1 /*
2 * Copyright (C) 2016 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "loop_optimization.h"
18
19 #include "arch/arm/instruction_set_features_arm.h"
20 #include "arch/arm64/instruction_set_features_arm64.h"
21 #include "arch/instruction_set.h"
22 #include "arch/x86/instruction_set_features_x86.h"
23 #include "arch/x86_64/instruction_set_features_x86_64.h"
24 #include "code_generator.h"
25 #include "driver/compiler_options.h"
26 #include "linear_order.h"
27 #include "mirror/array-inl.h"
28 #include "mirror/string.h"
29
30 namespace art HIDDEN {
31
32 // Enables vectorization (SIMDization) in the loop optimizer.
33 static constexpr bool kEnableVectorization = true;
34
35 //
36 // Static helpers.
37 //
38
39 // Base alignment for arrays/strings guaranteed by the Android runtime.
BaseAlignment()40 static uint32_t BaseAlignment() {
41 return kObjectAlignment;
42 }
43
44 // Hidden offset for arrays/strings guaranteed by the Android runtime.
HiddenOffset(DataType::Type type,bool is_string_char_at)45 static uint32_t HiddenOffset(DataType::Type type, bool is_string_char_at) {
46 return is_string_char_at
47 ? mirror::String::ValueOffset().Uint32Value()
48 : mirror::Array::DataOffset(DataType::Size(type)).Uint32Value();
49 }
50
51 // Remove the instruction from the graph. A bit more elaborate than the usual
52 // instruction removal, since there may be a cycle in the use structure.
RemoveFromCycle(HInstruction * instruction)53 static void RemoveFromCycle(HInstruction* instruction) {
54 instruction->RemoveAsUserOfAllInputs();
55 instruction->RemoveEnvironmentUsers();
56 instruction->GetBlock()->RemoveInstructionOrPhi(instruction, /*ensure_safety=*/ false);
57 RemoveEnvironmentUses(instruction);
58 ResetEnvironmentInputRecords(instruction);
59 }
60
61 // Detect a goto block and sets succ to the single successor.
IsGotoBlock(HBasicBlock * block,HBasicBlock ** succ)62 static bool IsGotoBlock(HBasicBlock* block, /*out*/ HBasicBlock** succ) {
63 if (block->GetPredecessors().size() == 1 &&
64 block->GetSuccessors().size() == 1 &&
65 block->IsSingleGoto()) {
66 *succ = block->GetSingleSuccessor();
67 return true;
68 }
69 return false;
70 }
71
72 // Detect an early exit loop.
IsEarlyExit(HLoopInformation * loop_info)73 static bool IsEarlyExit(HLoopInformation* loop_info) {
74 HBlocksInLoopReversePostOrderIterator it_loop(*loop_info);
75 for (it_loop.Advance(); !it_loop.Done(); it_loop.Advance()) {
76 for (HBasicBlock* successor : it_loop.Current()->GetSuccessors()) {
77 if (!loop_info->Contains(*successor)) {
78 return true;
79 }
80 }
81 }
82 return false;
83 }
84
85 // Forward declaration.
86 static bool IsZeroExtensionAndGet(HInstruction* instruction,
87 DataType::Type type,
88 /*out*/ HInstruction** operand);
89
90 // Detect a sign extension in instruction from the given type.
91 // Returns the promoted operand on success.
IsSignExtensionAndGet(HInstruction * instruction,DataType::Type type,HInstruction ** operand)92 static bool IsSignExtensionAndGet(HInstruction* instruction,
93 DataType::Type type,
94 /*out*/ HInstruction** operand) {
95 // Accept any already wider constant that would be handled properly by sign
96 // extension when represented in the *width* of the given narrower data type
97 // (the fact that Uint8/Uint16 normally zero extend does not matter here).
98 int64_t value = 0;
99 if (IsInt64AndGet(instruction, /*out*/ &value)) {
100 switch (type) {
101 case DataType::Type::kUint8:
102 case DataType::Type::kInt8:
103 if (IsInt<8>(value)) {
104 *operand = instruction;
105 return true;
106 }
107 return false;
108 case DataType::Type::kUint16:
109 case DataType::Type::kInt16:
110 if (IsInt<16>(value)) {
111 *operand = instruction;
112 return true;
113 }
114 return false;
115 default:
116 return false;
117 }
118 }
119 // An implicit widening conversion of any signed expression sign-extends.
120 if (instruction->GetType() == type) {
121 switch (type) {
122 case DataType::Type::kInt8:
123 case DataType::Type::kInt16:
124 *operand = instruction;
125 return true;
126 default:
127 return false;
128 }
129 }
130 // An explicit widening conversion of a signed expression sign-extends.
131 if (instruction->IsTypeConversion()) {
132 HInstruction* conv = instruction->InputAt(0);
133 DataType::Type from = conv->GetType();
134 switch (instruction->GetType()) {
135 case DataType::Type::kInt32:
136 case DataType::Type::kInt64:
137 if (type == from && (from == DataType::Type::kInt8 ||
138 from == DataType::Type::kInt16 ||
139 from == DataType::Type::kInt32)) {
140 *operand = conv;
141 return true;
142 }
143 return false;
144 case DataType::Type::kInt16:
145 return type == DataType::Type::kUint16 &&
146 from == DataType::Type::kUint16 &&
147 IsZeroExtensionAndGet(instruction->InputAt(0), type, /*out*/ operand);
148 default:
149 return false;
150 }
151 }
152 return false;
153 }
154
155 // Detect a zero extension in instruction from the given type.
156 // Returns the promoted operand on success.
IsZeroExtensionAndGet(HInstruction * instruction,DataType::Type type,HInstruction ** operand)157 static bool IsZeroExtensionAndGet(HInstruction* instruction,
158 DataType::Type type,
159 /*out*/ HInstruction** operand) {
160 // Accept any already wider constant that would be handled properly by zero
161 // extension when represented in the *width* of the given narrower data type
162 // (the fact that Int8/Int16 normally sign extend does not matter here).
163 int64_t value = 0;
164 if (IsInt64AndGet(instruction, /*out*/ &value)) {
165 switch (type) {
166 case DataType::Type::kUint8:
167 case DataType::Type::kInt8:
168 if (IsUint<8>(value)) {
169 *operand = instruction;
170 return true;
171 }
172 return false;
173 case DataType::Type::kUint16:
174 case DataType::Type::kInt16:
175 if (IsUint<16>(value)) {
176 *operand = instruction;
177 return true;
178 }
179 return false;
180 default:
181 return false;
182 }
183 }
184 // An implicit widening conversion of any unsigned expression zero-extends.
185 if (instruction->GetType() == type) {
186 switch (type) {
187 case DataType::Type::kUint8:
188 case DataType::Type::kUint16:
189 *operand = instruction;
190 return true;
191 default:
192 return false;
193 }
194 }
195 // An explicit widening conversion of an unsigned expression zero-extends.
196 if (instruction->IsTypeConversion()) {
197 HInstruction* conv = instruction->InputAt(0);
198 DataType::Type from = conv->GetType();
199 switch (instruction->GetType()) {
200 case DataType::Type::kInt32:
201 case DataType::Type::kInt64:
202 if (type == from && from == DataType::Type::kUint16) {
203 *operand = conv;
204 return true;
205 }
206 return false;
207 case DataType::Type::kUint16:
208 return type == DataType::Type::kInt16 &&
209 from == DataType::Type::kInt16 &&
210 IsSignExtensionAndGet(instruction->InputAt(0), type, /*out*/ operand);
211 default:
212 return false;
213 }
214 }
215 return false;
216 }
217
218 // Detect situations with same-extension narrower operands.
219 // Returns true on success and sets is_unsigned accordingly.
IsNarrowerOperands(HInstruction * a,HInstruction * b,DataType::Type type,HInstruction ** r,HInstruction ** s,bool * is_unsigned)220 static bool IsNarrowerOperands(HInstruction* a,
221 HInstruction* b,
222 DataType::Type type,
223 /*out*/ HInstruction** r,
224 /*out*/ HInstruction** s,
225 /*out*/ bool* is_unsigned) {
226 DCHECK(a != nullptr && b != nullptr);
227 // Look for a matching sign extension.
228 DataType::Type stype = HVecOperation::ToSignedType(type);
229 if (IsSignExtensionAndGet(a, stype, r) && IsSignExtensionAndGet(b, stype, s)) {
230 *is_unsigned = false;
231 return true;
232 }
233 // Look for a matching zero extension.
234 DataType::Type utype = HVecOperation::ToUnsignedType(type);
235 if (IsZeroExtensionAndGet(a, utype, r) && IsZeroExtensionAndGet(b, utype, s)) {
236 *is_unsigned = true;
237 return true;
238 }
239 return false;
240 }
241
242 // As above, single operand.
IsNarrowerOperand(HInstruction * a,DataType::Type type,HInstruction ** r,bool * is_unsigned)243 static bool IsNarrowerOperand(HInstruction* a,
244 DataType::Type type,
245 /*out*/ HInstruction** r,
246 /*out*/ bool* is_unsigned) {
247 DCHECK(a != nullptr);
248 // Look for a matching sign extension.
249 DataType::Type stype = HVecOperation::ToSignedType(type);
250 if (IsSignExtensionAndGet(a, stype, r)) {
251 *is_unsigned = false;
252 return true;
253 }
254 // Look for a matching zero extension.
255 DataType::Type utype = HVecOperation::ToUnsignedType(type);
256 if (IsZeroExtensionAndGet(a, utype, r)) {
257 *is_unsigned = true;
258 return true;
259 }
260 return false;
261 }
262
263 // Compute relative vector length based on type difference.
GetOtherVL(DataType::Type other_type,DataType::Type vector_type,uint32_t vl)264 static uint32_t GetOtherVL(DataType::Type other_type, DataType::Type vector_type, uint32_t vl) {
265 DCHECK(DataType::IsIntegralType(other_type));
266 DCHECK(DataType::IsIntegralType(vector_type));
267 DCHECK_GE(DataType::SizeShift(other_type), DataType::SizeShift(vector_type));
268 return vl >> (DataType::SizeShift(other_type) - DataType::SizeShift(vector_type));
269 }
270
271 // Detect up to two added operands a and b and an acccumulated constant c.
IsAddConst(HInstruction * instruction,HInstruction ** a,HInstruction ** b,int64_t * c,int32_t depth=8)272 static bool IsAddConst(HInstruction* instruction,
273 /*out*/ HInstruction** a,
274 /*out*/ HInstruction** b,
275 /*out*/ int64_t* c,
276 int32_t depth = 8) { // don't search too deep
277 int64_t value = 0;
278 // Enter add/sub while still within reasonable depth.
279 if (depth > 0) {
280 if (instruction->IsAdd()) {
281 return IsAddConst(instruction->InputAt(0), a, b, c, depth - 1) &&
282 IsAddConst(instruction->InputAt(1), a, b, c, depth - 1);
283 } else if (instruction->IsSub() &&
284 IsInt64AndGet(instruction->InputAt(1), &value)) {
285 *c -= value;
286 return IsAddConst(instruction->InputAt(0), a, b, c, depth - 1);
287 }
288 }
289 // Otherwise, deal with leaf nodes.
290 if (IsInt64AndGet(instruction, &value)) {
291 *c += value;
292 return true;
293 } else if (*a == nullptr) {
294 *a = instruction;
295 return true;
296 } else if (*b == nullptr) {
297 *b = instruction;
298 return true;
299 }
300 return false; // too many operands
301 }
302
303 // Detect a + b + c with optional constant c.
IsAddConst2(HGraph * graph,HInstruction * instruction,HInstruction ** a,HInstruction ** b,int64_t * c)304 static bool IsAddConst2(HGraph* graph,
305 HInstruction* instruction,
306 /*out*/ HInstruction** a,
307 /*out*/ HInstruction** b,
308 /*out*/ int64_t* c) {
309 // We want an actual add/sub and not the trivial case where {b: 0, c: 0}.
310 if (IsAddOrSub(instruction) && IsAddConst(instruction, a, b, c) && *a != nullptr) {
311 if (*b == nullptr) {
312 // Constant is usually already present, unless accumulated.
313 *b = graph->GetConstant(instruction->GetType(), (*c));
314 *c = 0;
315 }
316 return true;
317 }
318 return false;
319 }
320
321 // Detect a direct a - b or a hidden a - (-c).
IsSubConst2(HGraph * graph,HInstruction * instruction,HInstruction ** a,HInstruction ** b)322 static bool IsSubConst2(HGraph* graph,
323 HInstruction* instruction,
324 /*out*/ HInstruction** a,
325 /*out*/ HInstruction** b) {
326 int64_t c = 0;
327 if (instruction->IsSub()) {
328 *a = instruction->InputAt(0);
329 *b = instruction->InputAt(1);
330 return true;
331 } else if (IsAddConst(instruction, a, b, &c) && *a != nullptr && *b == nullptr) {
332 // Constant for the hidden subtraction.
333 *b = graph->GetConstant(instruction->GetType(), -c);
334 return true;
335 }
336 return false;
337 }
338
339 // Detect reductions of the following forms,
340 // x = x_phi + ..
341 // x = x_phi - ..
HasReductionFormat(HInstruction * reduction,HInstruction * phi)342 static bool HasReductionFormat(HInstruction* reduction, HInstruction* phi) {
343 if (reduction->IsAdd()) {
344 return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi) ||
345 (reduction->InputAt(0) != phi && reduction->InputAt(1) == phi);
346 } else if (reduction->IsSub()) {
347 return (reduction->InputAt(0) == phi && reduction->InputAt(1) != phi);
348 }
349 return false;
350 }
351
352 // Translates vector operation to reduction kind.
GetReductionKind(HVecOperation * reduction)353 static HVecReduce::ReductionKind GetReductionKind(HVecOperation* reduction) {
354 if (reduction->IsVecAdd() ||
355 reduction->IsVecSub() ||
356 reduction->IsVecSADAccumulate() ||
357 reduction->IsVecDotProd()) {
358 return HVecReduce::kSum;
359 }
360 LOG(FATAL) << "Unsupported SIMD reduction " << reduction->GetId();
361 UNREACHABLE();
362 }
363
364 // Test vector restrictions.
HasVectorRestrictions(uint64_t restrictions,uint64_t tested)365 static bool HasVectorRestrictions(uint64_t restrictions, uint64_t tested) {
366 return (restrictions & tested) != 0;
367 }
368
369 // Insert an instruction.
Insert(HBasicBlock * block,HInstruction * instruction)370 static HInstruction* Insert(HBasicBlock* block, HInstruction* instruction) {
371 DCHECK(block != nullptr);
372 DCHECK(instruction != nullptr);
373 block->InsertInstructionBefore(instruction, block->GetLastInstruction());
374 return instruction;
375 }
376
377 // Check that instructions from the induction sets are fully removed: have no uses
378 // and no other instructions use them.
CheckInductionSetFullyRemoved(ScopedArenaSet<HInstruction * > * iset)379 static bool CheckInductionSetFullyRemoved(ScopedArenaSet<HInstruction*>* iset) {
380 for (HInstruction* instr : *iset) {
381 if (instr->GetBlock() != nullptr ||
382 !instr->GetUses().empty() ||
383 !instr->GetEnvUses().empty() ||
384 HasEnvironmentUsedByOthers(instr)) {
385 return false;
386 }
387 }
388 return true;
389 }
390
391 // Tries to statically evaluate condition of the specified "HIf" for other condition checks.
TryToEvaluateIfCondition(HIf * instruction,HGraph * graph)392 static void TryToEvaluateIfCondition(HIf* instruction, HGraph* graph) {
393 HInstruction* cond = instruction->InputAt(0);
394
395 // If a condition 'cond' is evaluated in an HIf instruction then in the successors of the
396 // IF_BLOCK we statically know the value of the condition 'cond' (TRUE in TRUE_SUCC, FALSE in
397 // FALSE_SUCC). Using that we can replace another evaluation (use) EVAL of the same 'cond'
398 // with TRUE value (FALSE value) if every path from the ENTRY_BLOCK to EVAL_BLOCK contains the
399 // edge HIF_BLOCK->TRUE_SUCC (HIF_BLOCK->FALSE_SUCC).
400 // if (cond) { if(cond) {
401 // if (cond) {} if (1) {}
402 // } else { =======> } else {
403 // if (cond) {} if (0) {}
404 // } }
405 if (!cond->IsConstant()) {
406 HBasicBlock* true_succ = instruction->IfTrueSuccessor();
407 HBasicBlock* false_succ = instruction->IfFalseSuccessor();
408
409 DCHECK_EQ(true_succ->GetPredecessors().size(), 1u);
410 DCHECK_EQ(false_succ->GetPredecessors().size(), 1u);
411
412 const HUseList<HInstruction*>& uses = cond->GetUses();
413 for (auto it = uses.begin(), end = uses.end(); it != end; /* ++it below */) {
414 HInstruction* user = it->GetUser();
415 size_t index = it->GetIndex();
416 HBasicBlock* user_block = user->GetBlock();
417 // Increment `it` now because `*it` may disappear thanks to user->ReplaceInput().
418 ++it;
419 if (true_succ->Dominates(user_block)) {
420 user->ReplaceInput(graph->GetIntConstant(1), index);
421 } else if (false_succ->Dominates(user_block)) {
422 user->ReplaceInput(graph->GetIntConstant(0), index);
423 }
424 }
425 }
426 }
427
428 // Peel the first 'count' iterations of the loop.
PeelByCount(HLoopInformation * loop_info,int count,InductionVarRange * induction_range)429 static void PeelByCount(HLoopInformation* loop_info,
430 int count,
431 InductionVarRange* induction_range) {
432 for (int i = 0; i < count; i++) {
433 // Perform peeling.
434 LoopClonerSimpleHelper helper(loop_info, induction_range);
435 helper.DoPeeling();
436 }
437 }
438
439 // Returns the narrower type out of instructions a and b types.
GetNarrowerType(HInstruction * a,HInstruction * b)440 static DataType::Type GetNarrowerType(HInstruction* a, HInstruction* b) {
441 DataType::Type type = a->GetType();
442 if (DataType::Size(b->GetType()) < DataType::Size(type)) {
443 type = b->GetType();
444 }
445 if (a->IsTypeConversion() &&
446 DataType::Size(a->InputAt(0)->GetType()) < DataType::Size(type)) {
447 type = a->InputAt(0)->GetType();
448 }
449 if (b->IsTypeConversion() &&
450 DataType::Size(b->InputAt(0)->GetType()) < DataType::Size(type)) {
451 type = b->InputAt(0)->GetType();
452 }
453 return type;
454 }
455
456 //
457 // Public methods.
458 //
459
HLoopOptimization(HGraph * graph,const CodeGenerator & codegen,HInductionVarAnalysis * induction_analysis,OptimizingCompilerStats * stats,const char * name)460 HLoopOptimization::HLoopOptimization(HGraph* graph,
461 const CodeGenerator& codegen,
462 HInductionVarAnalysis* induction_analysis,
463 OptimizingCompilerStats* stats,
464 const char* name)
465 : HOptimization(graph, name, stats),
466 compiler_options_(&codegen.GetCompilerOptions()),
467 simd_register_size_(codegen.GetSIMDRegisterWidth()),
468 induction_range_(induction_analysis),
469 loop_allocator_(nullptr),
470 global_allocator_(graph_->GetAllocator()),
471 top_loop_(nullptr),
472 last_loop_(nullptr),
473 iset_(nullptr),
474 reductions_(nullptr),
475 simplified_(false),
476 predicated_vectorization_mode_(codegen.SupportsPredicatedSIMD()),
477 vector_length_(0),
478 vector_refs_(nullptr),
479 vector_static_peeling_factor_(0),
480 vector_dynamic_peeling_candidate_(nullptr),
481 vector_runtime_test_a_(nullptr),
482 vector_runtime_test_b_(nullptr),
483 vector_map_(nullptr),
484 vector_permanent_map_(nullptr),
485 vector_mode_(kSequential),
486 vector_preheader_(nullptr),
487 vector_header_(nullptr),
488 vector_body_(nullptr),
489 vector_index_(nullptr),
490 arch_loop_helper_(ArchNoOptsLoopHelper::Create(codegen, global_allocator_)) {
491 }
492
Run()493 bool HLoopOptimization::Run() {
494 // Skip if there is no loop or the graph has irreducible loops.
495 // TODO: make this less of a sledgehammer.
496 if (!graph_->HasLoops() || graph_->HasIrreducibleLoops()) {
497 return false;
498 }
499
500 // Phase-local allocator.
501 ScopedArenaAllocator allocator(graph_->GetArenaStack());
502 loop_allocator_ = &allocator;
503
504 // Perform loop optimizations.
505 const bool did_loop_opt = LocalRun();
506 if (top_loop_ == nullptr) {
507 graph_->SetHasLoops(false); // no more loops
508 }
509
510 // Detach allocator.
511 loop_allocator_ = nullptr;
512
513 return did_loop_opt;
514 }
515
516 //
517 // Loop setup and traversal.
518 //
519
LocalRun()520 bool HLoopOptimization::LocalRun() {
521 // Build the linear order using the phase-local allocator. This step enables building
522 // a loop hierarchy that properly reflects the outer-inner and previous-next relation.
523 ScopedArenaVector<HBasicBlock*> linear_order(loop_allocator_->Adapter(kArenaAllocLinearOrder));
524 LinearizeGraph(graph_, &linear_order);
525
526 // Build the loop hierarchy.
527 for (HBasicBlock* block : linear_order) {
528 if (block->IsLoopHeader()) {
529 AddLoop(block->GetLoopInformation());
530 }
531 }
532 DCHECK(top_loop_ != nullptr);
533
534 // Traverse the loop hierarchy inner-to-outer and optimize. Traversal can use
535 // temporary data structures using the phase-local allocator. All new HIR
536 // should use the global allocator.
537 ScopedArenaSet<HInstruction*> iset(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
538 ScopedArenaSafeMap<HInstruction*, HInstruction*> reds(
539 std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
540 ScopedArenaSet<ArrayReference> refs(loop_allocator_->Adapter(kArenaAllocLoopOptimization));
541 ScopedArenaSafeMap<HInstruction*, HInstruction*> map(
542 std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
543 ScopedArenaSafeMap<HInstruction*, HInstruction*> perm(
544 std::less<HInstruction*>(), loop_allocator_->Adapter(kArenaAllocLoopOptimization));
545 // Attach.
546 iset_ = &iset;
547 reductions_ = &reds;
548 vector_refs_ = &refs;
549 vector_map_ = ↦
550 vector_permanent_map_ = &perm;
551 // Traverse.
552 const bool did_loop_opt = TraverseLoopsInnerToOuter(top_loop_);
553 // Detach.
554 iset_ = nullptr;
555 reductions_ = nullptr;
556 vector_refs_ = nullptr;
557 vector_map_ = nullptr;
558 vector_permanent_map_ = nullptr;
559 return did_loop_opt;
560 }
561
AddLoop(HLoopInformation * loop_info)562 void HLoopOptimization::AddLoop(HLoopInformation* loop_info) {
563 DCHECK(loop_info != nullptr);
564 LoopNode* node = new (loop_allocator_) LoopNode(loop_info);
565 if (last_loop_ == nullptr) {
566 // First loop.
567 DCHECK(top_loop_ == nullptr);
568 last_loop_ = top_loop_ = node;
569 } else if (loop_info->IsIn(*last_loop_->loop_info)) {
570 // Inner loop.
571 node->outer = last_loop_;
572 DCHECK(last_loop_->inner == nullptr);
573 last_loop_ = last_loop_->inner = node;
574 } else {
575 // Subsequent loop.
576 while (last_loop_->outer != nullptr && !loop_info->IsIn(*last_loop_->outer->loop_info)) {
577 last_loop_ = last_loop_->outer;
578 }
579 node->outer = last_loop_->outer;
580 node->previous = last_loop_;
581 DCHECK(last_loop_->next == nullptr);
582 last_loop_ = last_loop_->next = node;
583 }
584 }
585
RemoveLoop(LoopNode * node)586 void HLoopOptimization::RemoveLoop(LoopNode* node) {
587 DCHECK(node != nullptr);
588 DCHECK(node->inner == nullptr);
589 if (node->previous != nullptr) {
590 // Within sequence.
591 node->previous->next = node->next;
592 if (node->next != nullptr) {
593 node->next->previous = node->previous;
594 }
595 } else {
596 // First of sequence.
597 if (node->outer != nullptr) {
598 node->outer->inner = node->next;
599 } else {
600 top_loop_ = node->next;
601 }
602 if (node->next != nullptr) {
603 node->next->outer = node->outer;
604 node->next->previous = nullptr;
605 }
606 }
607 }
608
TraverseLoopsInnerToOuter(LoopNode * node)609 bool HLoopOptimization::TraverseLoopsInnerToOuter(LoopNode* node) {
610 bool changed = false;
611 for ( ; node != nullptr; node = node->next) {
612 // Visit inner loops first. Recompute induction information for this
613 // loop if the induction of any inner loop has changed.
614 if (TraverseLoopsInnerToOuter(node->inner)) {
615 induction_range_.ReVisit(node->loop_info);
616 changed = true;
617 }
618
619 CalculateAndSetTryCatchKind(node);
620 if (node->try_catch_kind == LoopNode::TryCatchKind::kHasTryCatch) {
621 // The current optimizations assume that the loops do not contain try/catches.
622 // TODO(solanes, 227283906): Assess if we can modify them to work with try/catches.
623 continue;
624 }
625
626 DCHECK(node->try_catch_kind == LoopNode::TryCatchKind::kNoTryCatch)
627 << "kind: " << static_cast<int>(node->try_catch_kind)
628 << ". LoopOptimization requires the loops to not have try catches.";
629
630 // Repeat simplifications in the loop-body until no more changes occur.
631 // Note that since each simplification consists of eliminating code (without
632 // introducing new code), this process is always finite.
633 do {
634 simplified_ = false;
635 SimplifyInduction(node);
636 SimplifyBlocks(node);
637 changed = simplified_ || changed;
638 } while (simplified_);
639 // Optimize inner loop.
640 if (node->inner == nullptr) {
641 changed = OptimizeInnerLoop(node) || changed;
642 }
643 }
644 return changed;
645 }
646
CalculateAndSetTryCatchKind(LoopNode * node)647 void HLoopOptimization::CalculateAndSetTryCatchKind(LoopNode* node) {
648 DCHECK(node != nullptr);
649 DCHECK(node->try_catch_kind == LoopNode::TryCatchKind::kUnknown)
650 << "kind: " << static_cast<int>(node->try_catch_kind)
651 << ". SetTryCatchKind should be called only once per LoopNode.";
652
653 // If a inner loop has a try catch, then the outer loop has one too (as it contains `inner`).
654 // Knowing this, we could skip iterating through all of the outer loop's parents with a simple
655 // check.
656 for (LoopNode* inner = node->inner; inner != nullptr; inner = inner->next) {
657 DCHECK(inner->try_catch_kind != LoopNode::TryCatchKind::kUnknown)
658 << "kind: " << static_cast<int>(inner->try_catch_kind)
659 << ". Should have updated the inner loop before the outer loop.";
660
661 if (inner->try_catch_kind == LoopNode::TryCatchKind::kHasTryCatch) {
662 node->try_catch_kind = LoopNode::TryCatchKind::kHasTryCatch;
663 return;
664 }
665 }
666
667 for (HBlocksInLoopIterator it_loop(*node->loop_info); !it_loop.Done(); it_loop.Advance()) {
668 HBasicBlock* block = it_loop.Current();
669 if (block->GetTryCatchInformation() != nullptr) {
670 node->try_catch_kind = LoopNode::TryCatchKind::kHasTryCatch;
671 return;
672 }
673 }
674
675 node->try_catch_kind = LoopNode::TryCatchKind::kNoTryCatch;
676 }
677
678 //
679 // This optimization applies to loops with plain simple operations
680 // (I.e. no calls to java code or runtime) with a known small trip_count * instr_count
681 // value.
682 //
TryToRemoveSuspendCheckFromLoopHeader(LoopAnalysisInfo * analysis_info,bool generate_code)683 bool HLoopOptimization::TryToRemoveSuspendCheckFromLoopHeader(LoopAnalysisInfo* analysis_info,
684 bool generate_code) {
685 if (!graph_->SuspendChecksAreAllowedToNoOp()) {
686 return false;
687 }
688
689 int64_t trip_count = analysis_info->GetTripCount();
690
691 if (trip_count == LoopAnalysisInfo::kUnknownTripCount) {
692 return false;
693 }
694
695 int64_t instruction_count = analysis_info->GetNumberOfInstructions();
696 int64_t total_instruction_count = trip_count * instruction_count;
697
698 // The inclusion of the HasInstructionsPreventingScalarOpts() prevents this
699 // optimization from being applied to loops that have calls.
700 bool can_optimize =
701 total_instruction_count <= HLoopOptimization::kMaxTotalInstRemoveSuspendCheck &&
702 !analysis_info->HasInstructionsPreventingScalarOpts();
703
704 if (!can_optimize) {
705 return false;
706 }
707
708 // If we should do the optimization, disable codegen for the SuspendCheck.
709 if (generate_code) {
710 HLoopInformation* loop_info = analysis_info->GetLoopInfo();
711 HBasicBlock* header = loop_info->GetHeader();
712 HSuspendCheck* instruction = header->GetLoopInformation()->GetSuspendCheck();
713 // As other optimizations depend on SuspendCheck
714 // (e.g: CHAGuardVisitor::HoistGuard), disable its codegen instead of
715 // removing the SuspendCheck instruction.
716 instruction->SetIsNoOp(true);
717 }
718
719 return true;
720 }
721
722 //
723 // Optimization.
724 //
725
SimplifyInduction(LoopNode * node)726 void HLoopOptimization::SimplifyInduction(LoopNode* node) {
727 HBasicBlock* header = node->loop_info->GetHeader();
728 HBasicBlock* preheader = node->loop_info->GetPreHeader();
729 // Scan the phis in the header to find opportunities to simplify an induction
730 // cycle that is only used outside the loop. Replace these uses, if any, with
731 // the last value and remove the induction cycle.
732 // Examples: for (int i = 0; x != null; i++) { .... no i .... }
733 // for (int i = 0; i < 10; i++, k++) { .... no k .... } return k;
734 for (HInstructionIterator it(header->GetPhis()); !it.Done(); it.Advance()) {
735 HPhi* phi = it.Current()->AsPhi();
736 if (TrySetPhiInduction(phi, /*restrict_uses*/ true) &&
737 TryAssignLastValue(node->loop_info, phi, preheader, /*collect_loop_uses*/ false)) {
738 // Note that it's ok to have replaced uses after the loop with the last value, without
739 // being able to remove the cycle. Environment uses (which are the reason we may not be
740 // able to remove the cycle) within the loop will still hold the right value. We must
741 // have tried first, however, to replace outside uses.
742 if (CanRemoveCycle()) {
743 simplified_ = true;
744 for (HInstruction* i : *iset_) {
745 RemoveFromCycle(i);
746 }
747 DCHECK(CheckInductionSetFullyRemoved(iset_));
748 }
749 }
750 }
751 }
752
SimplifyBlocks(LoopNode * node)753 void HLoopOptimization::SimplifyBlocks(LoopNode* node) {
754 // Iterate over all basic blocks in the loop-body.
755 for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
756 HBasicBlock* block = it.Current();
757 // Remove dead instructions from the loop-body.
758 RemoveDeadInstructions(block->GetPhis());
759 RemoveDeadInstructions(block->GetInstructions());
760 // Remove trivial control flow blocks from the loop-body.
761 if (block->GetPredecessors().size() == 1 &&
762 block->GetSuccessors().size() == 1 &&
763 block->GetSingleSuccessor()->GetPredecessors().size() == 1) {
764 simplified_ = true;
765 block->MergeWith(block->GetSingleSuccessor());
766 } else if (block->GetSuccessors().size() == 2) {
767 // Trivial if block can be bypassed to either branch.
768 HBasicBlock* succ0 = block->GetSuccessors()[0];
769 HBasicBlock* succ1 = block->GetSuccessors()[1];
770 HBasicBlock* meet0 = nullptr;
771 HBasicBlock* meet1 = nullptr;
772 if (succ0 != succ1 &&
773 IsGotoBlock(succ0, &meet0) &&
774 IsGotoBlock(succ1, &meet1) &&
775 meet0 == meet1 && // meets again
776 meet0 != block && // no self-loop
777 meet0->GetPhis().IsEmpty()) { // not used for merging
778 simplified_ = true;
779 succ0->DisconnectAndDelete();
780 if (block->Dominates(meet0)) {
781 block->RemoveDominatedBlock(meet0);
782 succ1->AddDominatedBlock(meet0);
783 meet0->SetDominator(succ1);
784 }
785 }
786 }
787 }
788 }
789
TryOptimizeInnerLoopFinite(LoopNode * node)790 bool HLoopOptimization::TryOptimizeInnerLoopFinite(LoopNode* node) {
791 HBasicBlock* header = node->loop_info->GetHeader();
792 HBasicBlock* preheader = node->loop_info->GetPreHeader();
793 // Ensure loop header logic is finite.
794 int64_t trip_count = 0;
795 if (!induction_range_.IsFinite(node->loop_info, &trip_count)) {
796 return false;
797 }
798 // Ensure there is only a single loop-body (besides the header).
799 HBasicBlock* body = nullptr;
800 for (HBlocksInLoopIterator it(*node->loop_info); !it.Done(); it.Advance()) {
801 if (it.Current() != header) {
802 if (body != nullptr) {
803 return false;
804 }
805 body = it.Current();
806 }
807 }
808 CHECK(body != nullptr);
809 // Ensure there is only a single exit point.
810 if (header->GetSuccessors().size() != 2) {
811 return false;
812 }
813 HBasicBlock* exit = (header->GetSuccessors()[0] == body)
814 ? header->GetSuccessors()[1]
815 : header->GetSuccessors()[0];
816 // Ensure exit can only be reached by exiting loop.
817 if (exit->GetPredecessors().size() != 1) {
818 return false;
819 }
820 // Detect either an empty loop (no side effects other than plain iteration) or
821 // a trivial loop (just iterating once). Replace subsequent index uses, if any,
822 // with the last value and remove the loop, possibly after unrolling its body.
823 HPhi* main_phi = nullptr;
824 if (TrySetSimpleLoopHeader(header, &main_phi)) {
825 bool is_empty = IsEmptyBody(body);
826 if (reductions_->empty() && // TODO: possible with some effort
827 (is_empty || trip_count == 1) &&
828 TryAssignLastValue(node->loop_info, main_phi, preheader, /*collect_loop_uses*/ true)) {
829 if (!is_empty) {
830 // Unroll the loop-body, which sees initial value of the index.
831 main_phi->ReplaceWith(main_phi->InputAt(0));
832 preheader->MergeInstructionsWith(body);
833 }
834 body->DisconnectAndDelete();
835 exit->RemovePredecessor(header);
836 header->RemoveSuccessor(exit);
837 header->RemoveDominatedBlock(exit);
838 header->DisconnectAndDelete();
839 preheader->AddSuccessor(exit);
840 preheader->AddInstruction(new (global_allocator_) HGoto());
841 preheader->AddDominatedBlock(exit);
842 exit->SetDominator(preheader);
843 RemoveLoop(node); // update hierarchy
844 return true;
845 }
846 }
847 // Vectorize loop, if possible and valid.
848 if (kEnableVectorization &&
849 // Disable vectorization for debuggable graphs: this is a workaround for the bug
850 // in 'GenerateNewLoop' which caused the SuspendCheck environment to be invalid.
851 // TODO: b/138601207, investigate other possible cases with wrong environment values and
852 // possibly switch back vectorization on for debuggable graphs.
853 !graph_->IsDebuggable() &&
854 TrySetSimpleLoopHeader(header, &main_phi) &&
855 ShouldVectorize(node, body, trip_count) &&
856 TryAssignLastValue(node->loop_info, main_phi, preheader, /*collect_loop_uses*/ true)) {
857 Vectorize(node, body, exit, trip_count);
858 graph_->SetHasSIMD(true); // flag SIMD usage
859 MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorized);
860 return true;
861 }
862 return false;
863 }
864
OptimizeInnerLoop(LoopNode * node)865 bool HLoopOptimization::OptimizeInnerLoop(LoopNode* node) {
866 return TryOptimizeInnerLoopFinite(node) || TryLoopScalarOpts(node);
867 }
868
869 //
870 // Scalar loop peeling and unrolling: generic part methods.
871 //
872
TryUnrollingForBranchPenaltyReduction(LoopAnalysisInfo * analysis_info,bool generate_code)873 bool HLoopOptimization::TryUnrollingForBranchPenaltyReduction(LoopAnalysisInfo* analysis_info,
874 bool generate_code) {
875 if (analysis_info->GetNumberOfExits() > 1) {
876 return false;
877 }
878
879 uint32_t unrolling_factor = arch_loop_helper_->GetScalarUnrollingFactor(analysis_info);
880 if (unrolling_factor == LoopAnalysisInfo::kNoUnrollingFactor) {
881 return false;
882 }
883
884 if (generate_code) {
885 // TODO: support other unrolling factors.
886 DCHECK_EQ(unrolling_factor, 2u);
887
888 // Perform unrolling.
889 HLoopInformation* loop_info = analysis_info->GetLoopInfo();
890 LoopClonerSimpleHelper helper(loop_info, &induction_range_);
891 helper.DoUnrolling();
892
893 // Remove the redundant loop check after unrolling.
894 HIf* copy_hif =
895 helper.GetBasicBlockMap()->Get(loop_info->GetHeader())->GetLastInstruction()->AsIf();
896 int32_t constant = loop_info->Contains(*copy_hif->IfTrueSuccessor()) ? 1 : 0;
897 copy_hif->ReplaceInput(graph_->GetIntConstant(constant), 0u);
898 }
899 return true;
900 }
901
TryPeelingForLoopInvariantExitsElimination(LoopAnalysisInfo * analysis_info,bool generate_code)902 bool HLoopOptimization::TryPeelingForLoopInvariantExitsElimination(LoopAnalysisInfo* analysis_info,
903 bool generate_code) {
904 HLoopInformation* loop_info = analysis_info->GetLoopInfo();
905 if (!arch_loop_helper_->IsLoopPeelingEnabled()) {
906 return false;
907 }
908
909 if (analysis_info->GetNumberOfInvariantExits() == 0) {
910 return false;
911 }
912
913 if (generate_code) {
914 // Perform peeling.
915 LoopClonerSimpleHelper helper(loop_info, &induction_range_);
916 helper.DoPeeling();
917
918 // Statically evaluate loop check after peeling for loop invariant condition.
919 const SuperblockCloner::HInstructionMap* hir_map = helper.GetInstructionMap();
920 for (auto entry : *hir_map) {
921 HInstruction* copy = entry.second;
922 if (copy->IsIf()) {
923 TryToEvaluateIfCondition(copy->AsIf(), graph_);
924 }
925 }
926 }
927
928 return true;
929 }
930
TryFullUnrolling(LoopAnalysisInfo * analysis_info,bool generate_code)931 bool HLoopOptimization::TryFullUnrolling(LoopAnalysisInfo* analysis_info, bool generate_code) {
932 // Fully unroll loops with a known and small trip count.
933 int64_t trip_count = analysis_info->GetTripCount();
934 if (!arch_loop_helper_->IsLoopPeelingEnabled() ||
935 trip_count == LoopAnalysisInfo::kUnknownTripCount ||
936 !arch_loop_helper_->IsFullUnrollingBeneficial(analysis_info)) {
937 return false;
938 }
939
940 if (generate_code) {
941 // Peeling of the N first iterations (where N equals to the trip count) will effectively
942 // eliminate the loop: after peeling we will have N sequential iterations copied into the loop
943 // preheader and the original loop. The trip count of this loop will be 0 as the sequential
944 // iterations are executed first and there are exactly N of them. Thus we can statically
945 // evaluate the loop exit condition to 'false' and fully eliminate it.
946 //
947 // Here is an example of full unrolling of a loop with a trip count 2:
948 //
949 // loop_cond_1
950 // loop_body_1 <- First iteration.
951 // |
952 // \ v
953 // ==\ loop_cond_2
954 // ==/ loop_body_2 <- Second iteration.
955 // / |
956 // <- v <-
957 // loop_cond \ loop_cond \ <- This cond is always false.
958 // loop_body _/ loop_body _/
959 //
960 HLoopInformation* loop_info = analysis_info->GetLoopInfo();
961 PeelByCount(loop_info, trip_count, &induction_range_);
962 HIf* loop_hif = loop_info->GetHeader()->GetLastInstruction()->AsIf();
963 int32_t constant = loop_info->Contains(*loop_hif->IfTrueSuccessor()) ? 0 : 1;
964 loop_hif->ReplaceInput(graph_->GetIntConstant(constant), 0u);
965 }
966
967 return true;
968 }
969
TryLoopScalarOpts(LoopNode * node)970 bool HLoopOptimization::TryLoopScalarOpts(LoopNode* node) {
971 HLoopInformation* loop_info = node->loop_info;
972 int64_t trip_count = LoopAnalysis::GetLoopTripCount(loop_info, &induction_range_);
973 LoopAnalysisInfo analysis_info(loop_info);
974 LoopAnalysis::CalculateLoopBasicProperties(loop_info, &analysis_info, trip_count);
975
976 if (analysis_info.HasInstructionsPreventingScalarOpts() ||
977 arch_loop_helper_->IsLoopNonBeneficialForScalarOpts(&analysis_info)) {
978 return false;
979 }
980
981 if (!TryFullUnrolling(&analysis_info, /*generate_code*/ false) &&
982 !TryPeelingForLoopInvariantExitsElimination(&analysis_info, /*generate_code*/ false) &&
983 !TryUnrollingForBranchPenaltyReduction(&analysis_info, /*generate_code*/ false) &&
984 !TryToRemoveSuspendCheckFromLoopHeader(&analysis_info, /*generate_code*/ false)) {
985 return false;
986 }
987
988 // Try the suspend check removal even for non-clonable loops. Also this
989 // optimization doesn't interfere with other scalar loop optimizations so it can
990 // be done prior to them.
991 bool removed_suspend_check = TryToRemoveSuspendCheckFromLoopHeader(&analysis_info);
992
993 // Run 'IsLoopClonable' the last as it might be time-consuming.
994 if (!LoopClonerHelper::IsLoopClonable(loop_info)) {
995 return false;
996 }
997
998 return TryFullUnrolling(&analysis_info) ||
999 TryPeelingForLoopInvariantExitsElimination(&analysis_info) ||
1000 TryUnrollingForBranchPenaltyReduction(&analysis_info) || removed_suspend_check;
1001 }
1002
1003 //
1004 // Loop vectorization. The implementation is based on the book by Aart J.C. Bik:
1005 // "The Software Vectorization Handbook. Applying Multimedia Extensions for Maximum Performance."
1006 // Intel Press, June, 2004 (http://www.aartbik.com/).
1007 //
1008
ShouldVectorize(LoopNode * node,HBasicBlock * block,int64_t trip_count)1009 bool HLoopOptimization::ShouldVectorize(LoopNode* node, HBasicBlock* block, int64_t trip_count) {
1010 // Reset vector bookkeeping.
1011 vector_length_ = 0;
1012 vector_refs_->clear();
1013 vector_static_peeling_factor_ = 0;
1014 vector_dynamic_peeling_candidate_ = nullptr;
1015 vector_runtime_test_a_ =
1016 vector_runtime_test_b_ = nullptr;
1017
1018 // Phis in the loop-body prevent vectorization.
1019 if (!block->GetPhis().IsEmpty()) {
1020 return false;
1021 }
1022
1023 // Scan the loop-body, starting a right-hand-side tree traversal at each left-hand-side
1024 // occurrence, which allows passing down attributes down the use tree.
1025 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1026 if (!VectorizeDef(node, it.Current(), /*generate_code*/ false)) {
1027 return false; // failure to vectorize a left-hand-side
1028 }
1029 }
1030
1031 // Prepare alignment analysis:
1032 // (1) find desired alignment (SIMD vector size in bytes).
1033 // (2) initialize static loop peeling votes (peeling factor that will
1034 // make one particular reference aligned), never to exceed (1).
1035 // (3) variable to record how many references share same alignment.
1036 // (4) variable to record suitable candidate for dynamic loop peeling.
1037 size_t desired_alignment = GetVectorSizeInBytes();
1038 ScopedArenaVector<uint32_t> peeling_votes(desired_alignment, 0u,
1039 loop_allocator_->Adapter(kArenaAllocLoopOptimization));
1040
1041 uint32_t max_num_same_alignment = 0;
1042 const ArrayReference* peeling_candidate = nullptr;
1043
1044 // Data dependence analysis. Find each pair of references with same type, where
1045 // at least one is a write. Each such pair denotes a possible data dependence.
1046 // This analysis exploits the property that differently typed arrays cannot be
1047 // aliased, as well as the property that references either point to the same
1048 // array or to two completely disjoint arrays, i.e., no partial aliasing.
1049 // Other than a few simply heuristics, no detailed subscript analysis is done.
1050 // The scan over references also prepares finding a suitable alignment strategy.
1051 for (auto i = vector_refs_->begin(); i != vector_refs_->end(); ++i) {
1052 uint32_t num_same_alignment = 0;
1053 // Scan over all next references.
1054 for (auto j = i; ++j != vector_refs_->end(); ) {
1055 if (i->type == j->type && (i->lhs || j->lhs)) {
1056 // Found same-typed a[i+x] vs. b[i+y], where at least one is a write.
1057 HInstruction* a = i->base;
1058 HInstruction* b = j->base;
1059 HInstruction* x = i->offset;
1060 HInstruction* y = j->offset;
1061 if (a == b) {
1062 // Found a[i+x] vs. a[i+y]. Accept if x == y (loop-independent data dependence).
1063 // Conservatively assume a loop-carried data dependence otherwise, and reject.
1064 if (x != y) {
1065 return false;
1066 }
1067 // Count the number of references that have the same alignment (since
1068 // base and offset are the same) and where at least one is a write, so
1069 // e.g. a[i] = a[i] + b[i] counts a[i] but not b[i]).
1070 num_same_alignment++;
1071 } else {
1072 // Found a[i+x] vs. b[i+y]. Accept if x == y (at worst loop-independent data dependence).
1073 // Conservatively assume a potential loop-carried data dependence otherwise, avoided by
1074 // generating an explicit a != b disambiguation runtime test on the two references.
1075 if (x != y) {
1076 // To avoid excessive overhead, we only accept one a != b test.
1077 if (vector_runtime_test_a_ == nullptr) {
1078 // First test found.
1079 vector_runtime_test_a_ = a;
1080 vector_runtime_test_b_ = b;
1081 } else if ((vector_runtime_test_a_ != a || vector_runtime_test_b_ != b) &&
1082 (vector_runtime_test_a_ != b || vector_runtime_test_b_ != a)) {
1083 return false; // second test would be needed
1084 }
1085 }
1086 }
1087 }
1088 }
1089 // Update information for finding suitable alignment strategy:
1090 // (1) update votes for static loop peeling,
1091 // (2) update suitable candidate for dynamic loop peeling.
1092 Alignment alignment = ComputeAlignment(i->offset, i->type, i->is_string_char_at);
1093 if (alignment.Base() >= desired_alignment) {
1094 // If the array/string object has a known, sufficient alignment, use the
1095 // initial offset to compute the static loop peeling vote (this always
1096 // works, since elements have natural alignment).
1097 uint32_t offset = alignment.Offset() & (desired_alignment - 1u);
1098 uint32_t vote = (offset == 0)
1099 ? 0
1100 : ((desired_alignment - offset) >> DataType::SizeShift(i->type));
1101 DCHECK_LT(vote, 16u);
1102 ++peeling_votes[vote];
1103 } else if (BaseAlignment() >= desired_alignment &&
1104 num_same_alignment > max_num_same_alignment) {
1105 // Otherwise, if the array/string object has a known, sufficient alignment
1106 // for just the base but with an unknown offset, record the candidate with
1107 // the most occurrences for dynamic loop peeling (again, the peeling always
1108 // works, since elements have natural alignment).
1109 max_num_same_alignment = num_same_alignment;
1110 peeling_candidate = &(*i);
1111 }
1112 } // for i
1113
1114 if (!IsInPredicatedVectorizationMode()) {
1115 // Find a suitable alignment strategy.
1116 SetAlignmentStrategy(peeling_votes, peeling_candidate);
1117 }
1118
1119 // Does vectorization seem profitable?
1120 if (!IsVectorizationProfitable(trip_count)) {
1121 return false;
1122 }
1123
1124 // Success!
1125 return true;
1126 }
1127
Vectorize(LoopNode * node,HBasicBlock * block,HBasicBlock * exit,int64_t trip_count)1128 void HLoopOptimization::Vectorize(LoopNode* node,
1129 HBasicBlock* block,
1130 HBasicBlock* exit,
1131 int64_t trip_count) {
1132 HBasicBlock* header = node->loop_info->GetHeader();
1133 HBasicBlock* preheader = node->loop_info->GetPreHeader();
1134
1135 // Pick a loop unrolling factor for the vector loop.
1136 uint32_t unroll = arch_loop_helper_->GetSIMDUnrollingFactor(
1137 block, trip_count, MaxNumberPeeled(), vector_length_);
1138 uint32_t chunk = vector_length_ * unroll;
1139
1140 DCHECK(trip_count == 0 || (trip_count >= MaxNumberPeeled() + chunk));
1141
1142 // A cleanup loop is needed, at least, for any unknown trip count or
1143 // for a known trip count with remainder iterations after vectorization.
1144 bool needs_cleanup = !IsInPredicatedVectorizationMode() &&
1145 (trip_count == 0 || ((trip_count - vector_static_peeling_factor_) % chunk) != 0);
1146
1147 // Adjust vector bookkeeping.
1148 HPhi* main_phi = nullptr;
1149 bool is_simple_loop_header = TrySetSimpleLoopHeader(header, &main_phi); // refills sets
1150 DCHECK(is_simple_loop_header);
1151 vector_header_ = header;
1152 vector_body_ = block;
1153
1154 // Loop induction type.
1155 DataType::Type induc_type = main_phi->GetType();
1156 DCHECK(induc_type == DataType::Type::kInt32 || induc_type == DataType::Type::kInt64)
1157 << induc_type;
1158
1159 // Generate the trip count for static or dynamic loop peeling, if needed:
1160 // ptc = <peeling factor>;
1161 HInstruction* ptc = nullptr;
1162 if (vector_static_peeling_factor_ != 0) {
1163 DCHECK(!IsInPredicatedVectorizationMode());
1164 // Static loop peeling for SIMD alignment (using the most suitable
1165 // fixed peeling factor found during prior alignment analysis).
1166 DCHECK(vector_dynamic_peeling_candidate_ == nullptr);
1167 ptc = graph_->GetConstant(induc_type, vector_static_peeling_factor_);
1168 } else if (vector_dynamic_peeling_candidate_ != nullptr) {
1169 DCHECK(!IsInPredicatedVectorizationMode());
1170 // Dynamic loop peeling for SIMD alignment (using the most suitable
1171 // candidate found during prior alignment analysis):
1172 // rem = offset % ALIGN; // adjusted as #elements
1173 // ptc = rem == 0 ? 0 : (ALIGN - rem);
1174 uint32_t shift = DataType::SizeShift(vector_dynamic_peeling_candidate_->type);
1175 uint32_t align = GetVectorSizeInBytes() >> shift;
1176 uint32_t hidden_offset = HiddenOffset(vector_dynamic_peeling_candidate_->type,
1177 vector_dynamic_peeling_candidate_->is_string_char_at);
1178 HInstruction* adjusted_offset = graph_->GetConstant(induc_type, hidden_offset >> shift);
1179 HInstruction* offset = Insert(preheader, new (global_allocator_) HAdd(
1180 induc_type, vector_dynamic_peeling_candidate_->offset, adjusted_offset));
1181 HInstruction* rem = Insert(preheader, new (global_allocator_) HAnd(
1182 induc_type, offset, graph_->GetConstant(induc_type, align - 1u)));
1183 HInstruction* sub = Insert(preheader, new (global_allocator_) HSub(
1184 induc_type, graph_->GetConstant(induc_type, align), rem));
1185 HInstruction* cond = Insert(preheader, new (global_allocator_) HEqual(
1186 rem, graph_->GetConstant(induc_type, 0)));
1187 ptc = Insert(preheader, new (global_allocator_) HSelect(
1188 cond, graph_->GetConstant(induc_type, 0), sub, kNoDexPc));
1189 needs_cleanup = true; // don't know the exact amount
1190 }
1191
1192 // Generate loop control:
1193 // stc = <trip-count>;
1194 // ptc = min(stc, ptc);
1195 // vtc = stc - (stc - ptc) % chunk;
1196 // i = 0;
1197 HInstruction* stc = induction_range_.GenerateTripCount(node->loop_info, graph_, preheader);
1198 HInstruction* vtc = stc;
1199 if (needs_cleanup) {
1200 DCHECK(!IsInPredicatedVectorizationMode());
1201 DCHECK(IsPowerOfTwo(chunk));
1202 HInstruction* diff = stc;
1203 if (ptc != nullptr) {
1204 if (trip_count == 0) {
1205 HInstruction* cond = Insert(preheader, new (global_allocator_) HAboveOrEqual(stc, ptc));
1206 ptc = Insert(preheader, new (global_allocator_) HSelect(cond, ptc, stc, kNoDexPc));
1207 }
1208 diff = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, ptc));
1209 }
1210 HInstruction* rem = Insert(
1211 preheader, new (global_allocator_) HAnd(induc_type,
1212 diff,
1213 graph_->GetConstant(induc_type, chunk - 1)));
1214 vtc = Insert(preheader, new (global_allocator_) HSub(induc_type, stc, rem));
1215 }
1216 vector_index_ = graph_->GetConstant(induc_type, 0);
1217
1218 // Generate runtime disambiguation test:
1219 // vtc = a != b ? vtc : 0;
1220 if (vector_runtime_test_a_ != nullptr) {
1221 HInstruction* rt = Insert(
1222 preheader,
1223 new (global_allocator_) HNotEqual(vector_runtime_test_a_, vector_runtime_test_b_));
1224 vtc = Insert(preheader,
1225 new (global_allocator_)
1226 HSelect(rt, vtc, graph_->GetConstant(induc_type, 0), kNoDexPc));
1227 needs_cleanup = true;
1228 }
1229
1230 // Generate alignment peeling loop, if needed:
1231 // for ( ; i < ptc; i += 1)
1232 // <loop-body>
1233 //
1234 // NOTE: The alignment forced by the peeling loop is preserved even if data is
1235 // moved around during suspend checks, since all analysis was based on
1236 // nothing more than the Android runtime alignment conventions.
1237 if (ptc != nullptr) {
1238 DCHECK(!IsInPredicatedVectorizationMode());
1239 vector_mode_ = kSequential;
1240 GenerateNewLoop(node,
1241 block,
1242 graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
1243 vector_index_,
1244 ptc,
1245 graph_->GetConstant(induc_type, 1),
1246 LoopAnalysisInfo::kNoUnrollingFactor);
1247 }
1248
1249 // Generate vector loop, possibly further unrolled:
1250 // for ( ; i < vtc; i += chunk)
1251 // <vectorized-loop-body>
1252 vector_mode_ = kVector;
1253 GenerateNewLoop(node,
1254 block,
1255 graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
1256 vector_index_,
1257 vtc,
1258 graph_->GetConstant(induc_type, vector_length_), // increment per unroll
1259 unroll);
1260 HLoopInformation* vloop = vector_header_->GetLoopInformation();
1261
1262 // Generate cleanup loop, if needed:
1263 // for ( ; i < stc; i += 1)
1264 // <loop-body>
1265 if (needs_cleanup) {
1266 DCHECK_IMPLIES(IsInPredicatedVectorizationMode(), vector_runtime_test_a_ != nullptr);
1267 vector_mode_ = kSequential;
1268 GenerateNewLoop(node,
1269 block,
1270 graph_->TransformLoopForVectorization(vector_header_, vector_body_, exit),
1271 vector_index_,
1272 stc,
1273 graph_->GetConstant(induc_type, 1),
1274 LoopAnalysisInfo::kNoUnrollingFactor);
1275 }
1276
1277 // Link reductions to their final uses.
1278 for (auto i = reductions_->begin(); i != reductions_->end(); ++i) {
1279 if (i->first->IsPhi()) {
1280 HInstruction* phi = i->first;
1281 HInstruction* repl = ReduceAndExtractIfNeeded(i->second);
1282 // Deal with regular uses.
1283 for (const HUseListNode<HInstruction*>& use : phi->GetUses()) {
1284 induction_range_.Replace(use.GetUser(), phi, repl); // update induction use
1285 }
1286 phi->ReplaceWith(repl);
1287 }
1288 }
1289
1290 // Remove the original loop by disconnecting the body block
1291 // and removing all instructions from the header.
1292 block->DisconnectAndDelete();
1293 while (!header->GetFirstInstruction()->IsGoto()) {
1294 header->RemoveInstruction(header->GetFirstInstruction());
1295 }
1296
1297 // Update loop hierarchy: the old header now resides in the same outer loop
1298 // as the old preheader. Note that we don't bother putting sequential
1299 // loops back in the hierarchy at this point.
1300 header->SetLoopInformation(preheader->GetLoopInformation()); // outward
1301 node->loop_info = vloop;
1302 }
1303
GenerateNewLoop(LoopNode * node,HBasicBlock * block,HBasicBlock * new_preheader,HInstruction * lo,HInstruction * hi,HInstruction * step,uint32_t unroll)1304 void HLoopOptimization::GenerateNewLoop(LoopNode* node,
1305 HBasicBlock* block,
1306 HBasicBlock* new_preheader,
1307 HInstruction* lo,
1308 HInstruction* hi,
1309 HInstruction* step,
1310 uint32_t unroll) {
1311 DCHECK(unroll == 1 || vector_mode_ == kVector);
1312 DataType::Type induc_type = lo->GetType();
1313 // Prepare new loop.
1314 vector_preheader_ = new_preheader,
1315 vector_header_ = vector_preheader_->GetSingleSuccessor();
1316 vector_body_ = vector_header_->GetSuccessors()[1];
1317 HPhi* phi = new (global_allocator_) HPhi(global_allocator_,
1318 kNoRegNumber,
1319 0,
1320 HPhi::ToPhiType(induc_type));
1321 // Generate header and prepare body.
1322 // for (i = lo; i < hi; i += step)
1323 // <loop-body>
1324 HInstruction* cond = nullptr;
1325 HInstruction* set_pred = nullptr;
1326 if (IsInPredicatedVectorizationMode()) {
1327 HVecPredWhile* pred_while =
1328 new (global_allocator_) HVecPredWhile(global_allocator_,
1329 phi,
1330 hi,
1331 HVecPredWhile::CondKind::kLO,
1332 DataType::Type::kInt32,
1333 vector_length_,
1334 0u);
1335
1336 cond = new (global_allocator_) HVecPredCondition(global_allocator_,
1337 pred_while,
1338 HVecPredCondition::PCondKind::kNFirst,
1339 DataType::Type::kInt32,
1340 vector_length_,
1341 0u);
1342
1343 vector_header_->AddPhi(phi);
1344 vector_header_->AddInstruction(pred_while);
1345 vector_header_->AddInstruction(cond);
1346 set_pred = pred_while;
1347 } else {
1348 cond = new (global_allocator_) HAboveOrEqual(phi, hi);
1349 vector_header_->AddPhi(phi);
1350 vector_header_->AddInstruction(cond);
1351 }
1352
1353 vector_header_->AddInstruction(new (global_allocator_) HIf(cond));
1354 vector_index_ = phi;
1355 vector_permanent_map_->clear(); // preserved over unrolling
1356 for (uint32_t u = 0; u < unroll; u++) {
1357 // Generate instruction map.
1358 vector_map_->clear();
1359 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1360 bool vectorized_def = VectorizeDef(node, it.Current(), /*generate_code*/ true);
1361 DCHECK(vectorized_def);
1362 }
1363 // Generate body from the instruction map, but in original program order.
1364 HEnvironment* env = vector_header_->GetFirstInstruction()->GetEnvironment();
1365 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
1366 auto i = vector_map_->find(it.Current());
1367 if (i != vector_map_->end() && !i->second->IsInBlock()) {
1368 Insert(vector_body_, i->second);
1369 if (IsInPredicatedVectorizationMode() && i->second->IsVecOperation()) {
1370 HVecOperation* op = i->second->AsVecOperation();
1371 op->SetMergingGoverningPredicate(set_pred);
1372 }
1373 // Deal with instructions that need an environment, such as the scalar intrinsics.
1374 if (i->second->NeedsEnvironment()) {
1375 i->second->CopyEnvironmentFromWithLoopPhiAdjustment(env, vector_header_);
1376 }
1377 }
1378 }
1379 // Generate the induction.
1380 vector_index_ = new (global_allocator_) HAdd(induc_type, vector_index_, step);
1381 Insert(vector_body_, vector_index_);
1382 }
1383 // Finalize phi inputs for the reductions (if any).
1384 for (auto i = reductions_->begin(); i != reductions_->end(); ++i) {
1385 if (!i->first->IsPhi()) {
1386 DCHECK(i->second->IsPhi());
1387 GenerateVecReductionPhiInputs(i->second->AsPhi(), i->first);
1388 }
1389 }
1390 // Finalize phi inputs for the loop index.
1391 phi->AddInput(lo);
1392 phi->AddInput(vector_index_);
1393 vector_index_ = phi;
1394 }
1395
VectorizeDef(LoopNode * node,HInstruction * instruction,bool generate_code)1396 bool HLoopOptimization::VectorizeDef(LoopNode* node,
1397 HInstruction* instruction,
1398 bool generate_code) {
1399 // Accept a left-hand-side array base[index] for
1400 // (1) supported vector type,
1401 // (2) loop-invariant base,
1402 // (3) unit stride index,
1403 // (4) vectorizable right-hand-side value.
1404 uint64_t restrictions = kNone;
1405 // Don't accept expressions that can throw.
1406 if (instruction->CanThrow()) {
1407 return false;
1408 }
1409 if (instruction->IsArraySet()) {
1410 DataType::Type type = instruction->AsArraySet()->GetComponentType();
1411 HInstruction* base = instruction->InputAt(0);
1412 HInstruction* index = instruction->InputAt(1);
1413 HInstruction* value = instruction->InputAt(2);
1414 HInstruction* offset = nullptr;
1415 // For narrow types, explicit type conversion may have been
1416 // optimized way, so set the no hi bits restriction here.
1417 if (DataType::Size(type) <= 2) {
1418 restrictions |= kNoHiBits;
1419 }
1420 if (TrySetVectorType(type, &restrictions) &&
1421 node->loop_info->IsDefinedOutOfTheLoop(base) &&
1422 induction_range_.IsUnitStride(instruction->GetBlock(), index, graph_, &offset) &&
1423 VectorizeUse(node, value, generate_code, type, restrictions)) {
1424 if (generate_code) {
1425 GenerateVecSub(index, offset);
1426 GenerateVecMem(instruction, vector_map_->Get(index), vector_map_->Get(value), offset, type);
1427 } else {
1428 vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ true));
1429 }
1430 return true;
1431 }
1432 return false;
1433 }
1434 // Accept a left-hand-side reduction for
1435 // (1) supported vector type,
1436 // (2) vectorizable right-hand-side value.
1437 auto redit = reductions_->find(instruction);
1438 if (redit != reductions_->end()) {
1439 DataType::Type type = instruction->GetType();
1440 // Recognize SAD idiom or direct reduction.
1441 if (VectorizeSADIdiom(node, instruction, generate_code, type, restrictions) ||
1442 VectorizeDotProdIdiom(node, instruction, generate_code, type, restrictions) ||
1443 (TrySetVectorType(type, &restrictions) &&
1444 VectorizeUse(node, instruction, generate_code, type, restrictions))) {
1445 if (generate_code) {
1446 HInstruction* new_red = vector_map_->Get(instruction);
1447 vector_permanent_map_->Put(new_red, vector_map_->Get(redit->second));
1448 vector_permanent_map_->Overwrite(redit->second, new_red);
1449 }
1450 return true;
1451 }
1452 return false;
1453 }
1454 // Branch back okay.
1455 if (instruction->IsGoto()) {
1456 return true;
1457 }
1458 // Otherwise accept only expressions with no effects outside the immediate loop-body.
1459 // Note that actual uses are inspected during right-hand-side tree traversal.
1460 return !IsUsedOutsideLoop(node->loop_info, instruction)
1461 && !instruction->DoesAnyWrite();
1462 }
1463
VectorizeUse(LoopNode * node,HInstruction * instruction,bool generate_code,DataType::Type type,uint64_t restrictions)1464 bool HLoopOptimization::VectorizeUse(LoopNode* node,
1465 HInstruction* instruction,
1466 bool generate_code,
1467 DataType::Type type,
1468 uint64_t restrictions) {
1469 // Accept anything for which code has already been generated.
1470 if (generate_code) {
1471 if (vector_map_->find(instruction) != vector_map_->end()) {
1472 return true;
1473 }
1474 }
1475 // Continue the right-hand-side tree traversal, passing in proper
1476 // types and vector restrictions along the way. During code generation,
1477 // all new nodes are drawn from the global allocator.
1478 if (node->loop_info->IsDefinedOutOfTheLoop(instruction)) {
1479 // Accept invariant use, using scalar expansion.
1480 if (generate_code) {
1481 GenerateVecInv(instruction, type);
1482 }
1483 return true;
1484 } else if (instruction->IsArrayGet()) {
1485 // Deal with vector restrictions.
1486 bool is_string_char_at = instruction->AsArrayGet()->IsStringCharAt();
1487
1488 if (is_string_char_at && (HasVectorRestrictions(restrictions, kNoStringCharAt) ||
1489 IsInPredicatedVectorizationMode())) {
1490 // TODO: Support CharAt for predicated mode.
1491 return false;
1492 }
1493 // Accept a right-hand-side array base[index] for
1494 // (1) matching vector type (exact match or signed/unsigned integral type of the same size),
1495 // (2) loop-invariant base,
1496 // (3) unit stride index,
1497 // (4) vectorizable right-hand-side value.
1498 HInstruction* base = instruction->InputAt(0);
1499 HInstruction* index = instruction->InputAt(1);
1500 HInstruction* offset = nullptr;
1501 if (HVecOperation::ToSignedType(type) == HVecOperation::ToSignedType(instruction->GetType()) &&
1502 node->loop_info->IsDefinedOutOfTheLoop(base) &&
1503 induction_range_.IsUnitStride(instruction->GetBlock(), index, graph_, &offset)) {
1504 if (generate_code) {
1505 GenerateVecSub(index, offset);
1506 GenerateVecMem(instruction, vector_map_->Get(index), nullptr, offset, type);
1507 } else {
1508 vector_refs_->insert(ArrayReference(base, offset, type, /*lhs*/ false, is_string_char_at));
1509 }
1510 return true;
1511 }
1512 } else if (instruction->IsPhi()) {
1513 // Accept particular phi operations.
1514 if (reductions_->find(instruction) != reductions_->end()) {
1515 // Deal with vector restrictions.
1516 if (HasVectorRestrictions(restrictions, kNoReduction)) {
1517 return false;
1518 }
1519 // Accept a reduction.
1520 if (generate_code) {
1521 GenerateVecReductionPhi(instruction->AsPhi());
1522 }
1523 return true;
1524 }
1525 // TODO: accept right-hand-side induction?
1526 return false;
1527 } else if (instruction->IsTypeConversion()) {
1528 // Accept particular type conversions.
1529 HTypeConversion* conversion = instruction->AsTypeConversion();
1530 HInstruction* opa = conversion->InputAt(0);
1531 DataType::Type from = conversion->GetInputType();
1532 DataType::Type to = conversion->GetResultType();
1533 if (DataType::IsIntegralType(from) && DataType::IsIntegralType(to)) {
1534 uint32_t size_vec = DataType::Size(type);
1535 uint32_t size_from = DataType::Size(from);
1536 uint32_t size_to = DataType::Size(to);
1537 // Accept an integral conversion
1538 // (1a) narrowing into vector type, "wider" operations cannot bring in higher order bits, or
1539 // (1b) widening from at least vector type, and
1540 // (2) vectorizable operand.
1541 if ((size_to < size_from &&
1542 size_to == size_vec &&
1543 VectorizeUse(node, opa, generate_code, type, restrictions | kNoHiBits)) ||
1544 (size_to >= size_from &&
1545 size_from >= size_vec &&
1546 VectorizeUse(node, opa, generate_code, type, restrictions))) {
1547 if (generate_code) {
1548 if (vector_mode_ == kVector) {
1549 vector_map_->Put(instruction, vector_map_->Get(opa)); // operand pass-through
1550 } else {
1551 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
1552 }
1553 }
1554 return true;
1555 }
1556 } else if (to == DataType::Type::kFloat32 && from == DataType::Type::kInt32) {
1557 DCHECK_EQ(to, type);
1558 // Accept int to float conversion for
1559 // (1) supported int,
1560 // (2) vectorizable operand.
1561 if (TrySetVectorType(from, &restrictions) &&
1562 VectorizeUse(node, opa, generate_code, from, restrictions)) {
1563 if (generate_code) {
1564 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
1565 }
1566 return true;
1567 }
1568 }
1569 return false;
1570 } else if (instruction->IsNeg() || instruction->IsNot() || instruction->IsBooleanNot()) {
1571 // Accept unary operator for vectorizable operand.
1572 HInstruction* opa = instruction->InputAt(0);
1573 if (VectorizeUse(node, opa, generate_code, type, restrictions)) {
1574 if (generate_code) {
1575 GenerateVecOp(instruction, vector_map_->Get(opa), nullptr, type);
1576 }
1577 return true;
1578 }
1579 } else if (instruction->IsAdd() || instruction->IsSub() ||
1580 instruction->IsMul() || instruction->IsDiv() ||
1581 instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
1582 // Deal with vector restrictions.
1583 if ((instruction->IsMul() && HasVectorRestrictions(restrictions, kNoMul)) ||
1584 (instruction->IsDiv() && HasVectorRestrictions(restrictions, kNoDiv))) {
1585 return false;
1586 }
1587 // Accept binary operator for vectorizable operands.
1588 HInstruction* opa = instruction->InputAt(0);
1589 HInstruction* opb = instruction->InputAt(1);
1590 if (VectorizeUse(node, opa, generate_code, type, restrictions) &&
1591 VectorizeUse(node, opb, generate_code, type, restrictions)) {
1592 if (generate_code) {
1593 GenerateVecOp(instruction, vector_map_->Get(opa), vector_map_->Get(opb), type);
1594 }
1595 return true;
1596 }
1597 } else if (instruction->IsShl() || instruction->IsShr() || instruction->IsUShr()) {
1598 // Recognize halving add idiom.
1599 if (VectorizeHalvingAddIdiom(node, instruction, generate_code, type, restrictions)) {
1600 return true;
1601 }
1602 // Deal with vector restrictions.
1603 HInstruction* opa = instruction->InputAt(0);
1604 HInstruction* opb = instruction->InputAt(1);
1605 HInstruction* r = opa;
1606 bool is_unsigned = false;
1607 if ((HasVectorRestrictions(restrictions, kNoShift)) ||
1608 (instruction->IsShr() && HasVectorRestrictions(restrictions, kNoShr))) {
1609 return false; // unsupported instruction
1610 } else if (HasVectorRestrictions(restrictions, kNoHiBits)) {
1611 // Shifts right need extra care to account for higher order bits.
1612 // TODO: less likely shr/unsigned and ushr/signed can by flipping signess.
1613 if (instruction->IsShr() &&
1614 (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || is_unsigned)) {
1615 return false; // reject, unless all operands are sign-extension narrower
1616 } else if (instruction->IsUShr() &&
1617 (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || !is_unsigned)) {
1618 return false; // reject, unless all operands are zero-extension narrower
1619 }
1620 }
1621 // Accept shift operator for vectorizable/invariant operands.
1622 // TODO: accept symbolic, albeit loop invariant shift factors.
1623 DCHECK(r != nullptr);
1624 if (generate_code && vector_mode_ != kVector) { // de-idiom
1625 r = opa;
1626 }
1627 int64_t distance = 0;
1628 if (VectorizeUse(node, r, generate_code, type, restrictions) &&
1629 IsInt64AndGet(opb, /*out*/ &distance)) {
1630 // Restrict shift distance to packed data type width.
1631 int64_t max_distance = DataType::Size(type) * 8;
1632 if (0 <= distance && distance < max_distance) {
1633 if (generate_code) {
1634 GenerateVecOp(instruction, vector_map_->Get(r), opb, type);
1635 }
1636 return true;
1637 }
1638 }
1639 } else if (instruction->IsAbs()) {
1640 // Deal with vector restrictions.
1641 HInstruction* opa = instruction->InputAt(0);
1642 HInstruction* r = opa;
1643 bool is_unsigned = false;
1644 if (HasVectorRestrictions(restrictions, kNoAbs)) {
1645 return false;
1646 } else if (HasVectorRestrictions(restrictions, kNoHiBits) &&
1647 (!IsNarrowerOperand(opa, type, &r, &is_unsigned) || is_unsigned)) {
1648 return false; // reject, unless operand is sign-extension narrower
1649 }
1650 // Accept ABS(x) for vectorizable operand.
1651 DCHECK(r != nullptr);
1652 if (generate_code && vector_mode_ != kVector) { // de-idiom
1653 r = opa;
1654 }
1655 if (VectorizeUse(node, r, generate_code, type, restrictions)) {
1656 if (generate_code) {
1657 GenerateVecOp(instruction,
1658 vector_map_->Get(r),
1659 nullptr,
1660 HVecOperation::ToProperType(type, is_unsigned));
1661 }
1662 return true;
1663 }
1664 }
1665 return false;
1666 }
1667
GetVectorSizeInBytes()1668 uint32_t HLoopOptimization::GetVectorSizeInBytes() {
1669 return simd_register_size_;
1670 }
1671
TrySetVectorType(DataType::Type type,uint64_t * restrictions)1672 bool HLoopOptimization::TrySetVectorType(DataType::Type type, uint64_t* restrictions) {
1673 const InstructionSetFeatures* features = compiler_options_->GetInstructionSetFeatures();
1674 switch (compiler_options_->GetInstructionSet()) {
1675 case InstructionSet::kArm:
1676 case InstructionSet::kThumb2:
1677 // Allow vectorization for all ARM devices, because Android assumes that
1678 // ARM 32-bit always supports advanced SIMD (64-bit SIMD).
1679 switch (type) {
1680 case DataType::Type::kBool:
1681 case DataType::Type::kUint8:
1682 case DataType::Type::kInt8:
1683 *restrictions |= kNoDiv | kNoReduction | kNoDotProd;
1684 return TrySetVectorLength(type, 8);
1685 case DataType::Type::kUint16:
1686 case DataType::Type::kInt16:
1687 *restrictions |= kNoDiv | kNoStringCharAt | kNoReduction | kNoDotProd;
1688 return TrySetVectorLength(type, 4);
1689 case DataType::Type::kInt32:
1690 *restrictions |= kNoDiv | kNoWideSAD;
1691 return TrySetVectorLength(type, 2);
1692 default:
1693 break;
1694 }
1695 return false;
1696 case InstructionSet::kArm64:
1697 if (IsInPredicatedVectorizationMode()) {
1698 // SVE vectorization.
1699 CHECK(features->AsArm64InstructionSetFeatures()->HasSVE());
1700 size_t vector_length = simd_register_size_ / DataType::Size(type);
1701 DCHECK_EQ(simd_register_size_ % DataType::Size(type), 0u);
1702 switch (type) {
1703 case DataType::Type::kBool:
1704 case DataType::Type::kUint8:
1705 case DataType::Type::kInt8:
1706 *restrictions |= kNoDiv |
1707 kNoSignedHAdd |
1708 kNoUnsignedHAdd |
1709 kNoUnroundedHAdd |
1710 kNoSAD;
1711 return TrySetVectorLength(type, vector_length);
1712 case DataType::Type::kUint16:
1713 case DataType::Type::kInt16:
1714 *restrictions |= kNoDiv |
1715 kNoSignedHAdd |
1716 kNoUnsignedHAdd |
1717 kNoUnroundedHAdd |
1718 kNoSAD |
1719 kNoDotProd;
1720 return TrySetVectorLength(type, vector_length);
1721 case DataType::Type::kInt32:
1722 *restrictions |= kNoDiv | kNoSAD;
1723 return TrySetVectorLength(type, vector_length);
1724 case DataType::Type::kInt64:
1725 *restrictions |= kNoDiv | kNoSAD;
1726 return TrySetVectorLength(type, vector_length);
1727 case DataType::Type::kFloat32:
1728 *restrictions |= kNoReduction;
1729 return TrySetVectorLength(type, vector_length);
1730 case DataType::Type::kFloat64:
1731 *restrictions |= kNoReduction;
1732 return TrySetVectorLength(type, vector_length);
1733 default:
1734 break;
1735 }
1736 return false;
1737 } else {
1738 // Allow vectorization for all ARM devices, because Android assumes that
1739 // ARMv8 AArch64 always supports advanced SIMD (128-bit SIMD).
1740 switch (type) {
1741 case DataType::Type::kBool:
1742 case DataType::Type::kUint8:
1743 case DataType::Type::kInt8:
1744 *restrictions |= kNoDiv;
1745 return TrySetVectorLength(type, 16);
1746 case DataType::Type::kUint16:
1747 case DataType::Type::kInt16:
1748 *restrictions |= kNoDiv;
1749 return TrySetVectorLength(type, 8);
1750 case DataType::Type::kInt32:
1751 *restrictions |= kNoDiv;
1752 return TrySetVectorLength(type, 4);
1753 case DataType::Type::kInt64:
1754 *restrictions |= kNoDiv | kNoMul;
1755 return TrySetVectorLength(type, 2);
1756 case DataType::Type::kFloat32:
1757 *restrictions |= kNoReduction;
1758 return TrySetVectorLength(type, 4);
1759 case DataType::Type::kFloat64:
1760 *restrictions |= kNoReduction;
1761 return TrySetVectorLength(type, 2);
1762 default:
1763 break;
1764 }
1765 return false;
1766 }
1767 case InstructionSet::kX86:
1768 case InstructionSet::kX86_64:
1769 // Allow vectorization for SSE4.1-enabled X86 devices only (128-bit SIMD).
1770 if (features->AsX86InstructionSetFeatures()->HasSSE4_1()) {
1771 switch (type) {
1772 case DataType::Type::kBool:
1773 case DataType::Type::kUint8:
1774 case DataType::Type::kInt8:
1775 *restrictions |= kNoMul |
1776 kNoDiv |
1777 kNoShift |
1778 kNoAbs |
1779 kNoSignedHAdd |
1780 kNoUnroundedHAdd |
1781 kNoSAD |
1782 kNoDotProd;
1783 return TrySetVectorLength(type, 16);
1784 case DataType::Type::kUint16:
1785 *restrictions |= kNoDiv |
1786 kNoAbs |
1787 kNoSignedHAdd |
1788 kNoUnroundedHAdd |
1789 kNoSAD |
1790 kNoDotProd;
1791 return TrySetVectorLength(type, 8);
1792 case DataType::Type::kInt16:
1793 *restrictions |= kNoDiv |
1794 kNoAbs |
1795 kNoSignedHAdd |
1796 kNoUnroundedHAdd |
1797 kNoSAD;
1798 return TrySetVectorLength(type, 8);
1799 case DataType::Type::kInt32:
1800 *restrictions |= kNoDiv | kNoSAD;
1801 return TrySetVectorLength(type, 4);
1802 case DataType::Type::kInt64:
1803 *restrictions |= kNoMul | kNoDiv | kNoShr | kNoAbs | kNoSAD;
1804 return TrySetVectorLength(type, 2);
1805 case DataType::Type::kFloat32:
1806 *restrictions |= kNoReduction;
1807 return TrySetVectorLength(type, 4);
1808 case DataType::Type::kFloat64:
1809 *restrictions |= kNoReduction;
1810 return TrySetVectorLength(type, 2);
1811 default:
1812 break;
1813 } // switch type
1814 }
1815 return false;
1816 default:
1817 return false;
1818 } // switch instruction set
1819 }
1820
TrySetVectorLengthImpl(uint32_t length)1821 bool HLoopOptimization::TrySetVectorLengthImpl(uint32_t length) {
1822 DCHECK(IsPowerOfTwo(length) && length >= 2u);
1823 // First time set?
1824 if (vector_length_ == 0) {
1825 vector_length_ = length;
1826 }
1827 // Different types are acceptable within a loop-body, as long as all the corresponding vector
1828 // lengths match exactly to obtain a uniform traversal through the vector iteration space
1829 // (idiomatic exceptions to this rule can be handled by further unrolling sub-expressions).
1830 return vector_length_ == length;
1831 }
1832
GenerateVecInv(HInstruction * org,DataType::Type type)1833 void HLoopOptimization::GenerateVecInv(HInstruction* org, DataType::Type type) {
1834 if (vector_map_->find(org) == vector_map_->end()) {
1835 // In scalar code, just use a self pass-through for scalar invariants
1836 // (viz. expression remains itself).
1837 if (vector_mode_ == kSequential) {
1838 vector_map_->Put(org, org);
1839 return;
1840 }
1841 // In vector code, explicit scalar expansion is needed.
1842 HInstruction* vector = nullptr;
1843 auto it = vector_permanent_map_->find(org);
1844 if (it != vector_permanent_map_->end()) {
1845 vector = it->second; // reuse during unrolling
1846 } else {
1847 // Generates ReplicateScalar( (optional_type_conv) org ).
1848 HInstruction* input = org;
1849 DataType::Type input_type = input->GetType();
1850 if (type != input_type && (type == DataType::Type::kInt64 ||
1851 input_type == DataType::Type::kInt64)) {
1852 input = Insert(vector_preheader_,
1853 new (global_allocator_) HTypeConversion(type, input, kNoDexPc));
1854 }
1855 vector = new (global_allocator_)
1856 HVecReplicateScalar(global_allocator_, input, type, vector_length_, kNoDexPc);
1857 vector_permanent_map_->Put(org, Insert(vector_preheader_, vector));
1858 if (IsInPredicatedVectorizationMode()) {
1859 HVecPredSetAll* set_pred = new (global_allocator_) HVecPredSetAll(global_allocator_,
1860 graph_->GetIntConstant(1),
1861 type,
1862 vector_length_,
1863 0u);
1864 vector_preheader_->InsertInstructionBefore(set_pred, vector);
1865 vector->AsVecOperation()->SetMergingGoverningPredicate(set_pred);
1866 }
1867 }
1868 vector_map_->Put(org, vector);
1869 }
1870 }
1871
GenerateVecSub(HInstruction * org,HInstruction * offset)1872 void HLoopOptimization::GenerateVecSub(HInstruction* org, HInstruction* offset) {
1873 if (vector_map_->find(org) == vector_map_->end()) {
1874 HInstruction* subscript = vector_index_;
1875 int64_t value = 0;
1876 if (!IsInt64AndGet(offset, &value) || value != 0) {
1877 subscript = new (global_allocator_) HAdd(DataType::Type::kInt32, subscript, offset);
1878 if (org->IsPhi()) {
1879 Insert(vector_body_, subscript); // lacks layout placeholder
1880 }
1881 }
1882 vector_map_->Put(org, subscript);
1883 }
1884 }
1885
GenerateVecMem(HInstruction * org,HInstruction * opa,HInstruction * opb,HInstruction * offset,DataType::Type type)1886 void HLoopOptimization::GenerateVecMem(HInstruction* org,
1887 HInstruction* opa,
1888 HInstruction* opb,
1889 HInstruction* offset,
1890 DataType::Type type) {
1891 uint32_t dex_pc = org->GetDexPc();
1892 HInstruction* vector = nullptr;
1893 if (vector_mode_ == kVector) {
1894 // Vector store or load.
1895 bool is_string_char_at = false;
1896 HInstruction* base = org->InputAt(0);
1897 if (opb != nullptr) {
1898 vector = new (global_allocator_) HVecStore(
1899 global_allocator_, base, opa, opb, type, org->GetSideEffects(), vector_length_, dex_pc);
1900 } else {
1901 is_string_char_at = org->AsArrayGet()->IsStringCharAt();
1902 vector = new (global_allocator_) HVecLoad(global_allocator_,
1903 base,
1904 opa,
1905 type,
1906 org->GetSideEffects(),
1907 vector_length_,
1908 is_string_char_at,
1909 dex_pc);
1910 }
1911 // Known (forced/adjusted/original) alignment?
1912 if (vector_dynamic_peeling_candidate_ != nullptr) {
1913 if (vector_dynamic_peeling_candidate_->offset == offset && // TODO: diffs too?
1914 DataType::Size(vector_dynamic_peeling_candidate_->type) == DataType::Size(type) &&
1915 vector_dynamic_peeling_candidate_->is_string_char_at == is_string_char_at) {
1916 vector->AsVecMemoryOperation()->SetAlignment( // forced
1917 Alignment(GetVectorSizeInBytes(), 0));
1918 }
1919 } else {
1920 vector->AsVecMemoryOperation()->SetAlignment( // adjusted/original
1921 ComputeAlignment(offset, type, is_string_char_at, vector_static_peeling_factor_));
1922 }
1923 } else {
1924 // Scalar store or load.
1925 DCHECK(vector_mode_ == kSequential);
1926 if (opb != nullptr) {
1927 DataType::Type component_type = org->AsArraySet()->GetComponentType();
1928 vector = new (global_allocator_) HArraySet(
1929 org->InputAt(0), opa, opb, component_type, org->GetSideEffects(), dex_pc);
1930 } else {
1931 bool is_string_char_at = org->AsArrayGet()->IsStringCharAt();
1932 vector = new (global_allocator_) HArrayGet(
1933 org->InputAt(0), opa, org->GetType(), org->GetSideEffects(), dex_pc, is_string_char_at);
1934 }
1935 }
1936 vector_map_->Put(org, vector);
1937 }
1938
GenerateVecReductionPhi(HPhi * phi)1939 void HLoopOptimization::GenerateVecReductionPhi(HPhi* phi) {
1940 DCHECK(reductions_->find(phi) != reductions_->end());
1941 DCHECK(reductions_->Get(phi->InputAt(1)) == phi);
1942 HInstruction* vector = nullptr;
1943 if (vector_mode_ == kSequential) {
1944 HPhi* new_phi = new (global_allocator_) HPhi(
1945 global_allocator_, kNoRegNumber, 0, phi->GetType());
1946 vector_header_->AddPhi(new_phi);
1947 vector = new_phi;
1948 } else {
1949 // Link vector reduction back to prior unrolled update, or a first phi.
1950 auto it = vector_permanent_map_->find(phi);
1951 if (it != vector_permanent_map_->end()) {
1952 vector = it->second;
1953 } else {
1954 HPhi* new_phi = new (global_allocator_) HPhi(
1955 global_allocator_, kNoRegNumber, 0, HVecOperation::kSIMDType);
1956 vector_header_->AddPhi(new_phi);
1957 vector = new_phi;
1958 }
1959 }
1960 vector_map_->Put(phi, vector);
1961 }
1962
GenerateVecReductionPhiInputs(HPhi * phi,HInstruction * reduction)1963 void HLoopOptimization::GenerateVecReductionPhiInputs(HPhi* phi, HInstruction* reduction) {
1964 HInstruction* new_phi = vector_map_->Get(phi);
1965 HInstruction* new_init = reductions_->Get(phi);
1966 HInstruction* new_red = vector_map_->Get(reduction);
1967 // Link unrolled vector loop back to new phi.
1968 for (; !new_phi->IsPhi(); new_phi = vector_permanent_map_->Get(new_phi)) {
1969 DCHECK(new_phi->IsVecOperation());
1970 }
1971 // Prepare the new initialization.
1972 if (vector_mode_ == kVector) {
1973 // Generate a [initial, 0, .., 0] vector for add or
1974 // a [initial, initial, .., initial] vector for min/max.
1975 HVecOperation* red_vector = new_red->AsVecOperation();
1976 HVecReduce::ReductionKind kind = GetReductionKind(red_vector);
1977 uint32_t vector_length = red_vector->GetVectorLength();
1978 DataType::Type type = red_vector->GetPackedType();
1979 if (kind == HVecReduce::ReductionKind::kSum) {
1980 new_init = Insert(vector_preheader_,
1981 new (global_allocator_) HVecSetScalars(global_allocator_,
1982 &new_init,
1983 type,
1984 vector_length,
1985 1,
1986 kNoDexPc));
1987 } else {
1988 new_init = Insert(vector_preheader_,
1989 new (global_allocator_) HVecReplicateScalar(global_allocator_,
1990 new_init,
1991 type,
1992 vector_length,
1993 kNoDexPc));
1994 }
1995 if (IsInPredicatedVectorizationMode()) {
1996 HVecPredSetAll* set_pred = new (global_allocator_) HVecPredSetAll(global_allocator_,
1997 graph_->GetIntConstant(1),
1998 type,
1999 vector_length,
2000 0u);
2001 vector_preheader_->InsertInstructionBefore(set_pred, new_init);
2002 new_init->AsVecOperation()->SetMergingGoverningPredicate(set_pred);
2003 }
2004 } else {
2005 new_init = ReduceAndExtractIfNeeded(new_init);
2006 }
2007 // Set the phi inputs.
2008 DCHECK(new_phi->IsPhi());
2009 new_phi->AsPhi()->AddInput(new_init);
2010 new_phi->AsPhi()->AddInput(new_red);
2011 // New feed value for next phi (safe mutation in iteration).
2012 reductions_->find(phi)->second = new_phi;
2013 }
2014
ReduceAndExtractIfNeeded(HInstruction * instruction)2015 HInstruction* HLoopOptimization::ReduceAndExtractIfNeeded(HInstruction* instruction) {
2016 if (instruction->IsPhi()) {
2017 HInstruction* input = instruction->InputAt(1);
2018 if (HVecOperation::ReturnsSIMDValue(input)) {
2019 DCHECK(!input->IsPhi());
2020 HVecOperation* input_vector = input->AsVecOperation();
2021 uint32_t vector_length = input_vector->GetVectorLength();
2022 DataType::Type type = input_vector->GetPackedType();
2023 HVecReduce::ReductionKind kind = GetReductionKind(input_vector);
2024 HBasicBlock* exit = instruction->GetBlock()->GetSuccessors()[0];
2025 // Generate a vector reduction and scalar extract
2026 // x = REDUCE( [x_1, .., x_n] )
2027 // y = x_1
2028 // along the exit of the defining loop.
2029 HInstruction* reduce = new (global_allocator_) HVecReduce(
2030 global_allocator_, instruction, type, vector_length, kind, kNoDexPc);
2031 exit->InsertInstructionBefore(reduce, exit->GetFirstInstruction());
2032 instruction = new (global_allocator_) HVecExtractScalar(
2033 global_allocator_, reduce, type, vector_length, 0, kNoDexPc);
2034 exit->InsertInstructionAfter(instruction, reduce);
2035
2036 if (IsInPredicatedVectorizationMode()) {
2037 HVecPredSetAll* set_pred = new (global_allocator_) HVecPredSetAll(global_allocator_,
2038 graph_->GetIntConstant(1),
2039 type,
2040 vector_length,
2041 0u);
2042 exit->InsertInstructionBefore(set_pred, reduce);
2043 reduce->AsVecOperation()->SetMergingGoverningPredicate(set_pred);
2044 instruction->AsVecOperation()->SetMergingGoverningPredicate(set_pred);
2045 }
2046 }
2047 }
2048 return instruction;
2049 }
2050
2051 #define GENERATE_VEC(x, y) \
2052 if (vector_mode_ == kVector) { \
2053 vector = (x); \
2054 } else { \
2055 DCHECK(vector_mode_ == kSequential); \
2056 vector = (y); \
2057 } \
2058 break;
2059
GenerateVecOp(HInstruction * org,HInstruction * opa,HInstruction * opb,DataType::Type type)2060 void HLoopOptimization::GenerateVecOp(HInstruction* org,
2061 HInstruction* opa,
2062 HInstruction* opb,
2063 DataType::Type type) {
2064 uint32_t dex_pc = org->GetDexPc();
2065 HInstruction* vector = nullptr;
2066 DataType::Type org_type = org->GetType();
2067 switch (org->GetKind()) {
2068 case HInstruction::kNeg:
2069 DCHECK(opb == nullptr);
2070 GENERATE_VEC(
2071 new (global_allocator_) HVecNeg(global_allocator_, opa, type, vector_length_, dex_pc),
2072 new (global_allocator_) HNeg(org_type, opa, dex_pc));
2073 case HInstruction::kNot:
2074 DCHECK(opb == nullptr);
2075 GENERATE_VEC(
2076 new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_, dex_pc),
2077 new (global_allocator_) HNot(org_type, opa, dex_pc));
2078 case HInstruction::kBooleanNot:
2079 DCHECK(opb == nullptr);
2080 GENERATE_VEC(
2081 new (global_allocator_) HVecNot(global_allocator_, opa, type, vector_length_, dex_pc),
2082 new (global_allocator_) HBooleanNot(opa, dex_pc));
2083 case HInstruction::kTypeConversion:
2084 DCHECK(opb == nullptr);
2085 GENERATE_VEC(
2086 new (global_allocator_) HVecCnv(global_allocator_, opa, type, vector_length_, dex_pc),
2087 new (global_allocator_) HTypeConversion(org_type, opa, dex_pc));
2088 case HInstruction::kAdd:
2089 GENERATE_VEC(
2090 new (global_allocator_) HVecAdd(global_allocator_, opa, opb, type, vector_length_, dex_pc),
2091 new (global_allocator_) HAdd(org_type, opa, opb, dex_pc));
2092 case HInstruction::kSub:
2093 GENERATE_VEC(
2094 new (global_allocator_) HVecSub(global_allocator_, opa, opb, type, vector_length_, dex_pc),
2095 new (global_allocator_) HSub(org_type, opa, opb, dex_pc));
2096 case HInstruction::kMul:
2097 GENERATE_VEC(
2098 new (global_allocator_) HVecMul(global_allocator_, opa, opb, type, vector_length_, dex_pc),
2099 new (global_allocator_) HMul(org_type, opa, opb, dex_pc));
2100 case HInstruction::kDiv:
2101 GENERATE_VEC(
2102 new (global_allocator_) HVecDiv(global_allocator_, opa, opb, type, vector_length_, dex_pc),
2103 new (global_allocator_) HDiv(org_type, opa, opb, dex_pc));
2104 case HInstruction::kAnd:
2105 GENERATE_VEC(
2106 new (global_allocator_) HVecAnd(global_allocator_, opa, opb, type, vector_length_, dex_pc),
2107 new (global_allocator_) HAnd(org_type, opa, opb, dex_pc));
2108 case HInstruction::kOr:
2109 GENERATE_VEC(
2110 new (global_allocator_) HVecOr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
2111 new (global_allocator_) HOr(org_type, opa, opb, dex_pc));
2112 case HInstruction::kXor:
2113 GENERATE_VEC(
2114 new (global_allocator_) HVecXor(global_allocator_, opa, opb, type, vector_length_, dex_pc),
2115 new (global_allocator_) HXor(org_type, opa, opb, dex_pc));
2116 case HInstruction::kShl:
2117 GENERATE_VEC(
2118 new (global_allocator_) HVecShl(global_allocator_, opa, opb, type, vector_length_, dex_pc),
2119 new (global_allocator_) HShl(org_type, opa, opb, dex_pc));
2120 case HInstruction::kShr:
2121 GENERATE_VEC(
2122 new (global_allocator_) HVecShr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
2123 new (global_allocator_) HShr(org_type, opa, opb, dex_pc));
2124 case HInstruction::kUShr:
2125 GENERATE_VEC(
2126 new (global_allocator_) HVecUShr(global_allocator_, opa, opb, type, vector_length_, dex_pc),
2127 new (global_allocator_) HUShr(org_type, opa, opb, dex_pc));
2128 case HInstruction::kAbs:
2129 DCHECK(opb == nullptr);
2130 GENERATE_VEC(
2131 new (global_allocator_) HVecAbs(global_allocator_, opa, type, vector_length_, dex_pc),
2132 new (global_allocator_) HAbs(org_type, opa, dex_pc));
2133 default:
2134 break;
2135 } // switch
2136 CHECK(vector != nullptr) << "Unsupported SIMD operator";
2137 vector_map_->Put(org, vector);
2138 }
2139
2140 #undef GENERATE_VEC
2141
2142 //
2143 // Vectorization idioms.
2144 //
2145
2146 // Method recognizes the following idioms:
2147 // rounding halving add (a + b + 1) >> 1 for unsigned/signed operands a, b
2148 // truncated halving add (a + b) >> 1 for unsigned/signed operands a, b
2149 // Provided that the operands are promoted to a wider form to do the arithmetic and
2150 // then cast back to narrower form, the idioms can be mapped into efficient SIMD
2151 // implementation that operates directly in narrower form (plus one extra bit).
2152 // TODO: current version recognizes implicit byte/short/char widening only;
2153 // explicit widening from int to long could be added later.
VectorizeHalvingAddIdiom(LoopNode * node,HInstruction * instruction,bool generate_code,DataType::Type type,uint64_t restrictions)2154 bool HLoopOptimization::VectorizeHalvingAddIdiom(LoopNode* node,
2155 HInstruction* instruction,
2156 bool generate_code,
2157 DataType::Type type,
2158 uint64_t restrictions) {
2159 // Test for top level arithmetic shift right x >> 1 or logical shift right x >>> 1
2160 // (note whether the sign bit in wider precision is shifted in has no effect
2161 // on the narrow precision computed by the idiom).
2162 if ((instruction->IsShr() ||
2163 instruction->IsUShr()) &&
2164 IsInt64Value(instruction->InputAt(1), 1)) {
2165 // Test for (a + b + c) >> 1 for optional constant c.
2166 HInstruction* a = nullptr;
2167 HInstruction* b = nullptr;
2168 int64_t c = 0;
2169 if (IsAddConst2(graph_, instruction->InputAt(0), /*out*/ &a, /*out*/ &b, /*out*/ &c)) {
2170 // Accept c == 1 (rounded) or c == 0 (not rounded).
2171 bool is_rounded = false;
2172 if (c == 1) {
2173 is_rounded = true;
2174 } else if (c != 0) {
2175 return false;
2176 }
2177 // Accept consistent zero or sign extension on operands a and b.
2178 HInstruction* r = nullptr;
2179 HInstruction* s = nullptr;
2180 bool is_unsigned = false;
2181 if (!IsNarrowerOperands(a, b, type, &r, &s, &is_unsigned)) {
2182 return false;
2183 }
2184 // Deal with vector restrictions.
2185 if ((is_unsigned && HasVectorRestrictions(restrictions, kNoUnsignedHAdd)) ||
2186 (!is_unsigned && HasVectorRestrictions(restrictions, kNoSignedHAdd)) ||
2187 (!is_rounded && HasVectorRestrictions(restrictions, kNoUnroundedHAdd))) {
2188 return false;
2189 }
2190 // Accept recognized halving add for vectorizable operands. Vectorized code uses the
2191 // shorthand idiomatic operation. Sequential code uses the original scalar expressions.
2192 DCHECK(r != nullptr && s != nullptr);
2193 if (generate_code && vector_mode_ != kVector) { // de-idiom
2194 r = instruction->InputAt(0);
2195 s = instruction->InputAt(1);
2196 }
2197 if (VectorizeUse(node, r, generate_code, type, restrictions) &&
2198 VectorizeUse(node, s, generate_code, type, restrictions)) {
2199 if (generate_code) {
2200 if (vector_mode_ == kVector) {
2201 vector_map_->Put(instruction, new (global_allocator_) HVecHalvingAdd(
2202 global_allocator_,
2203 vector_map_->Get(r),
2204 vector_map_->Get(s),
2205 HVecOperation::ToProperType(type, is_unsigned),
2206 vector_length_,
2207 is_rounded,
2208 kNoDexPc));
2209 MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
2210 } else {
2211 GenerateVecOp(instruction, vector_map_->Get(r), vector_map_->Get(s), type);
2212 }
2213 }
2214 return true;
2215 }
2216 }
2217 }
2218 return false;
2219 }
2220
2221 // Method recognizes the following idiom:
2222 // q += ABS(a - b) for signed operands a, b
2223 // Provided that the operands have the same type or are promoted to a wider form.
2224 // Since this may involve a vector length change, the idiom is handled by going directly
2225 // to a sad-accumulate node (rather than relying combining finer grained nodes later).
2226 // TODO: unsigned SAD too?
VectorizeSADIdiom(LoopNode * node,HInstruction * instruction,bool generate_code,DataType::Type reduction_type,uint64_t restrictions)2227 bool HLoopOptimization::VectorizeSADIdiom(LoopNode* node,
2228 HInstruction* instruction,
2229 bool generate_code,
2230 DataType::Type reduction_type,
2231 uint64_t restrictions) {
2232 // Filter integral "q += ABS(a - b);" reduction, where ABS and SUB
2233 // are done in the same precision (either int or long).
2234 if (!instruction->IsAdd() ||
2235 (reduction_type != DataType::Type::kInt32 && reduction_type != DataType::Type::kInt64)) {
2236 return false;
2237 }
2238 HInstruction* acc = instruction->InputAt(0);
2239 HInstruction* abs = instruction->InputAt(1);
2240 HInstruction* a = nullptr;
2241 HInstruction* b = nullptr;
2242 if (abs->IsAbs() &&
2243 abs->GetType() == reduction_type &&
2244 IsSubConst2(graph_, abs->InputAt(0), /*out*/ &a, /*out*/ &b)) {
2245 DCHECK(a != nullptr && b != nullptr);
2246 } else {
2247 return false;
2248 }
2249 // Accept same-type or consistent sign extension for narrower-type on operands a and b.
2250 // The same-type or narrower operands are called r (a or lower) and s (b or lower).
2251 // We inspect the operands carefully to pick the most suited type.
2252 HInstruction* r = a;
2253 HInstruction* s = b;
2254 bool is_unsigned = false;
2255 DataType::Type sub_type = GetNarrowerType(a, b);
2256 if (reduction_type != sub_type &&
2257 (!IsNarrowerOperands(a, b, sub_type, &r, &s, &is_unsigned) || is_unsigned)) {
2258 return false;
2259 }
2260 // Try same/narrower type and deal with vector restrictions.
2261 if (!TrySetVectorType(sub_type, &restrictions) ||
2262 HasVectorRestrictions(restrictions, kNoSAD) ||
2263 (reduction_type != sub_type && HasVectorRestrictions(restrictions, kNoWideSAD))) {
2264 return false;
2265 }
2266 // Accept SAD idiom for vectorizable operands. Vectorized code uses the shorthand
2267 // idiomatic operation. Sequential code uses the original scalar expressions.
2268 DCHECK(r != nullptr && s != nullptr);
2269 if (generate_code && vector_mode_ != kVector) { // de-idiom
2270 r = s = abs->InputAt(0);
2271 }
2272 if (VectorizeUse(node, acc, generate_code, sub_type, restrictions) &&
2273 VectorizeUse(node, r, generate_code, sub_type, restrictions) &&
2274 VectorizeUse(node, s, generate_code, sub_type, restrictions)) {
2275 if (generate_code) {
2276 if (vector_mode_ == kVector) {
2277 vector_map_->Put(instruction, new (global_allocator_) HVecSADAccumulate(
2278 global_allocator_,
2279 vector_map_->Get(acc),
2280 vector_map_->Get(r),
2281 vector_map_->Get(s),
2282 HVecOperation::ToProperType(reduction_type, is_unsigned),
2283 GetOtherVL(reduction_type, sub_type, vector_length_),
2284 kNoDexPc));
2285 MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
2286 } else {
2287 // "GenerateVecOp()" must not be called more than once for each original loop body
2288 // instruction. As the SAD idiom processes both "current" instruction ("instruction")
2289 // and its ABS input in one go, we must check that for the scalar case the ABS instruction
2290 // has not yet been processed.
2291 if (vector_map_->find(abs) == vector_map_->end()) {
2292 GenerateVecOp(abs, vector_map_->Get(r), nullptr, reduction_type);
2293 }
2294 GenerateVecOp(instruction, vector_map_->Get(acc), vector_map_->Get(abs), reduction_type);
2295 }
2296 }
2297 return true;
2298 }
2299 return false;
2300 }
2301
2302 // Method recognises the following dot product idiom:
2303 // q += a * b for operands a, b whose type is narrower than the reduction one.
2304 // Provided that the operands have the same type or are promoted to a wider form.
2305 // Since this may involve a vector length change, the idiom is handled by going directly
2306 // to a dot product node (rather than relying combining finer grained nodes later).
VectorizeDotProdIdiom(LoopNode * node,HInstruction * instruction,bool generate_code,DataType::Type reduction_type,uint64_t restrictions)2307 bool HLoopOptimization::VectorizeDotProdIdiom(LoopNode* node,
2308 HInstruction* instruction,
2309 bool generate_code,
2310 DataType::Type reduction_type,
2311 uint64_t restrictions) {
2312 if (!instruction->IsAdd() || reduction_type != DataType::Type::kInt32) {
2313 return false;
2314 }
2315
2316 HInstruction* const acc = instruction->InputAt(0);
2317 HInstruction* const mul = instruction->InputAt(1);
2318 if (!mul->IsMul() || mul->GetType() != reduction_type) {
2319 return false;
2320 }
2321
2322 HInstruction* const mul_left = mul->InputAt(0);
2323 HInstruction* const mul_right = mul->InputAt(1);
2324 HInstruction* r = mul_left;
2325 HInstruction* s = mul_right;
2326 DataType::Type op_type = GetNarrowerType(mul_left, mul_right);
2327 bool is_unsigned = false;
2328
2329 if (!IsNarrowerOperands(mul_left, mul_right, op_type, &r, &s, &is_unsigned)) {
2330 return false;
2331 }
2332 op_type = HVecOperation::ToProperType(op_type, is_unsigned);
2333
2334 if (!TrySetVectorType(op_type, &restrictions) ||
2335 HasVectorRestrictions(restrictions, kNoDotProd)) {
2336 return false;
2337 }
2338
2339 DCHECK(r != nullptr && s != nullptr);
2340 // Accept dot product idiom for vectorizable operands. Vectorized code uses the shorthand
2341 // idiomatic operation. Sequential code uses the original scalar expressions.
2342 if (generate_code && vector_mode_ != kVector) { // de-idiom
2343 r = mul_left;
2344 s = mul_right;
2345 }
2346 if (VectorizeUse(node, acc, generate_code, op_type, restrictions) &&
2347 VectorizeUse(node, r, generate_code, op_type, restrictions) &&
2348 VectorizeUse(node, s, generate_code, op_type, restrictions)) {
2349 if (generate_code) {
2350 if (vector_mode_ == kVector) {
2351 vector_map_->Put(instruction, new (global_allocator_) HVecDotProd(
2352 global_allocator_,
2353 vector_map_->Get(acc),
2354 vector_map_->Get(r),
2355 vector_map_->Get(s),
2356 reduction_type,
2357 is_unsigned,
2358 GetOtherVL(reduction_type, op_type, vector_length_),
2359 kNoDexPc));
2360 MaybeRecordStat(stats_, MethodCompilationStat::kLoopVectorizedIdiom);
2361 } else {
2362 // "GenerateVecOp()" must not be called more than once for each original loop body
2363 // instruction. As the DotProd idiom processes both "current" instruction ("instruction")
2364 // and its MUL input in one go, we must check that for the scalar case the MUL instruction
2365 // has not yet been processed.
2366 if (vector_map_->find(mul) == vector_map_->end()) {
2367 GenerateVecOp(mul, vector_map_->Get(r), vector_map_->Get(s), reduction_type);
2368 }
2369 GenerateVecOp(instruction, vector_map_->Get(acc), vector_map_->Get(mul), reduction_type);
2370 }
2371 }
2372 return true;
2373 }
2374 return false;
2375 }
2376
2377 //
2378 // Vectorization heuristics.
2379 //
2380
ComputeAlignment(HInstruction * offset,DataType::Type type,bool is_string_char_at,uint32_t peeling)2381 Alignment HLoopOptimization::ComputeAlignment(HInstruction* offset,
2382 DataType::Type type,
2383 bool is_string_char_at,
2384 uint32_t peeling) {
2385 // Combine the alignment and hidden offset that is guaranteed by
2386 // the Android runtime with a known starting index adjusted as bytes.
2387 int64_t value = 0;
2388 if (IsInt64AndGet(offset, /*out*/ &value)) {
2389 uint32_t start_offset =
2390 HiddenOffset(type, is_string_char_at) + (value + peeling) * DataType::Size(type);
2391 return Alignment(BaseAlignment(), start_offset & (BaseAlignment() - 1u));
2392 }
2393 // Otherwise, the Android runtime guarantees at least natural alignment.
2394 return Alignment(DataType::Size(type), 0);
2395 }
2396
SetAlignmentStrategy(const ScopedArenaVector<uint32_t> & peeling_votes,const ArrayReference * peeling_candidate)2397 void HLoopOptimization::SetAlignmentStrategy(const ScopedArenaVector<uint32_t>& peeling_votes,
2398 const ArrayReference* peeling_candidate) {
2399 // Current heuristic: pick the best static loop peeling factor, if any,
2400 // or otherwise use dynamic loop peeling on suggested peeling candidate.
2401 uint32_t max_vote = 0;
2402 for (size_t i = 0; i < peeling_votes.size(); i++) {
2403 if (peeling_votes[i] > max_vote) {
2404 max_vote = peeling_votes[i];
2405 vector_static_peeling_factor_ = i;
2406 }
2407 }
2408 if (max_vote == 0) {
2409 vector_dynamic_peeling_candidate_ = peeling_candidate;
2410 }
2411 }
2412
MaxNumberPeeled()2413 uint32_t HLoopOptimization::MaxNumberPeeled() {
2414 if (vector_dynamic_peeling_candidate_ != nullptr) {
2415 return vector_length_ - 1u; // worst-case
2416 }
2417 return vector_static_peeling_factor_; // known exactly
2418 }
2419
IsVectorizationProfitable(int64_t trip_count)2420 bool HLoopOptimization::IsVectorizationProfitable(int64_t trip_count) {
2421 // Current heuristic: non-empty body with sufficient number of iterations (if known).
2422 // TODO: refine by looking at e.g. operation count, alignment, etc.
2423 // TODO: trip count is really unsigned entity, provided the guarding test
2424 // is satisfied; deal with this more carefully later
2425 uint32_t max_peel = MaxNumberPeeled();
2426 if (vector_length_ == 0) {
2427 return false; // nothing found
2428 } else if (trip_count < 0) {
2429 return false; // guard against non-taken/large
2430 } else if ((0 < trip_count) && (trip_count < (vector_length_ + max_peel))) {
2431 return false; // insufficient iterations
2432 }
2433 return true;
2434 }
2435
2436 //
2437 // Helpers.
2438 //
2439
TrySetPhiInduction(HPhi * phi,bool restrict_uses)2440 bool HLoopOptimization::TrySetPhiInduction(HPhi* phi, bool restrict_uses) {
2441 // Start with empty phi induction.
2442 iset_->clear();
2443
2444 // Special case Phis that have equivalent in a debuggable setup. Our graph checker isn't
2445 // smart enough to follow strongly connected components (and it's probably not worth
2446 // it to make it so). See b/33775412.
2447 if (graph_->IsDebuggable() && phi->HasEquivalentPhi()) {
2448 return false;
2449 }
2450
2451 // Lookup phi induction cycle.
2452 ArenaSet<HInstruction*>* set = induction_range_.LookupCycle(phi);
2453 if (set != nullptr) {
2454 for (HInstruction* i : *set) {
2455 // Check that, other than instructions that are no longer in the graph (removed earlier)
2456 // each instruction is removable and, when restrict uses are requested, other than for phi,
2457 // all uses are contained within the cycle.
2458 if (!i->IsInBlock()) {
2459 continue;
2460 } else if (!i->IsRemovable()) {
2461 return false;
2462 } else if (i != phi && restrict_uses) {
2463 // Deal with regular uses.
2464 for (const HUseListNode<HInstruction*>& use : i->GetUses()) {
2465 if (set->find(use.GetUser()) == set->end()) {
2466 return false;
2467 }
2468 }
2469 }
2470 iset_->insert(i); // copy
2471 }
2472 return true;
2473 }
2474 return false;
2475 }
2476
TrySetPhiReduction(HPhi * phi)2477 bool HLoopOptimization::TrySetPhiReduction(HPhi* phi) {
2478 DCHECK(phi->IsLoopHeaderPhi());
2479 // Only unclassified phi cycles are candidates for reductions.
2480 if (induction_range_.IsClassified(phi)) {
2481 return false;
2482 }
2483 // Accept operations like x = x + .., provided that the phi and the reduction are
2484 // used exactly once inside the loop, and by each other.
2485 HInputsRef inputs = phi->GetInputs();
2486 if (inputs.size() == 2) {
2487 HInstruction* reduction = inputs[1];
2488 if (HasReductionFormat(reduction, phi)) {
2489 HLoopInformation* loop_info = phi->GetBlock()->GetLoopInformation();
2490 DCHECK(loop_info->Contains(*reduction->GetBlock()));
2491 const bool single_use_inside_loop =
2492 // Reduction update only used by phi.
2493 reduction->GetUses().HasExactlyOneElement() &&
2494 !reduction->HasEnvironmentUses() &&
2495 // Reduction update is only use of phi inside the loop.
2496 std::none_of(phi->GetUses().begin(),
2497 phi->GetUses().end(),
2498 [loop_info, reduction](const HUseListNode<HInstruction*>& use) {
2499 HInstruction* user = use.GetUser();
2500 return user != reduction && loop_info->Contains(*user->GetBlock());
2501 });
2502 if (single_use_inside_loop) {
2503 // Link reduction back, and start recording feed value.
2504 reductions_->Put(reduction, phi);
2505 reductions_->Put(phi, phi->InputAt(0));
2506 return true;
2507 }
2508 }
2509 }
2510 return false;
2511 }
2512
TrySetSimpleLoopHeader(HBasicBlock * block,HPhi ** main_phi)2513 bool HLoopOptimization::TrySetSimpleLoopHeader(HBasicBlock* block, /*out*/ HPhi** main_phi) {
2514 // Start with empty phi induction and reductions.
2515 iset_->clear();
2516 reductions_->clear();
2517
2518 // Scan the phis to find the following (the induction structure has already
2519 // been optimized, so we don't need to worry about trivial cases):
2520 // (1) optional reductions in loop,
2521 // (2) the main induction, used in loop control.
2522 HPhi* phi = nullptr;
2523 for (HInstructionIterator it(block->GetPhis()); !it.Done(); it.Advance()) {
2524 if (TrySetPhiReduction(it.Current()->AsPhi())) {
2525 continue;
2526 } else if (phi == nullptr) {
2527 // Found the first candidate for main induction.
2528 phi = it.Current()->AsPhi();
2529 } else {
2530 return false;
2531 }
2532 }
2533
2534 // Then test for a typical loopheader:
2535 // s: SuspendCheck
2536 // c: Condition(phi, bound)
2537 // i: If(c)
2538 if (phi != nullptr && TrySetPhiInduction(phi, /*restrict_uses*/ false)) {
2539 HInstruction* s = block->GetFirstInstruction();
2540 if (s != nullptr && s->IsSuspendCheck()) {
2541 HInstruction* c = s->GetNext();
2542 if (c != nullptr &&
2543 c->IsCondition() &&
2544 c->GetUses().HasExactlyOneElement() && // only used for termination
2545 !c->HasEnvironmentUses()) { // unlikely, but not impossible
2546 HInstruction* i = c->GetNext();
2547 if (i != nullptr && i->IsIf() && i->InputAt(0) == c) {
2548 iset_->insert(c);
2549 iset_->insert(s);
2550 *main_phi = phi;
2551 return true;
2552 }
2553 }
2554 }
2555 }
2556 return false;
2557 }
2558
IsEmptyBody(HBasicBlock * block)2559 bool HLoopOptimization::IsEmptyBody(HBasicBlock* block) {
2560 if (!block->GetPhis().IsEmpty()) {
2561 return false;
2562 }
2563 for (HInstructionIterator it(block->GetInstructions()); !it.Done(); it.Advance()) {
2564 HInstruction* instruction = it.Current();
2565 if (!instruction->IsGoto() && iset_->find(instruction) == iset_->end()) {
2566 return false;
2567 }
2568 }
2569 return true;
2570 }
2571
IsUsedOutsideLoop(HLoopInformation * loop_info,HInstruction * instruction)2572 bool HLoopOptimization::IsUsedOutsideLoop(HLoopInformation* loop_info,
2573 HInstruction* instruction) {
2574 // Deal with regular uses.
2575 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
2576 if (use.GetUser()->GetBlock()->GetLoopInformation() != loop_info) {
2577 return true;
2578 }
2579 }
2580 return false;
2581 }
2582
IsOnlyUsedAfterLoop(HLoopInformation * loop_info,HInstruction * instruction,bool collect_loop_uses,uint32_t * use_count)2583 bool HLoopOptimization::IsOnlyUsedAfterLoop(HLoopInformation* loop_info,
2584 HInstruction* instruction,
2585 bool collect_loop_uses,
2586 /*out*/ uint32_t* use_count) {
2587 // Deal with regular uses.
2588 for (const HUseListNode<HInstruction*>& use : instruction->GetUses()) {
2589 HInstruction* user = use.GetUser();
2590 if (iset_->find(user) == iset_->end()) { // not excluded?
2591 if (loop_info->Contains(*user->GetBlock())) {
2592 // If collect_loop_uses is set, simply keep adding those uses to the set.
2593 // Otherwise, reject uses inside the loop that were not already in the set.
2594 if (collect_loop_uses) {
2595 iset_->insert(user);
2596 continue;
2597 }
2598 return false;
2599 }
2600 ++*use_count;
2601 }
2602 }
2603 return true;
2604 }
2605
TryReplaceWithLastValue(HLoopInformation * loop_info,HInstruction * instruction,HBasicBlock * block)2606 bool HLoopOptimization::TryReplaceWithLastValue(HLoopInformation* loop_info,
2607 HInstruction* instruction,
2608 HBasicBlock* block) {
2609 // Try to replace outside uses with the last value.
2610 if (induction_range_.CanGenerateLastValue(instruction)) {
2611 HInstruction* replacement = induction_range_.GenerateLastValue(instruction, graph_, block);
2612 // Deal with regular uses.
2613 const HUseList<HInstruction*>& uses = instruction->GetUses();
2614 for (auto it = uses.begin(), end = uses.end(); it != end;) {
2615 HInstruction* user = it->GetUser();
2616 size_t index = it->GetIndex();
2617 ++it; // increment before replacing
2618 if (iset_->find(user) == iset_->end()) { // not excluded?
2619 if (kIsDebugBuild) {
2620 // We have checked earlier in 'IsOnlyUsedAfterLoop' that the use is after the loop.
2621 HLoopInformation* other_loop_info = user->GetBlock()->GetLoopInformation();
2622 CHECK(other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info));
2623 }
2624 user->ReplaceInput(replacement, index);
2625 induction_range_.Replace(user, instruction, replacement); // update induction
2626 }
2627 }
2628 // Deal with environment uses.
2629 const HUseList<HEnvironment*>& env_uses = instruction->GetEnvUses();
2630 for (auto it = env_uses.begin(), end = env_uses.end(); it != end;) {
2631 HEnvironment* user = it->GetUser();
2632 size_t index = it->GetIndex();
2633 ++it; // increment before replacing
2634 if (iset_->find(user->GetHolder()) == iset_->end()) { // not excluded?
2635 // Only update environment uses after the loop.
2636 HLoopInformation* other_loop_info = user->GetHolder()->GetBlock()->GetLoopInformation();
2637 if (other_loop_info == nullptr || !other_loop_info->IsIn(*loop_info)) {
2638 user->RemoveAsUserOfInput(index);
2639 user->SetRawEnvAt(index, replacement);
2640 replacement->AddEnvUseAt(user, index);
2641 }
2642 }
2643 }
2644 return true;
2645 }
2646 return false;
2647 }
2648
TryAssignLastValue(HLoopInformation * loop_info,HInstruction * instruction,HBasicBlock * block,bool collect_loop_uses)2649 bool HLoopOptimization::TryAssignLastValue(HLoopInformation* loop_info,
2650 HInstruction* instruction,
2651 HBasicBlock* block,
2652 bool collect_loop_uses) {
2653 // Assigning the last value is always successful if there are no uses.
2654 // Otherwise, it succeeds in a no early-exit loop by generating the
2655 // proper last value assignment.
2656 uint32_t use_count = 0;
2657 return IsOnlyUsedAfterLoop(loop_info, instruction, collect_loop_uses, &use_count) &&
2658 (use_count == 0 ||
2659 (!IsEarlyExit(loop_info) && TryReplaceWithLastValue(loop_info, instruction, block)));
2660 }
2661
RemoveDeadInstructions(const HInstructionList & list)2662 void HLoopOptimization::RemoveDeadInstructions(const HInstructionList& list) {
2663 for (HBackwardInstructionIterator i(list); !i.Done(); i.Advance()) {
2664 HInstruction* instruction = i.Current();
2665 if (instruction->IsDeadAndRemovable()) {
2666 simplified_ = true;
2667 instruction->GetBlock()->RemoveInstructionOrPhi(instruction);
2668 }
2669 }
2670 }
2671
CanRemoveCycle()2672 bool HLoopOptimization::CanRemoveCycle() {
2673 for (HInstruction* i : *iset_) {
2674 // We can never remove instructions that have environment
2675 // uses when we compile 'debuggable'.
2676 if (i->HasEnvironmentUses() && graph_->IsDebuggable()) {
2677 return false;
2678 }
2679 // A deoptimization should never have an environment input removed.
2680 for (const HUseListNode<HEnvironment*>& use : i->GetEnvUses()) {
2681 if (use.GetUser()->GetHolder()->IsDeoptimize()) {
2682 return false;
2683 }
2684 }
2685 }
2686 return true;
2687 }
2688
2689 } // namespace art
2690