1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "image_space.h"
18
19 #include <sys/statvfs.h>
20 #include <sys/types.h>
21 #include <unistd.h>
22
23 #include <memory>
24 #include <random>
25 #include <string>
26 #include <vector>
27
28 #include "android-base/logging.h"
29 #include "android-base/stringprintf.h"
30 #include "android-base/strings.h"
31 #include "android-base/unique_fd.h"
32 #include "arch/instruction_set.h"
33 #include "art_field-inl.h"
34 #include "art_method-inl.h"
35 #include "base/array_ref.h"
36 #include "base/bit_memory_region.h"
37 #include "base/callee_save_type.h"
38 #include "base/enums.h"
39 #include "base/file_utils.h"
40 #include "base/globals.h"
41 #include "base/macros.h"
42 #include "base/memfd.h"
43 #include "base/os.h"
44 #include "base/scoped_flock.h"
45 #include "base/stl_util.h"
46 #include "base/string_view_cpp20.h"
47 #include "base/systrace.h"
48 #include "base/time_utils.h"
49 #include "base/utils.h"
50 #include "class_root-inl.h"
51 #include "dex/art_dex_file_loader.h"
52 #include "dex/dex_file_loader.h"
53 #include "exec_utils.h"
54 #include "fmt/format.h"
55 #include "gc/accounting/space_bitmap-inl.h"
56 #include "gc/task_processor.h"
57 #include "image-inl.h"
58 #include "image.h"
59 #include "intern_table-inl.h"
60 #include "mirror/class-inl.h"
61 #include "mirror/executable-inl.h"
62 #include "mirror/object-inl.h"
63 #include "mirror/object-refvisitor-inl.h"
64 #include "mirror/var_handle.h"
65 #include "oat.h"
66 #include "oat_file.h"
67 #include "profile/profile_compilation_info.h"
68 #include "runtime.h"
69 #include "space-inl.h"
70
71 namespace art {
72 namespace gc {
73 namespace space {
74
75 namespace {
76
77 using ::android::base::Join;
78 using ::android::base::StringAppendF;
79 using ::android::base::StringPrintf;
80
81 using ::fmt::literals::operator""_format; // NOLINT
82
83 // We do not allow the boot image and extensions to take more than 1GiB. They are
84 // supposed to be much smaller and allocating more that this would likely fail anyway.
85 static constexpr size_t kMaxTotalImageReservationSize = 1 * GB;
86
87 } // namespace
88
89 Atomic<uint32_t> ImageSpace::bitmap_index_(0);
90
ImageSpace(const std::string & image_filename,const char * image_location,const std::vector<std::string> & profile_files,MemMap && mem_map,accounting::ContinuousSpaceBitmap && live_bitmap,uint8_t * end)91 ImageSpace::ImageSpace(const std::string& image_filename,
92 const char* image_location,
93 const std::vector<std::string>& profile_files,
94 MemMap&& mem_map,
95 accounting::ContinuousSpaceBitmap&& live_bitmap,
96 uint8_t* end)
97 : MemMapSpace(image_filename,
98 std::move(mem_map),
99 mem_map.Begin(),
100 end,
101 end,
102 kGcRetentionPolicyNeverCollect),
103 live_bitmap_(std::move(live_bitmap)),
104 oat_file_non_owned_(nullptr),
105 image_location_(image_location),
106 profile_files_(profile_files) {
107 DCHECK(live_bitmap_.IsValid());
108 }
109
ChooseRelocationOffsetDelta(int32_t min_delta,int32_t max_delta)110 static int32_t ChooseRelocationOffsetDelta(int32_t min_delta, int32_t max_delta) {
111 CHECK_ALIGNED(min_delta, kPageSize);
112 CHECK_ALIGNED(max_delta, kPageSize);
113 CHECK_LT(min_delta, max_delta);
114
115 int32_t r = GetRandomNumber<int32_t>(min_delta, max_delta);
116 if (r % 2 == 0) {
117 r = RoundUp(r, kPageSize);
118 } else {
119 r = RoundDown(r, kPageSize);
120 }
121 CHECK_LE(min_delta, r);
122 CHECK_GE(max_delta, r);
123 CHECK_ALIGNED(r, kPageSize);
124 return r;
125 }
126
ChooseRelocationOffsetDelta()127 static int32_t ChooseRelocationOffsetDelta() {
128 return ChooseRelocationOffsetDelta(ART_BASE_ADDRESS_MIN_DELTA, ART_BASE_ADDRESS_MAX_DELTA);
129 }
130
FindImageFilenameImpl(const char * image_location,const InstructionSet image_isa,bool * has_system,std::string * system_filename)131 static bool FindImageFilenameImpl(const char* image_location,
132 const InstructionSet image_isa,
133 bool* has_system,
134 std::string* system_filename) {
135 *has_system = false;
136
137 // image_location = /system/framework/boot.art
138 // system_image_location = /system/framework/<image_isa>/boot.art
139 std::string system_image_filename(GetSystemImageFilename(image_location, image_isa));
140 if (OS::FileExists(system_image_filename.c_str())) {
141 *system_filename = system_image_filename;
142 *has_system = true;
143 }
144
145 return *has_system;
146 }
147
FindImageFilename(const char * image_location,const InstructionSet image_isa,std::string * system_filename,bool * has_system)148 bool ImageSpace::FindImageFilename(const char* image_location,
149 const InstructionSet image_isa,
150 std::string* system_filename,
151 bool* has_system) {
152 return FindImageFilenameImpl(image_location,
153 image_isa,
154 has_system,
155 system_filename);
156 }
157
ReadSpecificImageHeader(File * image_file,const char * file_description,ImageHeader * image_header,std::string * error_msg)158 static bool ReadSpecificImageHeader(File* image_file,
159 const char* file_description,
160 /*out*/ImageHeader* image_header,
161 /*out*/std::string* error_msg) {
162 if (!image_file->PreadFully(image_header, sizeof(ImageHeader), /*offset=*/ 0)) {
163 *error_msg = StringPrintf("Unable to read image header from \"%s\"", file_description);
164 return false;
165 }
166 if (!image_header->IsValid()) {
167 *error_msg = StringPrintf("Image header from \"%s\" is invalid", file_description);
168 return false;
169 }
170 return true;
171 }
172
ReadSpecificImageHeader(const char * filename,ImageHeader * image_header,std::string * error_msg)173 static bool ReadSpecificImageHeader(const char* filename,
174 /*out*/ImageHeader* image_header,
175 /*out*/std::string* error_msg) {
176 std::unique_ptr<File> image_file(OS::OpenFileForReading(filename));
177 if (image_file.get() == nullptr) {
178 *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header", filename);
179 return false;
180 }
181 return ReadSpecificImageHeader(image_file.get(), filename, image_header, error_msg);
182 }
183
ReadSpecificImageHeader(const char * filename,std::string * error_msg)184 static std::unique_ptr<ImageHeader> ReadSpecificImageHeader(const char* filename,
185 std::string* error_msg) {
186 std::unique_ptr<ImageHeader> hdr(new ImageHeader);
187 if (!ReadSpecificImageHeader(filename, hdr.get(), error_msg)) {
188 return nullptr;
189 }
190 return hdr;
191 }
192
VerifyImageAllocations()193 void ImageSpace::VerifyImageAllocations() {
194 uint8_t* current = Begin() + RoundUp(sizeof(ImageHeader), kObjectAlignment);
195 while (current < End()) {
196 CHECK_ALIGNED(current, kObjectAlignment);
197 auto* obj = reinterpret_cast<mirror::Object*>(current);
198 CHECK(obj->GetClass() != nullptr) << "Image object at address " << obj << " has null class";
199 CHECK(live_bitmap_.Test(obj)) << obj->PrettyTypeOf();
200 if (kUseBakerReadBarrier) {
201 obj->AssertReadBarrierState();
202 }
203 current += RoundUp(obj->SizeOf(), kObjectAlignment);
204 }
205 }
206
207 // Helper class for relocating from one range of memory to another.
208 class RelocationRange {
209 public:
210 RelocationRange(const RelocationRange&) = default;
RelocationRange(uintptr_t source,uintptr_t dest,uintptr_t length)211 RelocationRange(uintptr_t source, uintptr_t dest, uintptr_t length)
212 : source_(source),
213 dest_(dest),
214 length_(length) {}
215
InSource(uintptr_t address) const216 bool InSource(uintptr_t address) const {
217 return address - source_ < length_;
218 }
219
InDest(const void * dest) const220 bool InDest(const void* dest) const {
221 return InDest(reinterpret_cast<uintptr_t>(dest));
222 }
223
InDest(uintptr_t address) const224 bool InDest(uintptr_t address) const {
225 return address - dest_ < length_;
226 }
227
228 // Translate a source address to the destination space.
ToDest(uintptr_t address) const229 uintptr_t ToDest(uintptr_t address) const {
230 DCHECK(InSource(address));
231 return address + Delta();
232 }
233
234 template <typename T>
ToDest(T * src) const235 T* ToDest(T* src) const {
236 return reinterpret_cast<T*>(ToDest(reinterpret_cast<uintptr_t>(src)));
237 }
238
239 // Returns the delta between the dest from the source.
Delta() const240 uintptr_t Delta() const {
241 return dest_ - source_;
242 }
243
Source() const244 uintptr_t Source() const {
245 return source_;
246 }
247
Dest() const248 uintptr_t Dest() const {
249 return dest_;
250 }
251
Length() const252 uintptr_t Length() const {
253 return length_;
254 }
255
256 private:
257 const uintptr_t source_;
258 const uintptr_t dest_;
259 const uintptr_t length_;
260 };
261
operator <<(std::ostream & os,const RelocationRange & reloc)262 std::ostream& operator<<(std::ostream& os, const RelocationRange& reloc) {
263 return os << "(" << reinterpret_cast<const void*>(reloc.Source()) << "-"
264 << reinterpret_cast<const void*>(reloc.Source() + reloc.Length()) << ")->("
265 << reinterpret_cast<const void*>(reloc.Dest()) << "-"
266 << reinterpret_cast<const void*>(reloc.Dest() + reloc.Length()) << ")";
267 }
268
269 template <PointerSize kPointerSize, typename HeapVisitor, typename NativeVisitor>
270 class ImageSpace::PatchObjectVisitor final {
271 public:
PatchObjectVisitor(HeapVisitor heap_visitor,NativeVisitor native_visitor)272 explicit PatchObjectVisitor(HeapVisitor heap_visitor, NativeVisitor native_visitor)
273 : heap_visitor_(heap_visitor), native_visitor_(native_visitor) {}
274
VisitClass(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Class> class_class)275 void VisitClass(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Class> class_class)
276 REQUIRES_SHARED(Locks::mutator_lock_) {
277 // A mirror::Class object consists of
278 // - instance fields inherited from j.l.Object,
279 // - instance fields inherited from j.l.Class,
280 // - embedded tables (vtable, interface method table),
281 // - static fields of the class itself.
282 // The reference fields are at the start of each field section (this is how the
283 // ClassLinker orders fields; except when that would create a gap between superclass
284 // fields and the first reference of the subclass due to alignment, it can be filled
285 // with smaller fields - but that's not the case for j.l.Object and j.l.Class).
286
287 DCHECK_ALIGNED(klass.Ptr(), kObjectAlignment);
288 static_assert(IsAligned<kHeapReferenceSize>(kObjectAlignment), "Object alignment check.");
289 // First, patch the `klass->klass_`, known to be a reference to the j.l.Class.class.
290 // This should be the only reference field in j.l.Object and we assert that below.
291 DCHECK_EQ(class_class,
292 heap_visitor_(klass->GetClass<kVerifyNone, kWithoutReadBarrier>()));
293 klass->SetFieldObjectWithoutWriteBarrier<
294 /*kTransactionActive=*/ false,
295 /*kCheckTransaction=*/ true,
296 kVerifyNone>(mirror::Object::ClassOffset(), class_class);
297 // Then patch the reference instance fields described by j.l.Class.class.
298 // Use the sizeof(Object) to determine where these reference fields start;
299 // this is the same as `class_class->GetFirstReferenceInstanceFieldOffset()`
300 // after patching but the j.l.Class may not have been patched yet.
301 size_t num_reference_instance_fields = class_class->NumReferenceInstanceFields<kVerifyNone>();
302 DCHECK_NE(num_reference_instance_fields, 0u);
303 static_assert(IsAligned<kHeapReferenceSize>(sizeof(mirror::Object)), "Size alignment check.");
304 MemberOffset instance_field_offset(sizeof(mirror::Object));
305 for (size_t i = 0; i != num_reference_instance_fields; ++i) {
306 PatchReferenceField(klass, instance_field_offset);
307 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
308 "Heap reference sizes equality check.");
309 instance_field_offset =
310 MemberOffset(instance_field_offset.Uint32Value() + kHeapReferenceSize);
311 }
312 // Now that we have patched the `super_class_`, if this is the j.l.Class.class,
313 // we can get a reference to j.l.Object.class and assert that it has only one
314 // reference instance field (the `klass_` patched above).
315 if (kIsDebugBuild && klass == class_class) {
316 ObjPtr<mirror::Class> object_class =
317 klass->GetSuperClass<kVerifyNone, kWithoutReadBarrier>();
318 CHECK_EQ(object_class->NumReferenceInstanceFields<kVerifyNone>(), 1u);
319 }
320 // Then patch static fields.
321 size_t num_reference_static_fields = klass->NumReferenceStaticFields<kVerifyNone>();
322 if (num_reference_static_fields != 0u) {
323 MemberOffset static_field_offset =
324 klass->GetFirstReferenceStaticFieldOffset<kVerifyNone>(kPointerSize);
325 for (size_t i = 0; i != num_reference_static_fields; ++i) {
326 PatchReferenceField(klass, static_field_offset);
327 static_assert(sizeof(mirror::HeapReference<mirror::Object>) == kHeapReferenceSize,
328 "Heap reference sizes equality check.");
329 static_field_offset =
330 MemberOffset(static_field_offset.Uint32Value() + kHeapReferenceSize);
331 }
332 }
333 // Then patch native pointers.
334 klass->FixupNativePointers<kVerifyNone>(klass.Ptr(), kPointerSize, *this);
335 }
336
337 template <typename T>
operator ()(T * ptr,void ** dest_addr ATTRIBUTE_UNUSED) const338 T* operator()(T* ptr, void** dest_addr ATTRIBUTE_UNUSED) const {
339 return (ptr != nullptr) ? native_visitor_(ptr) : nullptr;
340 }
341
VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)342 void VisitPointerArray(ObjPtr<mirror::PointerArray> pointer_array)
343 REQUIRES_SHARED(Locks::mutator_lock_) {
344 // Fully patch the pointer array, including the `klass_` field.
345 PatchReferenceField</*kMayBeNull=*/ false>(pointer_array, mirror::Object::ClassOffset());
346
347 int32_t length = pointer_array->GetLength<kVerifyNone>();
348 for (int32_t i = 0; i != length; ++i) {
349 ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(
350 pointer_array->ElementAddress<kVerifyNone>(i, kPointerSize));
351 PatchNativePointer</*kMayBeNull=*/ false>(method_entry);
352 }
353 }
354
VisitObject(mirror::Object * object)355 void VisitObject(mirror::Object* object) REQUIRES_SHARED(Locks::mutator_lock_) {
356 // Visit all reference fields.
357 object->VisitReferences</*kVisitNativeRoots=*/ false,
358 kVerifyNone,
359 kWithoutReadBarrier>(*this, *this);
360 // This function should not be called for classes.
361 DCHECK(!object->IsClass<kVerifyNone>());
362 }
363
364 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static) const365 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
366 MemberOffset field_offset,
367 bool is_static)
368 const REQUIRES_SHARED(Locks::mutator_lock_) {
369 DCHECK(!is_static);
370 PatchReferenceField(object, field_offset);
371 }
372 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const373 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
374 REQUIRES_SHARED(Locks::mutator_lock_) {
375 DCHECK(klass->IsTypeOfReferenceClass());
376 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
377 }
378 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const379 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
380 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const381 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
382
VisitNativeDexCacheArray(mirror::NativeArray<T> * array)383 template <typename T> void VisitNativeDexCacheArray(mirror::NativeArray<T>* array)
384 REQUIRES_SHARED(Locks::mutator_lock_) {
385 if (array == nullptr) {
386 return;
387 }
388 DCHECK_ALIGNED(array, static_cast<size_t>(kPointerSize));
389 uint32_t size = (kPointerSize == PointerSize::k32)
390 ? reinterpret_cast<uint32_t*>(array)[-1]
391 : dchecked_integral_cast<uint32_t>(reinterpret_cast<uint64_t*>(array)[-1]);
392 for (uint32_t i = 0; i < size; ++i) {
393 PatchNativePointer(array->GetPtrEntryPtrSize(i, kPointerSize));
394 }
395 }
396
VisitGcRootDexCacheArray(mirror::GcRootArray<T> * array)397 template <typename T> void VisitGcRootDexCacheArray(mirror::GcRootArray<T>* array)
398 REQUIRES_SHARED(Locks::mutator_lock_) {
399 if (array == nullptr) {
400 return;
401 }
402 DCHECK_ALIGNED(array, sizeof(GcRoot<T>));
403 static_assert(sizeof(GcRoot<T>) == sizeof(uint32_t));
404 uint32_t size = reinterpret_cast<uint32_t*>(array)[-1];
405 for (uint32_t i = 0; i < size; ++i) {
406 PatchGcRoot(array->GetGcRootAddress(i));
407 }
408 }
409
VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache)410 void VisitDexCacheArrays(ObjPtr<mirror::DexCache> dex_cache)
411 REQUIRES_SHARED(Locks::mutator_lock_) {
412 mirror::NativeArray<ArtMethod>* old_resolved_methods = dex_cache->GetResolvedMethodsArray();
413 if (old_resolved_methods != nullptr) {
414 mirror::NativeArray<ArtMethod>* resolved_methods = native_visitor_(old_resolved_methods);
415 dex_cache->SetResolvedMethodsArray(resolved_methods);
416 VisitNativeDexCacheArray(resolved_methods);
417 }
418
419 mirror::NativeArray<ArtField>* old_resolved_fields = dex_cache->GetResolvedFieldsArray();
420 if (old_resolved_fields != nullptr) {
421 mirror::NativeArray<ArtField>* resolved_fields = native_visitor_(old_resolved_fields);
422 dex_cache->SetResolvedFieldsArray(resolved_fields);
423 VisitNativeDexCacheArray(resolved_fields);
424 }
425
426 mirror::GcRootArray<mirror::String>* old_strings = dex_cache->GetStringsArray();
427 if (old_strings != nullptr) {
428 mirror::GcRootArray<mirror::String>* strings = native_visitor_(old_strings);
429 dex_cache->SetStringsArray(strings);
430 VisitGcRootDexCacheArray(strings);
431 }
432
433 mirror::GcRootArray<mirror::Class>* old_types = dex_cache->GetResolvedTypesArray();
434 if (old_types != nullptr) {
435 mirror::GcRootArray<mirror::Class>* types = native_visitor_(old_types);
436 dex_cache->SetResolvedTypesArray(types);
437 VisitGcRootDexCacheArray(types);
438 }
439 }
440
441 template <bool kMayBeNull = true, typename T>
PatchGcRoot(GcRoot<T> * root) const442 ALWAYS_INLINE void PatchGcRoot(/*inout*/GcRoot<T>* root) const
443 REQUIRES_SHARED(Locks::mutator_lock_) {
444 static_assert(sizeof(GcRoot<mirror::Class*>) == sizeof(uint32_t), "GcRoot size check");
445 T* old_value = root->template Read<kWithoutReadBarrier>();
446 DCHECK(kMayBeNull || old_value != nullptr);
447 if (!kMayBeNull || old_value != nullptr) {
448 *root = GcRoot<T>(heap_visitor_(old_value));
449 }
450 }
451
452 template <bool kMayBeNull = true, typename T>
PatchNativePointer(T ** entry) const453 ALWAYS_INLINE void PatchNativePointer(/*inout*/T** entry) const {
454 if (kPointerSize == PointerSize::k64) {
455 uint64_t* raw_entry = reinterpret_cast<uint64_t*>(entry);
456 T* old_value = reinterpret_cast64<T*>(*raw_entry);
457 DCHECK(kMayBeNull || old_value != nullptr);
458 if (!kMayBeNull || old_value != nullptr) {
459 T* new_value = native_visitor_(old_value);
460 *raw_entry = reinterpret_cast64<uint64_t>(new_value);
461 }
462 } else {
463 uint32_t* raw_entry = reinterpret_cast<uint32_t*>(entry);
464 T* old_value = reinterpret_cast32<T*>(*raw_entry);
465 DCHECK(kMayBeNull || old_value != nullptr);
466 if (!kMayBeNull || old_value != nullptr) {
467 T* new_value = native_visitor_(old_value);
468 *raw_entry = reinterpret_cast32<uint32_t>(new_value);
469 }
470 }
471 }
472
473 template <bool kMayBeNull = true>
PatchReferenceField(ObjPtr<mirror::Object> object,MemberOffset offset) const474 ALWAYS_INLINE void PatchReferenceField(ObjPtr<mirror::Object> object, MemberOffset offset) const
475 REQUIRES_SHARED(Locks::mutator_lock_) {
476 ObjPtr<mirror::Object> old_value =
477 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(offset);
478 DCHECK(kMayBeNull || old_value != nullptr);
479 if (!kMayBeNull || old_value != nullptr) {
480 ObjPtr<mirror::Object> new_value = heap_visitor_(old_value.Ptr());
481 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
482 /*kCheckTransaction=*/ true,
483 kVerifyNone>(offset, new_value);
484 }
485 }
486
487 private:
488 // Heap objects visitor.
489 HeapVisitor heap_visitor_;
490
491 // Native objects visitor.
492 NativeVisitor native_visitor_;
493 };
494
495 template <typename ReferenceVisitor>
496 class ImageSpace::ClassTableVisitor final {
497 public:
ClassTableVisitor(const ReferenceVisitor & reference_visitor)498 explicit ClassTableVisitor(const ReferenceVisitor& reference_visitor)
499 : reference_visitor_(reference_visitor) {}
500
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const501 void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
502 REQUIRES_SHARED(Locks::mutator_lock_) {
503 DCHECK(root->AsMirrorPtr() != nullptr);
504 root->Assign(reference_visitor_(root->AsMirrorPtr()));
505 }
506
507 private:
508 ReferenceVisitor reference_visitor_;
509 };
510
511 class ImageSpace::RemapInternedStringsVisitor {
512 public:
RemapInternedStringsVisitor(const SafeMap<mirror::String *,mirror::String * > & intern_remap)513 explicit RemapInternedStringsVisitor(
514 const SafeMap<mirror::String*, mirror::String*>& intern_remap)
515 REQUIRES_SHARED(Locks::mutator_lock_)
516 : intern_remap_(intern_remap),
517 string_class_(GetStringClass()) {}
518
519 // Visitor for VisitReferences().
operator ()(ObjPtr<mirror::Object> object,MemberOffset field_offset,bool is_static ATTRIBUTE_UNUSED) const520 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> object,
521 MemberOffset field_offset,
522 bool is_static ATTRIBUTE_UNUSED)
523 const REQUIRES_SHARED(Locks::mutator_lock_) {
524 ObjPtr<mirror::Object> old_value =
525 object->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(field_offset);
526 if (old_value != nullptr &&
527 old_value->GetClass<kVerifyNone, kWithoutReadBarrier>() == string_class_) {
528 auto it = intern_remap_.find(old_value->AsString().Ptr());
529 if (it != intern_remap_.end()) {
530 mirror::String* new_value = it->second;
531 object->SetFieldObjectWithoutWriteBarrier</*kTransactionActive=*/ false,
532 /*kCheckTransaction=*/ true,
533 kVerifyNone>(field_offset, new_value);
534 }
535 }
536 }
537 // Visitor for VisitReferences(), java.lang.ref.Reference case.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const538 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
539 REQUIRES_SHARED(Locks::mutator_lock_) {
540 DCHECK(klass->IsTypeOfReferenceClass());
541 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
542 }
543 // Ignore class native roots; not called from VisitReferences() for kVisitNativeRoots == false.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const544 void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
545 const {}
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const546 void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
547
548 private:
GetStringClass()549 mirror::Class* GetStringClass() REQUIRES_SHARED(Locks::mutator_lock_) {
550 DCHECK(!intern_remap_.empty());
551 return intern_remap_.begin()->first->GetClass<kVerifyNone, kWithoutReadBarrier>();
552 }
553
554 const SafeMap<mirror::String*, mirror::String*>& intern_remap_;
555 mirror::Class* const string_class_;
556 };
557
558 // Helper class encapsulating loading, so we can access private ImageSpace members (this is a
559 // nested class), but not declare functions in the header.
560 class ImageSpace::Loader {
561 public:
InitAppImage(const char * image_filename,const char * image_location,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,std::string * error_msg)562 static std::unique_ptr<ImageSpace> InitAppImage(const char* image_filename,
563 const char* image_location,
564 const OatFile* oat_file,
565 ArrayRef<ImageSpace* const> boot_image_spaces,
566 /*out*/std::string* error_msg)
567 REQUIRES_SHARED(Locks::mutator_lock_) {
568 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
569
570 std::unique_ptr<ImageSpace> space = Init(image_filename,
571 image_location,
572 &logger,
573 /*image_reservation=*/ nullptr,
574 error_msg);
575 if (space != nullptr) {
576 space->oat_file_non_owned_ = oat_file;
577 const ImageHeader& image_header = space->GetImageHeader();
578
579 // Check the oat file checksum.
580 const uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
581 const uint32_t image_oat_checksum = image_header.GetOatChecksum();
582 // Note image_oat_checksum is 0 for images generated by the runtime.
583 if (image_oat_checksum != 0u && oat_checksum != image_oat_checksum) {
584 *error_msg = StringPrintf("Oat checksum 0x%x does not match the image one 0x%x in image %s",
585 oat_checksum,
586 image_oat_checksum,
587 image_filename);
588 return nullptr;
589 }
590 size_t boot_image_space_dependencies;
591 if (!ValidateBootImageChecksum(image_filename,
592 image_header,
593 oat_file,
594 boot_image_spaces,
595 &boot_image_space_dependencies,
596 error_msg)) {
597 DCHECK(!error_msg->empty());
598 return nullptr;
599 }
600
601 uint32_t expected_reservation_size = RoundUp(image_header.GetImageSize(), kPageSize);
602 if (!CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
603 !CheckImageComponentCount(*space, /*expected_component_count=*/ 1u, error_msg)) {
604 return nullptr;
605 }
606
607 {
608 TimingLogger::ScopedTiming timing("RelocateImage", &logger);
609 const PointerSize pointer_size = image_header.GetPointerSize();
610 uint32_t boot_image_begin =
611 reinterpret_cast32<uint32_t>(boot_image_spaces.front()->Begin());
612 bool result;
613 if (pointer_size == PointerSize::k64) {
614 result = RelocateInPlace<PointerSize::k64>(boot_image_begin,
615 space->GetMemMap()->Begin(),
616 space->GetLiveBitmap(),
617 oat_file,
618 error_msg);
619 } else {
620 result = RelocateInPlace<PointerSize::k32>(boot_image_begin,
621 space->GetMemMap()->Begin(),
622 space->GetLiveBitmap(),
623 oat_file,
624 error_msg);
625 }
626 if (!result) {
627 return nullptr;
628 }
629 }
630
631 DCHECK_LE(boot_image_space_dependencies, boot_image_spaces.size());
632 if (boot_image_space_dependencies != boot_image_spaces.size()) {
633 TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", &logger);
634 // There shall be no duplicates with boot image spaces this app image depends on.
635 ArrayRef<ImageSpace* const> old_spaces =
636 boot_image_spaces.SubArray(/*pos=*/ boot_image_space_dependencies);
637 SafeMap<mirror::String*, mirror::String*> intern_remap;
638 RemoveInternTableDuplicates(old_spaces, space.get(), &intern_remap);
639 if (!intern_remap.empty()) {
640 RemapInternedStringDuplicates(intern_remap, space.get());
641 }
642 }
643
644 const ImageHeader& primary_header = boot_image_spaces.front()->GetImageHeader();
645 static_assert(static_cast<size_t>(ImageHeader::kResolutionMethod) == 0u);
646 for (size_t i = 0u; i != static_cast<size_t>(ImageHeader::kImageMethodsCount); ++i) {
647 ImageHeader::ImageMethod method = static_cast<ImageHeader::ImageMethod>(i);
648 CHECK_EQ(primary_header.GetImageMethod(method), image_header.GetImageMethod(method))
649 << method;
650 }
651
652 VLOG(image) << "ImageSpace::Loader::InitAppImage exiting " << *space.get();
653 }
654 if (VLOG_IS_ON(image)) {
655 logger.Dump(LOG_STREAM(INFO));
656 }
657 return space;
658 }
659
Init(const char * image_filename,const char * image_location,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)660 static std::unique_ptr<ImageSpace> Init(const char* image_filename,
661 const char* image_location,
662 TimingLogger* logger,
663 /*inout*/MemMap* image_reservation,
664 /*out*/std::string* error_msg)
665 REQUIRES_SHARED(Locks::mutator_lock_) {
666 CHECK(image_filename != nullptr);
667 CHECK(image_location != nullptr);
668
669 std::unique_ptr<File> file;
670 {
671 TimingLogger::ScopedTiming timing("OpenImageFile", logger);
672 file.reset(OS::OpenFileForReading(image_filename));
673 if (file == nullptr) {
674 *error_msg = StringPrintf("Failed to open '%s'", image_filename);
675 return nullptr;
676 }
677 }
678 return Init(file.get(),
679 image_filename,
680 image_location,
681 /*profile_files=*/ {},
682 /*allow_direct_mapping=*/ true,
683 logger,
684 image_reservation,
685 error_msg);
686 }
687
Init(File * file,const char * image_filename,const char * image_location,const std::vector<std::string> & profile_files,bool allow_direct_mapping,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)688 static std::unique_ptr<ImageSpace> Init(File* file,
689 const char* image_filename,
690 const char* image_location,
691 const std::vector<std::string>& profile_files,
692 bool allow_direct_mapping,
693 TimingLogger* logger,
694 /*inout*/MemMap* image_reservation,
695 /*out*/std::string* error_msg)
696 REQUIRES_SHARED(Locks::mutator_lock_) {
697 CHECK(image_filename != nullptr);
698 CHECK(image_location != nullptr);
699
700 VLOG(image) << "ImageSpace::Init entering image_filename=" << image_filename;
701
702 ImageHeader image_header;
703 {
704 TimingLogger::ScopedTiming timing("ReadImageHeader", logger);
705 bool success = file->PreadFully(&image_header, sizeof(image_header), /*offset=*/ 0u);
706 if (!success || !image_header.IsValid()) {
707 *error_msg = StringPrintf("Invalid image header in '%s'", image_filename);
708 return nullptr;
709 }
710 }
711 // Check that the file is larger or equal to the header size + data size.
712 const uint64_t image_file_size = static_cast<uint64_t>(file->GetLength());
713 if (image_file_size < sizeof(ImageHeader) + image_header.GetDataSize()) {
714 *error_msg = StringPrintf(
715 "Image file truncated: %" PRIu64 " vs. %" PRIu64 ".",
716 image_file_size,
717 static_cast<uint64_t>(sizeof(ImageHeader) + image_header.GetDataSize()));
718 return nullptr;
719 }
720
721 if (VLOG_IS_ON(startup)) {
722 LOG(INFO) << "Dumping image sections";
723 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
724 const auto section_idx = static_cast<ImageHeader::ImageSections>(i);
725 auto& section = image_header.GetImageSection(section_idx);
726 LOG(INFO) << section_idx << " start="
727 << reinterpret_cast<void*>(image_header.GetImageBegin() + section.Offset()) << " "
728 << section;
729 }
730 }
731
732 const auto& bitmap_section = image_header.GetImageBitmapSection();
733 // The location we want to map from is the first aligned page after the end of the stored
734 // (possibly compressed) data.
735 const size_t image_bitmap_offset =
736 RoundUp(sizeof(ImageHeader) + image_header.GetDataSize(), kPageSize);
737 const size_t end_of_bitmap = image_bitmap_offset + bitmap_section.Size();
738 if (end_of_bitmap != image_file_size) {
739 *error_msg = StringPrintf(
740 "Image file size does not equal end of bitmap: size=%" PRIu64 " vs. %zu.",
741 image_file_size,
742 end_of_bitmap);
743 return nullptr;
744 }
745
746 // GetImageBegin is the preferred address to map the image. If we manage to map the
747 // image at the image begin, the amount of fixup work required is minimized.
748 // If it is pic we will retry with error_msg for the2 failure case. Pass a null error_msg to
749 // avoid reading proc maps for a mapping failure and slowing everything down.
750 // For the boot image, we have already reserved the memory and we load the image
751 // into the `image_reservation`.
752 MemMap map = LoadImageFile(
753 image_filename,
754 image_location,
755 image_header,
756 file->Fd(),
757 allow_direct_mapping,
758 logger,
759 image_reservation,
760 error_msg);
761 if (!map.IsValid()) {
762 DCHECK(!error_msg->empty());
763 return nullptr;
764 }
765 DCHECK_EQ(0, memcmp(&image_header, map.Begin(), sizeof(ImageHeader)));
766
767 MemMap image_bitmap_map = MemMap::MapFile(bitmap_section.Size(),
768 PROT_READ,
769 MAP_PRIVATE,
770 file->Fd(),
771 image_bitmap_offset,
772 /*low_4gb=*/ false,
773 image_filename,
774 error_msg);
775 if (!image_bitmap_map.IsValid()) {
776 *error_msg = StringPrintf("Failed to map image bitmap: %s", error_msg->c_str());
777 return nullptr;
778 }
779 const uint32_t bitmap_index = ImageSpace::bitmap_index_.fetch_add(1);
780 std::string bitmap_name(StringPrintf("imagespace %s live-bitmap %u",
781 image_filename,
782 bitmap_index));
783 // Bitmap only needs to cover until the end of the mirror objects section.
784 const ImageSection& image_objects = image_header.GetObjectsSection();
785 // We only want the mirror object, not the ArtFields and ArtMethods.
786 uint8_t* const image_end = map.Begin() + image_objects.End();
787 accounting::ContinuousSpaceBitmap bitmap;
788 {
789 TimingLogger::ScopedTiming timing("CreateImageBitmap", logger);
790 bitmap = accounting::ContinuousSpaceBitmap::CreateFromMemMap(
791 bitmap_name,
792 std::move(image_bitmap_map),
793 reinterpret_cast<uint8_t*>(map.Begin()),
794 // Make sure the bitmap is aligned to card size instead of just bitmap word size.
795 RoundUp(image_objects.End(), gc::accounting::CardTable::kCardSize));
796 if (!bitmap.IsValid()) {
797 *error_msg = StringPrintf("Could not create bitmap '%s'", bitmap_name.c_str());
798 return nullptr;
799 }
800 }
801 // We only want the mirror object, not the ArtFields and ArtMethods.
802 std::unique_ptr<ImageSpace> space(new ImageSpace(image_filename,
803 image_location,
804 profile_files,
805 std::move(map),
806 std::move(bitmap),
807 image_end));
808 return space;
809 }
810
CheckImageComponentCount(const ImageSpace & space,uint32_t expected_component_count,std::string * error_msg)811 static bool CheckImageComponentCount(const ImageSpace& space,
812 uint32_t expected_component_count,
813 /*out*/std::string* error_msg) {
814 const ImageHeader& header = space.GetImageHeader();
815 if (header.GetComponentCount() != expected_component_count) {
816 *error_msg = StringPrintf("Unexpected component count in %s, received %u, expected %u",
817 space.GetImageFilename().c_str(),
818 header.GetComponentCount(),
819 expected_component_count);
820 return false;
821 }
822 return true;
823 }
824
CheckImageReservationSize(const ImageSpace & space,uint32_t expected_reservation_size,std::string * error_msg)825 static bool CheckImageReservationSize(const ImageSpace& space,
826 uint32_t expected_reservation_size,
827 /*out*/std::string* error_msg) {
828 const ImageHeader& header = space.GetImageHeader();
829 if (header.GetImageReservationSize() != expected_reservation_size) {
830 *error_msg = StringPrintf("Unexpected reservation size in %s, received %u, expected %u",
831 space.GetImageFilename().c_str(),
832 header.GetImageReservationSize(),
833 expected_reservation_size);
834 return false;
835 }
836 return true;
837 }
838
839 template <typename Container>
RemoveInternTableDuplicates(const Container & old_spaces,ImageSpace * new_space,SafeMap<mirror::String *,mirror::String * > * intern_remap)840 static void RemoveInternTableDuplicates(
841 const Container& old_spaces,
842 /*inout*/ImageSpace* new_space,
843 /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap)
844 REQUIRES_SHARED(Locks::mutator_lock_) {
845 const ImageSection& new_interns = new_space->GetImageHeader().GetInternedStringsSection();
846 if (new_interns.Size() != 0u) {
847 const uint8_t* new_data = new_space->Begin() + new_interns.Offset();
848 size_t new_read_count;
849 InternTable::UnorderedSet new_set(new_data, /*make_copy_of_data=*/ false, &new_read_count);
850 for (const auto& old_space : old_spaces) {
851 const ImageSection& old_interns = old_space->GetImageHeader().GetInternedStringsSection();
852 if (old_interns.Size() != 0u) {
853 const uint8_t* old_data = old_space->Begin() + old_interns.Offset();
854 size_t old_read_count;
855 InternTable::UnorderedSet old_set(
856 old_data, /*make_copy_of_data=*/ false, &old_read_count);
857 RemoveDuplicates(old_set, &new_set, intern_remap);
858 }
859 }
860 }
861 }
862
RemapInternedStringDuplicates(const SafeMap<mirror::String *,mirror::String * > & intern_remap,ImageSpace * new_space)863 static void RemapInternedStringDuplicates(
864 const SafeMap<mirror::String*, mirror::String*>& intern_remap,
865 ImageSpace* new_space) REQUIRES_SHARED(Locks::mutator_lock_) {
866 RemapInternedStringsVisitor visitor(intern_remap);
867 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
868 uint32_t objects_end = new_space->GetImageHeader().GetObjectsSection().Size();
869 DCHECK_ALIGNED(objects_end, kObjectAlignment);
870 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
871 mirror::Object* object = reinterpret_cast<mirror::Object*>(new_space->Begin() + pos);
872 object->VisitReferences</*kVisitNativeRoots=*/ false,
873 kVerifyNone,
874 kWithoutReadBarrier>(visitor, visitor);
875 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
876 }
877 }
878
879 private:
880 // Remove duplicates found in the `old_set` from the `new_set`.
881 // Record the removed Strings for remapping. No read barriers are needed as the
882 // tables are either just being loaded and not yet a part of the heap, or boot
883 // image intern tables with non-moveable Strings used when loading an app image.
RemoveDuplicates(const InternTable::UnorderedSet & old_set,InternTable::UnorderedSet * new_set,SafeMap<mirror::String *,mirror::String * > * intern_remap)884 static void RemoveDuplicates(const InternTable::UnorderedSet& old_set,
885 /*inout*/InternTable::UnorderedSet* new_set,
886 /*inout*/SafeMap<mirror::String*, mirror::String*>* intern_remap)
887 REQUIRES_SHARED(Locks::mutator_lock_) {
888 if (old_set.size() < new_set->size()) {
889 for (const GcRoot<mirror::String>& old_s : old_set) {
890 auto new_it = new_set->find(old_s);
891 if (UNLIKELY(new_it != new_set->end())) {
892 intern_remap->Put(new_it->Read<kWithoutReadBarrier>(), old_s.Read<kWithoutReadBarrier>());
893 new_set->erase(new_it);
894 }
895 }
896 } else {
897 for (auto new_it = new_set->begin(), end = new_set->end(); new_it != end; ) {
898 auto old_it = old_set.find(*new_it);
899 if (UNLIKELY(old_it != old_set.end())) {
900 intern_remap->Put(new_it->Read<kWithoutReadBarrier>(),
901 old_it->Read<kWithoutReadBarrier>());
902 new_it = new_set->erase(new_it);
903 } else {
904 ++new_it;
905 }
906 }
907 }
908 }
909
ValidateBootImageChecksum(const char * image_filename,const ImageHeader & image_header,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,size_t * boot_image_space_dependencies,std::string * error_msg)910 static bool ValidateBootImageChecksum(const char* image_filename,
911 const ImageHeader& image_header,
912 const OatFile* oat_file,
913 ArrayRef<ImageSpace* const> boot_image_spaces,
914 /*out*/size_t* boot_image_space_dependencies,
915 /*out*/std::string* error_msg) {
916 // Use the boot image component count to calculate the checksum from
917 // the appropriate number of boot image chunks.
918 uint32_t boot_image_component_count = image_header.GetBootImageComponentCount();
919 size_t expected_image_component_count = ImageSpace::GetNumberOfComponents(boot_image_spaces);
920 if (boot_image_component_count > expected_image_component_count) {
921 *error_msg = StringPrintf("Too many boot image dependencies (%u > %zu) in image %s",
922 boot_image_component_count,
923 expected_image_component_count,
924 image_filename);
925 return false;
926 }
927 uint32_t checksum = 0u;
928 size_t chunk_count = 0u;
929 size_t space_pos = 0u;
930 uint64_t boot_image_size = 0u;
931 for (size_t component_count = 0u; component_count != boot_image_component_count; ) {
932 const ImageHeader& current_header = boot_image_spaces[space_pos]->GetImageHeader();
933 if (current_header.GetComponentCount() > boot_image_component_count - component_count) {
934 *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, "
935 "%u is between %zu and %zu",
936 image_filename,
937 boot_image_component_count,
938 component_count,
939 component_count + current_header.GetComponentCount());
940 return false;
941 }
942 component_count += current_header.GetComponentCount();
943 checksum ^= current_header.GetImageChecksum();
944 chunk_count += 1u;
945 space_pos += current_header.GetImageSpaceCount();
946 boot_image_size += current_header.GetImageReservationSize();
947 }
948 if (image_header.GetBootImageChecksum() != checksum) {
949 *error_msg = StringPrintf("Boot image checksum mismatch (0x%08x != 0x%08x) in image %s",
950 image_header.GetBootImageChecksum(),
951 checksum,
952 image_filename);
953 return false;
954 }
955 if (image_header.GetBootImageSize() != boot_image_size) {
956 *error_msg = StringPrintf("Boot image size mismatch (0x%08x != 0x%08" PRIx64 ") in image %s",
957 image_header.GetBootImageSize(),
958 boot_image_size,
959 image_filename);
960 return false;
961 }
962 // Oat checksums, if present, have already been validated, so we know that
963 // they match the loaded image spaces. Therefore, we just verify that they
964 // are consistent in the number of boot image chunks they list by looking
965 // for the kImageChecksumPrefix at the start of each component.
966 const char* oat_boot_class_path_checksums =
967 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey);
968 if (oat_boot_class_path_checksums != nullptr) {
969 size_t oat_bcp_chunk_count = 0u;
970 while (*oat_boot_class_path_checksums == kImageChecksumPrefix) {
971 oat_bcp_chunk_count += 1u;
972 // Find the start of the next component if any.
973 const char* separator = strchr(oat_boot_class_path_checksums, ':');
974 oat_boot_class_path_checksums = (separator != nullptr) ? separator + 1u : "";
975 }
976 if (oat_bcp_chunk_count != chunk_count) {
977 *error_msg = StringPrintf("Boot image chunk count mismatch (%zu != %zu) in image %s",
978 oat_bcp_chunk_count,
979 chunk_count,
980 image_filename);
981 return false;
982 }
983 }
984 *boot_image_space_dependencies = space_pos;
985 return true;
986 }
987
LoadImageFile(const char * image_filename,const char * image_location,const ImageHeader & image_header,int fd,bool allow_direct_mapping,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)988 static MemMap LoadImageFile(const char* image_filename,
989 const char* image_location,
990 const ImageHeader& image_header,
991 int fd,
992 bool allow_direct_mapping,
993 TimingLogger* logger,
994 /*inout*/MemMap* image_reservation,
995 /*out*/std::string* error_msg)
996 REQUIRES_SHARED(Locks::mutator_lock_) {
997 TimingLogger::ScopedTiming timing("MapImageFile", logger);
998 std::string temp_error_msg;
999 const bool is_compressed = image_header.HasCompressedBlock();
1000 if (!is_compressed && allow_direct_mapping) {
1001 uint8_t* address = (image_reservation != nullptr) ? image_reservation->Begin() : nullptr;
1002 return MemMap::MapFileAtAddress(address,
1003 image_header.GetImageSize(),
1004 PROT_READ | PROT_WRITE,
1005 MAP_PRIVATE,
1006 fd,
1007 /*start=*/ 0,
1008 /*low_4gb=*/ true,
1009 image_filename,
1010 /*reuse=*/ false,
1011 image_reservation,
1012 error_msg);
1013 }
1014
1015 // Reserve output and copy/decompress into it.
1016 MemMap map = MemMap::MapAnonymous(image_location,
1017 image_header.GetImageSize(),
1018 PROT_READ | PROT_WRITE,
1019 /*low_4gb=*/ true,
1020 image_reservation,
1021 error_msg);
1022 if (map.IsValid()) {
1023 const size_t stored_size = image_header.GetDataSize();
1024 MemMap temp_map = MemMap::MapFile(sizeof(ImageHeader) + stored_size,
1025 PROT_READ,
1026 MAP_PRIVATE,
1027 fd,
1028 /*start=*/ 0,
1029 /*low_4gb=*/ false,
1030 image_filename,
1031 error_msg);
1032 if (!temp_map.IsValid()) {
1033 DCHECK(error_msg == nullptr || !error_msg->empty());
1034 return MemMap::Invalid();
1035 }
1036
1037 Runtime* runtime = Runtime::Current();
1038 // The runtime might not be available at this point if we're running
1039 // dex2oat or oatdump.
1040 if (runtime != nullptr) {
1041 size_t madvise_size_limit = runtime->GetMadviseWillNeedSizeArt();
1042 Runtime::MadviseFileForRange(madvise_size_limit,
1043 temp_map.Size(),
1044 temp_map.Begin(),
1045 temp_map.End(),
1046 image_filename);
1047 }
1048
1049 if (is_compressed) {
1050 memcpy(map.Begin(), &image_header, sizeof(ImageHeader));
1051
1052 Runtime::ScopedThreadPoolUsage stpu;
1053 ThreadPool* const pool = stpu.GetThreadPool();
1054 const uint64_t start = NanoTime();
1055 Thread* const self = Thread::Current();
1056 static constexpr size_t kMinBlocks = 2u;
1057 const bool use_parallel = pool != nullptr && image_header.GetBlockCount() >= kMinBlocks;
1058 for (const ImageHeader::Block& block : image_header.GetBlocks(temp_map.Begin())) {
1059 auto function = [&](Thread*) {
1060 const uint64_t start2 = NanoTime();
1061 ScopedTrace trace("LZ4 decompress block");
1062 bool result = block.Decompress(/*out_ptr=*/map.Begin(),
1063 /*in_ptr=*/temp_map.Begin(),
1064 error_msg);
1065 if (!result && error_msg != nullptr) {
1066 *error_msg = "Failed to decompress image block " + *error_msg;
1067 }
1068 VLOG(image) << "Decompress block " << block.GetDataSize() << " -> "
1069 << block.GetImageSize() << " in " << PrettyDuration(NanoTime() - start2);
1070 };
1071 if (use_parallel) {
1072 pool->AddTask(self, new FunctionTask(std::move(function)));
1073 } else {
1074 function(self);
1075 }
1076 }
1077 if (use_parallel) {
1078 ScopedTrace trace("Waiting for workers");
1079 // Go to native since we don't want to suspend while holding the mutator lock.
1080 ScopedThreadSuspension sts(Thread::Current(), ThreadState::kNative);
1081 pool->Wait(self, true, false);
1082 }
1083 const uint64_t time = NanoTime() - start;
1084 // Add one 1 ns to prevent possible divide by 0.
1085 VLOG(image) << "Decompressing image took " << PrettyDuration(time) << " ("
1086 << PrettySize(static_cast<uint64_t>(map.Size()) * MsToNs(1000) / (time + 1))
1087 << "/s)";
1088 } else {
1089 DCHECK(!allow_direct_mapping);
1090 // We do not allow direct mapping for boot image extensions compiled to a memfd.
1091 // This prevents wasting memory by kernel keeping the contents of the file alive
1092 // despite these contents being unreachable once the file descriptor is closed
1093 // and mmapped memory is copied for all existing mappings.
1094 //
1095 // Most pages would be copied during relocation while there is only one mapping.
1096 // We could use MAP_SHARED for relocation and then msync() and remap MAP_PRIVATE
1097 // as required for forking from zygote, but there would still be some pages
1098 // wasted anyway and we want to avoid that. (For example, static synchronized
1099 // methods use the class object for locking and thus modify its lockword.)
1100
1101 // No other process should race to overwrite the extension in memfd.
1102 DCHECK_EQ(memcmp(temp_map.Begin(), &image_header, sizeof(ImageHeader)), 0);
1103 memcpy(map.Begin(), temp_map.Begin(), temp_map.Size());
1104 }
1105 }
1106
1107 return map;
1108 }
1109
1110 class EmptyRange {
1111 public:
InSource(uintptr_t) const1112 ALWAYS_INLINE bool InSource(uintptr_t) const { return false; }
InDest(uintptr_t) const1113 ALWAYS_INLINE bool InDest(uintptr_t) const { return false; }
ToDest(uintptr_t) const1114 ALWAYS_INLINE uintptr_t ToDest(uintptr_t) const { UNREACHABLE(); }
1115 };
1116
1117 template <typename Range0, typename Range1 = EmptyRange, typename Range2 = EmptyRange>
1118 class ForwardAddress {
1119 public:
ForwardAddress(const Range0 & range0=Range0 (),const Range1 & range1=Range1 (),const Range2 & range2=Range2 ())1120 explicit ForwardAddress(const Range0& range0 = Range0(),
1121 const Range1& range1 = Range1(),
1122 const Range2& range2 = Range2())
1123 : range0_(range0), range1_(range1), range2_(range2) {}
1124
1125 // Return the relocated address of a heap object.
1126 // Null checks must be performed in the caller (for performance reasons).
1127 template <typename T>
operator ()(T * src) const1128 ALWAYS_INLINE T* operator()(T* src) const {
1129 DCHECK(src != nullptr);
1130 const uintptr_t uint_src = reinterpret_cast<uintptr_t>(src);
1131 if (range2_.InSource(uint_src)) {
1132 return reinterpret_cast<T*>(range2_.ToDest(uint_src));
1133 }
1134 if (range1_.InSource(uint_src)) {
1135 return reinterpret_cast<T*>(range1_.ToDest(uint_src));
1136 }
1137 CHECK(range0_.InSource(uint_src))
1138 << reinterpret_cast<const void*>(src) << " not in "
1139 << reinterpret_cast<const void*>(range0_.Source()) << "-"
1140 << reinterpret_cast<const void*>(range0_.Source() + range0_.Length());
1141 return reinterpret_cast<T*>(range0_.ToDest(uint_src));
1142 }
1143
1144 private:
1145 const Range0 range0_;
1146 const Range1 range1_;
1147 const Range2 range2_;
1148 };
1149
1150 template <typename Forward>
1151 class FixupRootVisitor {
1152 public:
1153 template<typename... Args>
FixupRootVisitor(Args...args)1154 explicit FixupRootVisitor(Args... args) : forward_(args...) {}
1155
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root) const1156 ALWAYS_INLINE void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const
1157 REQUIRES_SHARED(Locks::mutator_lock_) {
1158 if (!root->IsNull()) {
1159 VisitRoot(root);
1160 }
1161 }
1162
VisitRoot(mirror::CompressedReference<mirror::Object> * root) const1163 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const
1164 REQUIRES_SHARED(Locks::mutator_lock_) {
1165 mirror::Object* ref = root->AsMirrorPtr();
1166 mirror::Object* new_ref = forward_(ref);
1167 if (ref != new_ref) {
1168 root->Assign(new_ref);
1169 }
1170 }
1171
1172 private:
1173 Forward forward_;
1174 };
1175
1176 template <typename Forward>
1177 class FixupObjectVisitor {
1178 public:
FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap * visited,const Forward & forward)1179 explicit FixupObjectVisitor(gc::accounting::ContinuousSpaceBitmap* visited,
1180 const Forward& forward)
1181 : visited_(visited), forward_(forward) {}
1182
1183 // Fix up separately since we also need to fix up method entrypoints.
VisitRootIfNonNull(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1184 ALWAYS_INLINE void VisitRootIfNonNull(
1185 mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED) const {}
1186
VisitRoot(mirror::CompressedReference<mirror::Object> * root ATTRIBUTE_UNUSED) const1187 ALWAYS_INLINE void VisitRoot(mirror::CompressedReference<mirror::Object>* root ATTRIBUTE_UNUSED)
1188 const {}
1189
operator ()(ObjPtr<mirror::Object> obj,MemberOffset offset,bool is_static ATTRIBUTE_UNUSED) const1190 ALWAYS_INLINE void operator()(ObjPtr<mirror::Object> obj,
1191 MemberOffset offset,
1192 bool is_static ATTRIBUTE_UNUSED) const
1193 NO_THREAD_SAFETY_ANALYSIS {
1194 // Space is not yet added to the heap, don't do a read barrier.
1195 mirror::Object* ref = obj->GetFieldObject<mirror::Object, kVerifyNone, kWithoutReadBarrier>(
1196 offset);
1197 if (ref != nullptr) {
1198 // Use SetFieldObjectWithoutWriteBarrier to avoid card marking since we are writing to the
1199 // image.
1200 obj->SetFieldObjectWithoutWriteBarrier<false, true, kVerifyNone>(offset, forward_(ref));
1201 }
1202 }
1203
1204 // java.lang.ref.Reference visitor.
operator ()(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Reference> ref) const1205 ALWAYS_INLINE void operator()(ObjPtr<mirror::Class> klass, ObjPtr<mirror::Reference> ref) const
1206 REQUIRES_SHARED(Locks::mutator_lock_) REQUIRES(Locks::heap_bitmap_lock_) {
1207 DCHECK(klass->IsTypeOfReferenceClass());
1208 this->operator()(ref, mirror::Reference::ReferentOffset(), /*is_static=*/ false);
1209 }
1210
operator ()(mirror::Object * obj) const1211 void operator()(mirror::Object* obj) const
1212 NO_THREAD_SAFETY_ANALYSIS {
1213 if (!visited_->Set(obj)) {
1214 // Not already visited.
1215 obj->VisitReferences</*visit native roots*/false, kVerifyNone, kWithoutReadBarrier>(
1216 *this,
1217 *this);
1218 CHECK(!obj->IsClass());
1219 }
1220 }
1221
1222 private:
1223 gc::accounting::ContinuousSpaceBitmap* const visited_;
1224 Forward forward_;
1225 };
1226
1227 // Relocate an image space mapped at target_base which possibly used to be at a different base
1228 // address. In place means modifying a single ImageSpace in place rather than relocating from
1229 // one ImageSpace to another.
1230 template <PointerSize kPointerSize>
RelocateInPlace(uint32_t boot_image_begin,uint8_t * target_base,accounting::ContinuousSpaceBitmap * bitmap,const OatFile * app_oat_file,std::string * error_msg)1231 static bool RelocateInPlace(uint32_t boot_image_begin,
1232 uint8_t* target_base,
1233 accounting::ContinuousSpaceBitmap* bitmap,
1234 const OatFile* app_oat_file,
1235 std::string* error_msg) {
1236 DCHECK(error_msg != nullptr);
1237 // Set up sections.
1238 ImageHeader* image_header = reinterpret_cast<ImageHeader*>(target_base);
1239 const uint32_t boot_image_size = image_header->GetBootImageSize();
1240 const ImageSection& objects_section = image_header->GetObjectsSection();
1241 // Where the app image objects are mapped to.
1242 uint8_t* objects_location = target_base + objects_section.Offset();
1243 TimingLogger logger(__FUNCTION__, true, false);
1244 RelocationRange boot_image(image_header->GetBootImageBegin(),
1245 boot_image_begin,
1246 boot_image_size);
1247 // Metadata is everything after the objects section, use exclusion to be safe.
1248 RelocationRange app_image_metadata(
1249 reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.End(),
1250 reinterpret_cast<uintptr_t>(target_base) + objects_section.End(),
1251 image_header->GetImageSize() - objects_section.End());
1252 // App image heap objects, may be mapped in the heap.
1253 RelocationRange app_image_objects(
1254 reinterpret_cast<uintptr_t>(image_header->GetImageBegin()) + objects_section.Offset(),
1255 reinterpret_cast<uintptr_t>(objects_location),
1256 objects_section.Size());
1257 // Use the oat data section since this is where the OatFile::Begin is.
1258 RelocationRange app_oat(reinterpret_cast<uintptr_t>(image_header->GetOatDataBegin()),
1259 // Not necessarily in low 4GB.
1260 reinterpret_cast<uintptr_t>(app_oat_file->Begin()),
1261 image_header->GetOatDataEnd() - image_header->GetOatDataBegin());
1262 VLOG(image) << "App image metadata " << app_image_metadata;
1263 VLOG(image) << "App image objects " << app_image_objects;
1264 VLOG(image) << "App oat " << app_oat;
1265 VLOG(image) << "Boot image " << boot_image;
1266 // True if we need to fixup any heap pointers.
1267 const bool fixup_image = boot_image.Delta() != 0 || app_image_metadata.Delta() != 0 ||
1268 app_image_objects.Delta() != 0;
1269 if (!fixup_image) {
1270 // Nothing to fix up.
1271 return true;
1272 }
1273 ScopedDebugDisallowReadBarriers sddrb(Thread::Current());
1274 // TODO: Assert that the app image does not contain any Method, Constructor,
1275 // FieldVarHandle or StaticFieldVarHandle. These require extra relocation
1276 // for the `ArtMethod*` and `ArtField*` pointers they contain.
1277
1278 using ForwardObject = ForwardAddress<RelocationRange, RelocationRange>;
1279 ForwardObject forward_object(boot_image, app_image_objects);
1280 ForwardObject forward_metadata(boot_image, app_image_metadata);
1281 using ForwardCode = ForwardAddress<RelocationRange, RelocationRange>;
1282 ForwardCode forward_code(boot_image, app_oat);
1283 PatchObjectVisitor<kPointerSize, ForwardObject, ForwardCode> patch_object_visitor(
1284 forward_object,
1285 forward_metadata);
1286 if (fixup_image) {
1287 // Two pass approach, fix up all classes first, then fix up non class-objects.
1288 // The visited bitmap is used to ensure that pointer arrays are not forwarded twice.
1289 gc::accounting::ContinuousSpaceBitmap visited_bitmap(
1290 gc::accounting::ContinuousSpaceBitmap::Create("Relocate bitmap",
1291 target_base,
1292 image_header->GetImageSize()));
1293 {
1294 TimingLogger::ScopedTiming timing("Fixup classes", &logger);
1295 ObjPtr<mirror::Class> class_class = [&]() NO_THREAD_SAFETY_ANALYSIS {
1296 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots = app_image_objects.ToDest(
1297 image_header->GetImageRoots<kWithoutReadBarrier>().Ptr());
1298 int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots);
1299 DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>());
1300 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots =
1301 ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(boot_image.ToDest(
1302 image_roots->GetWithoutChecks<kVerifyNone,
1303 kWithoutReadBarrier>(class_roots_index).Ptr()));
1304 return GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots);
1305 }();
1306 const auto& class_table_section = image_header->GetClassTableSection();
1307 if (class_table_section.Size() > 0u) {
1308 ScopedObjectAccess soa(Thread::Current());
1309 ClassTableVisitor class_table_visitor(forward_object);
1310 size_t read_count = 0u;
1311 const uint8_t* data = target_base + class_table_section.Offset();
1312 // We avoid making a copy of the data since we want modifications to be propagated to the
1313 // memory map.
1314 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
1315 for (ClassTable::TableSlot& slot : temp_set) {
1316 slot.VisitRoot(class_table_visitor);
1317 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
1318 if (!app_image_objects.InDest(klass.Ptr())) {
1319 continue;
1320 }
1321 const bool already_marked = visited_bitmap.Set(klass.Ptr());
1322 CHECK(!already_marked) << "App image class already visited";
1323 patch_object_visitor.VisitClass(klass, class_class);
1324 // Then patch the non-embedded vtable and iftable.
1325 ObjPtr<mirror::PointerArray> vtable =
1326 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
1327 if (vtable != nullptr &&
1328 app_image_objects.InDest(vtable.Ptr()) &&
1329 !visited_bitmap.Set(vtable.Ptr())) {
1330 patch_object_visitor.VisitPointerArray(vtable);
1331 }
1332 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
1333 if (iftable != nullptr && app_image_objects.InDest(iftable.Ptr())) {
1334 // Avoid processing the fields of iftable since we will process them later anyways
1335 // below.
1336 int32_t ifcount = klass->GetIfTableCount<kVerifyNone>();
1337 for (int32_t i = 0; i != ifcount; ++i) {
1338 ObjPtr<mirror::PointerArray> unpatched_ifarray =
1339 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
1340 if (unpatched_ifarray != nullptr) {
1341 // The iftable has not been patched, so we need to explicitly adjust the pointer.
1342 ObjPtr<mirror::PointerArray> ifarray = forward_object(unpatched_ifarray.Ptr());
1343 if (app_image_objects.InDest(ifarray.Ptr()) &&
1344 !visited_bitmap.Set(ifarray.Ptr())) {
1345 patch_object_visitor.VisitPointerArray(ifarray);
1346 }
1347 }
1348 }
1349 }
1350 }
1351 }
1352 }
1353
1354 // Fixup objects may read fields in the boot image so we hold the mutator lock (although it is
1355 // probably not required).
1356 TimingLogger::ScopedTiming timing("Fixup objects", &logger);
1357 ScopedObjectAccess soa(Thread::Current());
1358 // Need to update the image to be at the target base.
1359 uintptr_t objects_begin = reinterpret_cast<uintptr_t>(target_base + objects_section.Offset());
1360 uintptr_t objects_end = reinterpret_cast<uintptr_t>(target_base + objects_section.End());
1361 FixupObjectVisitor<ForwardObject> fixup_object_visitor(&visited_bitmap, forward_object);
1362 bitmap->VisitMarkedRange(objects_begin, objects_end, fixup_object_visitor);
1363 // Fixup image roots.
1364 CHECK(app_image_objects.InSource(reinterpret_cast<uintptr_t>(
1365 image_header->GetImageRoots<kWithoutReadBarrier>().Ptr())));
1366 image_header->RelocateImageReferences(app_image_objects.Delta());
1367 image_header->RelocateBootImageReferences(boot_image.Delta());
1368 CHECK_EQ(image_header->GetImageBegin(), target_base);
1369
1370 // Fix up dex cache arrays.
1371 ObjPtr<mirror::ObjectArray<mirror::DexCache>> dex_caches =
1372 image_header->GetImageRoot<kWithoutReadBarrier>(ImageHeader::kDexCaches)
1373 ->AsObjectArray<mirror::DexCache, kVerifyNone>();
1374 for (int32_t i = 0, count = dex_caches->GetLength(); i < count; ++i) {
1375 ObjPtr<mirror::DexCache> dex_cache =
1376 dex_caches->GetWithoutChecks<kVerifyNone, kWithoutReadBarrier>(i);
1377 patch_object_visitor.VisitDexCacheArrays(dex_cache);
1378 }
1379 }
1380 {
1381 // Only touches objects in the app image, no need for mutator lock.
1382 TimingLogger::ScopedTiming timing("Fixup methods", &logger);
1383 image_header->VisitPackedArtMethods([&](ArtMethod& method) NO_THREAD_SAFETY_ANALYSIS {
1384 // TODO: Consider a separate visitor for runtime vs normal methods.
1385 if (UNLIKELY(method.IsRuntimeMethod())) {
1386 ImtConflictTable* table = method.GetImtConflictTable(kPointerSize);
1387 if (table != nullptr) {
1388 ImtConflictTable* new_table = forward_metadata(table);
1389 if (table != new_table) {
1390 method.SetImtConflictTable(new_table, kPointerSize);
1391 }
1392 }
1393 const void* old_code = method.GetEntryPointFromQuickCompiledCodePtrSize(kPointerSize);
1394 const void* new_code = forward_code(old_code);
1395 if (old_code != new_code) {
1396 method.SetEntryPointFromQuickCompiledCodePtrSize(new_code, kPointerSize);
1397 }
1398 } else {
1399 patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
1400 method.UpdateEntrypoints(forward_code, kPointerSize);
1401 }
1402 }, target_base, kPointerSize);
1403 }
1404 if (fixup_image) {
1405 {
1406 // Only touches objects in the app image, no need for mutator lock.
1407 TimingLogger::ScopedTiming timing("Fixup fields", &logger);
1408 image_header->VisitPackedArtFields([&](ArtField& field) NO_THREAD_SAFETY_ANALYSIS {
1409 patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
1410 &field.DeclaringClassRoot());
1411 }, target_base);
1412 }
1413 {
1414 TimingLogger::ScopedTiming timing("Fixup imt", &logger);
1415 image_header->VisitPackedImTables(forward_metadata, target_base, kPointerSize);
1416 }
1417 {
1418 TimingLogger::ScopedTiming timing("Fixup conflict tables", &logger);
1419 image_header->VisitPackedImtConflictTables(forward_metadata, target_base, kPointerSize);
1420 }
1421 // Fix up the intern table.
1422 const auto& intern_table_section = image_header->GetInternedStringsSection();
1423 if (intern_table_section.Size() > 0u) {
1424 TimingLogger::ScopedTiming timing("Fixup intern table", &logger);
1425 ScopedObjectAccess soa(Thread::Current());
1426 // Fixup the pointers in the newly written intern table to contain image addresses.
1427 InternTable temp_intern_table;
1428 // Note that we require that ReadFromMemory does not make an internal copy of the elements
1429 // so that the VisitRoots() will update the memory directly rather than the copies.
1430 temp_intern_table.AddTableFromMemory(target_base + intern_table_section.Offset(),
1431 [&](InternTable::UnorderedSet& strings)
1432 REQUIRES_SHARED(Locks::mutator_lock_) {
1433 for (GcRoot<mirror::String>& root : strings) {
1434 root = GcRoot<mirror::String>(forward_object(root.Read<kWithoutReadBarrier>()));
1435 }
1436 }, /*is_boot_image=*/ false);
1437 }
1438 }
1439 if (VLOG_IS_ON(image)) {
1440 logger.Dump(LOG_STREAM(INFO));
1441 }
1442 return true;
1443 }
1444 };
1445
AppendImageChecksum(uint32_t component_count,uint32_t checksum,std::string * checksums)1446 void ImageSpace::AppendImageChecksum(uint32_t component_count,
1447 uint32_t checksum,
1448 /*inout*/ std::string* checksums) {
1449 static_assert(ImageSpace::kImageChecksumPrefix == 'i', "Format prefix check.");
1450 StringAppendF(checksums, "i;%u/%08x", component_count, checksum);
1451 }
1452
CheckAndRemoveImageChecksum(uint32_t component_count,uint32_t checksum,std::string_view * oat_checksums,std::string * error_msg)1453 static bool CheckAndRemoveImageChecksum(uint32_t component_count,
1454 uint32_t checksum,
1455 /*inout*/std::string_view* oat_checksums,
1456 /*out*/std::string* error_msg) {
1457 std::string image_checksum;
1458 ImageSpace::AppendImageChecksum(component_count, checksum, &image_checksum);
1459 if (!StartsWith(*oat_checksums, image_checksum)) {
1460 *error_msg = StringPrintf("Image checksum mismatch, expected %s to start with %s",
1461 std::string(*oat_checksums).c_str(),
1462 image_checksum.c_str());
1463 return false;
1464 }
1465 oat_checksums->remove_prefix(image_checksum.size());
1466 return true;
1467 }
1468
GetPrimaryImageLocation()1469 std::string ImageSpace::BootImageLayout::GetPrimaryImageLocation() {
1470 DCHECK(!image_locations_.empty());
1471 std::string location = image_locations_[0];
1472 size_t profile_separator_pos = location.find(kProfileSeparator);
1473 if (profile_separator_pos != std::string::npos) {
1474 location.resize(profile_separator_pos);
1475 }
1476 if (location.find('/') == std::string::npos) {
1477 // No path, so use the path from the first boot class path component.
1478 size_t slash_pos = boot_class_path_.empty()
1479 ? std::string::npos
1480 : boot_class_path_[0].rfind('/');
1481 if (slash_pos == std::string::npos) {
1482 return std::string();
1483 }
1484 location.insert(0u, boot_class_path_[0].substr(0u, slash_pos + 1u));
1485 }
1486 return location;
1487 }
1488
VerifyImageLocation(ArrayRef<const std::string> components,size_t * named_components_count,std::string * error_msg)1489 bool ImageSpace::BootImageLayout::VerifyImageLocation(
1490 ArrayRef<const std::string> components,
1491 /*out*/size_t* named_components_count,
1492 /*out*/std::string* error_msg) {
1493 DCHECK(named_components_count != nullptr);
1494
1495 // Validate boot class path. Require a path and non-empty name in each component.
1496 for (const std::string& bcp_component : boot_class_path_) {
1497 size_t bcp_slash_pos = bcp_component.rfind('/');
1498 if (bcp_slash_pos == std::string::npos || bcp_slash_pos == bcp_component.size() - 1u) {
1499 *error_msg = StringPrintf("Invalid boot class path component: %s", bcp_component.c_str());
1500 return false;
1501 }
1502 }
1503
1504 // Validate the format of image location components.
1505 size_t components_size = components.size();
1506 if (components_size == 0u) {
1507 *error_msg = "Empty image location.";
1508 return false;
1509 }
1510 size_t wildcards_start = components_size; // No wildcards.
1511 for (size_t i = 0; i != components_size; ++i) {
1512 const std::string& component = components[i];
1513 DCHECK(!component.empty()); // Guaranteed by Split().
1514 std::vector<std::string> parts = android::base::Split(component, {kProfileSeparator});
1515 size_t wildcard_pos = component.find('*');
1516 if (wildcard_pos == std::string::npos) {
1517 if (wildcards_start != components.size()) {
1518 *error_msg =
1519 StringPrintf("Image component without wildcard after component with wildcard: %s",
1520 component.c_str());
1521 return false;
1522 }
1523 for (size_t j = 0; j < parts.size(); j++) {
1524 if (parts[j].empty()) {
1525 *error_msg = StringPrintf("Missing component and/or profile name in %s",
1526 component.c_str());
1527 return false;
1528 }
1529 if (parts[j].back() == '/') {
1530 *error_msg = StringPrintf("%s name ends with path separator: %s",
1531 j == 0 ? "Image component" : "Profile",
1532 component.c_str());
1533 return false;
1534 }
1535 }
1536 } else {
1537 if (parts.size() > 1) {
1538 *error_msg = StringPrintf("Unsupproted wildcard (*) and profile delimiter (!) in %s",
1539 component.c_str());
1540 return false;
1541 }
1542 if (wildcards_start == components_size) {
1543 wildcards_start = i;
1544 }
1545 // Wildcard must be the last character.
1546 if (wildcard_pos != component.size() - 1u) {
1547 *error_msg = StringPrintf("Unsupported wildcard (*) position in %s", component.c_str());
1548 return false;
1549 }
1550 // And it must be either plain wildcard or preceded by a path separator.
1551 if (component.size() != 1u && component[wildcard_pos - 1u] != '/') {
1552 *error_msg = StringPrintf("Non-plain wildcard (*) not preceded by path separator '/': %s",
1553 component.c_str());
1554 return false;
1555 }
1556 if (i == 0) {
1557 *error_msg = StringPrintf("Primary component contains wildcard (*): %s", component.c_str());
1558 return false;
1559 }
1560 }
1561 }
1562
1563 *named_components_count = wildcards_start;
1564 return true;
1565 }
1566
MatchNamedComponents(ArrayRef<const std::string> named_components,std::vector<NamedComponentLocation> * named_component_locations,std::string * error_msg)1567 bool ImageSpace::BootImageLayout::MatchNamedComponents(
1568 ArrayRef<const std::string> named_components,
1569 /*out*/std::vector<NamedComponentLocation>* named_component_locations,
1570 /*out*/std::string* error_msg) {
1571 DCHECK(!named_components.empty());
1572 DCHECK(named_component_locations->empty());
1573 named_component_locations->reserve(named_components.size());
1574 size_t bcp_component_count = boot_class_path_.size();
1575 size_t bcp_pos = 0;
1576 std::string base_name;
1577 for (size_t i = 0, size = named_components.size(); i != size; ++i) {
1578 std::string component = named_components[i];
1579 std::vector<std::string> profile_filenames; // Empty.
1580 std::vector<std::string> parts = android::base::Split(component, {kProfileSeparator});
1581 for (size_t j = 0; j < parts.size(); j++) {
1582 if (j == 0) {
1583 component = std::move(parts[j]);
1584 DCHECK(!component.empty()); // Checked by VerifyImageLocation()
1585 } else {
1586 profile_filenames.push_back(std::move(parts[j]));
1587 DCHECK(!profile_filenames.back().empty()); // Checked by VerifyImageLocation()
1588 }
1589 }
1590 size_t slash_pos = component.rfind('/');
1591 std::string base_location;
1592 if (i == 0u) {
1593 // The primary boot image name is taken as provided. It forms the base
1594 // for expanding the extension filenames.
1595 if (slash_pos != std::string::npos) {
1596 base_name = component.substr(slash_pos + 1u);
1597 base_location = component;
1598 } else {
1599 base_name = component;
1600 base_location = GetBcpComponentPath(0u) + component;
1601 }
1602 } else {
1603 std::string to_match;
1604 if (slash_pos != std::string::npos) {
1605 // If we have the full path, we just need to match the filename to the BCP component.
1606 base_location = component.substr(0u, slash_pos + 1u) + base_name;
1607 to_match = component;
1608 }
1609 while (true) {
1610 if (slash_pos == std::string::npos) {
1611 // If we do not have a full path, we need to update the path based on the BCP location.
1612 std::string path = GetBcpComponentPath(bcp_pos);
1613 to_match = path + component;
1614 base_location = path + base_name;
1615 }
1616 if (ExpandLocation(base_location, bcp_pos) == to_match) {
1617 break;
1618 }
1619 ++bcp_pos;
1620 if (bcp_pos == bcp_component_count) {
1621 *error_msg = StringPrintf("Image component %s does not match a boot class path component",
1622 component.c_str());
1623 return false;
1624 }
1625 }
1626 }
1627 for (std::string& profile_filename : profile_filenames) {
1628 if (profile_filename.find('/') == std::string::npos) {
1629 profile_filename.insert(/*pos*/ 0u, GetBcpComponentPath(bcp_pos));
1630 }
1631 }
1632 NamedComponentLocation location;
1633 location.base_location = base_location;
1634 location.bcp_index = bcp_pos;
1635 location.profile_filenames = profile_filenames;
1636 named_component_locations->push_back(location);
1637 ++bcp_pos;
1638 }
1639 return true;
1640 }
1641
ValidateBootImageChecksum(const char * file_description,const ImageHeader & header,std::string * error_msg)1642 bool ImageSpace::BootImageLayout::ValidateBootImageChecksum(const char* file_description,
1643 const ImageHeader& header,
1644 /*out*/std::string* error_msg) {
1645 uint32_t boot_image_component_count = header.GetBootImageComponentCount();
1646 if (chunks_.empty() != (boot_image_component_count == 0u)) {
1647 *error_msg = StringPrintf("Unexpected boot image component count in %s: %u, %s",
1648 file_description,
1649 boot_image_component_count,
1650 chunks_.empty() ? "should be 0" : "should not be 0");
1651 return false;
1652 }
1653 uint32_t component_count = 0u;
1654 uint32_t composite_checksum = 0u;
1655 uint64_t boot_image_size = 0u;
1656 for (const ImageChunk& chunk : chunks_) {
1657 if (component_count == boot_image_component_count) {
1658 break; // Hit the component count.
1659 }
1660 if (chunk.start_index != component_count) {
1661 break; // End of contiguous chunks, fail below; same as reaching end of `chunks_`.
1662 }
1663 if (chunk.component_count > boot_image_component_count - component_count) {
1664 *error_msg = StringPrintf("Boot image component count in %s ends in the middle of a chunk, "
1665 "%u is between %u and %u",
1666 file_description,
1667 boot_image_component_count,
1668 component_count,
1669 component_count + chunk.component_count);
1670 return false;
1671 }
1672 component_count += chunk.component_count;
1673 composite_checksum ^= chunk.checksum;
1674 boot_image_size += chunk.reservation_size;
1675 }
1676 DCHECK_LE(component_count, boot_image_component_count);
1677 if (component_count != boot_image_component_count) {
1678 *error_msg = StringPrintf("Missing boot image components for checksum in %s: %u > %u",
1679 file_description,
1680 boot_image_component_count,
1681 component_count);
1682 return false;
1683 }
1684 if (composite_checksum != header.GetBootImageChecksum()) {
1685 *error_msg = StringPrintf("Boot image checksum mismatch in %s: 0x%08x != 0x%08x",
1686 file_description,
1687 header.GetBootImageChecksum(),
1688 composite_checksum);
1689 return false;
1690 }
1691 if (boot_image_size != header.GetBootImageSize()) {
1692 *error_msg = StringPrintf("Boot image size mismatch in %s: 0x%08x != 0x%08" PRIx64,
1693 file_description,
1694 header.GetBootImageSize(),
1695 boot_image_size);
1696 return false;
1697 }
1698 return true;
1699 }
1700
ValidateHeader(const ImageHeader & header,size_t bcp_index,const char * file_description,std::string * error_msg)1701 bool ImageSpace::BootImageLayout::ValidateHeader(const ImageHeader& header,
1702 size_t bcp_index,
1703 const char* file_description,
1704 /*out*/std::string* error_msg) {
1705 size_t bcp_component_count = boot_class_path_.size();
1706 DCHECK_LT(bcp_index, bcp_component_count);
1707 size_t allowed_component_count = bcp_component_count - bcp_index;
1708 DCHECK_LE(total_reservation_size_, kMaxTotalImageReservationSize);
1709 size_t allowed_reservation_size = kMaxTotalImageReservationSize - total_reservation_size_;
1710
1711 if (header.GetComponentCount() == 0u ||
1712 header.GetComponentCount() > allowed_component_count) {
1713 *error_msg = StringPrintf("Unexpected component count in %s, received %u, "
1714 "expected non-zero and <= %zu",
1715 file_description,
1716 header.GetComponentCount(),
1717 allowed_component_count);
1718 return false;
1719 }
1720 if (header.GetImageReservationSize() > allowed_reservation_size) {
1721 *error_msg = StringPrintf("Reservation size too big in %s: %u > %zu",
1722 file_description,
1723 header.GetImageReservationSize(),
1724 allowed_reservation_size);
1725 return false;
1726 }
1727 if (!ValidateBootImageChecksum(file_description, header, error_msg)) {
1728 return false;
1729 }
1730
1731 return true;
1732 }
1733
ValidateOatFile(const std::string & base_location,const std::string & base_filename,size_t bcp_index,size_t component_count,std::string * error_msg)1734 bool ImageSpace::BootImageLayout::ValidateOatFile(
1735 const std::string& base_location,
1736 const std::string& base_filename,
1737 size_t bcp_index,
1738 size_t component_count,
1739 /*out*/std::string* error_msg) {
1740 std::string art_filename = ExpandLocation(base_filename, bcp_index);
1741 std::string art_location = ExpandLocation(base_location, bcp_index);
1742 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename);
1743 std::string oat_location = ImageHeader::GetOatLocationFromImageLocation(art_location);
1744 int oat_fd =
1745 bcp_index < boot_class_path_oat_fds_.size() ? boot_class_path_oat_fds_[bcp_index] : -1;
1746 int vdex_fd =
1747 bcp_index < boot_class_path_vdex_fds_.size() ? boot_class_path_vdex_fds_[bcp_index] : -1;
1748 auto dex_filenames =
1749 ArrayRef<const std::string>(boot_class_path_).SubArray(bcp_index, component_count);
1750 auto dex_fds =
1751 bcp_index + component_count < boot_class_path_fds_.size() ?
1752 ArrayRef<const int>(boot_class_path_fds_).SubArray(bcp_index, component_count) :
1753 ArrayRef<const int>();
1754 // We open the oat file here only for validating that it's up-to-date. We don't open it as
1755 // executable or mmap it to a reserved space. This `OatFile` object will be dropped after
1756 // validation, and will not go into the `ImageSpace`.
1757 std::unique_ptr<OatFile> oat_file;
1758 DCHECK_EQ(oat_fd >= 0, vdex_fd >= 0);
1759 if (oat_fd >= 0) {
1760 oat_file.reset(OatFile::Open(
1761 /*zip_fd=*/ -1,
1762 vdex_fd,
1763 oat_fd,
1764 oat_location,
1765 /*executable=*/ false,
1766 /*low_4gb=*/ false,
1767 dex_filenames,
1768 dex_fds,
1769 /*reservation=*/ nullptr,
1770 error_msg));
1771 } else {
1772 oat_file.reset(OatFile::Open(
1773 /*zip_fd=*/ -1,
1774 oat_filename,
1775 oat_location,
1776 /*executable=*/ false,
1777 /*low_4gb=*/ false,
1778 dex_filenames,
1779 dex_fds,
1780 /*reservation=*/ nullptr,
1781 error_msg));
1782 }
1783 if (oat_file == nullptr) {
1784 *error_msg = StringPrintf("Failed to open oat file '%s' when validating it for image '%s': %s",
1785 oat_filename.c_str(),
1786 art_location.c_str(),
1787 error_msg->c_str());
1788 return false;
1789 }
1790 if (!ImageSpace::ValidateOatFile(*oat_file, error_msg, dex_filenames, dex_fds, apex_versions_)) {
1791 return false;
1792 }
1793 return true;
1794 }
1795
ReadHeader(const std::string & base_location,const std::string & base_filename,size_t bcp_index,std::string * error_msg)1796 bool ImageSpace::BootImageLayout::ReadHeader(const std::string& base_location,
1797 const std::string& base_filename,
1798 size_t bcp_index,
1799 /*out*/std::string* error_msg) {
1800 DCHECK_LE(next_bcp_index_, bcp_index);
1801 DCHECK_LT(bcp_index, boot_class_path_.size());
1802
1803 std::string actual_filename = ExpandLocation(base_filename, bcp_index);
1804 int bcp_image_fd = bcp_index < boot_class_path_image_fds_.size()
1805 ? boot_class_path_image_fds_[bcp_index]
1806 : -1;
1807 ImageHeader header;
1808 // When BCP image is provided as FD, it needs to be dup'ed (since it's stored in unique_fd) so
1809 // that it can later be used in LoadComponents.
1810 auto image_file = bcp_image_fd >= 0
1811 ? std::make_unique<File>(DupCloexec(bcp_image_fd), actual_filename, /*check_usage=*/ false)
1812 : std::unique_ptr<File>(OS::OpenFileForReading(actual_filename.c_str()));
1813 if (!image_file || !image_file->IsOpened()) {
1814 *error_msg = StringPrintf("Unable to open file \"%s\" for reading image header",
1815 actual_filename.c_str());
1816 return false;
1817 }
1818 if (!ReadSpecificImageHeader(image_file.get(), actual_filename.c_str(), &header, error_msg)) {
1819 return false;
1820 }
1821 const char* file_description = actual_filename.c_str();
1822 if (!ValidateHeader(header, bcp_index, file_description, error_msg)) {
1823 return false;
1824 }
1825
1826 // Validate oat files. We do it here so that the boot image will be re-compiled in memory if it's
1827 // outdated.
1828 size_t component_count = (header.GetImageSpaceCount() == 1u) ? header.GetComponentCount() : 1u;
1829 for (size_t i = 0; i < header.GetImageSpaceCount(); i++) {
1830 if (!ValidateOatFile(base_location, base_filename, bcp_index + i, component_count, error_msg)) {
1831 return false;
1832 }
1833 }
1834
1835 if (chunks_.empty()) {
1836 base_address_ = reinterpret_cast32<uint32_t>(header.GetImageBegin());
1837 }
1838 ImageChunk chunk;
1839 chunk.base_location = base_location;
1840 chunk.base_filename = base_filename;
1841 chunk.start_index = bcp_index;
1842 chunk.component_count = header.GetComponentCount();
1843 chunk.image_space_count = header.GetImageSpaceCount();
1844 chunk.reservation_size = header.GetImageReservationSize();
1845 chunk.checksum = header.GetImageChecksum();
1846 chunk.boot_image_component_count = header.GetBootImageComponentCount();
1847 chunk.boot_image_checksum = header.GetBootImageChecksum();
1848 chunk.boot_image_size = header.GetBootImageSize();
1849 chunks_.push_back(std::move(chunk));
1850 next_bcp_index_ = bcp_index + header.GetComponentCount();
1851 total_component_count_ += header.GetComponentCount();
1852 total_reservation_size_ += header.GetImageReservationSize();
1853 return true;
1854 }
1855
CompileBootclasspathElements(const std::string & base_location,const std::string & base_filename,size_t bcp_index,const std::vector<std::string> & profile_filenames,ArrayRef<const std::string> dependencies,std::string * error_msg)1856 bool ImageSpace::BootImageLayout::CompileBootclasspathElements(
1857 const std::string& base_location,
1858 const std::string& base_filename,
1859 size_t bcp_index,
1860 const std::vector<std::string>& profile_filenames,
1861 ArrayRef<const std::string> dependencies,
1862 /*out*/std::string* error_msg) {
1863 DCHECK_LE(total_component_count_, next_bcp_index_);
1864 DCHECK_LE(next_bcp_index_, bcp_index);
1865 size_t bcp_component_count = boot_class_path_.size();
1866 DCHECK_LT(bcp_index, bcp_component_count);
1867 DCHECK(!profile_filenames.empty());
1868 if (total_component_count_ != bcp_index) {
1869 // We require all previous BCP components to have a boot image space (primary or extension).
1870 *error_msg = "Cannot compile extension because of missing dependencies.";
1871 return false;
1872 }
1873 Runtime* runtime = Runtime::Current();
1874 if (!runtime->IsImageDex2OatEnabled()) {
1875 *error_msg = "Cannot compile bootclasspath because dex2oat for image compilation is disabled.";
1876 return false;
1877 }
1878
1879 // Check dependencies.
1880 DCHECK_EQ(dependencies.empty(), bcp_index == 0);
1881 size_t dependency_component_count = 0;
1882 for (size_t i = 0, size = dependencies.size(); i != size; ++i) {
1883 if (chunks_.size() == i || chunks_[i].start_index != dependency_component_count) {
1884 *error_msg = StringPrintf("Missing extension dependency \"%s\"", dependencies[i].c_str());
1885 return false;
1886 }
1887 dependency_component_count += chunks_[i].component_count;
1888 }
1889
1890 // Collect locations from the profile.
1891 std::set<std::string> dex_locations;
1892 for (const std::string& profile_filename : profile_filenames) {
1893 std::unique_ptr<File> profile_file(OS::OpenFileForReading(profile_filename.c_str()));
1894 if (profile_file == nullptr) {
1895 *error_msg = StringPrintf("Failed to open profile file \"%s\" for reading, error: %s",
1896 profile_filename.c_str(),
1897 strerror(errno));
1898 return false;
1899 }
1900
1901 // TODO: Rewrite ProfileCompilationInfo to provide a better interface and
1902 // to store the dex locations in uncompressed section of the file.
1903 auto collect_fn = [&dex_locations](const std::string& dex_location,
1904 uint32_t checksum ATTRIBUTE_UNUSED) {
1905 dex_locations.insert(dex_location); // Just collect locations.
1906 return false; // Do not read the profile data.
1907 };
1908 ProfileCompilationInfo info(/*for_boot_image=*/ true);
1909 if (!info.Load(profile_file->Fd(), /*merge_classes=*/ true, collect_fn)) {
1910 *error_msg = StringPrintf("Failed to scan profile from %s", profile_filename.c_str());
1911 return false;
1912 }
1913 }
1914
1915 // Match boot class path components to locations from profile.
1916 // Note that the profile records only filenames without paths.
1917 size_t bcp_end = bcp_index;
1918 for (; bcp_end != bcp_component_count; ++bcp_end) {
1919 const std::string& bcp_component = boot_class_path_locations_[bcp_end];
1920 size_t slash_pos = bcp_component.rfind('/');
1921 DCHECK_NE(slash_pos, std::string::npos);
1922 std::string bcp_component_name = bcp_component.substr(slash_pos + 1u);
1923 if (dex_locations.count(bcp_component_name) == 0u) {
1924 break; // Did not find the current location in dex file.
1925 }
1926 }
1927
1928 if (bcp_end == bcp_index) {
1929 // No data for the first (requested) component.
1930 *error_msg = StringPrintf("The profile does not contain data for %s",
1931 boot_class_path_locations_[bcp_index].c_str());
1932 return false;
1933 }
1934
1935 // Create in-memory files.
1936 std::string art_filename = ExpandLocation(base_filename, bcp_index);
1937 std::string vdex_filename = ImageHeader::GetVdexLocationFromImageLocation(art_filename);
1938 std::string oat_filename = ImageHeader::GetOatLocationFromImageLocation(art_filename);
1939 android::base::unique_fd art_fd(memfd_create_compat(art_filename.c_str(), /*flags=*/ 0));
1940 android::base::unique_fd vdex_fd(memfd_create_compat(vdex_filename.c_str(), /*flags=*/ 0));
1941 android::base::unique_fd oat_fd(memfd_create_compat(oat_filename.c_str(), /*flags=*/ 0));
1942 if (art_fd.get() == -1 || vdex_fd.get() == -1 || oat_fd.get() == -1) {
1943 *error_msg = StringPrintf("Failed to create memfd handles for compiling bootclasspath for %s",
1944 boot_class_path_locations_[bcp_index].c_str());
1945 return false;
1946 }
1947
1948 // Construct the dex2oat command line.
1949 std::string dex2oat = runtime->GetCompilerExecutable();
1950 ArrayRef<const std::string> head_bcp =
1951 boot_class_path_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count);
1952 ArrayRef<const std::string> head_bcp_locations =
1953 boot_class_path_locations_.SubArray(/*pos=*/ 0u, /*length=*/ dependency_component_count);
1954 ArrayRef<const std::string> bcp_to_compile =
1955 boot_class_path_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index);
1956 ArrayRef<const std::string> bcp_to_compile_locations =
1957 boot_class_path_locations_.SubArray(/*pos=*/ bcp_index, /*length=*/ bcp_end - bcp_index);
1958 std::string boot_class_path = head_bcp.empty() ?
1959 Join(bcp_to_compile, ':') :
1960 Join(head_bcp, ':') + ':' + Join(bcp_to_compile, ':');
1961 std::string boot_class_path_locations =
1962 head_bcp_locations.empty() ?
1963 Join(bcp_to_compile_locations, ':') :
1964 Join(head_bcp_locations, ':') + ':' + Join(bcp_to_compile_locations, ':');
1965
1966 std::vector<std::string> args;
1967 args.push_back(dex2oat);
1968 args.push_back("--runtime-arg");
1969 args.push_back("-Xbootclasspath:" + boot_class_path);
1970 args.push_back("--runtime-arg");
1971 args.push_back("-Xbootclasspath-locations:" + boot_class_path_locations);
1972 if (dependencies.empty()) {
1973 args.push_back(android::base::StringPrintf("--base=0x%08x", ART_BASE_ADDRESS));
1974 } else {
1975 args.push_back("--boot-image=" + Join(dependencies, kComponentSeparator));
1976 }
1977 for (size_t i = bcp_index; i != bcp_end; ++i) {
1978 args.push_back("--dex-file=" + boot_class_path_[i]);
1979 args.push_back("--dex-location=" + boot_class_path_locations_[i]);
1980 }
1981 args.push_back("--image-fd=" + std::to_string(art_fd.get()));
1982 args.push_back("--output-vdex-fd=" + std::to_string(vdex_fd.get()));
1983 args.push_back("--oat-fd=" + std::to_string(oat_fd.get()));
1984 args.push_back("--oat-location=" + ImageHeader::GetOatLocationFromImageLocation(base_filename));
1985 args.push_back("--single-image");
1986 args.push_back("--image-format=uncompressed");
1987
1988 // We currently cannot guarantee that the boot class path has no verification failures.
1989 // And we do not want to compile anything, compilation should be done by JIT in zygote.
1990 args.push_back("--compiler-filter=verify");
1991
1992 // Pass the profiles.
1993 for (const std::string& profile_filename : profile_filenames) {
1994 args.push_back("--profile-file=" + profile_filename);
1995 }
1996
1997 // Do not let the file descriptor numbers change the compilation output.
1998 args.push_back("--avoid-storing-invocation");
1999
2000 runtime->AddCurrentRuntimeFeaturesAsDex2OatArguments(&args);
2001
2002 if (!kIsTargetBuild) {
2003 args.push_back("--host");
2004 }
2005
2006 // Image compiler options go last to allow overriding above args, such as --compiler-filter.
2007 for (const std::string& compiler_option : runtime->GetImageCompilerOptions()) {
2008 args.push_back(compiler_option);
2009 }
2010
2011 // Compile.
2012 VLOG(image) << "Compiling boot bootclasspath for " << (bcp_end - bcp_index)
2013 << " components, starting from " << boot_class_path_locations_[bcp_index];
2014 if (!Exec(args, error_msg)) {
2015 return false;
2016 }
2017
2018 // Read and validate the image header.
2019 ImageHeader header;
2020 {
2021 File image_file(art_fd.release(), /*check_usage=*/ false);
2022 if (!ReadSpecificImageHeader(&image_file, "compiled image file", &header, error_msg)) {
2023 return false;
2024 }
2025 art_fd.reset(image_file.Release());
2026 }
2027 const char* file_description = "compiled image file";
2028 if (!ValidateHeader(header, bcp_index, file_description, error_msg)) {
2029 return false;
2030 }
2031
2032 DCHECK_EQ(chunks_.empty(), dependencies.empty());
2033 ImageChunk chunk;
2034 chunk.base_location = base_location;
2035 chunk.base_filename = base_filename;
2036 chunk.profile_files = profile_filenames;
2037 chunk.start_index = bcp_index;
2038 chunk.component_count = header.GetComponentCount();
2039 chunk.image_space_count = header.GetImageSpaceCount();
2040 chunk.reservation_size = header.GetImageReservationSize();
2041 chunk.checksum = header.GetImageChecksum();
2042 chunk.boot_image_component_count = header.GetBootImageComponentCount();
2043 chunk.boot_image_checksum = header.GetBootImageChecksum();
2044 chunk.boot_image_size = header.GetBootImageSize();
2045 chunk.art_fd.reset(art_fd.release());
2046 chunk.vdex_fd.reset(vdex_fd.release());
2047 chunk.oat_fd.reset(oat_fd.release());
2048 chunks_.push_back(std::move(chunk));
2049 next_bcp_index_ = bcp_index + header.GetComponentCount();
2050 total_component_count_ += header.GetComponentCount();
2051 total_reservation_size_ += header.GetImageReservationSize();
2052 return true;
2053 }
2054
2055 template <typename FilenameFn>
Load(FilenameFn && filename_fn,bool allow_in_memory_compilation,std::string * error_msg)2056 bool ImageSpace::BootImageLayout::Load(FilenameFn&& filename_fn,
2057 bool allow_in_memory_compilation,
2058 /*out*/ std::string* error_msg) {
2059 DCHECK(GetChunks().empty());
2060 DCHECK_EQ(GetBaseAddress(), 0u);
2061
2062 ArrayRef<const std::string> components = image_locations_;
2063 size_t named_components_count = 0u;
2064 if (!VerifyImageLocation(components, &named_components_count, error_msg)) {
2065 return false;
2066 }
2067
2068 ArrayRef<const std::string> named_components =
2069 ArrayRef<const std::string>(components).SubArray(/*pos=*/ 0u, named_components_count);
2070
2071 std::vector<NamedComponentLocation> named_component_locations;
2072 if (!MatchNamedComponents(named_components, &named_component_locations, error_msg)) {
2073 return false;
2074 }
2075
2076 // Load the image headers of named components.
2077 DCHECK_EQ(named_component_locations.size(), named_components.size());
2078 const size_t bcp_component_count = boot_class_path_.size();
2079 size_t bcp_pos = 0u;
2080 for (size_t i = 0, size = named_components.size(); i != size; ++i) {
2081 const std::string& base_location = named_component_locations[i].base_location;
2082 size_t bcp_index = named_component_locations[i].bcp_index;
2083 const std::vector<std::string>& profile_filenames =
2084 named_component_locations[i].profile_filenames;
2085 DCHECK_EQ(i == 0, bcp_index == 0);
2086 if (bcp_index < bcp_pos) {
2087 DCHECK_NE(i, 0u);
2088 LOG(ERROR) << "Named image component already covered by previous image: " << base_location;
2089 continue;
2090 }
2091 std::string local_error_msg;
2092 std::string base_filename;
2093 if (!filename_fn(base_location, &base_filename, &local_error_msg) ||
2094 !ReadHeader(base_location, base_filename, bcp_index, &local_error_msg)) {
2095 LOG(ERROR) << "Error reading named image component header for " << base_location
2096 << ", error: " << local_error_msg;
2097 // If the primary boot image is invalid, we generate a single full image. This is faster than
2098 // generating the primary boot image and the extension separately.
2099 if (bcp_index == 0) {
2100 if (!allow_in_memory_compilation) {
2101 // The boot image is unusable and we can't continue by generating a boot image in memory.
2102 // All we can do is to return.
2103 *error_msg = std::move(local_error_msg);
2104 return false;
2105 }
2106 // We must at least have profiles for the core libraries.
2107 if (profile_filenames.empty()) {
2108 *error_msg = "Full boot image cannot be compiled because no profile is provided.";
2109 return false;
2110 }
2111 std::vector<std::string> all_profiles;
2112 for (const NamedComponentLocation& named_component_location : named_component_locations) {
2113 const std::vector<std::string>& profiles = named_component_location.profile_filenames;
2114 all_profiles.insert(all_profiles.end(), profiles.begin(), profiles.end());
2115 }
2116 if (!CompileBootclasspathElements(base_location,
2117 base_filename,
2118 /*bcp_index=*/ 0,
2119 all_profiles,
2120 /*dependencies=*/ ArrayRef<const std::string>{},
2121 &local_error_msg)) {
2122 *error_msg =
2123 StringPrintf("Full boot image cannot be compiled: %s", local_error_msg.c_str());
2124 return false;
2125 }
2126 // No extensions are needed.
2127 return true;
2128 }
2129 bool should_compile_extension = allow_in_memory_compilation && !profile_filenames.empty();
2130 if (!should_compile_extension ||
2131 !CompileBootclasspathElements(base_location,
2132 base_filename,
2133 bcp_index,
2134 profile_filenames,
2135 components.SubArray(/*pos=*/ 0, /*length=*/ 1),
2136 &local_error_msg)) {
2137 if (should_compile_extension) {
2138 LOG(ERROR) << "Error compiling boot image extension for " << boot_class_path_[bcp_index]
2139 << ", error: " << local_error_msg;
2140 }
2141 bcp_pos = bcp_index + 1u; // Skip at least this component.
2142 DCHECK_GT(bcp_pos, GetNextBcpIndex());
2143 continue;
2144 }
2145 }
2146 bcp_pos = GetNextBcpIndex();
2147 }
2148
2149 // Look for remaining components if there are any wildcard specifications.
2150 ArrayRef<const std::string> search_paths = components.SubArray(/*pos=*/ named_components_count);
2151 if (!search_paths.empty()) {
2152 const std::string& primary_base_location = named_component_locations[0].base_location;
2153 size_t base_slash_pos = primary_base_location.rfind('/');
2154 DCHECK_NE(base_slash_pos, std::string::npos);
2155 std::string base_name = primary_base_location.substr(base_slash_pos + 1u);
2156 DCHECK(!base_name.empty());
2157 while (bcp_pos != bcp_component_count) {
2158 const std::string& bcp_component = boot_class_path_[bcp_pos];
2159 bool found = false;
2160 for (const std::string& path : search_paths) {
2161 std::string base_location;
2162 if (path.size() == 1u) {
2163 DCHECK_EQ(path, "*");
2164 size_t slash_pos = bcp_component.rfind('/');
2165 DCHECK_NE(slash_pos, std::string::npos);
2166 base_location = bcp_component.substr(0u, slash_pos + 1u) + base_name;
2167 } else {
2168 DCHECK(EndsWith(path, "/*"));
2169 base_location = path.substr(0u, path.size() - 1u) + base_name;
2170 }
2171 std::string err_msg; // Ignored.
2172 std::string base_filename;
2173 if (filename_fn(base_location, &base_filename, &err_msg) &&
2174 ReadHeader(base_location, base_filename, bcp_pos, &err_msg)) {
2175 VLOG(image) << "Found image extension for " << ExpandLocation(base_location, bcp_pos);
2176 bcp_pos = GetNextBcpIndex();
2177 found = true;
2178 break;
2179 }
2180 }
2181 if (!found) {
2182 ++bcp_pos;
2183 }
2184 }
2185 }
2186
2187 return true;
2188 }
2189
LoadFromSystem(InstructionSet image_isa,bool allow_in_memory_compilation,std::string * error_msg)2190 bool ImageSpace::BootImageLayout::LoadFromSystem(InstructionSet image_isa,
2191 bool allow_in_memory_compilation,
2192 /*out*/ std::string* error_msg) {
2193 auto filename_fn = [image_isa](const std::string& location,
2194 /*out*/std::string* filename,
2195 /*out*/std::string* err_msg ATTRIBUTE_UNUSED) {
2196 *filename = GetSystemImageFilename(location.c_str(), image_isa);
2197 return true;
2198 };
2199 return Load(filename_fn, allow_in_memory_compilation, error_msg);
2200 }
2201
2202 class ImageSpace::BootImageLoader {
2203 public:
BootImageLoader(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::vector<int> & boot_class_path_fds,const std::vector<int> & boot_class_path_image_fds,const std::vector<int> & boot_class_path_vdex_fds,const std::vector<int> & boot_class_path_oat_fds,const std::vector<std::string> & image_locations,InstructionSet image_isa,bool relocate,bool executable)2204 BootImageLoader(const std::vector<std::string>& boot_class_path,
2205 const std::vector<std::string>& boot_class_path_locations,
2206 const std::vector<int>& boot_class_path_fds,
2207 const std::vector<int>& boot_class_path_image_fds,
2208 const std::vector<int>& boot_class_path_vdex_fds,
2209 const std::vector<int>& boot_class_path_oat_fds,
2210 const std::vector<std::string>& image_locations,
2211 InstructionSet image_isa,
2212 bool relocate,
2213 bool executable)
2214 : boot_class_path_(boot_class_path),
2215 boot_class_path_locations_(boot_class_path_locations),
2216 boot_class_path_fds_(boot_class_path_fds),
2217 boot_class_path_image_fds_(boot_class_path_image_fds),
2218 boot_class_path_vdex_fds_(boot_class_path_vdex_fds),
2219 boot_class_path_oat_fds_(boot_class_path_oat_fds),
2220 image_locations_(image_locations),
2221 image_isa_(image_isa),
2222 relocate_(relocate),
2223 executable_(executable),
2224 has_system_(false) {
2225 }
2226
FindImageFiles()2227 void FindImageFiles() {
2228 BootImageLayout layout(image_locations_,
2229 boot_class_path_,
2230 boot_class_path_locations_,
2231 boot_class_path_fds_,
2232 boot_class_path_image_fds_,
2233 boot_class_path_vdex_fds_,
2234 boot_class_path_oat_fds_);
2235 std::string image_location = layout.GetPrimaryImageLocation();
2236 std::string system_filename;
2237 bool found_image = FindImageFilenameImpl(image_location.c_str(),
2238 image_isa_,
2239 &has_system_,
2240 &system_filename);
2241 DCHECK_EQ(found_image, has_system_);
2242 }
2243
HasSystem() const2244 bool HasSystem() const { return has_system_; }
2245
2246 bool LoadFromSystem(size_t extra_reservation_size,
2247 bool allow_in_memory_compilation,
2248 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2249 /*out*/MemMap* extra_reservation,
2250 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_);
2251
2252 private:
LoadImage(const BootImageLayout & layout,bool validate_oat_file,size_t extra_reservation_size,TimingLogger * logger,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)2253 bool LoadImage(
2254 const BootImageLayout& layout,
2255 bool validate_oat_file,
2256 size_t extra_reservation_size,
2257 TimingLogger* logger,
2258 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
2259 /*out*/MemMap* extra_reservation,
2260 /*out*/std::string* error_msg) REQUIRES_SHARED(Locks::mutator_lock_) {
2261 ArrayRef<const BootImageLayout::ImageChunk> chunks = layout.GetChunks();
2262 DCHECK(!chunks.empty());
2263 const uint32_t base_address = layout.GetBaseAddress();
2264 const size_t image_component_count = layout.GetTotalComponentCount();
2265 const size_t image_reservation_size = layout.GetTotalReservationSize();
2266
2267 DCHECK_LE(image_reservation_size, kMaxTotalImageReservationSize);
2268 static_assert(kMaxTotalImageReservationSize < std::numeric_limits<uint32_t>::max());
2269 if (extra_reservation_size > std::numeric_limits<uint32_t>::max() - image_reservation_size) {
2270 // Since the `image_reservation_size` is limited to kMaxTotalImageReservationSize,
2271 // the `extra_reservation_size` would have to be really excessive to fail this check.
2272 *error_msg = StringPrintf("Excessive extra reservation size: %zu", extra_reservation_size);
2273 return false;
2274 }
2275
2276 // Reserve address space. If relocating, choose a random address for ALSR.
2277 uint8_t* addr = reinterpret_cast<uint8_t*>(
2278 relocate_ ? ART_BASE_ADDRESS + ChooseRelocationOffsetDelta() : base_address);
2279 MemMap image_reservation =
2280 ReserveBootImageMemory(addr, image_reservation_size + extra_reservation_size, error_msg);
2281 if (!image_reservation.IsValid()) {
2282 return false;
2283 }
2284
2285 // Load components.
2286 std::vector<std::unique_ptr<ImageSpace>> spaces;
2287 spaces.reserve(image_component_count);
2288 size_t max_image_space_dependencies = 0u;
2289 for (size_t i = 0, num_chunks = chunks.size(); i != num_chunks; ++i) {
2290 const BootImageLayout::ImageChunk& chunk = chunks[i];
2291 std::string extension_error_msg;
2292 uint8_t* old_reservation_begin = image_reservation.Begin();
2293 size_t old_reservation_size = image_reservation.Size();
2294 DCHECK_LE(chunk.reservation_size, old_reservation_size);
2295 if (!LoadComponents(chunk,
2296 validate_oat_file,
2297 max_image_space_dependencies,
2298 logger,
2299 &spaces,
2300 &image_reservation,
2301 (i == 0) ? error_msg : &extension_error_msg)) {
2302 // Failed to load the chunk. If this is the primary boot image, report the error.
2303 if (i == 0) {
2304 return false;
2305 }
2306 // For extension, shrink the reservation (and remap if needed, see below).
2307 size_t new_reservation_size = old_reservation_size - chunk.reservation_size;
2308 if (new_reservation_size == 0u) {
2309 DCHECK_EQ(extra_reservation_size, 0u);
2310 DCHECK_EQ(i + 1u, num_chunks);
2311 image_reservation.Reset();
2312 } else if (old_reservation_begin != image_reservation.Begin()) {
2313 // Part of the image reservation has been used and then unmapped when
2314 // rollling back the partial boot image extension load. Try to remap
2315 // the image reservation. As this should be running single-threaded,
2316 // the address range should still be available to mmap().
2317 image_reservation.Reset();
2318 std::string remap_error_msg;
2319 image_reservation = ReserveBootImageMemory(old_reservation_begin,
2320 new_reservation_size,
2321 &remap_error_msg);
2322 if (!image_reservation.IsValid()) {
2323 *error_msg = StringPrintf("Failed to remap boot image reservation after failing "
2324 "to load boot image extension (%s: %s): %s",
2325 boot_class_path_locations_[chunk.start_index].c_str(),
2326 extension_error_msg.c_str(),
2327 remap_error_msg.c_str());
2328 return false;
2329 }
2330 } else {
2331 DCHECK_EQ(old_reservation_size, image_reservation.Size());
2332 image_reservation.SetSize(new_reservation_size);
2333 }
2334 LOG(ERROR) << "Failed to load boot image extension "
2335 << boot_class_path_locations_[chunk.start_index] << ": " << extension_error_msg;
2336 }
2337 // Update `max_image_space_dependencies` if all previous BCP components
2338 // were covered and loading the current chunk succeeded.
2339 size_t total_component_count = 0;
2340 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2341 total_component_count += space->GetComponentCount();
2342 }
2343 if (max_image_space_dependencies == chunk.start_index &&
2344 total_component_count == chunk.start_index + chunk.component_count) {
2345 max_image_space_dependencies = chunk.start_index + chunk.component_count;
2346 }
2347 }
2348
2349 MemMap local_extra_reservation;
2350 if (!RemapExtraReservation(extra_reservation_size,
2351 &image_reservation,
2352 &local_extra_reservation,
2353 error_msg)) {
2354 return false;
2355 }
2356
2357 MaybeRelocateSpaces(spaces, logger);
2358 DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>>(spaces), logger);
2359 boot_image_spaces->swap(spaces);
2360 *extra_reservation = std::move(local_extra_reservation);
2361 return true;
2362 }
2363
2364 private:
2365 class SimpleRelocateVisitor {
2366 public:
SimpleRelocateVisitor(uint32_t diff,uint32_t begin,uint32_t size)2367 SimpleRelocateVisitor(uint32_t diff, uint32_t begin, uint32_t size)
2368 : diff_(diff), begin_(begin), size_(size) {}
2369
2370 // Adapter taking the same arguments as SplitRangeRelocateVisitor
2371 // to simplify constructing the various visitors in DoRelocateSpaces().
SimpleRelocateVisitor(uint32_t base_diff,uint32_t current_diff,uint32_t bound,uint32_t begin,uint32_t size)2372 SimpleRelocateVisitor(uint32_t base_diff,
2373 uint32_t current_diff,
2374 uint32_t bound,
2375 uint32_t begin,
2376 uint32_t size)
2377 : SimpleRelocateVisitor(base_diff, begin, size) {
2378 // Check arguments unused by this class.
2379 DCHECK_EQ(base_diff, current_diff);
2380 DCHECK_EQ(bound, begin);
2381 }
2382
2383 template <typename T>
operator ()(T * src) const2384 ALWAYS_INLINE T* operator()(T* src) const {
2385 DCHECK(InSource(src));
2386 uint32_t raw_src = reinterpret_cast32<uint32_t>(src);
2387 return reinterpret_cast32<T*>(raw_src + diff_);
2388 }
2389
2390 template <typename T>
InSource(T * ptr) const2391 ALWAYS_INLINE bool InSource(T* ptr) const {
2392 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2393 return raw_ptr - begin_ < size_;
2394 }
2395
2396 template <typename T>
InDest(T * ptr) const2397 ALWAYS_INLINE bool InDest(T* ptr) const {
2398 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2399 uint32_t src_ptr = raw_ptr - diff_;
2400 return src_ptr - begin_ < size_;
2401 }
2402
2403 private:
2404 const uint32_t diff_;
2405 const uint32_t begin_;
2406 const uint32_t size_;
2407 };
2408
2409 class SplitRangeRelocateVisitor {
2410 public:
SplitRangeRelocateVisitor(uint32_t base_diff,uint32_t current_diff,uint32_t bound,uint32_t begin,uint32_t size)2411 SplitRangeRelocateVisitor(uint32_t base_diff,
2412 uint32_t current_diff,
2413 uint32_t bound,
2414 uint32_t begin,
2415 uint32_t size)
2416 : base_diff_(base_diff),
2417 current_diff_(current_diff),
2418 bound_(bound),
2419 begin_(begin),
2420 size_(size) {
2421 DCHECK_NE(begin_, bound_);
2422 // The bound separates the boot image range and the extension range.
2423 DCHECK_LT(bound_ - begin_, size_);
2424 }
2425
2426 template <typename T>
operator ()(T * src) const2427 ALWAYS_INLINE T* operator()(T* src) const {
2428 DCHECK(InSource(src));
2429 uint32_t raw_src = reinterpret_cast32<uint32_t>(src);
2430 uint32_t diff = (raw_src < bound_) ? base_diff_ : current_diff_;
2431 return reinterpret_cast32<T*>(raw_src + diff);
2432 }
2433
2434 template <typename T>
InSource(T * ptr) const2435 ALWAYS_INLINE bool InSource(T* ptr) const {
2436 uint32_t raw_ptr = reinterpret_cast32<uint32_t>(ptr);
2437 return raw_ptr - begin_ < size_;
2438 }
2439
2440 private:
2441 const uint32_t base_diff_;
2442 const uint32_t current_diff_;
2443 const uint32_t bound_;
2444 const uint32_t begin_;
2445 const uint32_t size_;
2446 };
2447
PointerAddress(ArtMethod * method,MemberOffset offset)2448 static void** PointerAddress(ArtMethod* method, MemberOffset offset) {
2449 return reinterpret_cast<void**>(reinterpret_cast<uint8_t*>(method) + offset.Uint32Value());
2450 }
2451
2452 template <PointerSize kPointerSize>
DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> & spaces,int64_t base_diff64)2453 static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>>& spaces,
2454 int64_t base_diff64) REQUIRES_SHARED(Locks::mutator_lock_) {
2455 DCHECK(!spaces.empty());
2456 gc::accounting::ContinuousSpaceBitmap patched_objects(
2457 gc::accounting::ContinuousSpaceBitmap::Create(
2458 "Marked objects",
2459 spaces.front()->Begin(),
2460 spaces.back()->End() - spaces.front()->Begin()));
2461 const ImageHeader& base_header = spaces[0]->GetImageHeader();
2462 size_t base_image_space_count = base_header.GetImageSpaceCount();
2463 DCHECK_LE(base_image_space_count, spaces.size());
2464 DoRelocateSpaces<kPointerSize, /*kExtension=*/ false>(
2465 spaces.SubArray(/*pos=*/ 0u, base_image_space_count),
2466 base_diff64,
2467 &patched_objects);
2468
2469 for (size_t i = base_image_space_count, size = spaces.size(); i != size; ) {
2470 const ImageHeader& ext_header = spaces[i]->GetImageHeader();
2471 size_t ext_image_space_count = ext_header.GetImageSpaceCount();
2472 DCHECK_LE(ext_image_space_count, size - i);
2473 DoRelocateSpaces<kPointerSize, /*kExtension=*/ true>(
2474 spaces.SubArray(/*pos=*/ i, ext_image_space_count),
2475 base_diff64,
2476 &patched_objects);
2477 i += ext_image_space_count;
2478 }
2479 }
2480
2481 template <PointerSize kPointerSize, bool kExtension>
DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,int64_t base_diff64,gc::accounting::ContinuousSpaceBitmap * patched_objects)2482 static void DoRelocateSpaces(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,
2483 int64_t base_diff64,
2484 gc::accounting::ContinuousSpaceBitmap* patched_objects)
2485 REQUIRES_SHARED(Locks::mutator_lock_) {
2486 DCHECK(!spaces.empty());
2487 const ImageHeader& first_header = spaces.front()->GetImageHeader();
2488 uint32_t image_begin = reinterpret_cast32<uint32_t>(first_header.GetImageBegin());
2489 uint32_t image_size = first_header.GetImageReservationSize();
2490 DCHECK_NE(image_size, 0u);
2491 uint32_t source_begin = kExtension ? first_header.GetBootImageBegin() : image_begin;
2492 uint32_t source_size = kExtension ? first_header.GetBootImageSize() + image_size : image_size;
2493 if (kExtension) {
2494 DCHECK_EQ(first_header.GetBootImageBegin() + first_header.GetBootImageSize(), image_begin);
2495 }
2496 int64_t current_diff64 = kExtension
2497 ? static_cast<int64_t>(reinterpret_cast32<uint32_t>(spaces.front()->Begin())) -
2498 static_cast<int64_t>(image_begin)
2499 : base_diff64;
2500 if (base_diff64 == 0 && current_diff64 == 0) {
2501 return;
2502 }
2503 uint32_t base_diff = static_cast<uint32_t>(base_diff64);
2504 uint32_t current_diff = static_cast<uint32_t>(current_diff64);
2505
2506 // For boot image the main visitor is a SimpleRelocateVisitor. For the boot image extension we
2507 // mostly use a SplitRelocationVisitor but some work can still use the SimpleRelocationVisitor.
2508 using MainRelocateVisitor = typename std::conditional<
2509 kExtension, SplitRangeRelocateVisitor, SimpleRelocateVisitor>::type;
2510 SimpleRelocateVisitor simple_relocate_visitor(current_diff, image_begin, image_size);
2511 MainRelocateVisitor main_relocate_visitor(
2512 base_diff, current_diff, /*bound=*/ image_begin, source_begin, source_size);
2513
2514 using MainPatchRelocateVisitor =
2515 PatchObjectVisitor<kPointerSize, MainRelocateVisitor, MainRelocateVisitor>;
2516 using SimplePatchRelocateVisitor =
2517 PatchObjectVisitor<kPointerSize, SimpleRelocateVisitor, SimpleRelocateVisitor>;
2518 MainPatchRelocateVisitor main_patch_object_visitor(main_relocate_visitor,
2519 main_relocate_visitor);
2520 SimplePatchRelocateVisitor simple_patch_object_visitor(simple_relocate_visitor,
2521 simple_relocate_visitor);
2522
2523 // Retrieve the Class.class, Method.class and Constructor.class needed in the loops below.
2524 ObjPtr<mirror::ObjectArray<mirror::Class>> class_roots;
2525 ObjPtr<mirror::Class> class_class;
2526 ObjPtr<mirror::Class> method_class;
2527 ObjPtr<mirror::Class> constructor_class;
2528 ObjPtr<mirror::Class> field_var_handle_class;
2529 ObjPtr<mirror::Class> static_field_var_handle_class;
2530 {
2531 ObjPtr<mirror::ObjectArray<mirror::Object>> image_roots =
2532 simple_relocate_visitor(first_header.GetImageRoots<kWithoutReadBarrier>().Ptr());
2533 DCHECK(!patched_objects->Test(image_roots.Ptr()));
2534
2535 SimpleRelocateVisitor base_relocate_visitor(
2536 base_diff,
2537 source_begin,
2538 kExtension ? source_size - image_size : image_size);
2539 int32_t class_roots_index = enum_cast<int32_t>(ImageHeader::kClassRoots);
2540 DCHECK_LT(class_roots_index, image_roots->GetLength<kVerifyNone>());
2541 class_roots = ObjPtr<mirror::ObjectArray<mirror::Class>>::DownCast(base_relocate_visitor(
2542 image_roots->GetWithoutChecks<kVerifyNone,
2543 kWithoutReadBarrier>(class_roots_index).Ptr()));
2544 if (kExtension) {
2545 // Class roots must have been visited if we relocated the primary boot image.
2546 DCHECK(base_diff == 0 || patched_objects->Test(class_roots.Ptr()));
2547 class_class = GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots);
2548 method_class = GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots);
2549 constructor_class = GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots);
2550 field_var_handle_class =
2551 GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots);
2552 static_field_var_handle_class =
2553 GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots);
2554 } else {
2555 DCHECK(!patched_objects->Test(class_roots.Ptr()));
2556 class_class = simple_relocate_visitor(
2557 GetClassRoot<mirror::Class, kWithoutReadBarrier>(class_roots).Ptr());
2558 method_class = simple_relocate_visitor(
2559 GetClassRoot<mirror::Method, kWithoutReadBarrier>(class_roots).Ptr());
2560 constructor_class = simple_relocate_visitor(
2561 GetClassRoot<mirror::Constructor, kWithoutReadBarrier>(class_roots).Ptr());
2562 field_var_handle_class = simple_relocate_visitor(
2563 GetClassRoot<mirror::FieldVarHandle, kWithoutReadBarrier>(class_roots).Ptr());
2564 static_field_var_handle_class = simple_relocate_visitor(
2565 GetClassRoot<mirror::StaticFieldVarHandle, kWithoutReadBarrier>(class_roots).Ptr());
2566 }
2567 }
2568
2569 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2570 // First patch the image header.
2571 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateImageReferences(current_diff64);
2572 reinterpret_cast<ImageHeader*>(space->Begin())->RelocateBootImageReferences(base_diff64);
2573
2574 // Patch fields and methods.
2575 const ImageHeader& image_header = space->GetImageHeader();
2576 image_header.VisitPackedArtFields([&](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) {
2577 // Fields always reference class in the current image.
2578 simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(
2579 &field.DeclaringClassRoot());
2580 }, space->Begin());
2581 image_header.VisitPackedArtMethods([&](ArtMethod& method)
2582 REQUIRES_SHARED(Locks::mutator_lock_) {
2583 main_patch_object_visitor.PatchGcRoot(&method.DeclaringClassRoot());
2584 if (!method.HasCodeItem()) {
2585 void** data_address = PointerAddress(&method, ArtMethod::DataOffset(kPointerSize));
2586 main_patch_object_visitor.PatchNativePointer(data_address);
2587 }
2588 void** entrypoint_address =
2589 PointerAddress(&method, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kPointerSize));
2590 main_patch_object_visitor.PatchNativePointer(entrypoint_address);
2591 }, space->Begin(), kPointerSize);
2592 auto method_table_visitor = [&](ArtMethod* method) {
2593 DCHECK(method != nullptr);
2594 return main_relocate_visitor(method);
2595 };
2596 image_header.VisitPackedImTables(method_table_visitor, space->Begin(), kPointerSize);
2597 image_header.VisitPackedImtConflictTables(method_table_visitor, space->Begin(), kPointerSize);
2598
2599 // Patch the intern table.
2600 if (image_header.GetInternedStringsSection().Size() != 0u) {
2601 const uint8_t* data = space->Begin() + image_header.GetInternedStringsSection().Offset();
2602 size_t read_count;
2603 InternTable::UnorderedSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
2604 for (GcRoot<mirror::String>& slot : temp_set) {
2605 // The intern table contains only strings in the current image.
2606 simple_patch_object_visitor.template PatchGcRoot</*kMayBeNull=*/ false>(&slot);
2607 }
2608 }
2609
2610 // Patch the class table and classes, so that we can traverse class hierarchy to
2611 // determine the types of other objects when we visit them later.
2612 if (image_header.GetClassTableSection().Size() != 0u) {
2613 uint8_t* data = space->Begin() + image_header.GetClassTableSection().Offset();
2614 size_t read_count;
2615 ClassTable::ClassSet temp_set(data, /*make_copy_of_data=*/ false, &read_count);
2616 DCHECK(!temp_set.empty());
2617 // The class table contains only classes in the current image.
2618 ClassTableVisitor class_table_visitor(simple_relocate_visitor);
2619 for (ClassTable::TableSlot& slot : temp_set) {
2620 slot.VisitRoot(class_table_visitor);
2621 ObjPtr<mirror::Class> klass = slot.Read<kWithoutReadBarrier>();
2622 DCHECK(klass != nullptr);
2623 DCHECK(!patched_objects->Test(klass.Ptr()));
2624 patched_objects->Set(klass.Ptr());
2625 main_patch_object_visitor.VisitClass(klass, class_class);
2626 // Then patch the non-embedded vtable and iftable.
2627 ObjPtr<mirror::PointerArray> vtable =
2628 klass->GetVTable<kVerifyNone, kWithoutReadBarrier>();
2629 if ((kExtension ? simple_relocate_visitor.InDest(vtable.Ptr()) : vtable != nullptr) &&
2630 !patched_objects->Set(vtable.Ptr())) {
2631 main_patch_object_visitor.VisitPointerArray(vtable);
2632 }
2633 ObjPtr<mirror::IfTable> iftable = klass->GetIfTable<kVerifyNone, kWithoutReadBarrier>();
2634 if (kExtension ? simple_relocate_visitor.InDest(iftable.Ptr()) : iftable != nullptr) {
2635 int32_t ifcount = iftable->Count<kVerifyNone>();
2636 for (int32_t i = 0; i != ifcount; ++i) {
2637 ObjPtr<mirror::PointerArray> unpatched_ifarray =
2638 iftable->GetMethodArrayOrNull<kVerifyNone, kWithoutReadBarrier>(i);
2639 if (kExtension ? simple_relocate_visitor.InSource(unpatched_ifarray.Ptr())
2640 : unpatched_ifarray != nullptr) {
2641 // The iftable has not been patched, so we need to explicitly adjust the pointer.
2642 ObjPtr<mirror::PointerArray> ifarray =
2643 simple_relocate_visitor(unpatched_ifarray.Ptr());
2644 if (!patched_objects->Set(ifarray.Ptr())) {
2645 main_patch_object_visitor.VisitPointerArray(ifarray);
2646 }
2647 }
2648 }
2649 }
2650 }
2651 }
2652 }
2653
2654 for (const std::unique_ptr<ImageSpace>& space : spaces) {
2655 const ImageHeader& image_header = space->GetImageHeader();
2656
2657 static_assert(IsAligned<kObjectAlignment>(sizeof(ImageHeader)), "Header alignment check");
2658 uint32_t objects_end = image_header.GetObjectsSection().Size();
2659 DCHECK_ALIGNED(objects_end, kObjectAlignment);
2660 for (uint32_t pos = sizeof(ImageHeader); pos != objects_end; ) {
2661 mirror::Object* object = reinterpret_cast<mirror::Object*>(space->Begin() + pos);
2662 // Note: use Test() rather than Set() as this is the last time we're checking this object.
2663 if (!patched_objects->Test(object)) {
2664 // This is the last pass over objects, so we do not need to Set().
2665 main_patch_object_visitor.VisitObject(object);
2666 ObjPtr<mirror::Class> klass = object->GetClass<kVerifyNone, kWithoutReadBarrier>();
2667 if (klass == method_class || klass == constructor_class) {
2668 // Patch the ArtMethod* in the mirror::Executable subobject.
2669 ObjPtr<mirror::Executable> as_executable =
2670 ObjPtr<mirror::Executable>::DownCast(object);
2671 ArtMethod* unpatched_method = as_executable->GetArtMethod<kVerifyNone>();
2672 ArtMethod* patched_method = main_relocate_visitor(unpatched_method);
2673 as_executable->SetArtMethod</*kTransactionActive=*/ false,
2674 /*kCheckTransaction=*/ true,
2675 kVerifyNone>(patched_method);
2676 } else if (klass == field_var_handle_class || klass == static_field_var_handle_class) {
2677 // Patch the ArtField* in the mirror::FieldVarHandle subobject.
2678 ObjPtr<mirror::FieldVarHandle> as_field_var_handle =
2679 ObjPtr<mirror::FieldVarHandle>::DownCast(object);
2680 ArtField* unpatched_field = as_field_var_handle->GetArtField<kVerifyNone>();
2681 ArtField* patched_field = main_relocate_visitor(unpatched_field);
2682 as_field_var_handle->SetArtField<kVerifyNone>(patched_field);
2683 }
2684 }
2685 pos += RoundUp(object->SizeOf<kVerifyNone>(), kObjectAlignment);
2686 }
2687 }
2688 if (kIsDebugBuild && !kExtension) {
2689 // We used just Test() instead of Set() above but we need to use Set()
2690 // for class roots to satisfy a DCHECK() for extensions.
2691 DCHECK(!patched_objects->Test(class_roots.Ptr()));
2692 patched_objects->Set(class_roots.Ptr());
2693 }
2694 }
2695
MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>> & spaces,TimingLogger * logger)2696 void MaybeRelocateSpaces(const std::vector<std::unique_ptr<ImageSpace>>& spaces,
2697 TimingLogger* logger)
2698 REQUIRES_SHARED(Locks::mutator_lock_) {
2699 TimingLogger::ScopedTiming timing("MaybeRelocateSpaces", logger);
2700 ImageSpace* first_space = spaces.front().get();
2701 const ImageHeader& first_space_header = first_space->GetImageHeader();
2702 int64_t base_diff64 =
2703 static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space->Begin())) -
2704 static_cast<int64_t>(reinterpret_cast32<uint32_t>(first_space_header.GetImageBegin()));
2705 if (!relocate_) {
2706 DCHECK_EQ(base_diff64, 0);
2707 }
2708
2709 // While `Thread::Current()` is null, the `ScopedDebugDisallowReadBarriers`
2710 // cannot be used but the class `ReadBarrier` shall not allow read barriers anyway.
2711 // For some gtests we actually have an initialized `Thread:Current()`.
2712 std::optional<ScopedDebugDisallowReadBarriers> sddrb(std::nullopt);
2713 if (kCheckDebugDisallowReadBarrierCount && Thread::Current() != nullptr) {
2714 sddrb.emplace(Thread::Current());
2715 }
2716
2717 ArrayRef<const std::unique_ptr<ImageSpace>> spaces_ref(spaces);
2718 PointerSize pointer_size = first_space_header.GetPointerSize();
2719 if (pointer_size == PointerSize::k64) {
2720 DoRelocateSpaces<PointerSize::k64>(spaces_ref, base_diff64);
2721 } else {
2722 DoRelocateSpaces<PointerSize::k32>(spaces_ref, base_diff64);
2723 }
2724 }
2725
DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,TimingLogger * logger)2726 void DeduplicateInternedStrings(ArrayRef<const std::unique_ptr<ImageSpace>> spaces,
2727 TimingLogger* logger) REQUIRES_SHARED(Locks::mutator_lock_) {
2728 TimingLogger::ScopedTiming timing("DeduplicateInternedStrings", logger);
2729 DCHECK(!spaces.empty());
2730 size_t num_spaces = spaces.size();
2731 const ImageHeader& primary_header = spaces.front()->GetImageHeader();
2732 size_t primary_image_count = primary_header.GetImageSpaceCount();
2733 size_t primary_image_component_count = primary_header.GetComponentCount();
2734 DCHECK_LE(primary_image_count, num_spaces);
2735 // The primary boot image can be generated with `--single-image` on device, when generated
2736 // in-memory or with odrefresh.
2737 DCHECK(primary_image_count == primary_image_component_count || primary_image_count == 1);
2738 size_t component_count = primary_image_component_count;
2739 size_t space_pos = primary_image_count;
2740 while (space_pos != num_spaces) {
2741 const ImageHeader& current_header = spaces[space_pos]->GetImageHeader();
2742 size_t image_space_count = current_header.GetImageSpaceCount();
2743 DCHECK_LE(image_space_count, num_spaces - space_pos);
2744 size_t dependency_component_count = current_header.GetBootImageComponentCount();
2745 DCHECK_LE(dependency_component_count, component_count);
2746 if (dependency_component_count < component_count) {
2747 // There shall be no duplicate strings with the components that this space depends on.
2748 // Find the end of the dependencies, i.e. start of non-dependency images.
2749 size_t start_component_count = primary_image_component_count;
2750 size_t start_pos = primary_image_count;
2751 while (start_component_count != dependency_component_count) {
2752 const ImageHeader& dependency_header = spaces[start_pos]->GetImageHeader();
2753 DCHECK_LE(dependency_header.GetComponentCount(),
2754 dependency_component_count - start_component_count);
2755 start_component_count += dependency_header.GetComponentCount();
2756 start_pos += dependency_header.GetImageSpaceCount();
2757 }
2758 // Remove duplicates from all intern tables belonging to the chunk.
2759 ArrayRef<const std::unique_ptr<ImageSpace>> old_spaces =
2760 spaces.SubArray(/*pos=*/ start_pos, space_pos - start_pos);
2761 SafeMap<mirror::String*, mirror::String*> intern_remap;
2762 for (size_t i = 0; i != image_space_count; ++i) {
2763 ImageSpace* new_space = spaces[space_pos + i].get();
2764 Loader::RemoveInternTableDuplicates(old_spaces, new_space, &intern_remap);
2765 }
2766 // Remap string for all spaces belonging to the chunk.
2767 if (!intern_remap.empty()) {
2768 for (size_t i = 0; i != image_space_count; ++i) {
2769 ImageSpace* new_space = spaces[space_pos + i].get();
2770 Loader::RemapInternedStringDuplicates(intern_remap, new_space);
2771 }
2772 }
2773 }
2774 component_count += current_header.GetComponentCount();
2775 space_pos += image_space_count;
2776 }
2777 }
2778
Load(const std::string & image_location,const std::string & image_filename,const std::vector<std::string> & profile_files,android::base::unique_fd art_fd,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)2779 std::unique_ptr<ImageSpace> Load(const std::string& image_location,
2780 const std::string& image_filename,
2781 const std::vector<std::string>& profile_files,
2782 android::base::unique_fd art_fd,
2783 TimingLogger* logger,
2784 /*inout*/MemMap* image_reservation,
2785 /*out*/std::string* error_msg)
2786 REQUIRES_SHARED(Locks::mutator_lock_) {
2787 if (art_fd.get() != -1) {
2788 // No need to lock memfd for which we hold the only file descriptor
2789 // (see locking with ScopedFlock for normal files below).
2790 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
2791 << image_location << " for compiled extension";
2792
2793 File image_file(art_fd.release(), image_filename, /*check_usage=*/ false);
2794 std::unique_ptr<ImageSpace> result = Loader::Init(&image_file,
2795 image_filename.c_str(),
2796 image_location.c_str(),
2797 profile_files,
2798 /*allow_direct_mapping=*/ false,
2799 logger,
2800 image_reservation,
2801 error_msg);
2802 // Note: We're closing the image file descriptor here when we destroy
2803 // the `image_file` as we no longer need it.
2804 return result;
2805 }
2806
2807 // Note that we must not use the file descriptor associated with
2808 // ScopedFlock::GetFile to Init the image file. We want the file
2809 // descriptor (and the associated exclusive lock) to be released when
2810 // we leave Create.
2811 ScopedFlock image = LockedFile::Open(image_filename.c_str(),
2812 /*flags=*/ O_RDONLY,
2813 /*block=*/ true,
2814 error_msg);
2815
2816 VLOG(startup) << "Using image file " << image_filename.c_str() << " for image location "
2817 << image_location;
2818
2819 // If we are in /system we can assume the image is good. We can also
2820 // assume this if we are using a relocated image (i.e. image checksum
2821 // matches) since this is only different by the offset. We need this to
2822 // make sure that host tests continue to work.
2823 // Since we are the boot image, pass null since we load the oat file from the boot image oat
2824 // file name.
2825 return Loader::Init(image_filename.c_str(),
2826 image_location.c_str(),
2827 logger,
2828 image_reservation,
2829 error_msg);
2830 }
2831
OpenOatFile(ImageSpace * space,android::base::unique_fd vdex_fd,android::base::unique_fd oat_fd,ArrayRef<const std::string> dex_filenames,ArrayRef<const int> dex_fds,bool validate_oat_file,ArrayRef<const std::unique_ptr<ImageSpace>> dependencies,TimingLogger * logger,MemMap * image_reservation,std::string * error_msg)2832 bool OpenOatFile(ImageSpace* space,
2833 android::base::unique_fd vdex_fd,
2834 android::base::unique_fd oat_fd,
2835 ArrayRef<const std::string> dex_filenames,
2836 ArrayRef<const int> dex_fds,
2837 bool validate_oat_file,
2838 ArrayRef<const std::unique_ptr<ImageSpace>> dependencies,
2839 TimingLogger* logger,
2840 /*inout*/MemMap* image_reservation,
2841 /*out*/std::string* error_msg) {
2842 // VerifyImageAllocations() will be called later in Runtime::Init()
2843 // as some class roots like ArtMethod::java_lang_reflect_ArtMethod_
2844 // and ArtField::java_lang_reflect_ArtField_, which are used from
2845 // Object::SizeOf() which VerifyImageAllocations() calls, are not
2846 // set yet at this point.
2847 DCHECK(image_reservation != nullptr);
2848 std::unique_ptr<OatFile> oat_file;
2849 {
2850 TimingLogger::ScopedTiming timing("OpenOatFile", logger);
2851 std::string oat_filename =
2852 ImageHeader::GetOatLocationFromImageLocation(space->GetImageFilename());
2853 std::string oat_location =
2854 ImageHeader::GetOatLocationFromImageLocation(space->GetImageLocation());
2855
2856 DCHECK_EQ(vdex_fd.get() != -1, oat_fd.get() != -1);
2857 if (vdex_fd.get() == -1) {
2858 oat_file.reset(OatFile::Open(/*zip_fd=*/ -1,
2859 oat_filename,
2860 oat_location,
2861 executable_,
2862 /*low_4gb=*/ false,
2863 dex_filenames,
2864 dex_fds,
2865 image_reservation,
2866 error_msg));
2867 } else {
2868 oat_file.reset(OatFile::Open(/*zip_fd=*/ -1,
2869 vdex_fd.get(),
2870 oat_fd.get(),
2871 oat_location,
2872 executable_,
2873 /*low_4gb=*/ false,
2874 dex_filenames,
2875 dex_fds,
2876 image_reservation,
2877 error_msg));
2878 // We no longer need the file descriptors and they will be closed by
2879 // the unique_fd destructor when we leave this function.
2880 }
2881
2882 if (oat_file == nullptr) {
2883 *error_msg = StringPrintf("Failed to open oat file '%s' referenced from image %s: %s",
2884 oat_filename.c_str(),
2885 space->GetName(),
2886 error_msg->c_str());
2887 return false;
2888 }
2889 const ImageHeader& image_header = space->GetImageHeader();
2890 uint32_t oat_checksum = oat_file->GetOatHeader().GetChecksum();
2891 uint32_t image_oat_checksum = image_header.GetOatChecksum();
2892 if (oat_checksum != image_oat_checksum) {
2893 *error_msg = StringPrintf("Failed to match oat file checksum 0x%x to expected oat checksum"
2894 " 0x%x in image %s",
2895 oat_checksum,
2896 image_oat_checksum,
2897 space->GetName());
2898 return false;
2899 }
2900 const char* oat_boot_class_path =
2901 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathKey);
2902 oat_boot_class_path = (oat_boot_class_path != nullptr) ? oat_boot_class_path : "";
2903 const char* oat_boot_class_path_checksums =
2904 oat_file->GetOatHeader().GetStoreValueByKey(OatHeader::kBootClassPathChecksumsKey);
2905 oat_boot_class_path_checksums =
2906 (oat_boot_class_path_checksums != nullptr) ? oat_boot_class_path_checksums : "";
2907 size_t component_count = image_header.GetComponentCount();
2908 if (component_count == 0u) {
2909 if (oat_boot_class_path[0] != 0 || oat_boot_class_path_checksums[0] != 0) {
2910 *error_msg = StringPrintf("Unexpected non-empty boot class path %s and/or checksums %s"
2911 " in image %s",
2912 oat_boot_class_path,
2913 oat_boot_class_path_checksums,
2914 space->GetName());
2915 return false;
2916 }
2917 } else if (dependencies.empty()) {
2918 std::string expected_boot_class_path = Join(ArrayRef<const std::string>(
2919 boot_class_path_locations_).SubArray(0u, component_count), ':');
2920 if (expected_boot_class_path != oat_boot_class_path) {
2921 *error_msg = StringPrintf("Failed to match oat boot class path %s to expected "
2922 "boot class path %s in image %s",
2923 oat_boot_class_path,
2924 expected_boot_class_path.c_str(),
2925 space->GetName());
2926 return false;
2927 }
2928 } else {
2929 std::string local_error_msg;
2930 if (!VerifyBootClassPathChecksums(
2931 oat_boot_class_path_checksums,
2932 oat_boot_class_path,
2933 dependencies,
2934 ArrayRef<const std::string>(boot_class_path_locations_),
2935 ArrayRef<const std::string>(boot_class_path_),
2936 &local_error_msg)) {
2937 *error_msg = StringPrintf("Failed to verify BCP %s with checksums %s in image %s: %s",
2938 oat_boot_class_path,
2939 oat_boot_class_path_checksums,
2940 space->GetName(),
2941 local_error_msg.c_str());
2942 return false;
2943 }
2944 }
2945 ptrdiff_t relocation_diff = space->Begin() - image_header.GetImageBegin();
2946 CHECK(image_header.GetOatDataBegin() != nullptr);
2947 uint8_t* oat_data_begin = image_header.GetOatDataBegin() + relocation_diff;
2948 if (oat_file->Begin() != oat_data_begin) {
2949 *error_msg = StringPrintf("Oat file '%s' referenced from image %s has unexpected begin"
2950 " %p v. %p",
2951 oat_filename.c_str(),
2952 space->GetName(),
2953 oat_file->Begin(),
2954 oat_data_begin);
2955 return false;
2956 }
2957 }
2958 if (validate_oat_file) {
2959 TimingLogger::ScopedTiming timing("ValidateOatFile", logger);
2960 if (!ImageSpace::ValidateOatFile(*oat_file, error_msg)) {
2961 DCHECK(!error_msg->empty());
2962 return false;
2963 }
2964 }
2965
2966 // As an optimization, madvise the oat file into memory if it's being used
2967 // for execution with an active runtime. This can significantly improve
2968 // ZygoteInit class preload performance.
2969 if (executable_) {
2970 Runtime* runtime = Runtime::Current();
2971 if (runtime != nullptr) {
2972 Runtime::MadviseFileForRange(runtime->GetMadviseWillNeedSizeOdex(),
2973 oat_file->Size(),
2974 oat_file->Begin(),
2975 oat_file->End(),
2976 oat_file->GetLocation());
2977 }
2978 }
2979
2980 space->oat_file_ = std::move(oat_file);
2981 space->oat_file_non_owned_ = space->oat_file_.get();
2982
2983 return true;
2984 }
2985
LoadComponents(const BootImageLayout::ImageChunk & chunk,bool validate_oat_file,size_t max_image_space_dependencies,TimingLogger * logger,std::vector<std::unique_ptr<ImageSpace>> * spaces,MemMap * image_reservation,std::string * error_msg)2986 bool LoadComponents(const BootImageLayout::ImageChunk& chunk,
2987 bool validate_oat_file,
2988 size_t max_image_space_dependencies,
2989 TimingLogger* logger,
2990 /*inout*/std::vector<std::unique_ptr<ImageSpace>>* spaces,
2991 /*inout*/MemMap* image_reservation,
2992 /*out*/std::string* error_msg)
2993 REQUIRES_SHARED(Locks::mutator_lock_) {
2994 // Make sure we destroy the spaces we created if we're returning an error.
2995 // Note that this can unmap part of the original `image_reservation`.
2996 class Guard {
2997 public:
2998 explicit Guard(std::vector<std::unique_ptr<ImageSpace>>* spaces_in)
2999 : spaces_(spaces_in), committed_(spaces_->size()) {}
3000 void Commit() {
3001 DCHECK_LT(committed_, spaces_->size());
3002 committed_ = spaces_->size();
3003 }
3004 ~Guard() {
3005 DCHECK_LE(committed_, spaces_->size());
3006 spaces_->resize(committed_);
3007 }
3008 private:
3009 std::vector<std::unique_ptr<ImageSpace>>* const spaces_;
3010 size_t committed_;
3011 };
3012 Guard guard(spaces);
3013
3014 bool is_extension = (chunk.start_index != 0u);
3015 DCHECK_NE(spaces->empty(), is_extension);
3016 if (max_image_space_dependencies < chunk.boot_image_component_count) {
3017 DCHECK(is_extension);
3018 *error_msg = StringPrintf("Missing dependencies for extension component %s, %zu < %u",
3019 boot_class_path_locations_[chunk.start_index].c_str(),
3020 max_image_space_dependencies,
3021 chunk.boot_image_component_count);
3022 return false;
3023 }
3024 ArrayRef<const std::string> requested_bcp_locations =
3025 ArrayRef<const std::string>(boot_class_path_locations_).SubArray(
3026 chunk.start_index, chunk.image_space_count);
3027 std::vector<std::string> locations =
3028 ExpandMultiImageLocations(requested_bcp_locations, chunk.base_location, is_extension);
3029 std::vector<std::string> filenames =
3030 ExpandMultiImageLocations(requested_bcp_locations, chunk.base_filename, is_extension);
3031 DCHECK_EQ(locations.size(), filenames.size());
3032 size_t max_dependency_count = spaces->size();
3033 for (size_t i = 0u, size = locations.size(); i != size; ++i) {
3034 android::base::unique_fd image_fd;
3035 if (chunk.art_fd.get() >= 0) {
3036 DCHECK_EQ(locations.size(), 1u);
3037 image_fd = std::move(chunk.art_fd);
3038 } else {
3039 size_t pos = chunk.start_index + i;
3040 int arg_image_fd = pos < boot_class_path_image_fds_.size() ? boot_class_path_image_fds_[pos]
3041 : -1;
3042 if (arg_image_fd >= 0) {
3043 image_fd.reset(DupCloexec(arg_image_fd));
3044 }
3045 }
3046 spaces->push_back(Load(locations[i],
3047 filenames[i],
3048 chunk.profile_files,
3049 std::move(image_fd),
3050 logger,
3051 image_reservation,
3052 error_msg));
3053 const ImageSpace* space = spaces->back().get();
3054 if (space == nullptr) {
3055 return false;
3056 }
3057 uint32_t expected_component_count = (i == 0u) ? chunk.component_count : 0u;
3058 uint32_t expected_reservation_size = (i == 0u) ? chunk.reservation_size : 0u;
3059 if (!Loader::CheckImageReservationSize(*space, expected_reservation_size, error_msg) ||
3060 !Loader::CheckImageComponentCount(*space, expected_component_count, error_msg)) {
3061 return false;
3062 }
3063 const ImageHeader& header = space->GetImageHeader();
3064 if (i == 0 && (chunk.checksum != header.GetImageChecksum() ||
3065 chunk.image_space_count != header.GetImageSpaceCount() ||
3066 chunk.boot_image_component_count != header.GetBootImageComponentCount() ||
3067 chunk.boot_image_checksum != header.GetBootImageChecksum() ||
3068 chunk.boot_image_size != header.GetBootImageSize())) {
3069 *error_msg = StringPrintf("Image header modified since previously read from %s; "
3070 "checksum: 0x%08x -> 0x%08x,"
3071 "image_space_count: %u -> %u"
3072 "boot_image_component_count: %u -> %u, "
3073 "boot_image_checksum: 0x%08x -> 0x%08x"
3074 "boot_image_size: 0x%08x -> 0x%08x",
3075 space->GetImageFilename().c_str(),
3076 chunk.checksum,
3077 chunk.image_space_count,
3078 header.GetImageSpaceCount(),
3079 header.GetImageChecksum(),
3080 chunk.boot_image_component_count,
3081 header.GetBootImageComponentCount(),
3082 chunk.boot_image_checksum,
3083 header.GetBootImageChecksum(),
3084 chunk.boot_image_size,
3085 header.GetBootImageSize());
3086 return false;
3087 }
3088 }
3089 DCHECK_GE(max_image_space_dependencies, chunk.boot_image_component_count);
3090 size_t dependency_count = 0;
3091 size_t dependency_component_count = 0;
3092 while (dependency_component_count < chunk.boot_image_component_count &&
3093 dependency_count < max_dependency_count) {
3094 const ImageHeader& current_header = (*spaces)[dependency_count]->GetImageHeader();
3095 dependency_component_count += current_header.GetComponentCount();
3096 dependency_count += current_header.GetImageSpaceCount();
3097 }
3098 if (dependency_component_count != chunk.boot_image_component_count) {
3099 *error_msg = StringPrintf(
3100 "Unable to find dependencies from image spaces; boot_image_component_count: %u",
3101 chunk.boot_image_component_count);
3102 return false;
3103 }
3104 ArrayRef<const std::unique_ptr<ImageSpace>> dependencies =
3105 ArrayRef<const std::unique_ptr<ImageSpace>>(*spaces).SubArray(
3106 /*pos=*/ 0u, dependency_count);
3107 for (size_t i = 0u, size = locations.size(); i != size; ++i) {
3108 ImageSpace* space = (*spaces)[spaces->size() - chunk.image_space_count + i].get();
3109 size_t bcp_chunk_size = (chunk.image_space_count == 1u) ? chunk.component_count : 1u;
3110
3111 size_t pos = chunk.start_index + i;
3112 auto boot_class_path_fds = boot_class_path_fds_.empty() ? ArrayRef<const int>()
3113 : boot_class_path_fds_.SubArray(/*pos=*/ pos, bcp_chunk_size);
3114
3115 // Select vdex and oat FD if any exists.
3116 android::base::unique_fd vdex_fd;
3117 android::base::unique_fd oat_fd;
3118 if (chunk.vdex_fd.get() >= 0) {
3119 DCHECK_EQ(locations.size(), 1u);
3120 vdex_fd = std::move(chunk.vdex_fd);
3121 } else {
3122 int arg_vdex_fd = pos < boot_class_path_vdex_fds_.size() ? boot_class_path_vdex_fds_[pos]
3123 : -1;
3124 if (arg_vdex_fd >= 0) {
3125 vdex_fd.reset(DupCloexec(arg_vdex_fd));
3126 }
3127 }
3128 if (chunk.oat_fd.get() >= 0) {
3129 DCHECK_EQ(locations.size(), 1u);
3130 oat_fd = std::move(chunk.oat_fd);
3131 } else {
3132 int arg_oat_fd = pos < boot_class_path_oat_fds_.size() ? boot_class_path_oat_fds_[pos]
3133 : -1;
3134 if (arg_oat_fd >= 0) {
3135 oat_fd.reset(DupCloexec(arg_oat_fd));
3136 }
3137 }
3138
3139 if (!OpenOatFile(space,
3140 std::move(vdex_fd),
3141 std::move(oat_fd),
3142 boot_class_path_.SubArray(/*pos=*/ pos, bcp_chunk_size),
3143 boot_class_path_fds,
3144 validate_oat_file,
3145 dependencies,
3146 logger,
3147 image_reservation,
3148 error_msg)) {
3149 return false;
3150 }
3151 }
3152
3153 guard.Commit();
3154 return true;
3155 }
3156
ReserveBootImageMemory(uint8_t * addr,uint32_t reservation_size,std::string * error_msg)3157 MemMap ReserveBootImageMemory(uint8_t* addr,
3158 uint32_t reservation_size,
3159 /*out*/std::string* error_msg) {
3160 DCHECK_ALIGNED(reservation_size, kPageSize);
3161 DCHECK_ALIGNED(addr, kPageSize);
3162 return MemMap::MapAnonymous("Boot image reservation",
3163 addr,
3164 reservation_size,
3165 PROT_NONE,
3166 /*low_4gb=*/ true,
3167 /*reuse=*/ false,
3168 /*reservation=*/ nullptr,
3169 error_msg);
3170 }
3171
RemapExtraReservation(size_t extra_reservation_size,MemMap * image_reservation,MemMap * extra_reservation,std::string * error_msg)3172 bool RemapExtraReservation(size_t extra_reservation_size,
3173 /*inout*/MemMap* image_reservation,
3174 /*out*/MemMap* extra_reservation,
3175 /*out*/std::string* error_msg) {
3176 DCHECK_ALIGNED(extra_reservation_size, kPageSize);
3177 DCHECK(!extra_reservation->IsValid());
3178 size_t expected_size = image_reservation->IsValid() ? image_reservation->Size() : 0u;
3179 if (extra_reservation_size != expected_size) {
3180 *error_msg = StringPrintf("Image reservation mismatch after loading boot image: %zu != %zu",
3181 extra_reservation_size,
3182 expected_size);
3183 return false;
3184 }
3185 if (extra_reservation_size != 0u) {
3186 DCHECK(image_reservation->IsValid());
3187 DCHECK_EQ(extra_reservation_size, image_reservation->Size());
3188 *extra_reservation = image_reservation->RemapAtEnd(image_reservation->Begin(),
3189 "Boot image extra reservation",
3190 PROT_NONE,
3191 error_msg);
3192 if (!extra_reservation->IsValid()) {
3193 return false;
3194 }
3195 }
3196 DCHECK(!image_reservation->IsValid());
3197 return true;
3198 }
3199
3200 const ArrayRef<const std::string> boot_class_path_;
3201 const ArrayRef<const std::string> boot_class_path_locations_;
3202 const ArrayRef<const int> boot_class_path_fds_;
3203 const ArrayRef<const int> boot_class_path_image_fds_;
3204 const ArrayRef<const int> boot_class_path_vdex_fds_;
3205 const ArrayRef<const int> boot_class_path_oat_fds_;
3206 const ArrayRef<const std::string> image_locations_;
3207 const InstructionSet image_isa_;
3208 const bool relocate_;
3209 const bool executable_;
3210 bool has_system_;
3211 };
3212
LoadFromSystem(size_t extra_reservation_size,bool allow_in_memory_compilation,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation,std::string * error_msg)3213 bool ImageSpace::BootImageLoader::LoadFromSystem(
3214 size_t extra_reservation_size,
3215 bool allow_in_memory_compilation,
3216 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3217 /*out*/MemMap* extra_reservation,
3218 /*out*/std::string* error_msg) {
3219 TimingLogger logger(__PRETTY_FUNCTION__, /*precise=*/ true, VLOG_IS_ON(image));
3220
3221 BootImageLayout layout(image_locations_,
3222 boot_class_path_,
3223 boot_class_path_locations_,
3224 boot_class_path_fds_,
3225 boot_class_path_image_fds_,
3226 boot_class_path_vdex_fds_,
3227 boot_class_path_oat_fds_);
3228 if (!layout.LoadFromSystem(image_isa_, allow_in_memory_compilation, error_msg)) {
3229 return false;
3230 }
3231
3232 // Load the image. We don't validate oat files in this stage because they have been validated
3233 // before.
3234 if (!LoadImage(layout,
3235 /*validate_oat_file=*/ false,
3236 extra_reservation_size,
3237 &logger,
3238 boot_image_spaces,
3239 extra_reservation,
3240 error_msg)) {
3241 return false;
3242 }
3243
3244 if (VLOG_IS_ON(image)) {
3245 LOG(INFO) << "ImageSpace::BootImageLoader::LoadFromSystem exiting "
3246 << *boot_image_spaces->front();
3247 logger.Dump(LOG_STREAM(INFO));
3248 }
3249 return true;
3250 }
3251
IsBootClassPathOnDisk(InstructionSet image_isa)3252 bool ImageSpace::IsBootClassPathOnDisk(InstructionSet image_isa) {
3253 Runtime* runtime = Runtime::Current();
3254 BootImageLayout layout(ArrayRef<const std::string>(runtime->GetImageLocations()),
3255 ArrayRef<const std::string>(runtime->GetBootClassPath()),
3256 ArrayRef<const std::string>(runtime->GetBootClassPathLocations()),
3257 ArrayRef<const int>(runtime->GetBootClassPathFds()),
3258 ArrayRef<const int>(runtime->GetBootClassPathImageFds()),
3259 ArrayRef<const int>(runtime->GetBootClassPathVdexFds()),
3260 ArrayRef<const int>(runtime->GetBootClassPathOatFds()));
3261 const std::string image_location = layout.GetPrimaryImageLocation();
3262 std::unique_ptr<ImageHeader> image_header;
3263 std::string error_msg;
3264
3265 std::string system_filename;
3266 bool has_system = false;
3267
3268 if (FindImageFilename(image_location.c_str(),
3269 image_isa,
3270 &system_filename,
3271 &has_system)) {
3272 DCHECK(has_system);
3273 image_header = ReadSpecificImageHeader(system_filename.c_str(), &error_msg);
3274 }
3275
3276 return image_header != nullptr;
3277 }
3278
LoadBootImage(const std::vector<std::string> & boot_class_path,const std::vector<std::string> & boot_class_path_locations,const std::vector<int> & boot_class_path_fds,const std::vector<int> & boot_class_path_image_fds,const std::vector<int> & boot_class_path_vdex_fds,const std::vector<int> & boot_class_path_odex_fds,const std::vector<std::string> & image_locations,const InstructionSet image_isa,bool relocate,bool executable,size_t extra_reservation_size,bool allow_in_memory_compilation,std::vector<std::unique_ptr<ImageSpace>> * boot_image_spaces,MemMap * extra_reservation)3279 bool ImageSpace::LoadBootImage(
3280 const std::vector<std::string>& boot_class_path,
3281 const std::vector<std::string>& boot_class_path_locations,
3282 const std::vector<int>& boot_class_path_fds,
3283 const std::vector<int>& boot_class_path_image_fds,
3284 const std::vector<int>& boot_class_path_vdex_fds,
3285 const std::vector<int>& boot_class_path_odex_fds,
3286 const std::vector<std::string>& image_locations,
3287 const InstructionSet image_isa,
3288 bool relocate,
3289 bool executable,
3290 size_t extra_reservation_size,
3291 bool allow_in_memory_compilation,
3292 /*out*/std::vector<std::unique_ptr<ImageSpace>>* boot_image_spaces,
3293 /*out*/MemMap* extra_reservation) {
3294 ScopedTrace trace(__FUNCTION__);
3295
3296 DCHECK(boot_image_spaces != nullptr);
3297 DCHECK(boot_image_spaces->empty());
3298 DCHECK_ALIGNED(extra_reservation_size, kPageSize);
3299 DCHECK(extra_reservation != nullptr);
3300 DCHECK_NE(image_isa, InstructionSet::kNone);
3301
3302 if (image_locations.empty()) {
3303 return false;
3304 }
3305
3306 BootImageLoader loader(boot_class_path,
3307 boot_class_path_locations,
3308 boot_class_path_fds,
3309 boot_class_path_image_fds,
3310 boot_class_path_vdex_fds,
3311 boot_class_path_odex_fds,
3312 image_locations,
3313 image_isa,
3314 relocate,
3315 executable);
3316 loader.FindImageFiles();
3317
3318 // Collect all the errors.
3319 std::vector<std::string> error_msgs;
3320
3321 std::string error_msg;
3322 if (loader.LoadFromSystem(extra_reservation_size,
3323 allow_in_memory_compilation,
3324 boot_image_spaces,
3325 extra_reservation,
3326 &error_msg)) {
3327 return true;
3328 }
3329 error_msgs.push_back(error_msg);
3330
3331 std::ostringstream oss;
3332 bool first = true;
3333 for (const auto& msg : error_msgs) {
3334 if (first) {
3335 first = false;
3336 } else {
3337 oss << "\n ";
3338 }
3339 oss << msg;
3340 }
3341
3342 LOG(ERROR) << "Could not create image space with image file '"
3343 << Join(image_locations, kComponentSeparator) << "'. Attempting to fall back to imageless "
3344 << "running. Error was: " << oss.str();
3345
3346 return false;
3347 }
3348
~ImageSpace()3349 ImageSpace::~ImageSpace() {
3350 // Everything done by member destructors. Classes forward-declared in header are now defined.
3351 }
3352
CreateFromAppImage(const char * image,const OatFile * oat_file,std::string * error_msg)3353 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(const char* image,
3354 const OatFile* oat_file,
3355 std::string* error_msg) {
3356 // Note: The oat file has already been validated.
3357 const std::vector<ImageSpace*>& boot_image_spaces =
3358 Runtime::Current()->GetHeap()->GetBootImageSpaces();
3359 return CreateFromAppImage(image,
3360 oat_file,
3361 ArrayRef<ImageSpace* const>(boot_image_spaces),
3362 error_msg);
3363 }
3364
CreateFromAppImage(const char * image,const OatFile * oat_file,ArrayRef<ImageSpace * const> boot_image_spaces,std::string * error_msg)3365 std::unique_ptr<ImageSpace> ImageSpace::CreateFromAppImage(
3366 const char* image,
3367 const OatFile* oat_file,
3368 ArrayRef<ImageSpace* const> boot_image_spaces,
3369 std::string* error_msg) {
3370 return Loader::InitAppImage(image,
3371 image,
3372 oat_file,
3373 boot_image_spaces,
3374 error_msg);
3375 }
3376
GetOatFile() const3377 const OatFile* ImageSpace::GetOatFile() const {
3378 return oat_file_non_owned_;
3379 }
3380
ReleaseOatFile()3381 std::unique_ptr<const OatFile> ImageSpace::ReleaseOatFile() {
3382 CHECK(oat_file_ != nullptr);
3383 return std::move(oat_file_);
3384 }
3385
Dump(std::ostream & os) const3386 void ImageSpace::Dump(std::ostream& os) const {
3387 os << GetType()
3388 << " begin=" << reinterpret_cast<void*>(Begin())
3389 << ",end=" << reinterpret_cast<void*>(End())
3390 << ",size=" << PrettySize(Size())
3391 << ",name=\"" << GetName() << "\"]";
3392 }
3393
ValidateApexVersions(const OatHeader & oat_header,const std::string & apex_versions,const std::string & file_location,std::string * error_msg)3394 bool ImageSpace::ValidateApexVersions(const OatHeader& oat_header,
3395 const std::string& apex_versions,
3396 const std::string& file_location,
3397 std::string* error_msg) {
3398 // For a boot image, the key value store only exists in the first OAT file. Skip other OAT files.
3399 if (oat_header.GetKeyValueStoreSize() == 0) {
3400 return true;
3401 }
3402
3403 const char* oat_apex_versions = oat_header.GetStoreValueByKey(OatHeader::kApexVersionsKey);
3404 if (oat_apex_versions == nullptr) {
3405 *error_msg = StringPrintf("ValidateApexVersions failed to get APEX versions from oat file '%s'",
3406 file_location.c_str());
3407 return false;
3408 }
3409 // For a boot image, it can be generated from a subset of the bootclasspath.
3410 // For an app image, some dex files get compiled with a subset of the bootclasspath.
3411 // For such cases, the OAT APEX versions will be a prefix of the runtime APEX versions.
3412 if (!android::base::StartsWith(apex_versions, oat_apex_versions)) {
3413 *error_msg = StringPrintf(
3414 "ValidateApexVersions found APEX versions mismatch between oat file '%s' and the runtime "
3415 "(Oat file: '%s', Runtime: '%s')",
3416 file_location.c_str(),
3417 oat_apex_versions,
3418 apex_versions.c_str());
3419 return false;
3420 }
3421 return true;
3422 }
3423
ValidateOatFile(const OatFile & oat_file,std::string * error_msg)3424 bool ImageSpace::ValidateOatFile(const OatFile& oat_file, std::string* error_msg) {
3425 DCHECK(Runtime::Current() != nullptr);
3426 return ValidateOatFile(oat_file,
3427 error_msg,
3428 ArrayRef<const std::string>(),
3429 ArrayRef<const int>(),
3430 Runtime::Current()->GetApexVersions());
3431 }
3432
ValidateOatFile(const OatFile & oat_file,std::string * error_msg,ArrayRef<const std::string> dex_filenames,ArrayRef<const int> dex_fds,const std::string & apex_versions)3433 bool ImageSpace::ValidateOatFile(const OatFile& oat_file,
3434 std::string* error_msg,
3435 ArrayRef<const std::string> dex_filenames,
3436 ArrayRef<const int> dex_fds,
3437 const std::string& apex_versions) {
3438 if (!ValidateApexVersions(oat_file.GetOatHeader(),
3439 apex_versions,
3440 oat_file.GetLocation(),
3441 error_msg)) {
3442 return false;
3443 }
3444
3445 // For a boot image, the key value store only exists in the first OAT file. Skip other OAT files.
3446 if (oat_file.GetOatHeader().GetKeyValueStoreSize() != 0 &&
3447 oat_file.GetOatHeader().IsConcurrentCopying() != gUseReadBarrier) {
3448 *error_msg =
3449 "ValidateOatFile found read barrier state mismatch (oat file: {}, runtime: {})"_format(
3450 oat_file.GetOatHeader().IsConcurrentCopying(), gUseReadBarrier);
3451 return false;
3452 }
3453
3454 size_t dex_file_index = 0;
3455 for (const OatDexFile* oat_dex_file : oat_file.GetOatDexFiles()) {
3456 // Skip multidex locations - These will be checked when we visit their
3457 // corresponding primary non-multidex location.
3458 if (DexFileLoader::IsMultiDexLocation(oat_dex_file->GetDexFileLocation().c_str())) {
3459 continue;
3460 }
3461
3462 DCHECK(dex_filenames.empty() || dex_file_index < dex_filenames.size());
3463 const std::string& dex_file_location =
3464 dex_filenames.empty() ? oat_dex_file->GetDexFileLocation() : dex_filenames[dex_file_index];
3465 int dex_fd = dex_file_index < dex_fds.size() ? dex_fds[dex_file_index] : -1;
3466 dex_file_index++;
3467
3468 std::vector<uint32_t> checksums;
3469 std::vector<std::string> dex_locations_ignored;
3470 if (!ArtDexFileLoader::GetMultiDexChecksums(
3471 dex_file_location.c_str(), &checksums, &dex_locations_ignored, error_msg, dex_fd)) {
3472 *error_msg = StringPrintf("ValidateOatFile failed to get checksums of dex file '%s' "
3473 "referenced by oat file %s: %s",
3474 dex_file_location.c_str(),
3475 oat_file.GetLocation().c_str(),
3476 error_msg->c_str());
3477 return false;
3478 }
3479 CHECK(!checksums.empty());
3480 if (checksums[0] != oat_dex_file->GetDexFileLocationChecksum()) {
3481 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
3482 "'%s' and dex file '%s' (0x%x != 0x%x)",
3483 oat_file.GetLocation().c_str(),
3484 dex_file_location.c_str(),
3485 oat_dex_file->GetDexFileLocationChecksum(),
3486 checksums[0]);
3487 return false;
3488 }
3489
3490 // Verify checksums for any related multidex entries.
3491 for (size_t i = 1; i < checksums.size(); i++) {
3492 std::string multi_dex_location = DexFileLoader::GetMultiDexLocation(
3493 i,
3494 dex_file_location.c_str());
3495 const OatDexFile* multi_dex = oat_file.GetOatDexFile(multi_dex_location.c_str(),
3496 nullptr,
3497 error_msg);
3498 if (multi_dex == nullptr) {
3499 *error_msg = StringPrintf("ValidateOatFile oat file '%s' is missing entry '%s'",
3500 oat_file.GetLocation().c_str(),
3501 multi_dex_location.c_str());
3502 return false;
3503 }
3504
3505 if (checksums[i] != multi_dex->GetDexFileLocationChecksum()) {
3506 *error_msg = StringPrintf("ValidateOatFile found checksum mismatch between oat file "
3507 "'%s' and dex file '%s' (0x%x != 0x%x)",
3508 oat_file.GetLocation().c_str(),
3509 multi_dex_location.c_str(),
3510 multi_dex->GetDexFileLocationChecksum(),
3511 checksums[i]);
3512 return false;
3513 }
3514 }
3515 }
3516 return true;
3517 }
3518
GetBootClassPathChecksums(ArrayRef<ImageSpace * const> image_spaces,ArrayRef<const DexFile * const> boot_class_path)3519 std::string ImageSpace::GetBootClassPathChecksums(
3520 ArrayRef<ImageSpace* const> image_spaces,
3521 ArrayRef<const DexFile* const> boot_class_path) {
3522 DCHECK(!boot_class_path.empty());
3523 size_t bcp_pos = 0u;
3524 std::string boot_image_checksum;
3525
3526 for (size_t image_pos = 0u, size = image_spaces.size(); image_pos != size; ) {
3527 const ImageSpace* main_space = image_spaces[image_pos];
3528 // Caller must make sure that the image spaces correspond to the head of the BCP.
3529 DCHECK_NE(main_space->oat_file_non_owned_->GetOatDexFiles().size(), 0u);
3530 DCHECK_EQ(main_space->oat_file_non_owned_->GetOatDexFiles()[0]->GetDexFileLocation(),
3531 boot_class_path[bcp_pos]->GetLocation());
3532 const ImageHeader& current_header = main_space->GetImageHeader();
3533 uint32_t image_space_count = current_header.GetImageSpaceCount();
3534 DCHECK_NE(image_space_count, 0u);
3535 DCHECK_LE(image_space_count, image_spaces.size() - image_pos);
3536 if (image_pos != 0u) {
3537 boot_image_checksum += ':';
3538 }
3539 uint32_t component_count = current_header.GetComponentCount();
3540 AppendImageChecksum(component_count, current_header.GetImageChecksum(), &boot_image_checksum);
3541 for (size_t space_index = 0; space_index != image_space_count; ++space_index) {
3542 const ImageSpace* space = image_spaces[image_pos + space_index];
3543 const OatFile* oat_file = space->oat_file_non_owned_;
3544 size_t num_dex_files = oat_file->GetOatDexFiles().size();
3545 if (kIsDebugBuild) {
3546 CHECK_NE(num_dex_files, 0u);
3547 CHECK_LE(oat_file->GetOatDexFiles().size(), boot_class_path.size() - bcp_pos);
3548 for (size_t i = 0; i != num_dex_files; ++i) {
3549 CHECK_EQ(oat_file->GetOatDexFiles()[i]->GetDexFileLocation(),
3550 boot_class_path[bcp_pos + i]->GetLocation());
3551 }
3552 }
3553 bcp_pos += num_dex_files;
3554 }
3555 image_pos += image_space_count;
3556 }
3557
3558 ArrayRef<const DexFile* const> boot_class_path_tail =
3559 ArrayRef<const DexFile* const>(boot_class_path).SubArray(bcp_pos);
3560 DCHECK(boot_class_path_tail.empty() ||
3561 !DexFileLoader::IsMultiDexLocation(boot_class_path_tail.front()->GetLocation().c_str()));
3562 for (const DexFile* dex_file : boot_class_path_tail) {
3563 if (!DexFileLoader::IsMultiDexLocation(dex_file->GetLocation().c_str())) {
3564 if (!boot_image_checksum.empty()) {
3565 boot_image_checksum += ':';
3566 }
3567 boot_image_checksum += kDexFileChecksumPrefix;
3568 }
3569 StringAppendF(&boot_image_checksum, "/%08x", dex_file->GetLocationChecksum());
3570 }
3571 return boot_image_checksum;
3572 }
3573
GetNumberOfComponents(ArrayRef<ImageSpace * const> image_spaces)3574 size_t ImageSpace::GetNumberOfComponents(ArrayRef<ImageSpace* const> image_spaces) {
3575 size_t n = 0;
3576 for (auto&& is : image_spaces) {
3577 n += is->GetComponentCount();
3578 }
3579 return n;
3580 }
3581
CheckAndCountBCPComponents(std::string_view oat_boot_class_path,ArrayRef<const std::string> boot_class_path,std::string * error_msg)3582 size_t ImageSpace::CheckAndCountBCPComponents(std::string_view oat_boot_class_path,
3583 ArrayRef<const std::string> boot_class_path,
3584 /*out*/std::string* error_msg) {
3585 // Check that the oat BCP is a prefix of current BCP locations and count components.
3586 size_t component_count = 0u;
3587 std::string_view remaining_bcp(oat_boot_class_path);
3588 bool bcp_ok = false;
3589 for (const std::string& location : boot_class_path) {
3590 if (!StartsWith(remaining_bcp, location)) {
3591 break;
3592 }
3593 remaining_bcp.remove_prefix(location.size());
3594 ++component_count;
3595 if (remaining_bcp.empty()) {
3596 bcp_ok = true;
3597 break;
3598 }
3599 if (!StartsWith(remaining_bcp, ":")) {
3600 break;
3601 }
3602 remaining_bcp.remove_prefix(1u);
3603 }
3604 if (!bcp_ok) {
3605 *error_msg = StringPrintf("Oat boot class path (%s) is not a prefix of"
3606 " runtime boot class path (%s)",
3607 std::string(oat_boot_class_path).c_str(),
3608 Join(boot_class_path, ':').c_str());
3609 return static_cast<size_t>(-1);
3610 }
3611 return component_count;
3612 }
3613
VerifyBootClassPathChecksums(std::string_view oat_checksums,std::string_view oat_boot_class_path,ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,ArrayRef<const std::string> boot_class_path_locations,ArrayRef<const std::string> boot_class_path,std::string * error_msg)3614 bool ImageSpace::VerifyBootClassPathChecksums(
3615 std::string_view oat_checksums,
3616 std::string_view oat_boot_class_path,
3617 ArrayRef<const std::unique_ptr<ImageSpace>> image_spaces,
3618 ArrayRef<const std::string> boot_class_path_locations,
3619 ArrayRef<const std::string> boot_class_path,
3620 /*out*/std::string* error_msg) {
3621 DCHECK_EQ(boot_class_path.size(), boot_class_path_locations.size());
3622 DCHECK_GE(boot_class_path_locations.size(), image_spaces.size());
3623 if (oat_checksums.empty() || oat_boot_class_path.empty()) {
3624 *error_msg = oat_checksums.empty() ? "Empty checksums." : "Empty boot class path.";
3625 return false;
3626 }
3627
3628 size_t oat_bcp_size =
3629 CheckAndCountBCPComponents(oat_boot_class_path, boot_class_path_locations, error_msg);
3630 if (oat_bcp_size == static_cast<size_t>(-1)) {
3631 DCHECK(!error_msg->empty());
3632 return false;
3633 }
3634 const size_t num_image_spaces = image_spaces.size();
3635 size_t dependency_component_count = 0;
3636 for (const std::unique_ptr<ImageSpace>& space : image_spaces) {
3637 dependency_component_count += space->GetComponentCount();
3638 }
3639 if (dependency_component_count != oat_bcp_size) {
3640 *error_msg = StringPrintf("Image header records %s dependencies (%zu) than BCP (%zu)",
3641 dependency_component_count < oat_bcp_size ? "less" : "more",
3642 dependency_component_count,
3643 oat_bcp_size);
3644 return false;
3645 }
3646
3647 // Verify image checksums.
3648 size_t bcp_pos = 0u;
3649 size_t image_pos = 0u;
3650 while (image_pos != num_image_spaces && StartsWith(oat_checksums, "i")) {
3651 // Verify the current image checksum.
3652 const ImageHeader& current_header = image_spaces[image_pos]->GetImageHeader();
3653 uint32_t image_space_count = current_header.GetImageSpaceCount();
3654 DCHECK_NE(image_space_count, 0u);
3655 DCHECK_LE(image_space_count, image_spaces.size() - image_pos);
3656 uint32_t component_count = current_header.GetComponentCount();
3657 uint32_t checksum = current_header.GetImageChecksum();
3658 if (!CheckAndRemoveImageChecksum(component_count, checksum, &oat_checksums, error_msg)) {
3659 DCHECK(!error_msg->empty());
3660 return false;
3661 }
3662
3663 if (kIsDebugBuild) {
3664 for (size_t space_index = 0; space_index != image_space_count; ++space_index) {
3665 const OatFile* oat_file = image_spaces[image_pos + space_index]->oat_file_non_owned_;
3666 size_t num_dex_files = oat_file->GetOatDexFiles().size();
3667 CHECK_NE(num_dex_files, 0u);
3668 const std::string main_location = oat_file->GetOatDexFiles()[0]->GetDexFileLocation();
3669 CHECK_EQ(main_location, boot_class_path_locations[bcp_pos + space_index]);
3670 CHECK(!DexFileLoader::IsMultiDexLocation(main_location.c_str()));
3671 size_t num_base_locations = 1u;
3672 for (size_t i = 1u; i != num_dex_files; ++i) {
3673 if (!DexFileLoader::IsMultiDexLocation(
3674 oat_file->GetOatDexFiles()[i]->GetDexFileLocation().c_str())) {
3675 CHECK_EQ(image_space_count, 1u); // We can find base locations only for --single-image.
3676 ++num_base_locations;
3677 }
3678 }
3679 if (image_space_count == 1u) {
3680 CHECK_EQ(num_base_locations, component_count);
3681 }
3682 }
3683 }
3684
3685 image_pos += image_space_count;
3686 bcp_pos += component_count;
3687
3688 if (!StartsWith(oat_checksums, ":")) {
3689 // Check that we've reached the end of checksums and BCP.
3690 if (!oat_checksums.empty()) {
3691 *error_msg = StringPrintf("Expected ':' separator or end of checksums, remaining %s.",
3692 std::string(oat_checksums).c_str());
3693 return false;
3694 }
3695 if (bcp_pos != oat_bcp_size) {
3696 *error_msg = StringPrintf("Component count mismatch between checksums (%zu) and BCP (%zu)",
3697 bcp_pos,
3698 oat_bcp_size);
3699 return false;
3700 }
3701 return true;
3702 }
3703 oat_checksums.remove_prefix(1u);
3704 }
3705
3706 // We do not allow dependencies of extensions on dex files. That would require
3707 // interleaving the loading of the images with opening the other BCP dex files.
3708 return false;
3709 }
3710
ExpandMultiImageLocations(ArrayRef<const std::string> dex_locations,const std::string & image_location,bool boot_image_extension)3711 std::vector<std::string> ImageSpace::ExpandMultiImageLocations(
3712 ArrayRef<const std::string> dex_locations,
3713 const std::string& image_location,
3714 bool boot_image_extension) {
3715 DCHECK(!dex_locations.empty());
3716
3717 // Find the path.
3718 size_t last_slash = image_location.rfind('/');
3719 CHECK_NE(last_slash, std::string::npos);
3720
3721 // We also need to honor path components that were encoded through '@'. Otherwise the loading
3722 // code won't be able to find the images.
3723 if (image_location.find('@', last_slash) != std::string::npos) {
3724 last_slash = image_location.rfind('@');
3725 }
3726
3727 // Find the dot separating the primary image name from the extension.
3728 size_t last_dot = image_location.rfind('.');
3729 // Extract the extension and base (the path and primary image name).
3730 std::string extension;
3731 std::string base = image_location;
3732 if (last_dot != std::string::npos && last_dot > last_slash) {
3733 extension = image_location.substr(last_dot); // Including the dot.
3734 base.resize(last_dot);
3735 }
3736 // For non-empty primary image name, add '-' to the `base`.
3737 if (last_slash + 1u != base.size()) {
3738 base += '-';
3739 }
3740
3741 std::vector<std::string> locations;
3742 locations.reserve(dex_locations.size());
3743 size_t start_index = 0u;
3744 if (!boot_image_extension) {
3745 start_index = 1u;
3746 locations.push_back(image_location);
3747 }
3748
3749 // Now create the other names. Use a counted loop to skip the first one if needed.
3750 for (size_t i = start_index; i < dex_locations.size(); ++i) {
3751 // Replace path with `base` (i.e. image path and prefix) and replace the original
3752 // extension (if any) with `extension`.
3753 std::string name = dex_locations[i];
3754 size_t last_dex_slash = name.rfind('/');
3755 if (last_dex_slash != std::string::npos) {
3756 name = name.substr(last_dex_slash + 1);
3757 }
3758 size_t last_dex_dot = name.rfind('.');
3759 if (last_dex_dot != std::string::npos) {
3760 name.resize(last_dex_dot);
3761 }
3762 locations.push_back(base + name + extension);
3763 }
3764 return locations;
3765 }
3766
DumpSections(std::ostream & os) const3767 void ImageSpace::DumpSections(std::ostream& os) const {
3768 const uint8_t* base = Begin();
3769 const ImageHeader& header = GetImageHeader();
3770 for (size_t i = 0; i < ImageHeader::kSectionCount; ++i) {
3771 auto section_type = static_cast<ImageHeader::ImageSections>(i);
3772 const ImageSection& section = header.GetImageSection(section_type);
3773 os << section_type << " " << reinterpret_cast<const void*>(base + section.Offset())
3774 << "-" << reinterpret_cast<const void*>(base + section.End()) << "\n";
3775 }
3776 }
3777
ReleaseMetadata()3778 void ImageSpace::ReleaseMetadata() {
3779 const ImageSection& metadata = GetImageHeader().GetMetadataSection();
3780 VLOG(image) << "Releasing " << metadata.Size() << " image metadata bytes";
3781 // Avoid using ZeroAndReleasePages since the zero fill might not be word atomic.
3782 uint8_t* const page_begin = AlignUp(Begin() + metadata.Offset(), kPageSize);
3783 uint8_t* const page_end = AlignDown(Begin() + metadata.End(), kPageSize);
3784 if (page_begin < page_end) {
3785 CHECK_NE(madvise(page_begin, page_end - page_begin, MADV_DONTNEED), -1) << "madvise failed";
3786 }
3787 }
3788
3789 } // namespace space
3790 } // namespace gc
3791 } // namespace art
3792