1 /*
2 * Copyright (C) 2011 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "class.h"
18
19 #include <unordered_set>
20 #include <string_view>
21
22 #include "android-base/macros.h"
23 #include "android-base/stringprintf.h"
24
25 #include "array-inl.h"
26 #include "art_field-inl.h"
27 #include "art_method-inl.h"
28 #include "base/enums.h"
29 #include "base/logging.h" // For VLOG.
30 #include "base/sdk_version.h"
31 #include "base/utils.h"
32 #include "class-inl.h"
33 #include "class_ext-inl.h"
34 #include "class_linker-inl.h"
35 #include "class_loader.h"
36 #include "class_root-inl.h"
37 #include "dex/descriptors_names.h"
38 #include "dex/dex_file-inl.h"
39 #include "dex/dex_file_annotations.h"
40 #include "dex/signature-inl.h"
41 #include "dex_cache-inl.h"
42 #include "field.h"
43 #include "gc/accounting/card_table-inl.h"
44 #include "gc/heap-inl.h"
45 #include "handle_scope-inl.h"
46 #include "hidden_api.h"
47 #include "jni_id_type.h"
48 #include "subtype_check.h"
49 #include "method.h"
50 #include "object-inl.h"
51 #include "object-refvisitor-inl.h"
52 #include "object_array-alloc-inl.h"
53 #include "object_array-inl.h"
54 #include "object_lock.h"
55 #include "string-inl.h"
56 #include "runtime.h"
57 #include "thread.h"
58 #include "throwable.h"
59 #include "well_known_classes.h"
60
61 namespace art {
62
63 namespace mirror {
64
65 using android::base::StringPrintf;
66
IsMirrored()67 bool Class::IsMirrored() {
68 if (LIKELY(!IsBootStrapClassLoaded())) {
69 return false;
70 }
71 if (IsPrimitive() || IsArrayClass() || IsProxyClass()) {
72 return true;
73 }
74 std::string name_storage;
75 const std::string_view name(this->GetDescriptor(&name_storage));
76 return IsMirroredDescriptor(name);
77 }
78
GetPrimitiveClass(ObjPtr<mirror::String> name)79 ObjPtr<mirror::Class> Class::GetPrimitiveClass(ObjPtr<mirror::String> name) {
80 const char* expected_name = nullptr;
81 ClassRoot class_root = ClassRoot::kJavaLangObject; // Invalid.
82 if (name != nullptr && name->GetLength() >= 2) {
83 // Perfect hash for the expected values: from the second letters of the primitive types,
84 // only 'y' has the bit 0x10 set, so use it to change 'b' to 'B'.
85 char hash = name->CharAt(0) ^ ((name->CharAt(1) & 0x10) << 1);
86 switch (hash) {
87 case 'b': expected_name = "boolean"; class_root = ClassRoot::kPrimitiveBoolean; break;
88 case 'B': expected_name = "byte"; class_root = ClassRoot::kPrimitiveByte; break;
89 case 'c': expected_name = "char"; class_root = ClassRoot::kPrimitiveChar; break;
90 case 'd': expected_name = "double"; class_root = ClassRoot::kPrimitiveDouble; break;
91 case 'f': expected_name = "float"; class_root = ClassRoot::kPrimitiveFloat; break;
92 case 'i': expected_name = "int"; class_root = ClassRoot::kPrimitiveInt; break;
93 case 'l': expected_name = "long"; class_root = ClassRoot::kPrimitiveLong; break;
94 case 's': expected_name = "short"; class_root = ClassRoot::kPrimitiveShort; break;
95 case 'v': expected_name = "void"; class_root = ClassRoot::kPrimitiveVoid; break;
96 default: break;
97 }
98 }
99 if (expected_name != nullptr && name->Equals(expected_name)) {
100 ObjPtr<mirror::Class> klass = GetClassRoot(class_root);
101 DCHECK(klass != nullptr);
102 return klass;
103 } else {
104 Thread* self = Thread::Current();
105 if (name == nullptr) {
106 // Note: ThrowNullPointerException() requires a message which we deliberately want to omit.
107 self->ThrowNewException("Ljava/lang/NullPointerException;", /* msg= */ nullptr);
108 } else {
109 self->ThrowNewException("Ljava/lang/ClassNotFoundException;", name->ToModifiedUtf8().c_str());
110 }
111 return nullptr;
112 }
113 }
114
EnsureExtDataPresent(Handle<Class> h_this,Thread * self)115 ObjPtr<ClassExt> Class::EnsureExtDataPresent(Handle<Class> h_this, Thread* self) {
116 ObjPtr<ClassExt> existing(h_this->GetExtData());
117 if (!existing.IsNull()) {
118 return existing;
119 }
120 StackHandleScope<2> hs(self);
121 // Clear exception so we can allocate.
122 Handle<Throwable> throwable(hs.NewHandle(self->GetException()));
123 self->ClearException();
124 // Allocate the ClassExt
125 Handle<ClassExt> new_ext(hs.NewHandle(ClassExt::Alloc(self)));
126 if (new_ext == nullptr) {
127 // OOM allocating the classExt.
128 // TODO Should we restore the suppressed exception?
129 self->AssertPendingOOMException();
130 return nullptr;
131 } else {
132 MemberOffset ext_offset(OFFSET_OF_OBJECT_MEMBER(Class, ext_data_));
133 bool set;
134 // Set the ext_data_ field using CAS semantics.
135 if (Runtime::Current()->IsActiveTransaction()) {
136 set = h_this->CasFieldObject<true>(ext_offset,
137 nullptr,
138 new_ext.Get(),
139 CASMode::kStrong,
140 std::memory_order_seq_cst);
141 } else {
142 set = h_this->CasFieldObject<false>(ext_offset,
143 nullptr,
144 new_ext.Get(),
145 CASMode::kStrong,
146 std::memory_order_seq_cst);
147 }
148 ObjPtr<ClassExt> ret(set ? new_ext.Get() : h_this->GetExtData());
149 DCHECK_IMPLIES(set, h_this->GetExtData() == new_ext.Get());
150 CHECK(!ret.IsNull());
151 // Restore the exception if there was one.
152 if (throwable != nullptr) {
153 self->SetException(throwable.Get());
154 }
155 return ret;
156 }
157 }
158
159 template <typename T>
CheckSetStatus(Thread * self,T thiz,ClassStatus new_status,ClassStatus old_status)160 static void CheckSetStatus(Thread* self, T thiz, ClassStatus new_status, ClassStatus old_status)
161 REQUIRES_SHARED(Locks::mutator_lock_) {
162 if (UNLIKELY(new_status <= old_status && new_status != ClassStatus::kErrorUnresolved &&
163 new_status != ClassStatus::kErrorResolved && new_status != ClassStatus::kRetired)) {
164 LOG(FATAL) << "Unexpected change back of class status for " << thiz->PrettyClass() << " "
165 << old_status << " -> " << new_status;
166 }
167 if (old_status == ClassStatus::kInitialized) {
168 // We do not hold the lock for making the class visibly initialized
169 // as this is unnecessary and could lead to deadlocks.
170 CHECK_EQ(new_status, ClassStatus::kVisiblyInitialized);
171 } else if ((new_status >= ClassStatus::kResolved || old_status >= ClassStatus::kResolved) &&
172 !Locks::mutator_lock_->IsExclusiveHeld(self)) {
173 // When classes are being resolved the resolution code should hold the
174 // lock or have everything else suspended
175 CHECK_EQ(thiz->GetLockOwnerThreadId(), self->GetThreadId())
176 << "Attempt to change status of class while not holding its lock: " << thiz->PrettyClass()
177 << " " << old_status << " -> " << new_status;
178 }
179 if (UNLIKELY(Locks::mutator_lock_->IsExclusiveHeld(self))) {
180 CHECK(!Class::IsErroneous(new_status))
181 << "status " << new_status
182 << " cannot be set while suspend-all is active. Would require allocations.";
183 CHECK(thiz->IsResolved())
184 << thiz->PrettyClass()
185 << " not resolved during suspend-all status change. Waiters might be missed!";
186 }
187 }
188
SetStatusInternal(ClassStatus new_status)189 void Class::SetStatusInternal(ClassStatus new_status) {
190 if (kBitstringSubtypeCheckEnabled) {
191 // FIXME: This looks broken with respect to aborted transactions.
192 SubtypeCheck<ObjPtr<mirror::Class>>::WriteStatus(this, new_status);
193 } else {
194 // The ClassStatus is always in the 4 most-significant bits of status_.
195 static_assert(sizeof(status_) == sizeof(uint32_t), "Size of status_ not equal to uint32");
196 uint32_t new_status_value = static_cast<uint32_t>(new_status) << (32 - kClassStatusBitSize);
197 if (Runtime::Current()->IsActiveTransaction()) {
198 SetField32Volatile<true>(StatusOffset(), new_status_value);
199 } else {
200 SetField32Volatile<false>(StatusOffset(), new_status_value);
201 }
202 }
203 }
204
SetStatusLocked(ClassStatus new_status)205 void Class::SetStatusLocked(ClassStatus new_status) {
206 ClassStatus old_status = GetStatus();
207 CheckSetStatus(Thread::Current(), this, new_status, old_status);
208 SetStatusInternal(new_status);
209 }
210
SetStatus(Handle<Class> h_this,ClassStatus new_status,Thread * self)211 void Class::SetStatus(Handle<Class> h_this, ClassStatus new_status, Thread* self) {
212 ClassStatus old_status = h_this->GetStatus();
213 ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
214 bool class_linker_initialized = class_linker != nullptr && class_linker->IsInitialized();
215 if (LIKELY(class_linker_initialized)) {
216 CheckSetStatus(self, h_this, new_status, old_status);
217 }
218 if (UNLIKELY(IsErroneous(new_status))) {
219 CHECK(!h_this->IsErroneous())
220 << "Attempt to set as erroneous an already erroneous class "
221 << h_this->PrettyClass()
222 << " old_status: " << old_status << " new_status: " << new_status;
223 CHECK_EQ(new_status == ClassStatus::kErrorResolved, old_status >= ClassStatus::kResolved);
224 if (VLOG_IS_ON(class_linker)) {
225 LOG(ERROR) << "Setting " << h_this->PrettyDescriptor() << " to erroneous.";
226 if (self->IsExceptionPending()) {
227 LOG(ERROR) << "Exception: " << self->GetException()->Dump();
228 }
229 }
230
231 ObjPtr<ClassExt> ext(EnsureExtDataPresent(h_this, self));
232 if (!ext.IsNull()) {
233 self->AssertPendingException();
234 ext->SetErroneousStateError(self->GetException());
235 } else {
236 self->AssertPendingOOMException();
237 }
238 self->AssertPendingException();
239 }
240
241 h_this->SetStatusInternal(new_status);
242
243 // Setting the object size alloc fast path needs to be after the status write so that if the
244 // alloc path sees a valid object size, we would know that it's initialized as long as it has a
245 // load-acquire/fake dependency.
246 if (new_status == ClassStatus::kVisiblyInitialized && !h_this->IsVariableSize()) {
247 DCHECK_EQ(h_this->GetObjectSizeAllocFastPath(), std::numeric_limits<uint32_t>::max());
248 // Finalizable objects must always go slow path.
249 if (!h_this->IsFinalizable()) {
250 h_this->SetObjectSizeAllocFastPath(RoundUp(h_this->GetObjectSize(), kObjectAlignment));
251 }
252 }
253
254 if (!class_linker_initialized) {
255 // When the class linker is being initialized its single threaded and by definition there can be
256 // no waiters. During initialization classes may appear temporary but won't be retired as their
257 // size was statically computed.
258 } else {
259 // Classes that are being resolved or initialized need to notify waiters that the class status
260 // changed. See ClassLinker::EnsureResolved and ClassLinker::WaitForInitializeClass.
261 if (h_this->IsTemp()) {
262 // Class is a temporary one, ensure that waiters for resolution get notified of retirement
263 // so that they can grab the new version of the class from the class linker's table.
264 CHECK_LT(new_status, ClassStatus::kResolved) << h_this->PrettyDescriptor();
265 if (new_status == ClassStatus::kRetired || new_status == ClassStatus::kErrorUnresolved) {
266 h_this->NotifyAll(self);
267 }
268 } else if (old_status == ClassStatus::kInitialized) {
269 // Do not notify for transition from kInitialized to ClassStatus::kVisiblyInitialized.
270 // This is a hidden transition, not observable by bytecode.
271 DCHECK_EQ(new_status, ClassStatus::kVisiblyInitialized); // Already CHECK()ed above.
272 } else {
273 CHECK_NE(new_status, ClassStatus::kRetired);
274 if (old_status >= ClassStatus::kResolved || new_status >= ClassStatus::kResolved) {
275 h_this->NotifyAll(self);
276 }
277 }
278 }
279 }
280
SetStatusForPrimitiveOrArray(ClassStatus new_status)281 void Class::SetStatusForPrimitiveOrArray(ClassStatus new_status) {
282 DCHECK(IsPrimitive<kVerifyNone>() || IsArrayClass<kVerifyNone>());
283 DCHECK(!IsErroneous(new_status));
284 DCHECK(!IsErroneous(GetStatus<kVerifyNone>()));
285 DCHECK_GT(new_status, GetStatus<kVerifyNone>());
286
287 if (kBitstringSubtypeCheckEnabled) {
288 LOG(FATAL) << "Unimplemented";
289 }
290 // The ClassStatus is always in the 4 most-significant bits of status_.
291 static_assert(sizeof(status_) == sizeof(uint32_t), "Size of status_ not equal to uint32");
292 uint32_t new_status_value = static_cast<uint32_t>(new_status) << (32 - kClassStatusBitSize);
293 // Use normal store. For primitives and core arrays classes (Object[],
294 // Class[], String[] and primitive arrays), the status is set while the
295 // process is still single threaded. For other arrays classes, it is set
296 // in a pre-fence visitor which initializes all fields and the subsequent
297 // fence together with address dependency shall ensure memory visibility.
298 SetField32</*kTransactionActive=*/ false,
299 /*kCheckTransaction=*/ false,
300 kVerifyNone>(StatusOffset(), new_status_value);
301
302 // Do not update `object_alloc_fast_path_`. Arrays are variable size and
303 // instances of primitive classes cannot be created at all.
304
305 // There can be no waiters to notify as these classes are initialized
306 // before another thread can see them.
307 }
308
SetDexCache(ObjPtr<DexCache> new_dex_cache)309 void Class::SetDexCache(ObjPtr<DexCache> new_dex_cache) {
310 SetFieldObjectTransaction(OFFSET_OF_OBJECT_MEMBER(Class, dex_cache_), new_dex_cache);
311 }
312
SetClassSize(uint32_t new_class_size)313 void Class::SetClassSize(uint32_t new_class_size) {
314 if (kIsDebugBuild && new_class_size < GetClassSize()) {
315 DumpClass(LOG_STREAM(FATAL_WITHOUT_ABORT), kDumpClassFullDetail);
316 LOG(FATAL_WITHOUT_ABORT) << new_class_size << " vs " << GetClassSize();
317 LOG(FATAL) << "class=" << PrettyTypeOf();
318 }
319 SetField32</*kTransactionActive=*/ false, /*kCheckTransaction=*/ false>(
320 OFFSET_OF_OBJECT_MEMBER(Class, class_size_), new_class_size);
321 }
322
GetObsoleteClass()323 ObjPtr<Class> Class::GetObsoleteClass() {
324 ObjPtr<ClassExt> ext(GetExtData());
325 if (ext.IsNull()) {
326 return nullptr;
327 } else {
328 return ext->GetObsoleteClass();
329 }
330 }
331
332 // Return the class' name. The exact format is bizarre, but it's the specified behavior for
333 // Class.getName: keywords for primitive types, regular "[I" form for primitive arrays (so "int"
334 // but "[I"), and arrays of reference types written between "L" and ";" but with dots rather than
335 // slashes (so "java.lang.String" but "[Ljava.lang.String;"). Madness.
ComputeName(Handle<Class> h_this)336 ObjPtr<String> Class::ComputeName(Handle<Class> h_this) {
337 ObjPtr<String> name = h_this->GetName();
338 if (name != nullptr) {
339 return name;
340 }
341 std::string temp;
342 const char* descriptor = h_this->GetDescriptor(&temp);
343 Thread* self = Thread::Current();
344 if ((descriptor[0] != 'L') && (descriptor[0] != '[')) {
345 // The descriptor indicates that this is the class for
346 // a primitive type; special-case the return value.
347 const char* c_name = nullptr;
348 switch (descriptor[0]) {
349 case 'Z': c_name = "boolean"; break;
350 case 'B': c_name = "byte"; break;
351 case 'C': c_name = "char"; break;
352 case 'S': c_name = "short"; break;
353 case 'I': c_name = "int"; break;
354 case 'J': c_name = "long"; break;
355 case 'F': c_name = "float"; break;
356 case 'D': c_name = "double"; break;
357 case 'V': c_name = "void"; break;
358 default:
359 LOG(FATAL) << "Unknown primitive type: " << PrintableChar(descriptor[0]);
360 }
361 name = String::AllocFromModifiedUtf8(self, c_name);
362 } else {
363 // Convert the UTF-8 name to a java.lang.String. The name must use '.' to separate package
364 // components.
365 name = String::AllocFromModifiedUtf8(self, DescriptorToDot(descriptor).c_str());
366 }
367 h_this->SetName(name);
368 return name;
369 }
370
DumpClass(std::ostream & os,int flags)371 void Class::DumpClass(std::ostream& os, int flags) {
372 ScopedAssertNoThreadSuspension ants(__FUNCTION__);
373 if ((flags & kDumpClassFullDetail) == 0) {
374 os << PrettyClass();
375 if ((flags & kDumpClassClassLoader) != 0) {
376 os << ' ' << GetClassLoader();
377 }
378 if ((flags & kDumpClassInitialized) != 0) {
379 os << ' ' << GetStatus();
380 }
381 os << "\n";
382 return;
383 }
384
385 ObjPtr<Class> super = GetSuperClass();
386 auto image_pointer_size = Runtime::Current()->GetClassLinker()->GetImagePointerSize();
387
388 std::string temp;
389 os << "----- " << (IsInterface() ? "interface" : "class") << " "
390 << "'" << GetDescriptor(&temp) << "' cl=" << GetClassLoader() << " -----\n"
391 << " objectSize=" << SizeOf() << " "
392 << "(" << (super != nullptr ? super->SizeOf() : -1) << " from super)\n"
393 << StringPrintf(" access=0x%04x.%04x\n",
394 GetAccessFlags() >> 16,
395 GetAccessFlags() & kAccJavaFlagsMask);
396 if (super != nullptr) {
397 os << " super='" << super->PrettyClass() << "' (cl=" << super->GetClassLoader() << ")\n";
398 }
399 if (IsArrayClass()) {
400 os << " componentType=" << PrettyClass(GetComponentType()) << "\n";
401 }
402 const size_t num_direct_interfaces = NumDirectInterfaces();
403 if (num_direct_interfaces > 0) {
404 os << " interfaces (" << num_direct_interfaces << "):\n";
405 for (size_t i = 0; i < num_direct_interfaces; ++i) {
406 ObjPtr<Class> interface = GetDirectInterface(i);
407 if (interface == nullptr) {
408 os << StringPrintf(" %2zd: nullptr!\n", i);
409 } else {
410 ObjPtr<ClassLoader> cl = interface->GetClassLoader();
411 os << StringPrintf(" %2zd: %s (cl=%p)\n", i, PrettyClass(interface).c_str(), cl.Ptr());
412 }
413 }
414 }
415 if (!IsLoaded()) {
416 os << " class not yet loaded";
417 } else {
418 os << " vtable (" << NumVirtualMethods() << " entries, "
419 << (super != nullptr ? super->NumVirtualMethods() : 0) << " in super):\n";
420 for (size_t i = 0; i < NumVirtualMethods(); ++i) {
421 os << StringPrintf(" %2zd: %s\n", i, ArtMethod::PrettyMethod(
422 GetVirtualMethodDuringLinking(i, image_pointer_size)).c_str());
423 }
424 os << " direct methods (" << NumDirectMethods() << " entries):\n";
425 for (size_t i = 0; i < NumDirectMethods(); ++i) {
426 os << StringPrintf(" %2zd: %s\n", i, ArtMethod::PrettyMethod(
427 GetDirectMethod(i, image_pointer_size)).c_str());
428 }
429 if (NumStaticFields() > 0) {
430 os << " static fields (" << NumStaticFields() << " entries):\n";
431 if (IsResolved()) {
432 for (size_t i = 0; i < NumStaticFields(); ++i) {
433 os << StringPrintf(" %2zd: %s\n", i, ArtField::PrettyField(GetStaticField(i)).c_str());
434 }
435 } else {
436 os << " <not yet available>";
437 }
438 }
439 if (NumInstanceFields() > 0) {
440 os << " instance fields (" << NumInstanceFields() << " entries):\n";
441 if (IsResolved()) {
442 for (size_t i = 0; i < NumInstanceFields(); ++i) {
443 os << StringPrintf(" %2zd: %s\n", i,
444 ArtField::PrettyField(GetInstanceField(i)).c_str());
445 }
446 } else {
447 os << " <not yet available>";
448 }
449 }
450 }
451 }
452
SetReferenceInstanceOffsets(uint32_t new_reference_offsets)453 void Class::SetReferenceInstanceOffsets(uint32_t new_reference_offsets) {
454 if (kIsDebugBuild && new_reference_offsets != kClassWalkSuper) {
455 // Check that the number of bits set in the reference offset bitmap
456 // agrees with the number of references.
457 uint32_t count = 0;
458 for (ObjPtr<Class> c = this; c != nullptr; c = c->GetSuperClass()) {
459 count += c->NumReferenceInstanceFieldsDuringLinking();
460 }
461 // +1 for the Class in Object.
462 CHECK_EQ(static_cast<uint32_t>(POPCOUNT(new_reference_offsets)) + 1, count);
463 }
464 // Not called within a transaction.
465 SetField32<false>(OFFSET_OF_OBJECT_MEMBER(Class, reference_instance_offsets_),
466 new_reference_offsets);
467 }
468
IsInSamePackage(std::string_view descriptor1,std::string_view descriptor2)469 bool Class::IsInSamePackage(std::string_view descriptor1, std::string_view descriptor2) {
470 size_t i = 0;
471 size_t min_length = std::min(descriptor1.size(), descriptor2.size());
472 while (i < min_length && descriptor1[i] == descriptor2[i]) {
473 ++i;
474 }
475 if (descriptor1.find('/', i) != std::string_view::npos ||
476 descriptor2.find('/', i) != std::string_view::npos) {
477 return false;
478 } else {
479 return true;
480 }
481 }
482
IsInSamePackage(ObjPtr<Class> that)483 bool Class::IsInSamePackage(ObjPtr<Class> that) {
484 ObjPtr<Class> klass1 = this;
485 ObjPtr<Class> klass2 = that;
486 if (klass1 == klass2) {
487 return true;
488 }
489 // Class loaders must match.
490 if (klass1->GetClassLoader() != klass2->GetClassLoader()) {
491 return false;
492 }
493 // Arrays are in the same package when their element classes are.
494 while (klass1->IsArrayClass()) {
495 klass1 = klass1->GetComponentType();
496 }
497 while (klass2->IsArrayClass()) {
498 klass2 = klass2->GetComponentType();
499 }
500 // trivial check again for array types
501 if (klass1 == klass2) {
502 return true;
503 }
504 // Compare the package part of the descriptor string.
505 std::string temp1, temp2;
506 return IsInSamePackage(klass1->GetDescriptor(&temp1), klass2->GetDescriptor(&temp2));
507 }
508
IsThrowableClass()509 bool Class::IsThrowableClass() {
510 return GetClassRoot<mirror::Throwable>()->IsAssignableFrom(this);
511 }
512
513 template <typename SignatureType>
FindInterfaceMethodWithSignature(ObjPtr<Class> klass,std::string_view name,const SignatureType & signature,PointerSize pointer_size)514 static inline ArtMethod* FindInterfaceMethodWithSignature(ObjPtr<Class> klass,
515 std::string_view name,
516 const SignatureType& signature,
517 PointerSize pointer_size)
518 REQUIRES_SHARED(Locks::mutator_lock_) {
519 // If the current class is not an interface, skip the search of its declared methods;
520 // such lookup is used only to distinguish between IncompatibleClassChangeError and
521 // NoSuchMethodError and the caller has already tried to search methods in the class.
522 if (LIKELY(klass->IsInterface())) {
523 // Search declared methods, both direct and virtual.
524 // (This lookup is used also for invoke-static on interface classes.)
525 for (ArtMethod& method : klass->GetDeclaredMethodsSlice(pointer_size)) {
526 if (method.GetNameView() == name && method.GetSignature() == signature) {
527 return &method;
528 }
529 }
530 }
531
532 // TODO: If there is a unique maximally-specific non-abstract superinterface method,
533 // we should return it, otherwise an arbitrary one can be returned.
534 ObjPtr<IfTable> iftable = klass->GetIfTable();
535 for (int32_t i = 0, iftable_count = iftable->Count(); i < iftable_count; ++i) {
536 ObjPtr<Class> iface = iftable->GetInterface(i);
537 for (ArtMethod& method : iface->GetVirtualMethodsSlice(pointer_size)) {
538 if (method.GetNameView() == name && method.GetSignature() == signature) {
539 return &method;
540 }
541 }
542 }
543
544 // Then search for public non-static methods in the java.lang.Object.
545 if (LIKELY(klass->IsInterface())) {
546 ObjPtr<Class> object_class = klass->GetSuperClass();
547 DCHECK(object_class->IsObjectClass());
548 for (ArtMethod& method : object_class->GetDeclaredMethodsSlice(pointer_size)) {
549 if (method.IsPublic() && !method.IsStatic() &&
550 method.GetNameView() == name && method.GetSignature() == signature) {
551 return &method;
552 }
553 }
554 }
555 return nullptr;
556 }
557
FindInterfaceMethod(std::string_view name,std::string_view signature,PointerSize pointer_size)558 ArtMethod* Class::FindInterfaceMethod(std::string_view name,
559 std::string_view signature,
560 PointerSize pointer_size) {
561 return FindInterfaceMethodWithSignature(this, name, signature, pointer_size);
562 }
563
FindInterfaceMethod(std::string_view name,const Signature & signature,PointerSize pointer_size)564 ArtMethod* Class::FindInterfaceMethod(std::string_view name,
565 const Signature& signature,
566 PointerSize pointer_size) {
567 return FindInterfaceMethodWithSignature(this, name, signature, pointer_size);
568 }
569
FindInterfaceMethod(ObjPtr<DexCache> dex_cache,uint32_t dex_method_idx,PointerSize pointer_size)570 ArtMethod* Class::FindInterfaceMethod(ObjPtr<DexCache> dex_cache,
571 uint32_t dex_method_idx,
572 PointerSize pointer_size) {
573 // We always search by name and signature, ignoring the type index in the MethodId.
574 const DexFile& dex_file = *dex_cache->GetDexFile();
575 const dex::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
576 std::string_view name = dex_file.StringViewByIdx(method_id.name_idx_);
577 const Signature signature = dex_file.GetMethodSignature(method_id);
578 return FindInterfaceMethod(name, signature, pointer_size);
579 }
580
IsValidInheritanceCheck(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Class> declaring_class)581 static inline bool IsValidInheritanceCheck(ObjPtr<mirror::Class> klass,
582 ObjPtr<mirror::Class> declaring_class)
583 REQUIRES_SHARED(Locks::mutator_lock_) {
584 if (klass->IsArrayClass()) {
585 return declaring_class->IsObjectClass();
586 } else if (klass->IsInterface()) {
587 return declaring_class->IsObjectClass() || declaring_class == klass;
588 } else {
589 return klass->IsSubClass(declaring_class);
590 }
591 }
592
IsInheritedMethod(ObjPtr<mirror::Class> klass,ObjPtr<mirror::Class> declaring_class,ArtMethod & method)593 static inline bool IsInheritedMethod(ObjPtr<mirror::Class> klass,
594 ObjPtr<mirror::Class> declaring_class,
595 ArtMethod& method)
596 REQUIRES_SHARED(Locks::mutator_lock_) {
597 DCHECK_EQ(declaring_class, method.GetDeclaringClass());
598 DCHECK_NE(klass, declaring_class);
599 DCHECK(IsValidInheritanceCheck(klass, declaring_class));
600 uint32_t access_flags = method.GetAccessFlags();
601 if ((access_flags & (kAccPublic | kAccProtected)) != 0) {
602 return true;
603 }
604 if ((access_flags & kAccPrivate) != 0) {
605 return false;
606 }
607 for (; klass != declaring_class; klass = klass->GetSuperClass()) {
608 if (!klass->IsInSamePackage(declaring_class)) {
609 return false;
610 }
611 }
612 return true;
613 }
614
615 template <typename SignatureType>
FindClassMethodWithSignature(ObjPtr<Class> this_klass,std::string_view name,const SignatureType & signature,PointerSize pointer_size)616 static inline ArtMethod* FindClassMethodWithSignature(ObjPtr<Class> this_klass,
617 std::string_view name,
618 const SignatureType& signature,
619 PointerSize pointer_size)
620 REQUIRES_SHARED(Locks::mutator_lock_) {
621 // Search declared methods first.
622 for (ArtMethod& method : this_klass->GetDeclaredMethodsSlice(pointer_size)) {
623 ArtMethod* np_method = method.GetInterfaceMethodIfProxy(pointer_size);
624 if (np_method->GetNameView() == name && np_method->GetSignature() == signature) {
625 return &method;
626 }
627 }
628
629 // Then search the superclass chain. If we find an inherited method, return it.
630 // If we find a method that's not inherited because of access restrictions,
631 // try to find a method inherited from an interface in copied methods.
632 ObjPtr<Class> klass = this_klass->GetSuperClass();
633 ArtMethod* uninherited_method = nullptr;
634 for (; klass != nullptr; klass = klass->GetSuperClass()) {
635 DCHECK(!klass->IsProxyClass());
636 for (ArtMethod& method : klass->GetDeclaredMethodsSlice(pointer_size)) {
637 if (method.GetNameView() == name && method.GetSignature() == signature) {
638 if (IsInheritedMethod(this_klass, klass, method)) {
639 return &method;
640 }
641 uninherited_method = &method;
642 break;
643 }
644 }
645 if (uninherited_method != nullptr) {
646 break;
647 }
648 }
649
650 // Then search copied methods.
651 // If we found a method that's not inherited, stop the search in its declaring class.
652 ObjPtr<Class> end_klass = klass;
653 DCHECK_EQ(uninherited_method != nullptr, end_klass != nullptr);
654 klass = this_klass;
655 if (UNLIKELY(klass->IsProxyClass())) {
656 DCHECK(klass->GetCopiedMethodsSlice(pointer_size).empty());
657 klass = klass->GetSuperClass();
658 }
659 for (; klass != end_klass; klass = klass->GetSuperClass()) {
660 DCHECK(!klass->IsProxyClass());
661 for (ArtMethod& method : klass->GetCopiedMethodsSlice(pointer_size)) {
662 if (method.GetNameView() == name && method.GetSignature() == signature) {
663 return &method; // No further check needed, copied methods are inherited by definition.
664 }
665 }
666 }
667 return uninherited_method; // Return the `uninherited_method` if any.
668 }
669
670
FindClassMethod(std::string_view name,std::string_view signature,PointerSize pointer_size)671 ArtMethod* Class::FindClassMethod(std::string_view name,
672 std::string_view signature,
673 PointerSize pointer_size) {
674 return FindClassMethodWithSignature(this, name, signature, pointer_size);
675 }
676
FindClassMethod(std::string_view name,const Signature & signature,PointerSize pointer_size)677 ArtMethod* Class::FindClassMethod(std::string_view name,
678 const Signature& signature,
679 PointerSize pointer_size) {
680 return FindClassMethodWithSignature(this, name, signature, pointer_size);
681 }
682
683 // Binary search a range with a three-way compare function.
684 //
685 // Return a tuple consisting of a `success` value, the index of the match (`mid`) and
686 // the remaining range when we found the match (`begin` and `end`). This is useful for
687 // subsequent binary search with a secondary comparator, see `ClassMemberBinarySearch()`.
688 template <typename Compare>
689 ALWAYS_INLINE
BinarySearch(uint32_t begin,uint32_t end,Compare && cmp)690 std::tuple<bool, uint32_t, uint32_t, uint32_t> BinarySearch(uint32_t begin,
691 uint32_t end,
692 Compare&& cmp)
693 REQUIRES_SHARED(Locks::mutator_lock_) {
694 while (begin != end) {
695 uint32_t mid = (begin + end) >> 1;
696 auto cmp_result = cmp(mid);
697 if (cmp_result == 0) {
698 return {true, mid, begin, end};
699 }
700 if (cmp_result > 0) {
701 begin = mid + 1u;
702 } else {
703 end = mid;
704 }
705 }
706 return {false, 0u, 0u, 0u};
707 }
708
709 // Binary search for class members. The range passed to this search must be sorted, so
710 // declared methods or fields cannot be searched directly but declared direct methods,
711 // declared virtual methods, declared static fields or declared instance fields can.
712 template <typename NameCompare, typename SecondCompare, typename NameIndexGetter>
713 ALWAYS_INLINE
ClassMemberBinarySearch(uint32_t begin,uint32_t end,NameCompare && name_cmp,SecondCompare && second_cmp,NameIndexGetter && get_name_idx)714 std::tuple<bool, uint32_t> ClassMemberBinarySearch(uint32_t begin,
715 uint32_t end,
716 NameCompare&& name_cmp,
717 SecondCompare&& second_cmp,
718 NameIndexGetter&& get_name_idx)
719 REQUIRES_SHARED(Locks::mutator_lock_) {
720 // First search for the item with the given name.
721 bool success;
722 uint32_t mid;
723 std::tie(success, mid, begin, end) = BinarySearch(begin, end, name_cmp);
724 if (!success) {
725 return {false, 0u};
726 }
727 // If found, do the secondary comparison.
728 auto second_cmp_result = second_cmp(mid);
729 if (second_cmp_result == 0) {
730 return {true, mid};
731 }
732 // We have matched the name but not the secondary comparison. We no longer need to
733 // search for the name as string as we know the matching name string index.
734 // Repeat the above binary searches and secondary comparisons with a simpler name
735 // index compare until the search range contains only matching name.
736 auto name_idx = get_name_idx(mid);
737 if (second_cmp_result > 0) {
738 do {
739 begin = mid + 1u;
740 auto name_index_cmp = [&](uint32_t mid2) REQUIRES_SHARED(Locks::mutator_lock_) {
741 DCHECK_LE(name_idx, get_name_idx(mid2));
742 return (name_idx != get_name_idx(mid2)) ? -1 : 0;
743 };
744 std::tie(success, mid, begin, end) = BinarySearch(begin, end, name_index_cmp);
745 if (!success) {
746 return {false, 0u};
747 }
748 second_cmp_result = second_cmp(mid);
749 } while (second_cmp_result > 0);
750 end = mid;
751 } else {
752 do {
753 end = mid;
754 auto name_index_cmp = [&](uint32_t mid2) REQUIRES_SHARED(Locks::mutator_lock_) {
755 DCHECK_GE(name_idx, get_name_idx(mid2));
756 return (name_idx != get_name_idx(mid2)) ? 1 : 0;
757 };
758 std::tie(success, mid, begin, end) = BinarySearch(begin, end, name_index_cmp);
759 if (!success) {
760 return {false, 0u};
761 }
762 second_cmp_result = second_cmp(mid);
763 } while (second_cmp_result < 0);
764 begin = mid + 1u;
765 }
766 if (second_cmp_result == 0) {
767 return {true, mid};
768 }
769 // All items in the remaining range have a matching name, so search with secondary comparison.
770 std::tie(success, mid, std::ignore, std::ignore) = BinarySearch(begin, end, second_cmp);
771 return {success, mid};
772 }
773
FindDeclaredClassMethod(ObjPtr<mirror::Class> klass,const DexFile & dex_file,std::string_view name,Signature signature,PointerSize pointer_size)774 static std::tuple<bool, ArtMethod*> FindDeclaredClassMethod(ObjPtr<mirror::Class> klass,
775 const DexFile& dex_file,
776 std::string_view name,
777 Signature signature,
778 PointerSize pointer_size)
779 REQUIRES_SHARED(Locks::mutator_lock_) {
780 DCHECK(&klass->GetDexFile() == &dex_file);
781 DCHECK(!name.empty());
782
783 ArraySlice<ArtMethod> declared_methods = klass->GetDeclaredMethodsSlice(pointer_size);
784 DCHECK(!declared_methods.empty());
785 auto get_method_id = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE
786 -> const dex::MethodId& {
787 ArtMethod& method = declared_methods[mid];
788 DCHECK(method.GetDexFile() == &dex_file);
789 DCHECK_NE(method.GetDexMethodIndex(), dex::kDexNoIndex);
790 return dex_file.GetMethodId(method.GetDexMethodIndex());
791 };
792 auto name_cmp = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
793 // Do not use ArtMethod::GetNameView() to avoid reloading dex file through the same
794 // declaring class from different methods and also avoid the runtime method check.
795 const dex::MethodId& method_id = get_method_id(mid);
796 return name.compare(dex_file.GetMethodNameView(method_id));
797 };
798 auto signature_cmp = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
799 // Do not use ArtMethod::GetSignature() to avoid reloading dex file through the same
800 // declaring class from different methods and also avoid the runtime method check.
801 const dex::MethodId& method_id = get_method_id(mid);
802 return signature.Compare(dex_file.GetMethodSignature(method_id));
803 };
804 auto get_name_idx = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
805 const dex::MethodId& method_id = get_method_id(mid);
806 return method_id.name_idx_;
807 };
808
809 // Use binary search in the sorted direct methods, then in the sorted virtual methods.
810 uint32_t num_direct_methods = klass->NumDirectMethods();
811 uint32_t num_declared_methods = dchecked_integral_cast<uint32_t>(declared_methods.size());
812 DCHECK_LE(num_direct_methods, num_declared_methods);
813 const uint32_t ranges[2][2] = {
814 {0u, num_direct_methods}, // Declared direct methods.
815 {num_direct_methods, num_declared_methods} // Declared virtual methods.
816 };
817 for (const uint32_t (&range)[2] : ranges) {
818 auto [success, mid] =
819 ClassMemberBinarySearch(range[0], range[1], name_cmp, signature_cmp, get_name_idx);
820 if (success) {
821 return {true, &declared_methods[mid]};
822 }
823 }
824
825 // Did not find a declared method in either slice.
826 return {false, nullptr};
827 }
828
829 FLATTEN
FindClassMethod(ObjPtr<DexCache> dex_cache,uint32_t dex_method_idx,PointerSize pointer_size)830 ArtMethod* Class::FindClassMethod(ObjPtr<DexCache> dex_cache,
831 uint32_t dex_method_idx,
832 PointerSize pointer_size) {
833 // FIXME: Hijacking a proxy class by a custom class loader can break this assumption.
834 DCHECK(!IsProxyClass());
835
836 // First try to find a declared method by dex_method_idx if we have a dex_cache match.
837 ObjPtr<DexCache> this_dex_cache = GetDexCache();
838 if (this_dex_cache == dex_cache) {
839 // Lookup is always performed in the class referenced by the MethodId.
840 DCHECK_EQ(dex_type_idx_, GetDexFile().GetMethodId(dex_method_idx).class_idx_.index_);
841 for (ArtMethod& method : GetDeclaredMethodsSlice(pointer_size)) {
842 if (method.GetDexMethodIndex() == dex_method_idx) {
843 return &method;
844 }
845 }
846 }
847
848 // If not found, we need to search by name and signature.
849 const DexFile& dex_file = *dex_cache->GetDexFile();
850 const dex::MethodId& method_id = dex_file.GetMethodId(dex_method_idx);
851 const Signature signature = dex_file.GetMethodSignature(method_id);
852 std::string_view name; // Do not touch the dex file string data until actually needed.
853
854 // If we do not have a dex_cache match, try to find the declared method in this class now.
855 if (this_dex_cache != dex_cache && !GetDeclaredMethodsSlice(pointer_size).empty()) {
856 DCHECK(name.empty());
857 name = dex_file.GetMethodNameView(method_id);
858 auto [success, method] = FindDeclaredClassMethod(
859 this, *this_dex_cache->GetDexFile(), name, signature, pointer_size);
860 DCHECK_EQ(success, method != nullptr);
861 if (success) {
862 return method;
863 }
864 }
865
866 // Then search the superclass chain. If we find an inherited method, return it.
867 // If we find a method that's not inherited because of access restrictions,
868 // try to find a method inherited from an interface in copied methods.
869 ArtMethod* uninherited_method = nullptr;
870 ObjPtr<Class> klass = GetSuperClass();
871 for (; klass != nullptr; klass = klass->GetSuperClass()) {
872 ArtMethod* candidate_method = nullptr;
873 ArraySlice<ArtMethod> declared_methods = klass->GetDeclaredMethodsSlice(pointer_size);
874 ObjPtr<DexCache> klass_dex_cache = klass->GetDexCache();
875 if (klass_dex_cache == dex_cache) {
876 // Matching dex_cache. We cannot compare the `dex_method_idx` anymore because
877 // the type index differs, so compare the name index and proto index.
878 for (ArtMethod& method : declared_methods) {
879 const dex::MethodId& cmp_method_id = dex_file.GetMethodId(method.GetDexMethodIndex());
880 if (cmp_method_id.name_idx_ == method_id.name_idx_ &&
881 cmp_method_id.proto_idx_ == method_id.proto_idx_) {
882 candidate_method = &method;
883 break;
884 }
885 }
886 } else if (!declared_methods.empty()) {
887 if (name.empty()) {
888 name = dex_file.GetMethodNameView(method_id);
889 }
890 auto [success, method] = FindDeclaredClassMethod(
891 klass, *klass_dex_cache->GetDexFile(), name, signature, pointer_size);
892 DCHECK_EQ(success, method != nullptr);
893 if (success) {
894 candidate_method = method;
895 }
896 }
897 if (candidate_method != nullptr) {
898 if (IsInheritedMethod(this, klass, *candidate_method)) {
899 return candidate_method;
900 } else {
901 uninherited_method = candidate_method;
902 break;
903 }
904 }
905 }
906
907 // Then search copied methods.
908 // If we found a method that's not inherited, stop the search in its declaring class.
909 ObjPtr<Class> end_klass = klass;
910 DCHECK_EQ(uninherited_method != nullptr, end_klass != nullptr);
911 // After we have searched the declared methods of the super-class chain,
912 // search copied methods which can contain methods from interfaces.
913 for (klass = this; klass != end_klass; klass = klass->GetSuperClass()) {
914 ArraySlice<ArtMethod> copied_methods = klass->GetCopiedMethodsSlice(pointer_size);
915 if (!copied_methods.empty() && name.empty()) {
916 name = dex_file.StringDataByIdx(method_id.name_idx_);
917 }
918 for (ArtMethod& method : copied_methods) {
919 if (method.GetNameView() == name && method.GetSignature() == signature) {
920 return &method; // No further check needed, copied methods are inherited by definition.
921 }
922 }
923 }
924 return uninherited_method; // Return the `uninherited_method` if any.
925 }
926
FindConstructor(std::string_view signature,PointerSize pointer_size)927 ArtMethod* Class::FindConstructor(std::string_view signature, PointerSize pointer_size) {
928 // Internal helper, never called on proxy classes. We can skip GetInterfaceMethodIfProxy().
929 DCHECK(!IsProxyClass());
930 std::string_view name("<init>");
931 for (ArtMethod& method : GetDirectMethodsSliceUnchecked(pointer_size)) {
932 if (method.GetName() == name && method.GetSignature() == signature) {
933 return &method;
934 }
935 }
936 return nullptr;
937 }
938
FindDeclaredDirectMethodByName(std::string_view name,PointerSize pointer_size)939 ArtMethod* Class::FindDeclaredDirectMethodByName(std::string_view name, PointerSize pointer_size) {
940 for (auto& method : GetDirectMethods(pointer_size)) {
941 ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size);
942 if (name == np_method->GetName()) {
943 return &method;
944 }
945 }
946 return nullptr;
947 }
948
FindDeclaredVirtualMethodByName(std::string_view name,PointerSize pointer_size)949 ArtMethod* Class::FindDeclaredVirtualMethodByName(std::string_view name, PointerSize pointer_size) {
950 for (auto& method : GetVirtualMethods(pointer_size)) {
951 ArtMethod* const np_method = method.GetInterfaceMethodIfProxy(pointer_size);
952 if (name == np_method->GetName()) {
953 return &method;
954 }
955 }
956 return nullptr;
957 }
958
FindVirtualMethodForInterfaceSuper(ArtMethod * method,PointerSize pointer_size)959 ArtMethod* Class::FindVirtualMethodForInterfaceSuper(ArtMethod* method, PointerSize pointer_size) {
960 DCHECK(method->GetDeclaringClass()->IsInterface());
961 DCHECK(IsInterface()) << "Should only be called on a interface class";
962 // Check if we have one defined on this interface first. This includes searching copied ones to
963 // get any conflict methods. Conflict methods are copied into each subtype from the supertype. We
964 // don't do any indirect method checks here.
965 for (ArtMethod& iface_method : GetVirtualMethods(pointer_size)) {
966 if (method->HasSameNameAndSignature(&iface_method)) {
967 return &iface_method;
968 }
969 }
970
971 std::vector<ArtMethod*> abstract_methods;
972 // Search through the IFTable for a working version. We don't need to check for conflicts
973 // because if there was one it would appear in this classes virtual_methods_ above.
974
975 Thread* self = Thread::Current();
976 StackHandleScope<2> hs(self);
977 MutableHandle<IfTable> iftable(hs.NewHandle(GetIfTable()));
978 MutableHandle<Class> iface(hs.NewHandle<Class>(nullptr));
979 size_t iftable_count = GetIfTableCount();
980 // Find the method. We don't need to check for conflicts because they would have been in the
981 // copied virtuals of this interface. Order matters, traverse in reverse topological order; most
982 // subtypiest interfaces get visited first.
983 for (size_t k = iftable_count; k != 0;) {
984 k--;
985 DCHECK_LT(k, iftable->Count());
986 iface.Assign(iftable->GetInterface(k));
987 // Iterate through every declared method on this interface. Each direct method's name/signature
988 // is unique so the order of the inner loop doesn't matter.
989 for (auto& method_iter : iface->GetDeclaredVirtualMethods(pointer_size)) {
990 ArtMethod* current_method = &method_iter;
991 if (current_method->HasSameNameAndSignature(method)) {
992 if (current_method->IsDefault()) {
993 // Handle JLS soft errors, a default method from another superinterface tree can
994 // "override" an abstract method(s) from another superinterface tree(s). To do this,
995 // ignore any [default] method which are dominated by the abstract methods we've seen so
996 // far. Check if overridden by any in abstract_methods. We do not need to check for
997 // default_conflicts because we would hit those before we get to this loop.
998 bool overridden = false;
999 for (ArtMethod* possible_override : abstract_methods) {
1000 DCHECK(possible_override->HasSameNameAndSignature(current_method));
1001 if (iface->IsAssignableFrom(possible_override->GetDeclaringClass())) {
1002 overridden = true;
1003 break;
1004 }
1005 }
1006 if (!overridden) {
1007 return current_method;
1008 }
1009 } else {
1010 // Is not default.
1011 // This might override another default method. Just stash it for now.
1012 abstract_methods.push_back(current_method);
1013 }
1014 }
1015 }
1016 }
1017 // If we reach here we either never found any declaration of the method (in which case
1018 // 'abstract_methods' is empty or we found no non-overriden default methods in which case
1019 // 'abstract_methods' contains a number of abstract implementations of the methods. We choose one
1020 // of these arbitrarily.
1021 return abstract_methods.empty() ? nullptr : abstract_methods[0];
1022 }
1023
FindClassInitializer(PointerSize pointer_size)1024 ArtMethod* Class::FindClassInitializer(PointerSize pointer_size) {
1025 for (ArtMethod& method : GetDirectMethods(pointer_size)) {
1026 if (method.IsClassInitializer()) {
1027 DCHECK_STREQ(method.GetName(), "<clinit>");
1028 DCHECK_STREQ(method.GetSignature().ToString().c_str(), "()V");
1029 return &method;
1030 }
1031 }
1032 return nullptr;
1033 }
1034
FindFieldByNameAndType(const DexFile & dex_file,LengthPrefixedArray<ArtField> * fields,std::string_view name,std::string_view type)1035 static std::tuple<bool, ArtField*> FindFieldByNameAndType(const DexFile& dex_file,
1036 LengthPrefixedArray<ArtField>* fields,
1037 std::string_view name,
1038 std::string_view type)
1039 REQUIRES_SHARED(Locks::mutator_lock_) {
1040 DCHECK(fields != nullptr);
1041 DCHECK(!name.empty());
1042 DCHECK(!type.empty());
1043
1044 // Fields are sorted by class, then name, then type descriptor. This is verified in dex file
1045 // verifier. There can be multiple fields with the same name in the same class due to proguard.
1046 // Note: std::string_view::compare() uses lexicographical comparison and treats the `char` as
1047 // unsigned; for Modified-UTF-8 without embedded nulls this is consistent with the
1048 // CompareModifiedUtf8ToModifiedUtf8AsUtf16CodePointValues() ordering.
1049 auto get_field_id = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE
1050 -> const dex::FieldId& {
1051 ArtField& field = fields->At(mid);
1052 DCHECK(field.GetDexFile() == &dex_file);
1053 return dex_file.GetFieldId(field.GetDexFieldIndex());
1054 };
1055 auto name_cmp = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1056 const dex::FieldId& field_id = get_field_id(mid);
1057 return name.compare(dex_file.GetFieldNameView(field_id));
1058 };
1059 auto type_cmp = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1060 const dex::FieldId& field_id = get_field_id(mid);
1061 return type.compare(dex_file.GetTypeDescriptorView(dex_file.GetTypeId(field_id.type_idx_)));
1062 };
1063 auto get_name_idx = [&](uint32_t mid) REQUIRES_SHARED(Locks::mutator_lock_) ALWAYS_INLINE {
1064 const dex::FieldId& field_id = get_field_id(mid);
1065 return field_id.name_idx_;
1066 };
1067
1068 // Use binary search in the sorted fields.
1069 auto [success, mid] =
1070 ClassMemberBinarySearch(/*begin=*/ 0u, fields->size(), name_cmp, type_cmp, get_name_idx);
1071
1072 if (kIsDebugBuild) {
1073 ArtField* found = nullptr;
1074 for (ArtField& field : MakeIterationRangeFromLengthPrefixedArray(fields)) {
1075 if (name == field.GetName() && type == field.GetTypeDescriptor()) {
1076 found = &field;
1077 break;
1078 }
1079 }
1080
1081 ArtField* ret = success ? &fields->At(mid) : nullptr;
1082 CHECK_EQ(found, ret)
1083 << "Found " << ArtField::PrettyField(found) << " vs " << ArtField::PrettyField(ret);
1084 }
1085
1086 if (success) {
1087 return {true, &fields->At(mid)};
1088 }
1089
1090 return {false, nullptr};
1091 }
1092
FindDeclaredInstanceField(std::string_view name,std::string_view type)1093 ArtField* Class::FindDeclaredInstanceField(std::string_view name, std::string_view type) {
1094 // Binary search by name. Interfaces are not relevant because they can't contain instance fields.
1095 LengthPrefixedArray<ArtField>* ifields = GetIFieldsPtr();
1096 if (ifields == nullptr) {
1097 return nullptr;
1098 }
1099 DCHECK(!IsProxyClass());
1100 auto [success, field] = FindFieldByNameAndType(GetDexFile(), ifields, name, type);
1101 DCHECK_EQ(success, field != nullptr);
1102 return field;
1103 }
1104
FindDeclaredInstanceField(ObjPtr<DexCache> dex_cache,uint32_t dex_field_idx)1105 ArtField* Class::FindDeclaredInstanceField(ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) {
1106 if (GetDexCache() == dex_cache) {
1107 for (ArtField& field : GetIFields()) {
1108 if (field.GetDexFieldIndex() == dex_field_idx) {
1109 return &field;
1110 }
1111 }
1112 }
1113 return nullptr;
1114 }
1115
FindInstanceField(std::string_view name,std::string_view type)1116 ArtField* Class::FindInstanceField(std::string_view name, std::string_view type) {
1117 // Is the field in this class, or any of its superclasses?
1118 // Interfaces are not relevant because they can't contain instance fields.
1119 for (ObjPtr<Class> c = this; c != nullptr; c = c->GetSuperClass()) {
1120 ArtField* f = c->FindDeclaredInstanceField(name, type);
1121 if (f != nullptr) {
1122 return f;
1123 }
1124 }
1125 return nullptr;
1126 }
1127
FindDeclaredStaticField(std::string_view name,std::string_view type)1128 ArtField* Class::FindDeclaredStaticField(std::string_view name, std::string_view type) {
1129 DCHECK(!type.empty());
1130 LengthPrefixedArray<ArtField>* sfields = GetSFieldsPtr();
1131 if (sfields == nullptr) {
1132 return nullptr;
1133 }
1134 if (UNLIKELY(IsProxyClass())) {
1135 // Proxy fields do not have appropriate dex field indexes required by
1136 // `FindFieldByNameAndType()`. However, each proxy class has exactly
1137 // the same artificial fields created by the `ClassLinker`.
1138 DCHECK_EQ(sfields->size(), 2u);
1139 DCHECK_EQ(strcmp(sfields->At(0).GetName(), "interfaces"), 0);
1140 DCHECK_EQ(strcmp(sfields->At(0).GetTypeDescriptor(), "[Ljava/lang/Class;"), 0);
1141 DCHECK_EQ(strcmp(sfields->At(1).GetName(), "throws"), 0);
1142 DCHECK_EQ(strcmp(sfields->At(1).GetTypeDescriptor(), "[[Ljava/lang/Class;"), 0);
1143 if (name == "interfaces") {
1144 return (type == "[Ljava/lang/Class;") ? &sfields->At(0) : nullptr;
1145 } else if (name == "throws") {
1146 return (type == "[[Ljava/lang/Class;") ? &sfields->At(1) : nullptr;
1147 } else {
1148 return nullptr;
1149 }
1150 }
1151 auto [success, field] = FindFieldByNameAndType(GetDexFile(), sfields, name, type);
1152 DCHECK_EQ(success, field != nullptr);
1153 return field;
1154 }
1155
FindDeclaredStaticField(ObjPtr<DexCache> dex_cache,uint32_t dex_field_idx)1156 ArtField* Class::FindDeclaredStaticField(ObjPtr<DexCache> dex_cache, uint32_t dex_field_idx) {
1157 if (dex_cache == GetDexCache()) {
1158 for (ArtField& field : GetSFields()) {
1159 if (field.GetDexFieldIndex() == dex_field_idx) {
1160 return &field;
1161 }
1162 }
1163 }
1164 return nullptr;
1165 }
1166
GetDeclaredFields(Thread * self,bool public_only,bool force_resolve)1167 ObjPtr<mirror::ObjectArray<mirror::Field>> Class::GetDeclaredFields(
1168 Thread* self,
1169 bool public_only,
1170 bool force_resolve) REQUIRES_SHARED(Locks::mutator_lock_) {
1171 if (UNLIKELY(IsObsoleteObject())) {
1172 ThrowRuntimeException("Obsolete Object!");
1173 return nullptr;
1174 }
1175 StackHandleScope<1> hs(self);
1176 IterationRange<StrideIterator<ArtField>> ifields = GetIFields();
1177 IterationRange<StrideIterator<ArtField>> sfields = GetSFields();
1178 size_t array_size = NumInstanceFields() + NumStaticFields();
1179 auto hiddenapi_context = hiddenapi::GetReflectionCallerAccessContext(self);
1180 // Lets go subtract all the non discoverable fields.
1181 for (ArtField& field : ifields) {
1182 if (!IsDiscoverable(public_only, hiddenapi_context, &field)) {
1183 --array_size;
1184 }
1185 }
1186 for (ArtField& field : sfields) {
1187 if (!IsDiscoverable(public_only, hiddenapi_context, &field)) {
1188 --array_size;
1189 }
1190 }
1191 size_t array_idx = 0;
1192 auto object_array = hs.NewHandle(mirror::ObjectArray<mirror::Field>::Alloc(
1193 self, GetClassRoot<mirror::ObjectArray<mirror::Field>>(), array_size));
1194 if (object_array == nullptr) {
1195 return nullptr;
1196 }
1197 for (ArtField& field : ifields) {
1198 if (IsDiscoverable(public_only, hiddenapi_context, &field)) {
1199 ObjPtr<mirror::Field> reflect_field =
1200 mirror::Field::CreateFromArtField(self, &field, force_resolve);
1201 if (reflect_field == nullptr) {
1202 if (kIsDebugBuild) {
1203 self->AssertPendingException();
1204 }
1205 // Maybe null due to OOME or type resolving exception.
1206 return nullptr;
1207 }
1208 // We're initializing a newly allocated object, so we do not need to record that under
1209 // a transaction. If the transaction is aborted, the whole object shall be unreachable.
1210 object_array->SetWithoutChecks</*kTransactionActive=*/ false,
1211 /*kCheckTransaction=*/ false>(
1212 array_idx++, reflect_field);
1213 }
1214 }
1215 for (ArtField& field : sfields) {
1216 if (IsDiscoverable(public_only, hiddenapi_context, &field)) {
1217 ObjPtr<mirror::Field> reflect_field =
1218 mirror::Field::CreateFromArtField(self, &field, force_resolve);
1219 if (reflect_field == nullptr) {
1220 if (kIsDebugBuild) {
1221 self->AssertPendingException();
1222 }
1223 return nullptr;
1224 }
1225 // We're initializing a newly allocated object, so we do not need to record that under
1226 // a transaction. If the transaction is aborted, the whole object shall be unreachable.
1227 object_array->SetWithoutChecks</*kTransactionActive=*/ false,
1228 /*kCheckTransaction=*/ false>(
1229 array_idx++, reflect_field);
1230 }
1231 }
1232 DCHECK_EQ(array_idx, array_size);
1233 return object_array.Get();
1234 }
1235
FindStaticField(std::string_view name,std::string_view type)1236 ArtField* Class::FindStaticField(std::string_view name, std::string_view type) {
1237 ScopedAssertNoThreadSuspension ants(__FUNCTION__);
1238 // Is the field in this class (or its interfaces), or any of its
1239 // superclasses (or their interfaces)?
1240 for (ObjPtr<Class> k = this; k != nullptr; k = k->GetSuperClass()) {
1241 // Is the field in this class?
1242 ArtField* f = k->FindDeclaredStaticField(name, type);
1243 if (f != nullptr) {
1244 return f;
1245 }
1246 // Is this field in any of this class' interfaces?
1247 for (uint32_t i = 0, num_interfaces = k->NumDirectInterfaces(); i != num_interfaces; ++i) {
1248 ObjPtr<Class> interface = k->GetDirectInterface(i);
1249 DCHECK(interface != nullptr);
1250 f = interface->FindStaticField(name, type);
1251 if (f != nullptr) {
1252 return f;
1253 }
1254 }
1255 }
1256 return nullptr;
1257 }
1258
1259 // Find a field using the JLS field resolution order.
1260 // Template arguments can be used to limit the search to either static or instance fields.
1261 // The search should be limited only if we know that a full search would yield a field of
1262 // the right type or no field at all. This can be known for field references in a method
1263 // if we have previously verified that method and did not find a field type mismatch.
1264 template <bool kSearchInstanceFields, bool kSearchStaticFields>
1265 ALWAYS_INLINE
FindFieldImpl(ObjPtr<mirror::Class> klass,ObjPtr<mirror::DexCache> dex_cache,uint32_t field_idx)1266 ArtField* FindFieldImpl(ObjPtr<mirror::Class> klass,
1267 ObjPtr<mirror::DexCache> dex_cache,
1268 uint32_t field_idx) REQUIRES_SHARED(Locks::mutator_lock_) {
1269 static_assert(kSearchInstanceFields || kSearchStaticFields);
1270
1271 // FIXME: Hijacking a proxy class by a custom class loader can break this assumption.
1272 DCHECK(!klass->IsProxyClass());
1273
1274 ScopedAssertNoThreadSuspension ants(__FUNCTION__);
1275
1276 // First try to find a declared field by `field_idx` if we have a `dex_cache` match.
1277 ObjPtr<DexCache> klass_dex_cache = klass->GetDexCache();
1278 if (klass_dex_cache == dex_cache) {
1279 // Lookup is always performed in the class referenced by the FieldId.
1280 DCHECK_EQ(klass->GetDexTypeIndex(),
1281 klass_dex_cache->GetDexFile()->GetFieldId(field_idx).class_idx_);
1282 ArtField* f = kSearchInstanceFields
1283 ? klass->FindDeclaredInstanceField(klass_dex_cache, field_idx)
1284 : nullptr;
1285 if (kSearchStaticFields && f == nullptr) {
1286 f = klass->FindDeclaredStaticField(klass_dex_cache, field_idx);
1287 }
1288 if (f != nullptr) {
1289 return f;
1290 }
1291 }
1292
1293 const DexFile& dex_file = *dex_cache->GetDexFile();
1294 const dex::FieldId& field_id = dex_file.GetFieldId(field_idx);
1295
1296 std::string_view name; // Do not touch the dex file string data until actually needed.
1297 std::string_view type;
1298 auto ensure_name_and_type_initialized = [&]() REQUIRES_SHARED(Locks::mutator_lock_) {
1299 if (name.empty()) {
1300 name = dex_file.GetFieldNameView(field_id);
1301 type = dex_file.GetFieldTypeDescriptorView(field_id);
1302 }
1303 };
1304
1305 auto search_direct_interfaces = [&](ObjPtr<mirror::Class> k)
1306 REQUIRES_SHARED(Locks::mutator_lock_) {
1307 // TODO: The `FindStaticField()` performs a recursive search and it's possible to
1308 // construct interface hierarchies that make the time complexity exponential in depth.
1309 // Rewrite this with a `HashSet<mirror::Class*>` to mark classes we have already
1310 // searched for the field, so that we call `FindDeclaredStaticField()` only once
1311 // on each interface. And use a work queue to avoid unlimited recursion depth.
1312 // TODO: Once we call `FindDeclaredStaticField()` directly, use search by indexes
1313 // instead of strings if the interface's dex cache matches `dex_cache`. This shall
1314 // allow delaying the `ensure_name_and_type_initialized()` call further.
1315 uint32_t num_interfaces = k->NumDirectInterfaces();
1316 if (num_interfaces != 0u) {
1317 ensure_name_and_type_initialized();
1318 for (uint32_t i = 0; i != num_interfaces; ++i) {
1319 ObjPtr<Class> interface = k->GetDirectInterface(i);
1320 DCHECK(interface != nullptr);
1321 ArtField* f = interface->FindStaticField(name, type);
1322 if (f != nullptr) {
1323 return f;
1324 }
1325 }
1326 }
1327 return static_cast<ArtField*>(nullptr);
1328 };
1329
1330 auto find_field_by_name_and_type = [&](ObjPtr<mirror::Class> k, ObjPtr<DexCache> k_dex_cache)
1331 REQUIRES_SHARED(Locks::mutator_lock_) -> std::tuple<bool, ArtField*> {
1332 if ((!kSearchInstanceFields || k->GetIFieldsPtr() == nullptr) &&
1333 (!kSearchStaticFields || k->GetSFieldsPtr() == nullptr)) {
1334 return {false, nullptr};
1335 }
1336 ensure_name_and_type_initialized();
1337 const DexFile& k_dex_file = *k_dex_cache->GetDexFile();
1338 if (kSearchInstanceFields && k->GetIFieldsPtr() != nullptr) {
1339 auto [success, field] = FindFieldByNameAndType(k_dex_file, k->GetIFieldsPtr(), name, type);
1340 DCHECK_EQ(success, field != nullptr);
1341 if (success) {
1342 return {true, field};
1343 }
1344 }
1345 if (kSearchStaticFields && k->GetSFieldsPtr() != nullptr) {
1346 auto [success, field] = FindFieldByNameAndType(k_dex_file, k->GetSFieldsPtr(), name, type);
1347 DCHECK_EQ(success, field != nullptr);
1348 if (success) {
1349 return {true, field};
1350 }
1351 }
1352 return {false, nullptr};
1353 };
1354
1355 // If we had a dex cache mismatch, search declared fields by name and type.
1356 if (klass_dex_cache != dex_cache) {
1357 auto [success, field] = find_field_by_name_and_type(klass, klass_dex_cache);
1358 DCHECK_EQ(success, field != nullptr);
1359 if (success) {
1360 return field;
1361 }
1362 }
1363
1364 // Search direct interfaces for static fields.
1365 if (kSearchStaticFields) {
1366 ArtField* f = search_direct_interfaces(klass);
1367 if (f != nullptr) {
1368 return f;
1369 }
1370 }
1371
1372 // Continue searching in superclasses.
1373 for (ObjPtr<Class> k = klass->GetSuperClass(); k != nullptr; k = k->GetSuperClass()) {
1374 // Is the field in this class?
1375 ObjPtr<DexCache> k_dex_cache = k->GetDexCache();
1376 if (k_dex_cache == dex_cache) {
1377 // Matching dex_cache. We cannot compare the `field_idx` anymore because
1378 // the type index differs, so compare the name index and type index.
1379 if (kSearchInstanceFields) {
1380 for (ArtField& field : k->GetIFields()) {
1381 const dex::FieldId& other_field_id = dex_file.GetFieldId(field.GetDexFieldIndex());
1382 if (other_field_id.name_idx_ == field_id.name_idx_ &&
1383 other_field_id.type_idx_ == field_id.type_idx_) {
1384 return &field;
1385 }
1386 }
1387 }
1388 if (kSearchStaticFields) {
1389 for (ArtField& field : k->GetSFields()) {
1390 const dex::FieldId& other_field_id = dex_file.GetFieldId(field.GetDexFieldIndex());
1391 if (other_field_id.name_idx_ == field_id.name_idx_ &&
1392 other_field_id.type_idx_ == field_id.type_idx_) {
1393 return &field;
1394 }
1395 }
1396 }
1397 } else {
1398 auto [success, field] = find_field_by_name_and_type(k, k_dex_cache);
1399 DCHECK_EQ(success, field != nullptr);
1400 if (success) {
1401 return field;
1402 }
1403 }
1404 if (kSearchStaticFields) {
1405 // Is this field in any of this class' interfaces?
1406 ArtField* f = search_direct_interfaces(k);
1407 if (f != nullptr) {
1408 return f;
1409 }
1410 }
1411 }
1412 return nullptr;
1413 }
1414
1415 FLATTEN
FindField(ObjPtr<mirror::DexCache> dex_cache,uint32_t field_idx)1416 ArtField* Class::FindField(ObjPtr<mirror::DexCache> dex_cache, uint32_t field_idx) {
1417 return FindFieldImpl</*kSearchInstanceFields=*/ true,
1418 /*kSearchStaticFields*/ true>(this, dex_cache, field_idx);
1419 }
1420
1421 FLATTEN
FindInstanceField(ObjPtr<mirror::DexCache> dex_cache,uint32_t field_idx)1422 ArtField* Class::FindInstanceField(ObjPtr<mirror::DexCache> dex_cache, uint32_t field_idx) {
1423 return FindFieldImpl</*kSearchInstanceFields=*/ true,
1424 /*kSearchStaticFields*/ false>(this, dex_cache, field_idx);
1425 }
1426
1427 FLATTEN
FindStaticField(ObjPtr<mirror::DexCache> dex_cache,uint32_t field_idx)1428 ArtField* Class::FindStaticField(ObjPtr<mirror::DexCache> dex_cache, uint32_t field_idx) {
1429 return FindFieldImpl</*kSearchInstanceFields=*/ false,
1430 /*kSearchStaticFields*/ true>(this, dex_cache, field_idx);
1431 }
1432
ClearSkipAccessChecksFlagOnAllMethods(PointerSize pointer_size)1433 void Class::ClearSkipAccessChecksFlagOnAllMethods(PointerSize pointer_size) {
1434 DCHECK(IsVerified());
1435 for (auto& m : GetMethods(pointer_size)) {
1436 if (m.IsManagedAndInvokable()) {
1437 m.ClearSkipAccessChecks();
1438 }
1439 }
1440 }
1441
ClearMustCountLocksFlagOnAllMethods(PointerSize pointer_size)1442 void Class::ClearMustCountLocksFlagOnAllMethods(PointerSize pointer_size) {
1443 DCHECK(IsVerified());
1444 for (auto& m : GetMethods(pointer_size)) {
1445 if (m.IsManagedAndInvokable()) {
1446 m.ClearMustCountLocks();
1447 }
1448 }
1449 }
1450
ClearDontCompileFlagOnAllMethods(PointerSize pointer_size)1451 void Class::ClearDontCompileFlagOnAllMethods(PointerSize pointer_size) {
1452 DCHECK(IsVerified());
1453 for (auto& m : GetMethods(pointer_size)) {
1454 if (m.IsManagedAndInvokable()) {
1455 m.ClearDontCompile();
1456 }
1457 }
1458 }
1459
SetSkipAccessChecksFlagOnAllMethods(PointerSize pointer_size)1460 void Class::SetSkipAccessChecksFlagOnAllMethods(PointerSize pointer_size) {
1461 DCHECK(IsVerified());
1462 for (auto& m : GetMethods(pointer_size)) {
1463 if (m.IsManagedAndInvokable()) {
1464 m.SetSkipAccessChecks();
1465 }
1466 }
1467 }
1468
GetDescriptor(std::string * storage)1469 const char* Class::GetDescriptor(std::string* storage) {
1470 size_t dim = 0u;
1471 ObjPtr<mirror::Class> klass = this;
1472 while (klass->IsArrayClass()) {
1473 ++dim;
1474 // No read barrier needed, we're reading a chain of constant references for comparison
1475 // with null. Then we follow up below with reading constant references to read constant
1476 // primitive data in both proxy and non-proxy paths. See ReadBarrierOption.
1477 klass = klass->GetComponentType<kDefaultVerifyFlags, kWithoutReadBarrier>();
1478 }
1479 if (klass->IsProxyClass()) {
1480 // No read barrier needed, the `name` field is constant for proxy classes and
1481 // the contents of the String are also constant. See ReadBarrierOption.
1482 ObjPtr<mirror::String> name = klass->GetName<kVerifyNone, kWithoutReadBarrier>();
1483 DCHECK(name != nullptr);
1484 *storage = DotToDescriptor(name->ToModifiedUtf8().c_str());
1485 } else {
1486 const char* descriptor;
1487 if (klass->IsPrimitive()) {
1488 descriptor = Primitive::Descriptor(klass->GetPrimitiveType());
1489 } else {
1490 const DexFile& dex_file = klass->GetDexFile();
1491 const dex::TypeId& type_id = dex_file.GetTypeId(klass->GetDexTypeIndex());
1492 descriptor = dex_file.GetTypeDescriptor(type_id);
1493 }
1494 if (dim == 0) {
1495 return descriptor;
1496 }
1497 *storage = descriptor;
1498 }
1499 storage->insert(0u, dim, '[');
1500 return storage->c_str();
1501 }
1502
GetClassDef()1503 const dex::ClassDef* Class::GetClassDef() {
1504 uint16_t class_def_idx = GetDexClassDefIndex();
1505 if (class_def_idx == DexFile::kDexNoIndex16) {
1506 return nullptr;
1507 }
1508 return &GetDexFile().GetClassDef(class_def_idx);
1509 }
1510
GetDirectInterfaceTypeIdx(uint32_t idx)1511 dex::TypeIndex Class::GetDirectInterfaceTypeIdx(uint32_t idx) {
1512 DCHECK(!IsPrimitive());
1513 DCHECK(!IsArrayClass());
1514 return GetInterfaceTypeList()->GetTypeItem(idx).type_idx_;
1515 }
1516
GetDirectInterface(uint32_t idx)1517 ObjPtr<Class> Class::GetDirectInterface(uint32_t idx) {
1518 DCHECK(!IsPrimitive());
1519 if (IsArrayClass()) {
1520 ObjPtr<IfTable> iftable = GetIfTable();
1521 DCHECK(iftable != nullptr);
1522 DCHECK_EQ(iftable->Count(), 2u);
1523 DCHECK_LT(idx, 2u);
1524 ObjPtr<Class> interface = iftable->GetInterface(idx);
1525 DCHECK(interface != nullptr);
1526 return interface;
1527 } else if (IsProxyClass()) {
1528 ObjPtr<ObjectArray<Class>> interfaces = GetProxyInterfaces();
1529 DCHECK(interfaces != nullptr);
1530 return interfaces->Get(idx);
1531 } else {
1532 dex::TypeIndex type_idx = GetDirectInterfaceTypeIdx(idx);
1533 ObjPtr<Class> interface = Runtime::Current()->GetClassLinker()->LookupResolvedType(
1534 type_idx, GetDexCache(), GetClassLoader());
1535 return interface;
1536 }
1537 }
1538
ResolveDirectInterface(Thread * self,Handle<Class> klass,uint32_t idx)1539 ObjPtr<Class> Class::ResolveDirectInterface(Thread* self, Handle<Class> klass, uint32_t idx) {
1540 ObjPtr<Class> interface = klass->GetDirectInterface(idx);
1541 if (interface == nullptr) {
1542 DCHECK(!klass->IsArrayClass());
1543 DCHECK(!klass->IsProxyClass());
1544 dex::TypeIndex type_idx = klass->GetDirectInterfaceTypeIdx(idx);
1545 interface = Runtime::Current()->GetClassLinker()->ResolveType(type_idx, klass.Get());
1546 CHECK_IMPLIES(interface == nullptr, self->IsExceptionPending());
1547 }
1548 return interface;
1549 }
1550
GetCommonSuperClass(Handle<Class> klass)1551 ObjPtr<Class> Class::GetCommonSuperClass(Handle<Class> klass) {
1552 DCHECK(klass != nullptr);
1553 DCHECK(!klass->IsInterface());
1554 DCHECK(!IsInterface());
1555 ObjPtr<Class> common_super_class = this;
1556 while (!common_super_class->IsAssignableFrom(klass.Get())) {
1557 ObjPtr<Class> old_common = common_super_class;
1558 common_super_class = old_common->GetSuperClass();
1559 DCHECK(common_super_class != nullptr) << old_common->PrettyClass();
1560 }
1561 return common_super_class;
1562 }
1563
GetSourceFile()1564 const char* Class::GetSourceFile() {
1565 const DexFile& dex_file = GetDexFile();
1566 const dex::ClassDef* dex_class_def = GetClassDef();
1567 if (dex_class_def == nullptr) {
1568 // Generated classes have no class def.
1569 return nullptr;
1570 }
1571 return dex_file.GetSourceFile(*dex_class_def);
1572 }
1573
GetLocation()1574 std::string Class::GetLocation() {
1575 ObjPtr<DexCache> dex_cache = GetDexCache();
1576 if (dex_cache != nullptr && !IsProxyClass()) {
1577 return dex_cache->GetLocation()->ToModifiedUtf8();
1578 }
1579 // Arrays and proxies are generated and have no corresponding dex file location.
1580 return "generated class";
1581 }
1582
GetInterfaceTypeList()1583 const dex::TypeList* Class::GetInterfaceTypeList() {
1584 const dex::ClassDef* class_def = GetClassDef();
1585 if (class_def == nullptr) {
1586 return nullptr;
1587 }
1588 return GetDexFile().GetInterfacesList(*class_def);
1589 }
1590
PopulateEmbeddedVTable(PointerSize pointer_size)1591 void Class::PopulateEmbeddedVTable(PointerSize pointer_size) {
1592 ObjPtr<PointerArray> table = GetVTableDuringLinking();
1593 CHECK(table != nullptr) << PrettyClass();
1594 const size_t table_length = table->GetLength();
1595 SetEmbeddedVTableLength(table_length);
1596 for (size_t i = 0; i < table_length; i++) {
1597 SetEmbeddedVTableEntry(i, table->GetElementPtrSize<ArtMethod*>(i, pointer_size), pointer_size);
1598 }
1599 // Keep java.lang.Object class's vtable around for since it's easier
1600 // to be reused by array classes during their linking.
1601 if (!IsObjectClass()) {
1602 SetVTable(nullptr);
1603 }
1604 }
1605
1606 class ReadBarrierOnNativeRootsVisitor {
1607 public:
operator ()(ObjPtr<Object> obj ATTRIBUTE_UNUSED,MemberOffset offset ATTRIBUTE_UNUSED,bool is_static ATTRIBUTE_UNUSED) const1608 void operator()(ObjPtr<Object> obj ATTRIBUTE_UNUSED,
1609 MemberOffset offset ATTRIBUTE_UNUSED,
1610 bool is_static ATTRIBUTE_UNUSED) const {}
1611
VisitRootIfNonNull(CompressedReference<Object> * root) const1612 void VisitRootIfNonNull(CompressedReference<Object>* root) const
1613 REQUIRES_SHARED(Locks::mutator_lock_) {
1614 if (!root->IsNull()) {
1615 VisitRoot(root);
1616 }
1617 }
1618
VisitRoot(CompressedReference<Object> * root) const1619 void VisitRoot(CompressedReference<Object>* root) const
1620 REQUIRES_SHARED(Locks::mutator_lock_) {
1621 ObjPtr<Object> old_ref = root->AsMirrorPtr();
1622 ObjPtr<Object> new_ref = ReadBarrier::BarrierForRoot(root);
1623 if (old_ref != new_ref) {
1624 // Update the field atomically. This may fail if mutator updates before us, but it's ok.
1625 auto* atomic_root =
1626 reinterpret_cast<Atomic<CompressedReference<Object>>*>(root);
1627 atomic_root->CompareAndSetStrongSequentiallyConsistent(
1628 CompressedReference<Object>::FromMirrorPtr(old_ref.Ptr()),
1629 CompressedReference<Object>::FromMirrorPtr(new_ref.Ptr()));
1630 }
1631 }
1632 };
1633
1634 // The pre-fence visitor for Class::CopyOf().
1635 class CopyClassVisitor {
1636 public:
CopyClassVisitor(Thread * self,Handle<Class> * orig,size_t new_length,size_t copy_bytes,ImTable * imt,PointerSize pointer_size)1637 CopyClassVisitor(Thread* self,
1638 Handle<Class>* orig,
1639 size_t new_length,
1640 size_t copy_bytes,
1641 ImTable* imt,
1642 PointerSize pointer_size)
1643 : self_(self), orig_(orig), new_length_(new_length),
1644 copy_bytes_(copy_bytes), imt_(imt), pointer_size_(pointer_size) {
1645 }
1646
operator ()(ObjPtr<Object> obj,size_t usable_size ATTRIBUTE_UNUSED) const1647 void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const
1648 REQUIRES_SHARED(Locks::mutator_lock_) {
1649 StackHandleScope<1> hs(self_);
1650 Handle<mirror::Class> h_new_class_obj(hs.NewHandle(obj->AsClass()));
1651 Object::CopyObject(h_new_class_obj.Get(), orig_->Get(), copy_bytes_);
1652 Class::SetStatus(h_new_class_obj, ClassStatus::kResolving, self_);
1653 h_new_class_obj->PopulateEmbeddedVTable(pointer_size_);
1654 h_new_class_obj->SetImt(imt_, pointer_size_);
1655 h_new_class_obj->SetClassSize(new_length_);
1656 // Visit all of the references to make sure there is no from space references in the native
1657 // roots.
1658 h_new_class_obj->Object::VisitReferences(ReadBarrierOnNativeRootsVisitor(), VoidFunctor());
1659 }
1660
1661 private:
1662 Thread* const self_;
1663 Handle<Class>* const orig_;
1664 const size_t new_length_;
1665 const size_t copy_bytes_;
1666 ImTable* imt_;
1667 const PointerSize pointer_size_;
1668 DISALLOW_COPY_AND_ASSIGN(CopyClassVisitor);
1669 };
1670
CopyOf(Handle<Class> h_this,Thread * self,int32_t new_length,ImTable * imt,PointerSize pointer_size)1671 ObjPtr<Class> Class::CopyOf(Handle<Class> h_this,
1672 Thread* self,
1673 int32_t new_length,
1674 ImTable* imt,
1675 PointerSize pointer_size) {
1676 DCHECK_GE(new_length, static_cast<int32_t>(sizeof(Class)));
1677 // We may get copied by a compacting GC.
1678 Runtime* runtime = Runtime::Current();
1679 gc::Heap* heap = runtime->GetHeap();
1680 // The num_bytes (3rd param) is sizeof(Class) as opposed to SizeOf()
1681 // to skip copying the tail part that we will overwrite here.
1682 CopyClassVisitor visitor(self, &h_this, new_length, sizeof(Class), imt, pointer_size);
1683 ObjPtr<mirror::Class> java_lang_Class = GetClassRoot<mirror::Class>(runtime->GetClassLinker());
1684 ObjPtr<Object> new_class = kMovingClasses ?
1685 heap->AllocObject(self, java_lang_Class, new_length, visitor) :
1686 heap->AllocNonMovableObject(self, java_lang_Class, new_length, visitor);
1687 if (UNLIKELY(new_class == nullptr)) {
1688 self->AssertPendingOOMException();
1689 return nullptr;
1690 }
1691 return new_class->AsClass();
1692 }
1693
ProxyDescriptorEquals(const char * match)1694 bool Class::ProxyDescriptorEquals(const char* match) {
1695 DCHECK(IsProxyClass());
1696 std::string storage;
1697 const char* descriptor = GetDescriptor(&storage);
1698 DCHECK(descriptor == storage.c_str());
1699 return storage == match;
1700 }
1701
UpdateHashForProxyClass(uint32_t hash,ObjPtr<mirror::Class> proxy_class)1702 uint32_t Class::UpdateHashForProxyClass(uint32_t hash, ObjPtr<mirror::Class> proxy_class) {
1703 // No read barrier needed, the `name` field is constant for proxy classes and
1704 // the contents of the String are also constant. See ReadBarrierOption.
1705 // Note: The `proxy_class` can be a from-space reference.
1706 DCHECK(proxy_class->IsProxyClass());
1707 ObjPtr<mirror::String> name = proxy_class->GetName<kVerifyNone, kWithoutReadBarrier>();
1708 DCHECK(name != nullptr);
1709 // Update hash for characters we would get from `DotToDescriptor(name->ToModifiedUtf8())`.
1710 DCHECK_NE(name->GetLength(), 0);
1711 DCHECK_NE(name->CharAt(0), '[');
1712 hash = UpdateModifiedUtf8Hash(hash, 'L');
1713 if (name->IsCompressed()) {
1714 std::string_view dot_name(reinterpret_cast<const char*>(name->GetValueCompressed()),
1715 name->GetLength());
1716 for (char c : dot_name) {
1717 hash = UpdateModifiedUtf8Hash(hash, (c != '.') ? c : '/');
1718 }
1719 } else {
1720 std::string dot_name = name->ToModifiedUtf8();
1721 for (char c : dot_name) {
1722 hash = UpdateModifiedUtf8Hash(hash, (c != '.') ? c : '/');
1723 }
1724 }
1725 hash = UpdateModifiedUtf8Hash(hash, ';');
1726 return hash;
1727 }
1728
1729 // TODO: Move this to java_lang_Class.cc?
GetDeclaredConstructor(Thread * self,Handle<ObjectArray<Class>> args,PointerSize pointer_size)1730 ArtMethod* Class::GetDeclaredConstructor(
1731 Thread* self, Handle<ObjectArray<Class>> args, PointerSize pointer_size) {
1732 for (auto& m : GetDirectMethods(pointer_size)) {
1733 // Skip <clinit> which is a static constructor, as well as non constructors.
1734 if (m.IsStatic() || !m.IsConstructor()) {
1735 continue;
1736 }
1737 // May cause thread suspension and exceptions.
1738 if (m.GetInterfaceMethodIfProxy(kRuntimePointerSize)->EqualParameters(args)) {
1739 return &m;
1740 }
1741 if (UNLIKELY(self->IsExceptionPending())) {
1742 return nullptr;
1743 }
1744 }
1745 return nullptr;
1746 }
1747
Depth()1748 uint32_t Class::Depth() {
1749 uint32_t depth = 0;
1750 for (ObjPtr<Class> cls = this; cls->GetSuperClass() != nullptr; cls = cls->GetSuperClass()) {
1751 depth++;
1752 }
1753 return depth;
1754 }
1755
FindTypeIndexInOtherDexFile(const DexFile & dex_file)1756 dex::TypeIndex Class::FindTypeIndexInOtherDexFile(const DexFile& dex_file) {
1757 std::string temp;
1758 const dex::TypeId* type_id = dex_file.FindTypeId(GetDescriptor(&temp));
1759 return (type_id == nullptr) ? dex::TypeIndex() : dex_file.GetIndexForTypeId(*type_id);
1760 }
1761
1762 ALWAYS_INLINE
IsMethodPreferredOver(ArtMethod * orig_method,bool orig_method_hidden,ArtMethod * new_method,bool new_method_hidden)1763 static bool IsMethodPreferredOver(ArtMethod* orig_method,
1764 bool orig_method_hidden,
1765 ArtMethod* new_method,
1766 bool new_method_hidden) {
1767 DCHECK(new_method != nullptr);
1768
1769 // Is this the first result?
1770 if (orig_method == nullptr) {
1771 return true;
1772 }
1773
1774 // Original method is hidden, the new one is not?
1775 if (orig_method_hidden && !new_method_hidden) {
1776 return true;
1777 }
1778
1779 // We iterate over virtual methods first and then over direct ones,
1780 // so we can never be in situation where `orig_method` is direct and
1781 // `new_method` is virtual.
1782 DCHECK_IMPLIES(orig_method->IsDirect(), new_method->IsDirect());
1783
1784 // Original method is synthetic, the new one is not?
1785 if (orig_method->IsSynthetic() && !new_method->IsSynthetic()) {
1786 return true;
1787 }
1788
1789 return false;
1790 }
1791
1792 template <PointerSize kPointerSize>
GetDeclaredMethodInternal(Thread * self,ObjPtr<Class> klass,ObjPtr<String> name,ObjPtr<ObjectArray<Class>> args,const std::function<hiddenapi::AccessContext ()> & fn_get_access_context)1793 ObjPtr<Method> Class::GetDeclaredMethodInternal(
1794 Thread* self,
1795 ObjPtr<Class> klass,
1796 ObjPtr<String> name,
1797 ObjPtr<ObjectArray<Class>> args,
1798 const std::function<hiddenapi::AccessContext()>& fn_get_access_context) {
1799 // Covariant return types (or smali) permit the class to define
1800 // multiple methods with the same name and parameter types.
1801 // Prefer (in decreasing order of importance):
1802 // 1) non-hidden method over hidden
1803 // 2) virtual methods over direct
1804 // 3) non-synthetic methods over synthetic
1805 // We never return miranda methods that were synthesized by the runtime.
1806 StackHandleScope<3> hs(self);
1807 auto h_method_name = hs.NewHandle(name);
1808 if (UNLIKELY(h_method_name == nullptr)) {
1809 ThrowNullPointerException("name == null");
1810 return nullptr;
1811 }
1812 auto h_args = hs.NewHandle(args);
1813 Handle<Class> h_klass = hs.NewHandle(klass);
1814 constexpr hiddenapi::AccessMethod access_method = hiddenapi::AccessMethod::kNone;
1815 ArtMethod* result = nullptr;
1816 bool result_hidden = false;
1817 for (auto& m : h_klass->GetDeclaredVirtualMethods(kPointerSize)) {
1818 if (m.IsMiranda()) {
1819 continue;
1820 }
1821 ArtMethod* np_method = m.GetInterfaceMethodIfProxy(kPointerSize);
1822 if (!np_method->NameEquals(h_method_name.Get())) {
1823 continue;
1824 }
1825 // `ArtMethod::EqualParameters()` may throw when resolving types.
1826 if (!np_method->EqualParameters(h_args)) {
1827 if (UNLIKELY(self->IsExceptionPending())) {
1828 return nullptr;
1829 }
1830 continue;
1831 }
1832 bool m_hidden = hiddenapi::ShouldDenyAccessToMember(&m, fn_get_access_context, access_method);
1833 if (!m_hidden && !m.IsSynthetic()) {
1834 // Non-hidden, virtual, non-synthetic. Best possible result, exit early.
1835 return Method::CreateFromArtMethod<kPointerSize>(self, &m);
1836 } else if (IsMethodPreferredOver(result, result_hidden, &m, m_hidden)) {
1837 // Remember as potential result.
1838 result = &m;
1839 result_hidden = m_hidden;
1840 }
1841 }
1842
1843 if ((result != nullptr) && !result_hidden) {
1844 // We have not found a non-hidden, virtual, non-synthetic method, but
1845 // if we have found a non-hidden, virtual, synthetic method, we cannot
1846 // do better than that later.
1847 DCHECK(!result->IsDirect());
1848 DCHECK(result->IsSynthetic());
1849 } else {
1850 for (auto& m : h_klass->GetDirectMethods(kPointerSize)) {
1851 auto modifiers = m.GetAccessFlags();
1852 if ((modifiers & kAccConstructor) != 0) {
1853 continue;
1854 }
1855 ArtMethod* np_method = m.GetInterfaceMethodIfProxy(kPointerSize);
1856 if (!np_method->NameEquals(h_method_name.Get())) {
1857 continue;
1858 }
1859 // `ArtMethod::EqualParameters()` may throw when resolving types.
1860 if (!np_method->EqualParameters(h_args)) {
1861 if (UNLIKELY(self->IsExceptionPending())) {
1862 return nullptr;
1863 }
1864 continue;
1865 }
1866 DCHECK(!m.IsMiranda()); // Direct methods cannot be miranda methods.
1867 bool m_hidden = hiddenapi::ShouldDenyAccessToMember(&m, fn_get_access_context, access_method);
1868 if (!m_hidden && !m.IsSynthetic()) {
1869 // Non-hidden, direct, non-synthetic. Any virtual result could only have been
1870 // hidden, therefore this is the best possible match. Exit now.
1871 DCHECK((result == nullptr) || result_hidden);
1872 return Method::CreateFromArtMethod<kPointerSize>(self, &m);
1873 } else if (IsMethodPreferredOver(result, result_hidden, &m, m_hidden)) {
1874 // Remember as potential result.
1875 result = &m;
1876 result_hidden = m_hidden;
1877 }
1878 }
1879 }
1880
1881 return result != nullptr
1882 ? Method::CreateFromArtMethod<kPointerSize>(self, result)
1883 : nullptr;
1884 }
1885
1886 template
1887 ObjPtr<Method> Class::GetDeclaredMethodInternal<PointerSize::k32>(
1888 Thread* self,
1889 ObjPtr<Class> klass,
1890 ObjPtr<String> name,
1891 ObjPtr<ObjectArray<Class>> args,
1892 const std::function<hiddenapi::AccessContext()>& fn_get_access_context);
1893 template
1894 ObjPtr<Method> Class::GetDeclaredMethodInternal<PointerSize::k64>(
1895 Thread* self,
1896 ObjPtr<Class> klass,
1897 ObjPtr<String> name,
1898 ObjPtr<ObjectArray<Class>> args,
1899 const std::function<hiddenapi::AccessContext()>& fn_get_access_context);
1900
1901 template <PointerSize kPointerSize>
GetDeclaredConstructorInternal(Thread * self,ObjPtr<Class> klass,ObjPtr<ObjectArray<Class>> args)1902 ObjPtr<Constructor> Class::GetDeclaredConstructorInternal(
1903 Thread* self,
1904 ObjPtr<Class> klass,
1905 ObjPtr<ObjectArray<Class>> args) {
1906 StackHandleScope<1> hs(self);
1907 ArtMethod* result = klass->GetDeclaredConstructor(self, hs.NewHandle(args), kPointerSize);
1908 return result != nullptr
1909 ? Constructor::CreateFromArtMethod<kPointerSize>(self, result)
1910 : nullptr;
1911 }
1912
1913 // Constructor::CreateFromArtMethod<kTransactionActive>(self, result)
1914
1915 template
1916 ObjPtr<Constructor> Class::GetDeclaredConstructorInternal<PointerSize::k32>(
1917 Thread* self,
1918 ObjPtr<Class> klass,
1919 ObjPtr<ObjectArray<Class>> args);
1920 template
1921 ObjPtr<Constructor> Class::GetDeclaredConstructorInternal<PointerSize::k64>(
1922 Thread* self,
1923 ObjPtr<Class> klass,
1924 ObjPtr<ObjectArray<Class>> args);
1925
GetInnerClassFlags(Handle<Class> h_this,int32_t default_value)1926 int32_t Class::GetInnerClassFlags(Handle<Class> h_this, int32_t default_value) {
1927 if (h_this->IsProxyClass() || h_this->GetDexCache() == nullptr) {
1928 return default_value;
1929 }
1930 uint32_t flags;
1931 if (!annotations::GetInnerClassFlags(h_this, &flags)) {
1932 return default_value;
1933 }
1934 return flags;
1935 }
1936
SetObjectSizeAllocFastPath(uint32_t new_object_size)1937 void Class::SetObjectSizeAllocFastPath(uint32_t new_object_size) {
1938 if (Runtime::Current()->IsActiveTransaction()) {
1939 SetField32Volatile<true>(ObjectSizeAllocFastPathOffset(), new_object_size);
1940 } else {
1941 SetField32Volatile<false>(ObjectSizeAllocFastPathOffset(), new_object_size);
1942 }
1943 }
1944
PrettyDescriptor(ObjPtr<mirror::Class> klass)1945 std::string Class::PrettyDescriptor(ObjPtr<mirror::Class> klass) {
1946 if (klass == nullptr) {
1947 return "null";
1948 }
1949 return klass->PrettyDescriptor();
1950 }
1951
PrettyDescriptor()1952 std::string Class::PrettyDescriptor() {
1953 std::string temp;
1954 return art::PrettyDescriptor(GetDescriptor(&temp));
1955 }
1956
PrettyClass(ObjPtr<mirror::Class> c)1957 std::string Class::PrettyClass(ObjPtr<mirror::Class> c) {
1958 if (c == nullptr) {
1959 return "null";
1960 }
1961 return c->PrettyClass();
1962 }
1963
PrettyClass()1964 std::string Class::PrettyClass() {
1965 std::string result;
1966 if (IsObsoleteObject()) {
1967 result += "(Obsolete)";
1968 }
1969 if (IsRetired()) {
1970 result += "(Retired)";
1971 }
1972 result += "java.lang.Class<";
1973 result += PrettyDescriptor();
1974 result += ">";
1975 return result;
1976 }
1977
PrettyClassAndClassLoader(ObjPtr<mirror::Class> c)1978 std::string Class::PrettyClassAndClassLoader(ObjPtr<mirror::Class> c) {
1979 if (c == nullptr) {
1980 return "null";
1981 }
1982 return c->PrettyClassAndClassLoader();
1983 }
1984
PrettyClassAndClassLoader()1985 std::string Class::PrettyClassAndClassLoader() {
1986 std::string result;
1987 result += "java.lang.Class<";
1988 result += PrettyDescriptor();
1989 result += ",";
1990 result += mirror::Object::PrettyTypeOf(GetClassLoader());
1991 // TODO: add an identifying hash value for the loader
1992 result += ">";
1993 return result;
1994 }
1995
GetAccessFlagsDCheck()1996 template<VerifyObjectFlags kVerifyFlags> void Class::GetAccessFlagsDCheck() {
1997 // Check class is loaded/retired or this is java.lang.String that has a
1998 // circularity issue during loading the names of its members
1999 DCHECK(IsIdxLoaded<kVerifyFlags>() || IsRetired<kVerifyFlags>() ||
2000 IsErroneous<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>() ||
2001 this == GetClassRoot<String>())
2002 << "IsIdxLoaded=" << IsIdxLoaded<kVerifyFlags>()
2003 << " IsRetired=" << IsRetired<kVerifyFlags>()
2004 << " IsErroneous=" <<
2005 IsErroneous<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>()
2006 << " IsString=" << (this == GetClassRoot<String>())
2007 << " status= " << GetStatus<kVerifyFlags>()
2008 << " descriptor=" << PrettyDescriptor();
2009 }
2010 // Instantiate the common cases.
2011 template void Class::GetAccessFlagsDCheck<kVerifyNone>();
2012 template void Class::GetAccessFlagsDCheck<kVerifyThis>();
2013 template void Class::GetAccessFlagsDCheck<kVerifyReads>();
2014 template void Class::GetAccessFlagsDCheck<kVerifyWrites>();
2015 template void Class::GetAccessFlagsDCheck<kVerifyAll>();
2016
GetMethodIds()2017 ObjPtr<Object> Class::GetMethodIds() {
2018 ObjPtr<ClassExt> ext(GetExtData());
2019 if (ext.IsNull()) {
2020 return nullptr;
2021 } else {
2022 return ext->GetJMethodIDs();
2023 }
2024 }
EnsureMethodIds(Handle<Class> h_this)2025 bool Class::EnsureMethodIds(Handle<Class> h_this) {
2026 DCHECK_NE(Runtime::Current()->GetJniIdType(), JniIdType::kPointer) << "JNI Ids are pointers!";
2027 Thread* self = Thread::Current();
2028 ObjPtr<ClassExt> ext(EnsureExtDataPresent(h_this, self));
2029 if (ext.IsNull()) {
2030 self->AssertPendingOOMException();
2031 return false;
2032 }
2033 return ext->EnsureJMethodIDsArrayPresent(h_this->NumMethods());
2034 }
2035
GetStaticFieldIds()2036 ObjPtr<Object> Class::GetStaticFieldIds() {
2037 ObjPtr<ClassExt> ext(GetExtData());
2038 if (ext.IsNull()) {
2039 return nullptr;
2040 } else {
2041 return ext->GetStaticJFieldIDs();
2042 }
2043 }
EnsureStaticFieldIds(Handle<Class> h_this)2044 bool Class::EnsureStaticFieldIds(Handle<Class> h_this) {
2045 DCHECK_NE(Runtime::Current()->GetJniIdType(), JniIdType::kPointer) << "JNI Ids are pointers!";
2046 Thread* self = Thread::Current();
2047 ObjPtr<ClassExt> ext(EnsureExtDataPresent(h_this, self));
2048 if (ext.IsNull()) {
2049 self->AssertPendingOOMException();
2050 return false;
2051 }
2052 return ext->EnsureStaticJFieldIDsArrayPresent(h_this->NumStaticFields());
2053 }
GetInstanceFieldIds()2054 ObjPtr<Object> Class::GetInstanceFieldIds() {
2055 ObjPtr<ClassExt> ext(GetExtData());
2056 if (ext.IsNull()) {
2057 return nullptr;
2058 } else {
2059 return ext->GetInstanceJFieldIDs();
2060 }
2061 }
EnsureInstanceFieldIds(Handle<Class> h_this)2062 bool Class::EnsureInstanceFieldIds(Handle<Class> h_this) {
2063 DCHECK_NE(Runtime::Current()->GetJniIdType(), JniIdType::kPointer) << "JNI Ids are pointers!";
2064 Thread* self = Thread::Current();
2065 ObjPtr<ClassExt> ext(EnsureExtDataPresent(h_this, self));
2066 if (ext.IsNull()) {
2067 self->AssertPendingOOMException();
2068 return false;
2069 }
2070 return ext->EnsureInstanceJFieldIDsArrayPresent(h_this->NumInstanceFields());
2071 }
2072
GetStaticFieldIdOffset(ArtField * field)2073 size_t Class::GetStaticFieldIdOffset(ArtField* field) {
2074 DCHECK_LT(reinterpret_cast<uintptr_t>(field),
2075 reinterpret_cast<uintptr_t>(&*GetSFieldsPtr()->end()))
2076 << "field not part of the current class. " << field->PrettyField() << " class is "
2077 << PrettyClass();
2078 DCHECK_GE(reinterpret_cast<uintptr_t>(field),
2079 reinterpret_cast<uintptr_t>(&*GetSFieldsPtr()->begin()))
2080 << "field not part of the current class. " << field->PrettyField() << " class is "
2081 << PrettyClass();
2082 uintptr_t start = reinterpret_cast<uintptr_t>(&GetSFieldsPtr()->At(0));
2083 uintptr_t fld = reinterpret_cast<uintptr_t>(field);
2084 size_t res = (fld - start) / sizeof(ArtField);
2085 DCHECK_EQ(&GetSFieldsPtr()->At(res), field)
2086 << "Incorrect field computation expected: " << field->PrettyField()
2087 << " got: " << GetSFieldsPtr()->At(res).PrettyField();
2088 return res;
2089 }
2090
GetInstanceFieldIdOffset(ArtField * field)2091 size_t Class::GetInstanceFieldIdOffset(ArtField* field) {
2092 DCHECK_LT(reinterpret_cast<uintptr_t>(field),
2093 reinterpret_cast<uintptr_t>(&*GetIFieldsPtr()->end()))
2094 << "field not part of the current class. " << field->PrettyField() << " class is "
2095 << PrettyClass();
2096 DCHECK_GE(reinterpret_cast<uintptr_t>(field),
2097 reinterpret_cast<uintptr_t>(&*GetIFieldsPtr()->begin()))
2098 << "field not part of the current class. " << field->PrettyField() << " class is "
2099 << PrettyClass();
2100 uintptr_t start = reinterpret_cast<uintptr_t>(&GetIFieldsPtr()->At(0));
2101 uintptr_t fld = reinterpret_cast<uintptr_t>(field);
2102 size_t res = (fld - start) / sizeof(ArtField);
2103 DCHECK_EQ(&GetIFieldsPtr()->At(res), field)
2104 << "Incorrect field computation expected: " << field->PrettyField()
2105 << " got: " << GetIFieldsPtr()->At(res).PrettyField();
2106 return res;
2107 }
2108
GetMethodIdOffset(ArtMethod * method,PointerSize pointer_size)2109 size_t Class::GetMethodIdOffset(ArtMethod* method, PointerSize pointer_size) {
2110 DCHECK(GetMethodsSlice(kRuntimePointerSize).Contains(method))
2111 << "method not part of the current class. " << method->PrettyMethod() << "( " << reinterpret_cast<void*>(method) << ")" << " class is "
2112 << PrettyClass() << [&]() REQUIRES_SHARED(Locks::mutator_lock_) {
2113 std::ostringstream os;
2114 os << " Methods are [";
2115 for (ArtMethod& m : GetMethodsSlice(kRuntimePointerSize)) {
2116 os << m.PrettyMethod() << "( " << reinterpret_cast<void*>(&m) << "), ";
2117 }
2118 os << "]";
2119 return os.str();
2120 }();
2121 uintptr_t start = reinterpret_cast<uintptr_t>(&*GetMethodsSlice(pointer_size).begin());
2122 uintptr_t fld = reinterpret_cast<uintptr_t>(method);
2123 size_t art_method_size = ArtMethod::Size(pointer_size);
2124 size_t art_method_align = ArtMethod::Alignment(pointer_size);
2125 size_t res = (fld - start) / art_method_size;
2126 DCHECK_EQ(&GetMethodsPtr()->At(res, art_method_size, art_method_align), method)
2127 << "Incorrect method computation expected: " << method->PrettyMethod()
2128 << " got: " << GetMethodsPtr()->At(res, art_method_size, art_method_align).PrettyMethod();
2129 return res;
2130 }
2131
CheckIsVisibleWithTargetSdk(Thread * self)2132 bool Class::CheckIsVisibleWithTargetSdk(Thread* self) {
2133 uint32_t targetSdkVersion = Runtime::Current()->GetTargetSdkVersion();
2134 if (IsSdkVersionSetAndAtMost(targetSdkVersion, SdkVersion::kT)) {
2135 ObjPtr<mirror::Class> java_lang_ClassValue =
2136 WellKnownClasses::ToClass(WellKnownClasses::java_lang_ClassValue);
2137 if (this == java_lang_ClassValue.Ptr()) {
2138 self->ThrowNewException("Ljava/lang/ClassNotFoundException;", "java.lang.ClassValue");
2139 return false;
2140 }
2141 }
2142 return true;
2143 }
2144
FindAccessibleInterfaceMethod(ArtMethod * implementation_method,PointerSize pointer_size)2145 ArtMethod* Class::FindAccessibleInterfaceMethod(ArtMethod* implementation_method,
2146 PointerSize pointer_size)
2147 REQUIRES_SHARED(Locks::mutator_lock_) {
2148 ObjPtr<mirror::IfTable> iftable = GetIfTable();
2149 for (int32_t i = 0, iftable_count = iftable->Count(); i < iftable_count; ++i) {
2150 ObjPtr<mirror::PointerArray> methods = iftable->GetMethodArrayOrNull(i);
2151 if (methods == nullptr) {
2152 continue;
2153 }
2154 for (size_t j = 0, count = iftable->GetMethodArrayCount(i); j < count; ++j) {
2155 if (implementation_method == methods->GetElementPtrSize<ArtMethod*>(j, pointer_size)) {
2156 ObjPtr<mirror::Class> iface = iftable->GetInterface(i);
2157 ArtMethod* interface_method = &iface->GetVirtualMethodsSlice(pointer_size)[j];
2158 // If the interface method is part of the public SDK, return it.
2159 if ((hiddenapi::GetRuntimeFlags(interface_method) & kAccPublicApi) != 0) {
2160 hiddenapi::ApiList api_list(hiddenapi::detail::GetDexFlags(interface_method));
2161 // The kAccPublicApi flag is also used as an optimization to avoid
2162 // other hiddenapi checks to always go on the slow path. Therefore, we
2163 // need to check here if the method is in the SDK list.
2164 if (api_list.IsSdkApi()) {
2165 return interface_method;
2166 }
2167 }
2168 }
2169 }
2170 }
2171 return nullptr;
2172 }
2173
2174
2175 } // namespace mirror
2176 } // namespace art
2177