
627 static Time NowFromSystemTime();
628
629 // Converts to/from TimeDeltas relative to the Windows epoch (1601-01-01
630 // 00:00:00 UTC).
631 //
632 // For serialization, when handling `base::Value`, prefer the helpers in
633 // //base/json/values_util.h instead. Otherwise, use these methods for
634 // opaque serialization and deserialization, e.g.
635 //
636 // // Serialization:
637 // base::Time last_updated = ...;
638 // SaveToDatabase(last_updated.ToDeltaSinceWindowsEpoch().InMicroseconds());
639 //
640 // // Deserialization:
641 // base::Time last_updated = base::Time::FromDeltaSinceWindowsEpoch(
642 // base::Microseconds(LoadFromDatabase()));
643 //
644 // Do not use `FromInternalValue()` or `ToInternalValue()` for this purpose.
FromDeltaSinceWindowsEpoch(TimeDelta delta)645 static constexpr Time FromDeltaSinceWindowsEpoch(TimeDelta delta) {
646 return Time(delta.InMicroseconds());
647 }
648
ToDeltaSinceWindowsEpoch()649 constexpr TimeDelta ToDeltaSinceWindowsEpoch() const {
650 return Microseconds(us_);
651 }
652
653 // Converts to/from time_t in UTC and a Time class.
654 static constexpr Time FromTimeT(time_t tt);
655 time_t ToTimeT() const;
656
657 // Converts time to/from a double which is the number of seconds since epoch
658 // (Jan 1, 1970). Webkit uses this format to represent time.
659 // Because WebKit initializes double time value to 0 to indicate "not
660 // initialized", we map it to empty Time object that also means "not
661 // initialized".
662 static Time FromDoubleT(double dt);
663 double ToDoubleT() const;
664
665 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
666 // Converts the timespec structure to time. MacOS X 10.8.3 (and tentatively,
667 // earlier versions) will have the |ts|'s tv_nsec component zeroed out,
668 // having a 1 second resolution, which agrees with
669 // https://developer.apple.com/legacy/library/#technotes/tn/tn1150.html#HFSPlusDates.
670 static Time FromTimeSpec(const timespec& ts);
671 #endif
672
673 // Converts to/from the Javascript convention for times, a number of
674 // milliseconds since the epoch:
675 // https://developer.mozilla.org/en/JavaScript/Reference/Global_Objects/Date/getTime.
676 //
677 // Don't use ToJsTime() in new code, since it contains a subtle hack (only
678 // exactly 1601-01-01 00:00 UTC is represented as 1970-01-01 00:00 UTC), and
679 // that is not appropriate for general use. Try to use ToJsTimeIgnoringNull()
680 // unless you have a very good reason to use ToJsTime().
681 static Time FromJsTime(double ms_since_epoch);
682 double ToJsTime() const;
683 double ToJsTimeIgnoringNull() const;
684
685 // Converts to/from Java convention for times, a number of milliseconds since
686 // the epoch. Because the Java format has less resolution, converting to Java
687 // time is a lossy operation.
688 static Time FromJavaTime(int64_t ms_since_epoch);
689 int64_t ToJavaTime() const;
690
691 #if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
692 static Time FromTimeVal(struct timeval t);
693 struct timeval ToTimeVal() const;
694 #endif
695
696 #if BUILDFLAG(IS_FUCHSIA)
697 static Time FromZxTime(zx_time_t time);
698 zx_time_t ToZxTime() const;
699 #endif
700
701 #if BUILDFLAG(IS_APPLE)
702 static Time FromCFAbsoluteTime(CFAbsoluteTime t);
703 CFAbsoluteTime ToCFAbsoluteTime() const;
704 #if defined(__OBJC__)
705 static Time FromNSDate(NSDate* date);
706 NSDate* ToNSDate() const;
707 #endif
708 #endif
709
710 #if BUILDFLAG(IS_WIN)
711 static Time FromFileTime(FILETIME ft);
712 FILETIME ToFileTime() const;
713
714 // The minimum time of a low resolution timer. This is basically a windows
715 // constant of ~15.6ms. While it does vary on some older OS versions, we'll
716 // treat it as static across all windows versions.
717 static const int kMinLowResolutionThresholdMs = 16;
718
719 // Enable or disable Windows high resolution timer.
720 static void EnableHighResolutionTimer(bool enable);
721
722 // Activates or deactivates the high resolution timer based on the |activate|
723 // flag. If the HighResolutionTimer is not Enabled (see
724 // EnableHighResolutionTimer), this function will return false. Otherwise
725 // returns true. Each successful activate call must be paired with a
726 // subsequent deactivate call.
727 // All callers to activate the high resolution timer must eventually call
728 // this function to deactivate the high resolution timer.
729 static bool ActivateHighResolutionTimer(bool activate);
730
731 // Returns true if the high resolution timer is both enabled and activated.
732 // This is provided for testing only, and is not tracked in a thread-safe
733 // way.
734 static bool IsHighResolutionTimerInUse();
735
736 // The following two functions are used to report the fraction of elapsed time
737 // that the high resolution timer is activated.
738 // ResetHighResolutionTimerUsage() resets the cumulative usage and starts the
739 // measurement interval and GetHighResolutionTimerUsage() returns the
740 // percentage of time since the reset that the high resolution timer was
741 // activated.
742 // ResetHighResolutionTimerUsage() must be called at least once before calling
743 // GetHighResolutionTimerUsage(); otherwise the usage result would be
744 // undefined.
745 static void ResetHighResolutionTimerUsage();
746 static double GetHighResolutionTimerUsage();
747 #endif // BUILDFLAG(IS_WIN)
748
749 // Converts an exploded structure representing either the local time or UTC
750 // into a Time class. Returns false on a failure when, for example, a day of
751 // month is set to 31 on a 28-30 day month. Returns Time(0) on overflow.
752 // FromLocalExploded respects the current time zone but does not attempt to
753 // use the calendar or day-of-week encoding from the current locale - see the
754 // comments on base::Time::Exploded for more information.
FromUTCExploded(const Exploded & exploded,Time * time)755 [[nodiscard]] static bool FromUTCExploded(const Exploded& exploded,
756 Time* time) {
757 return FromExploded(false, exploded, time);
758 }
FromLocalExploded(const Exploded & exploded,Time * time)759 [[nodiscard]] static bool FromLocalExploded(const Exploded& exploded,
760 Time* time) {
761 return FromExploded(true, exploded, time);
762 }
763
764 // Converts a string representation of time to a Time object.
765 // An example of a time string which is converted is as below:-
766 // "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
767 // in the input string, FromString assumes local time and FromUTCString
768 // assumes UTC. A timezone that cannot be parsed (e.g. "UTC" which is not
769 // specified in RFC822) is treated as if the timezone is not specified.
770 //
771 // WARNING: the underlying converter is very permissive. For example: it is
772 // not checked whether a given day of the week matches the date; Feb 29
773 // silently becomes Mar 1 in non-leap years; under certain conditions, whole
774 // English sentences may be parsed successfully and yield unexpected results.
775 //
776 // TODO(iyengar) Move the FromString/FromTimeT/ToTimeT/FromFileTime to
777 // a new time converter class.
FromString(const char * time_string,Time * parsed_time)778 [[nodiscard]] static bool FromString(const char* time_string,
779 Time* parsed_time) {
780 return FromStringInternal(time_string, true, parsed_time);
781 }
FromUTCString(const char * time_string,Time * parsed_time)782 [[nodiscard]] static bool FromUTCString(const char* time_string,
783 Time* parsed_time) {
784 return FromStringInternal(time_string, false, parsed_time);
785 }
786
787 // Fills the given |exploded| structure with either the local time or UTC from
788 // this Time instance. If the conversion cannot be made, the output will be
789 // assigned invalid values. Use Exploded::HasValidValues() to confirm a
790 // successful conversion.
791 //
792 // Y10K compliance: This method will successfully convert all Times that
793 // represent dates on/after the start of the year 1601 and on/before the start
794 // of the year 30828. Some platforms might convert over a wider input range.
795 // LocalExplode respects the current time zone but does not attempt to use the
796 // calendar or day-of-week encoding from the current locale - see the comments
797 // on base::Time::Exploded for more information.
UTCExplode(Exploded * exploded)798 void UTCExplode(Exploded* exploded) const { Explode(false, exploded); }
LocalExplode(Exploded * exploded)799 void LocalExplode(Exploded* exploded) const { Explode(true, exploded); }
800
801 // The following two functions round down the time to the nearest day in
802 // either UTC or local time. It will represent midnight on that day.
UTCMidnight()803 Time UTCMidnight() const { return Midnight(false); }
LocalMidnight()804 Time LocalMidnight() const { return Midnight(true); }
805
806 // For legacy deserialization only. Converts an integer value representing
807 // Time to a class. This may be used when deserializing a |Time| structure,
808 // using a value known to be compatible. It is not provided as a constructor
809 // because the integer type may be unclear from the perspective of a caller.
810 //
811 // DEPRECATED - Do not use in new code. When deserializing from `base::Value`,
812 // prefer the helpers from //base/json/values_util.h instead.
813 // Otherwise, use `Time::FromDeltaSinceWindowsEpoch()` for `Time` and
814 // `TimeDelta::FromMiseconds()` for `TimeDelta`. http://crbug.com/634507
FromInternalValue(int64_t us)815 static constexpr Time FromInternalValue(int64_t us) { return Time(us); }
816
817 private:
818 friend class time_internal::TimeBase<Time>;
819
Time(int64_t microseconds_since_win_epoch)820 constexpr explicit Time(int64_t microseconds_since_win_epoch)
821 : TimeBase(microseconds_since_win_epoch) {}
822
823 // Explodes the given time to either local time |is_local = true| or UTC
824 // |is_local = false|.
825 void Explode(bool is_local, Exploded* exploded) const;
826
827 // Unexplodes a given time assuming the source is either local time
828 // |is_local = true| or UTC |is_local = false|. Function returns false on
829 // failure and sets |time| to Time(0). Otherwise returns true and sets |time|
830 // to non-exploded time.
831 [[nodiscard]] static bool FromExploded(bool is_local,
832 const Exploded& exploded,
833 Time* time);
834
835 // Some platforms use the ICU library to provide To/FromExploded, when their
836 // native library implementations are insufficient in some way.
837 static void ExplodeUsingIcu(int64_t millis_since_unix_epoch,
838 bool is_local,
839 Exploded* exploded);
840 [[nodiscard]] static bool FromExplodedUsingIcu(
841 bool is_local,
842 const Exploded& exploded,
843 int64_t* millis_since_unix_epoch);
844
845 // Rounds down the time to the nearest day in either local time
846 // |is_local = true| or UTC |is_local = false|.
847 Time Midnight(bool is_local) const;
848
849 // Converts a string representation of time to a Time object.
850 // An example of a time string which is converted is as below:-
851 // "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
852 // in the input string, local time |is_local = true| or
853 // UTC |is_local = false| is assumed. A timezone that cannot be parsed
854 // (e.g. "UTC" which is not specified in RFC822) is treated as if the
855 // timezone is not specified.
856 [[nodiscard]] static bool FromStringInternal(const char* time_string,
857 bool is_local,
858 Time* parsed_time);
859
860 // Comparison does not consider |day_of_week| when doing the operation.
861 [[nodiscard]] static bool ExplodedMostlyEquals(const Exploded& lhs,
862 const Exploded& rhs);
863
864 // Converts the provided time in milliseconds since the Unix epoch (1970) to a
865 // Time object, avoiding overflows.
866 [[nodiscard]] static bool FromMillisecondsSinceUnixEpoch(
867 int64_t unix_milliseconds,
868 Time* time);
869
870 // Returns the milliseconds since the Unix epoch (1970), rounding the
871 // microseconds towards -infinity.
872 int64_t ToRoundedDownMillisecondsSinceUnixEpoch() const;
873 };
874
875 // Factory methods that return a TimeDelta of the given unit.
876 // WARNING: Floating point arithmetic is such that XXX(t.InXXXF()) may not
877 // precisely equal |t|. Hence, floating point values should not be used for
878 // storage.
879
880 template <typename T>
Days(T n)881 constexpr TimeDelta Days(T n) {
882 return TimeDelta::FromInternalValue(MakeClampedNum(n) *
883 Time::kMicrosecondsPerDay);
884 }
885 template <typename T>
Hours(T n)886 constexpr TimeDelta Hours(T n) {
887 return TimeDelta::FromInternalValue(MakeClampedNum(n) *
888 Time::kMicrosecondsPerHour);
889 }
890 template <typename T>
Minutes(T n)891 constexpr TimeDelta Minutes(T n) {
892 return TimeDelta::FromInternalValue(MakeClampedNum(n) *
893 Time::kMicrosecondsPerMinute);
894 }
895 template <typename T>
Seconds(T n)896 constexpr TimeDelta Seconds(T n) {
897 return TimeDelta::FromInternalValue(MakeClampedNum(n) *
898 Time::kMicrosecondsPerSecond);
899 }
900 template <typename T>
Milliseconds(T n)901 constexpr TimeDelta Milliseconds(T n) {
902 return TimeDelta::FromInternalValue(MakeClampedNum(n) *
903 Time::kMicrosecondsPerMillisecond);
904 }
905 template <typename T>
Microseconds(T n)906 constexpr TimeDelta Microseconds(T n) {
907 return TimeDelta::FromInternalValue(MakeClampedNum(n));
908 }
909 template <typename T>
Nanoseconds(T n)910 constexpr TimeDelta Nanoseconds(T n) {
911 return TimeDelta::FromInternalValue(MakeClampedNum(n) /
912 Time::kNanosecondsPerMicrosecond);
913 }
914 template <typename T>
Hertz(T n)915 constexpr TimeDelta Hertz(T n) {
916 return n ? TimeDelta::FromInternalValue(Time::kMicrosecondsPerSecond /
917 MakeClampedNum(n))
918 : TimeDelta::Max();
919 }
920
921 // TimeDelta functions that must appear below the declarations of Time/TimeDelta
922
ToHz()923 constexpr double TimeDelta::ToHz() const {
924 return Seconds(1) / *this;
925 }
926
InHours()927 constexpr int TimeDelta::InHours() const {
928 // saturated_cast<> is necessary since very large (but still less than
929 // min/max) deltas would result in overflow.
930 return saturated_cast<int>(delta_ / Time::kMicrosecondsPerHour);
931 }
932
InMinutes()933 constexpr int TimeDelta::InMinutes() const {
934 // saturated_cast<> is necessary since very large (but still less than
935 // min/max) deltas would result in overflow.
936 return saturated_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
937 }
938
InSecondsF()939 constexpr double TimeDelta::InSecondsF() const {
940 if (!is_inf())
941 return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
942 return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
943 : std::numeric_limits<double>::infinity();
944 }
945
InSeconds()946 constexpr int64_t TimeDelta::InSeconds() const {
947 return is_inf() ? delta_ : (delta_ / Time::kMicrosecondsPerSecond);
948 }
949
InNanoseconds()950 constexpr int64_t TimeDelta::InNanoseconds() const {
951 return base::ClampMul(delta_, Time::kNanosecondsPerMicrosecond);
952 }
953
954 // static
Max()955 constexpr TimeDelta TimeDelta::Max() {
956 return TimeDelta(std::numeric_limits<int64_t>::max());
957 }
958
959 // static
Min()960 constexpr TimeDelta TimeDelta::Min() {
961 return TimeDelta(std::numeric_limits<int64_t>::min());
962 }
963
964 // static
FiniteMax()965 constexpr TimeDelta TimeDelta::FiniteMax() {
966 return TimeDelta(std::numeric_limits<int64_t>::max() - 1);
967 }
968
969 // static
FiniteMin()970 constexpr TimeDelta TimeDelta::FiniteMin() {
971 return TimeDelta(std::numeric_limits<int64_t>::min() + 1);
972 }
973
974 // TimeBase functions that must appear below the declarations of Time/TimeDelta
975 namespace time_internal {
976
977 template <class TimeClass>
since_origin()978 constexpr TimeDelta TimeBase<TimeClass>::since_origin() const {
979 return Microseconds(us_);
980 }
981
982 template <class TimeClass>
983 constexpr TimeDelta TimeBase<TimeClass>::operator-(
984 const TimeBase<TimeClass>& other) const {
985 return Microseconds(us_ - other.us_);
986 }
987
988 template <class TimeClass>
989 constexpr TimeClass TimeBase<TimeClass>::operator+(TimeDelta delta) const {
990 return TimeClass((Microseconds(us_) + delta).InMicroseconds());
991 }
992
993 template <class TimeClass>
994 constexpr TimeClass TimeBase<TimeClass>::operator-(TimeDelta delta) const {
995 return TimeClass((Microseconds(us_) - delta).InMicroseconds());
996 }
997
998 } // namespace time_internal
999
1000 // Time functions that must appear below the declarations of Time/TimeDelta
1001
1002 // static
FromTimeT(time_t tt)1003 constexpr Time Time::FromTimeT(time_t tt) {
1004 if (tt == 0)
1005 return Time(); // Preserve 0 so we can tell it doesn't exist.
1006 return (tt == std::numeric_limits<time_t>::max())
1007 ? Max()
1008 : (UnixEpoch() + Seconds(tt));
1009 }
1010
1011 // For logging use only.
1012 BASE_EXPORT std::ostream& operator<<(std::ostream& os, Time time);
1013
1014 // TimeTicks ------------------------------------------------------------------
1015
1016 // Represents monotonically non-decreasing clock time.
1017 class BASE_EXPORT TimeTicks : public time_internal::TimeBase<TimeTicks> {
1018 public:
1019 // The underlying clock used to generate new TimeTicks.
1020 enum class Clock {
1021 FUCHSIA_ZX_CLOCK_MONOTONIC,
1022 LINUX_CLOCK_MONOTONIC,
1023 IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME,
1024 MAC_MACH_ABSOLUTE_TIME,
1025 WIN_QPC,
1026 WIN_ROLLOVER_PROTECTED_TIME_GET_TIME
1027 };
1028
TimeTicks()1029 constexpr TimeTicks() : TimeBase(0) {}
1030
1031 // Platform-dependent tick count representing "right now." When
1032 // IsHighResolution() returns false, the resolution of the clock could be
1033 // as coarse as ~15.6ms. Otherwise, the resolution should be no worse than one
1034 // microsecond.
1035 static TimeTicks Now();
1036
1037 // Returns true if the high resolution clock is working on this system and
1038 // Now() will return high resolution values. Note that, on systems where the
1039 // high resolution clock works but is deemed inefficient, the low resolution
1040 // clock will be used instead.
1041 [[nodiscard]] static bool IsHighResolution();
1042
1043 // Returns true if TimeTicks is consistent across processes, meaning that
1044 // timestamps taken on different processes can be safely compared with one
1045 // another. (Note that, even on platforms where this returns true, time values
1046 // from different threads that are within one tick of each other must be
1047 // considered to have an ambiguous ordering.)
1048 [[nodiscard]] static bool IsConsistentAcrossProcesses();
1049
1050 #if BUILDFLAG(IS_FUCHSIA)
1051 // Converts between TimeTicks and an ZX_CLOCK_MONOTONIC zx_time_t value.
1052 static TimeTicks FromZxTime(zx_time_t nanos_since_boot);
1053 zx_time_t ToZxTime() const;
1054 #endif
1055
1056 #if BUILDFLAG(IS_WIN)
1057 // Translates an absolute QPC timestamp into a TimeTicks value. The returned
1058 // value has the same origin as Now(). Do NOT attempt to use this if
1059 // IsHighResolution() returns false.
1060 static TimeTicks FromQPCValue(LONGLONG qpc_value);
1061 #endif
1062
1063 #if BUILDFLAG(IS_APPLE)
1064 #if BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS)
1065 static TimeTicks FromMachAbsoluteTime(uint64_t mach_absolute_time);
1066
1067 // Sets the current Mach timebase to `timebase`. Returns the old timebase.
1068 static mach_timebase_info_data_t SetMachTimebaseInfoForTesting(
1069 mach_timebase_info_data_t timebase);
1070
1071 #endif // BUILDFLAG(ENABLE_MACH_ABSOLUTE_TIME_TICKS)
1072 #endif // BUILDFLAG(IS_APPLE)
1073
1074 #if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS_ASH)
1075 // Converts to TimeTicks the value obtained from SystemClock.uptimeMillis().
1076 // Note: this conversion may be non-monotonic in relation to previously
1077 // obtained TimeTicks::Now() values because of the truncation (to
1078 // milliseconds) performed by uptimeMillis().
1079 static TimeTicks FromUptimeMillis(int64_t uptime_millis_value);
1080
1081 #endif // BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS_ASH)
1082
1083 #if BUILDFLAG(IS_ANDROID)
1084 // Converts to TimeTicks the value obtained from System.nanoTime(). This
1085 // conversion will be monotonic in relation to previously obtained
1086 // TimeTicks::Now() values as the clocks are based on the same posix monotonic
1087 // clock, with nanoTime() potentially providing higher resolution.
1088 static TimeTicks FromJavaNanoTime(int64_t nano_time_value);
1089
1090 // Truncates the TimeTicks value to the precision of SystemClock#uptimeMillis.
1091 // Note that the clocks already share the same monotonic clock source.
1092 jlong ToUptimeMillis() const;
1093
1094 // Returns the TimeTicks value as microseconds in the timebase of
1095 // SystemClock#uptimeMillis.
1096 // Note that the clocks already share the same monotonic clock source.
1097 //
1098 // System.nanoTime() may be used to get sub-millisecond precision in Java code
1099 // and may be compared against this value as the two share the same clock
1100 // source (though be sure to convert nanos to micros).
1101 jlong ToUptimeMicros() const;
1102
1103 #endif // BUILDFLAG(IS_ANDROID)
1104
1105 // Get an estimate of the TimeTick value at the time of the UnixEpoch. Because
1106 // Time and TimeTicks respond differently to user-set time and NTP
1107 // adjustments, this number is only an estimate. Nevertheless, this can be
1108 // useful when you need to relate the value of TimeTicks to a real time and
1109 // date. Note: Upon first invocation, this function takes a snapshot of the
1110 // realtime clock to establish a reference point. This function will return
1111 // the same value for the duration of the application, but will be different
1112 // in future application runs.
1113 static TimeTicks UnixEpoch();
1114
1115 static void SetSharedUnixEpoch(TimeTicks);
1116
1117 // Returns |this| snapped to the next tick, given a |tick_phase| and
1118 // repeating |tick_interval| in both directions. |this| may be before,
1119 // after, or equal to the |tick_phase|.
1120 TimeTicks SnappedToNextTick(TimeTicks tick_phase,
1121 TimeDelta tick_interval) const;
1122
1123 // Returns an enum indicating the underlying clock being used to generate
1124 // TimeTicks timestamps. This function should only be used for debugging and
1125 // logging purposes.
1126 static Clock GetClock();
1127
1128 // Converts an integer value representing TimeTicks to a class. This may be
1129 // used when deserializing a |TimeTicks| structure, using a value known to be
1130 // compatible. It is not provided as a constructor because the integer type
1131 // may be unclear from the perspective of a caller.
1132 //
1133 // DEPRECATED - Do not use in new code. For deserializing TimeTicks values,
1134 // prefer TimeTicks + TimeDelta(); however, be aware that the origin is not
1135 // fixed and may vary. Serializing for persistence is strongly discouraged.
1136 // http://crbug.com/634507
FromInternalValue(int64_t us)1137 static constexpr TimeTicks FromInternalValue(int64_t us) {
1138 return TimeTicks(us);
1139 }
1140
1141 protected:
1142 #if BUILDFLAG(IS_WIN)
1143 typedef DWORD (*TickFunctionType)(void);
1144 static TickFunctionType SetMockTickFunction(TickFunctionType ticker);
1145 #endif
1146
1147 private:
1148 friend class time_internal::TimeBase<TimeTicks>;
1149
1150 // Please use Now() to create a new object. This is for internal use
1151 // and testing.
TimeTicks(int64_t us)1152 constexpr explicit TimeTicks(int64_t us) : TimeBase(us) {}
1153 };
1154
1155 // For logging use only.
1156 BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks);
1157
1158 // ThreadTicks ----------------------------------------------------------------
1159
1160 // Represents a clock, specific to a particular thread, than runs only while the
1161 // thread is running.
1162 class BASE_EXPORT ThreadTicks : public time_internal::TimeBase<ThreadTicks> {
1163 public:
ThreadTicks()1164 constexpr ThreadTicks() : TimeBase(0) {}
1165
1166 // Returns true if ThreadTicks::Now() is supported on this system.
IsSupported()1167 [[nodiscard]] static bool IsSupported() {
1168 #if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
1169 BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_FUCHSIA)
1170 return true;
1171 #elif BUILDFLAG(IS_WIN)
1172 return IsSupportedWin();
1173 #else
1174 return false;
1175 #endif
1176 }
1177
1178 // Waits until the initialization is completed. Needs to be guarded with a
1179 // call to IsSupported().
WaitUntilInitialized()1180 static void WaitUntilInitialized() {
1181 #if BUILDFLAG(IS_WIN)
1182 WaitUntilInitializedWin();
1183 #endif
1184 }
1185
1186 // Returns thread-specific CPU-time on systems that support this feature.
1187 // Needs to be guarded with a call to IsSupported(). Use this timer
1188 // to (approximately) measure how much time the calling thread spent doing
1189 // actual work vs. being de-scheduled. May return bogus results if the thread
1190 // migrates to another CPU between two calls. Returns an empty ThreadTicks
1191 // object until the initialization is completed. If a clock reading is
1192 // absolutely needed, call WaitUntilInitialized() before this method.
1193 static ThreadTicks Now();
1194
1195 #if BUILDFLAG(IS_WIN)
1196 // Similar to Now() above except this returns thread-specific CPU time for an
1197 // arbitrary thread. All comments for Now() method above apply apply to this
1198 // method as well.
1199 static ThreadTicks GetForThread(const PlatformThreadHandle& thread_handle);
1200 #endif
1201
1202 // Converts an integer value representing ThreadTicks to a class. This may be
1203 // used when deserializing a |ThreadTicks| structure, using a value known to
1204 // be compatible. It is not provided as a constructor because the integer type
1205 // may be unclear from the perspective of a caller.
1206 //
1207 // DEPRECATED - Do not use in new code. For deserializing ThreadTicks values,
1208 // prefer ThreadTicks + TimeDelta(); however, be aware that the origin is not
1209 // fixed and may vary. Serializing for persistence is strongly
1210 // discouraged. http://crbug.com/634507
FromInternalValue(int64_t us)1211 static constexpr ThreadTicks FromInternalValue(int64_t us) {
1212 return ThreadTicks(us);
1213 }
1214
1215 private:
1216 friend class time_internal::TimeBase<ThreadTicks>;
1217
1218 // Please use Now() or GetForThread() to create a new object. This is for
1219 // internal use and testing.
ThreadTicks(int64_t us)1220 constexpr explicit ThreadTicks(int64_t us) : TimeBase(us) {}
1221
1222 #if BUILDFLAG(IS_WIN)
1223 [[nodiscard]] static bool IsSupportedWin();
1224 static void WaitUntilInitializedWin();
1225 #endif
1226 };
1227
1228 // For logging use only.
1229 BASE_EXPORT std::ostream& operator<<(std::ostream& os, ThreadTicks time_ticks);
1230
1231 // Returns a string representation of the given time in the IMF-fixdate format
1232 // defined by RFC 7231 (satisfying its HTTP-date format).
1233 BASE_EXPORT std::string TimeFormatHTTP(base::Time time);
1234
1235 } // namespace base
1236
1237 #endif // BASE_TIME_TIME_H_
1238