1 /*
2 * Copyright (C) 2015 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "load_store_elimination.h"
18
19 #include <algorithm>
20 #include <optional>
21 #include <sstream>
22 #include <variant>
23
24 #include "base/arena_allocator.h"
25 #include "base/arena_bit_vector.h"
26 #include "base/array_ref.h"
27 #include "base/bit_vector-inl.h"
28 #include "base/bit_vector.h"
29 #include "base/globals.h"
30 #include "base/indenter.h"
31 #include "base/iteration_range.h"
32 #include "base/scoped_arena_allocator.h"
33 #include "base/scoped_arena_containers.h"
34 #include "base/transform_iterator.h"
35 #include "escape.h"
36 #include "execution_subgraph.h"
37 #include "handle.h"
38 #include "load_store_analysis.h"
39 #include "mirror/class_loader.h"
40 #include "mirror/dex_cache.h"
41 #include "nodes.h"
42 #include "optimizing/execution_subgraph.h"
43 #include "optimizing_compiler_stats.h"
44 #include "reference_type_propagation.h"
45 #include "side_effects_analysis.h"
46 #include "stack_map.h"
47
48 /**
49 * The general algorithm of load-store elimination (LSE).
50 *
51 * We use load-store analysis to collect a list of heap locations and perform
52 * alias analysis of those heap locations. LSE then keeps track of a list of
53 * heap values corresponding to the heap locations and stores that put those
54 * values in these locations.
55 * - In phase 1, we visit basic blocks in reverse post order and for each basic
56 * block, visit instructions sequentially, recording heap values and looking
57 * for loads and stores to eliminate without relying on loop Phis.
58 * - In phase 2, we look for loads that can be replaced by creating loop Phis
59 * or using a loop-invariant value.
60 * - In phase 3, we determine which stores are dead and can be eliminated and
61 * based on that information we re-evaluate whether some kept stores are
62 * storing the same value as the value in the heap location; such stores are
63 * also marked for elimination.
64 * - In phase 4, we commit the changes, replacing loads marked for elimination
65 * in previous processing and removing stores not marked for keeping. We also
66 * remove allocations that are no longer needed.
67 * - In phase 5, we move allocations which only escape along some executions
68 * closer to their escape points and fixup non-escaping paths with their actual
69 * values, creating PHIs when needed.
70 *
71 * 1. Walk over blocks and their instructions.
72 *
73 * The initial set of heap values for a basic block is
74 * - For a loop header of an irreducible loop, all heap values are unknown.
75 * - For a loop header of a normal loop, all values unknown at the end of the
76 * preheader are initialized to unknown, other heap values are set to Phi
77 * placeholders as we cannot determine yet whether these values are known on
78 * all back-edges. We use Phi placeholders also for array heap locations with
79 * index defined inside the loop but this helps only when the value remains
80 * zero from the array allocation throughout the loop.
81 * - For catch blocks, we clear all assumptions since we arrived due to an
82 * instruction throwing.
83 * - For other basic blocks, we merge incoming values from the end of all
84 * predecessors. If any incoming value is unknown, the start value for this
85 * block is also unknown. Otherwise, if all the incoming values are the same
86 * (including the case of a single predecessor), the incoming value is used.
87 * Otherwise, we use a Phi placeholder to indicate different incoming values.
88 * We record whether such Phi placeholder depends on a loop Phi placeholder.
89 *
90 * For each instruction in the block
91 * - If the instruction is a load from a heap location with a known value not
92 * dependent on a loop Phi placeholder, the load can be eliminated, either by
93 * using an existing instruction or by creating new Phi(s) instead. In order
94 * to maintain the validity of all heap locations during the optimization
95 * phase, we only record substitutes at this phase and the real elimination
96 * is delayed till the end of LSE. Loads that require a loop Phi placeholder
97 * replacement are recorded for processing later. We also keep track of the
98 * heap-value at the start load so that later partial-LSE can predicate the
99 * load.
100 * - If the instruction is a store, it updates the heap value for the heap
101 * location with the stored value and records the store itself so that we can
102 * mark it for keeping if the value becomes observable. Heap values are
103 * invalidated for heap locations that may alias with the store instruction's
104 * heap location and their recorded stores are marked for keeping as they are
105 * now potentially observable. The store instruction can be eliminated unless
106 * the value stored is later needed e.g. by a load from the same/aliased heap
107 * location or the heap location persists at method return/deoptimization.
108 * - A store that stores the same value as the heap value is eliminated.
109 * - For newly instantiated instances, their heap values are initialized to
110 * language defined default values.
111 * - Finalizable objects are considered as persisting at method
112 * return/deoptimization.
113 * - Some instructions such as invokes are treated as loading and invalidating
114 * all the heap values, depending on the instruction's side effects.
115 * - SIMD graphs (with VecLoad and VecStore instructions) are also handled. Any
116 * partial overlap access among ArrayGet/ArraySet/VecLoad/Store is seen as
117 * alias and no load/store is eliminated in such case.
118 *
119 * The time complexity of the initial phase has several components. The total
120 * time for the initialization of heap values for all blocks is
121 * O(heap_locations * edges)
122 * and the time complexity for simple instruction processing is
123 * O(instructions).
124 * See the description of phase 3 for additional complexity due to matching of
125 * existing Phis for replacing loads.
126 *
127 * 2. Process loads that depend on loop Phi placeholders.
128 *
129 * We go over these loads to determine whether they can be eliminated. We look
130 * for the set of all Phi placeholders that feed the load and depend on a loop
131 * Phi placeholder and, if we find no unknown value, we construct the necessary
132 * Phi(s) or, if all other inputs are identical, i.e. the location does not
133 * change in the loop, just use that input. If we do find an unknown input, this
134 * must be from a loop back-edge and we replace the loop Phi placeholder with
135 * unknown value and re-process loads and stores that previously depended on
136 * loop Phi placeholders. This shall find at least one load of an unknown value
137 * which is now known to be unreplaceable or a new unknown value on a back-edge
138 * and we repeat this process until each load is either marked for replacement
139 * or found to be unreplaceable. As we mark at least one additional loop Phi
140 * placeholder as unreplacable in each iteration, this process shall terminate.
141 *
142 * The depth-first search for Phi placeholders in FindLoopPhisToMaterialize()
143 * is limited by the number of Phi placeholders and their dependencies we need
144 * to search with worst-case time complexity
145 * O(phi_placeholder_dependencies) .
146 * The dependencies are usually just the Phi placeholders' potential inputs,
147 * but if we use TryReplacingLoopPhiPlaceholderWithDefault() for default value
148 * replacement search, there are additional dependencies to consider, see below.
149 *
150 * In the successful case (no unknown inputs found) we use the Floyd-Warshall
151 * algorithm to determine transitive closures for each found Phi placeholder,
152 * and then match or materialize Phis from the smallest transitive closure,
153 * so that we can determine if such subset has a single other input. This has
154 * time complexity
155 * O(phi_placeholders_found^3) .
156 * Note that successful TryReplacingLoopPhiPlaceholderWithDefault() does not
157 * contribute to this as such Phi placeholders are replaced immediately.
158 * The total time of all such successful cases has time complexity
159 * O(phi_placeholders^3)
160 * because the found sets are disjoint and `Sum(n_i^3) <= Sum(n_i)^3`. Similar
161 * argument applies to the searches used to find all successful cases, so their
162 * total contribution is also just an insignificant
163 * O(phi_placeholder_dependencies) .
164 * The materialization of Phis has an insignificant total time complexity
165 * O(phi_placeholders * edges) .
166 *
167 * If we find an unknown input, we re-process heap values and loads with a time
168 * complexity that's the same as the phase 1 in the worst case. Adding this to
169 * the depth-first search time complexity yields
170 * O(phi_placeholder_dependencies + heap_locations * edges + instructions)
171 * for a single iteration. We can ignore the middle term as it's proprotional
172 * to the number of Phi placeholder inputs included in the first term. Using
173 * the upper limit of number of such iterations, the total time complexity is
174 * O((phi_placeholder_dependencies + instructions) * phi_placeholders) .
175 *
176 * The upper bound of Phi placeholder inputs is
177 * heap_locations * edges
178 * but if we use TryReplacingLoopPhiPlaceholderWithDefault(), the dependencies
179 * include other heap locations in predecessor blocks with the upper bound of
180 * heap_locations^2 * edges .
181 * Using the estimate
182 * edges <= blocks^2
183 * and
184 * phi_placeholders <= heap_locations * blocks ,
185 * the worst-case time complexity of the
186 * O(phi_placeholder_dependencies * phi_placeholders)
187 * term from unknown input cases is actually
188 * O(heap_locations^3 * blocks^3) ,
189 * exactly as the estimate for the Floyd-Warshall parts of successful cases.
190 * Adding the other term from the unknown input cases (to account for the case
191 * with significantly more instructions than blocks and heap locations), the
192 * phase 2 time complexity is
193 * O(heap_locations^3 * blocks^3 + heap_locations * blocks * instructions) .
194 *
195 * See the description of phase 3 for additional complexity due to matching of
196 * existing Phis for replacing loads.
197 *
198 * 3. Determine which stores to keep and which to eliminate.
199 *
200 * During instruction processing in phase 1 and re-processing in phase 2, we are
201 * keeping a record of the stores and Phi placeholders that become observable
202 * and now propagate the observable Phi placeholders to all actual stores that
203 * feed them. Having determined observable stores, we look for stores that just
204 * overwrite the old value with the same. Since ignoring non-observable stores
205 * actually changes the old values in heap locations, we need to recalculate
206 * Phi placeholder replacements but we proceed similarly to the previous phase.
207 * We look for the set of all Phis that feed the old value replaced by the store
208 * (but ignoring whether they depend on a loop Phi) and, if we find no unknown
209 * value, we try to match existing Phis (we do not create new Phis anymore) or,
210 * if all other inputs are identical, i.e. the location does not change in the
211 * loop, just use that input. If this succeeds and the old value is identical to
212 * the value we're storing, such store shall be eliminated.
213 *
214 * The work is similar to the phase 2, except that we're not re-processing loads
215 * and stores anymore, so the time complexity of phase 3 is
216 * O(heap_locations^3 * blocks^3) .
217 *
218 * There is additional complexity in matching existing Phis shared between the
219 * phases 1, 2 and 3. We are never trying to match two or more Phis at the same
220 * time (this could be difficult and slow), so each matching attempt is just
221 * looking at Phis in the block (both old Phis and newly created Phis) and their
222 * inputs. As we create at most `heap_locations` Phis in each block, the upper
223 * bound on the number of Phis we look at is
224 * heap_locations * (old_phis + heap_locations)
225 * and the worst-case time complexity is
226 * O(heap_locations^2 * edges + heap_locations * old_phis * edges) .
227 * The first term is lower than one term in phase 2, so the relevant part is
228 * O(heap_locations * old_phis * edges) .
229 *
230 * 4. Replace loads and remove unnecessary stores and singleton allocations.
231 *
232 * A special type of objects called singletons are instantiated in the method
233 * and have a single name, i.e. no aliases. Singletons have exclusive heap
234 * locations since they have no aliases. Singletons are helpful in narrowing
235 * down the life span of a heap location such that they do not always need to
236 * participate in merging heap values. Allocation of a singleton can be
237 * eliminated if that singleton is not used and does not persist at method
238 * return/deoptimization.
239 *
240 * The time complexity of this phase is
241 * O(instructions + instruction_uses) .
242 *
243 * 5. Partial LSE
244 *
245 * Move allocations closer to their escapes and remove/predicate loads and
246 * stores as required.
247 *
248 * Partial singletons are objects which only escape from the function or have
249 * multiple names along certain execution paths. In cases where we recognize
250 * these partial singletons we can move the allocation and initialization
251 * closer to the actual escape(s). We can then perform a simplified version of
252 * LSE step 2 to determine the unescaped value of any reads performed after the
253 * object may have escaped. These are used to replace these reads with
254 * 'predicated-read' instructions where the value is only read if the object
255 * has actually escaped. We use the existence of the object itself as the
256 * marker of whether escape has occurred.
257 *
258 * There are several steps in this sub-pass
259 *
260 * 5.1 Group references
261 *
262 * Since all heap-locations for a single reference escape at the same time, we
263 * need to group the heap-locations by reference and process them at the same
264 * time.
265 *
266 * O(heap_locations).
267 *
268 * FIXME: The time complexity above assumes we can bucket the heap-locations in
269 * O(1) which is not true since we just perform a linear-scan of the heap-ref
270 * list. Since there are generally only a small number of heap-references which
271 * are partial-singletons this is fine and lower real overhead than a hash map.
272 *
273 * 5.2 Generate materializations
274 *
275 * Once we have the references we add new 'materialization blocks' on the edges
276 * where escape becomes inevitable. This information is calculated by the
277 * execution-subgraphs created during load-store-analysis. We create new
278 * 'materialization's in these blocks and initialize them with the value of
279 * each heap-location ignoring side effects (since the object hasn't escaped
280 * yet). Worst case this is the same time-complexity as step 3 since we may
281 * need to materialize phis.
282 *
283 * O(heap_locations^2 * materialization_edges)
284 *
285 * 5.3 Propagate materializations
286 *
287 * Since we use the materialization as the marker for escape we need to
288 * propagate it throughout the graph. Since the subgraph analysis considers any
289 * lifetime that escapes a loop (and hence would require a loop-phi) to be
290 * escaping at the loop-header we do not need to create any loop-phis to do
291 * this.
292 *
293 * O(edges)
294 *
295 * NB: Currently the subgraph analysis considers all objects to have their
296 * lifetimes start at the entry block. This simplifies that analysis enormously
297 * but means that we cannot distinguish between an escape in a loop where the
298 * lifetime does not escape the loop (in which case this pass could optimize)
299 * and one where it does escape the loop (in which case the whole loop is
300 * escaping). This is a shortcoming that would be good to fix at some point.
301 *
302 * 5.4 Propagate partial values
303 *
304 * We need to replace loads and stores to the partial reference with predicated
305 * ones that have default non-escaping values. Again this is the same as step 3.
306 *
307 * O(heap_locations^2 * edges)
308 *
309 * 5.5 Final fixup
310 *
311 * Now all we need to do is replace and remove uses of the old reference with the
312 * appropriate materialization.
313 *
314 * O(instructions + uses)
315 *
316 * FIXME: The time complexities described above assumes that the
317 * HeapLocationCollector finds a heap location for an instruction in O(1)
318 * time but it is currently O(heap_locations); this can be fixed by adding
319 * a hash map to the HeapLocationCollector.
320 */
321
322 namespace art HIDDEN {
323
324 #define LSE_VLOG \
325 if (::art::LoadStoreElimination::kVerboseLoggingMode && VLOG_IS_ON(compiler)) LOG(INFO)
326
327 class PartialLoadStoreEliminationHelper;
328 class HeapRefHolder;
329
330 // Use HGraphDelegateVisitor for which all VisitInvokeXXX() delegate to VisitInvoke().
331 class LSEVisitor final : private HGraphDelegateVisitor {
332 public:
333 LSEVisitor(HGraph* graph,
334 const HeapLocationCollector& heap_location_collector,
335 bool perform_partial_lse,
336 OptimizingCompilerStats* stats);
337
338 void Run();
339
340 private:
341 class PhiPlaceholder {
342 public:
PhiPlaceholder()343 constexpr PhiPlaceholder() : block_id_(-1), heap_location_(-1) {}
PhiPlaceholder(uint32_t block_id,size_t heap_location)344 constexpr PhiPlaceholder(uint32_t block_id, size_t heap_location)
345 : block_id_(block_id), heap_location_(dchecked_integral_cast<uint32_t>(heap_location)) {}
346
347 constexpr PhiPlaceholder(const PhiPlaceholder& p) = default;
348 constexpr PhiPlaceholder(PhiPlaceholder&& p) = default;
349 constexpr PhiPlaceholder& operator=(const PhiPlaceholder& p) = default;
350 constexpr PhiPlaceholder& operator=(PhiPlaceholder&& p) = default;
351
GetBlockId() const352 constexpr uint32_t GetBlockId() const {
353 return block_id_;
354 }
355
GetHeapLocation() const356 constexpr size_t GetHeapLocation() const {
357 return heap_location_;
358 }
359
Equals(const PhiPlaceholder & p2) const360 constexpr bool Equals(const PhiPlaceholder& p2) const {
361 return block_id_ == p2.block_id_ && heap_location_ == p2.heap_location_;
362 }
363
Dump(std::ostream & oss) const364 void Dump(std::ostream& oss) const {
365 oss << "PhiPlaceholder[blk: " << block_id_ << ", heap_location_: " << heap_location_ << "]";
366 }
367
368 private:
369 uint32_t block_id_;
370 uint32_t heap_location_;
371 };
372
373 struct Marker {};
374
375 class Value;
376
377 class PriorValueHolder {
378 public:
379 constexpr explicit PriorValueHolder(Value prior);
380
IsInstruction() const381 constexpr bool IsInstruction() const {
382 return std::holds_alternative<HInstruction*>(value_);
383 }
IsPhi() const384 constexpr bool IsPhi() const {
385 return std::holds_alternative<PhiPlaceholder>(value_);
386 }
IsDefault() const387 constexpr bool IsDefault() const {
388 return std::holds_alternative<Marker>(value_);
389 }
GetPhiPlaceholder() const390 constexpr PhiPlaceholder GetPhiPlaceholder() const {
391 DCHECK(IsPhi());
392 return std::get<PhiPlaceholder>(value_);
393 }
GetInstruction() const394 constexpr HInstruction* GetInstruction() const {
395 DCHECK(IsInstruction());
396 return std::get<HInstruction*>(value_);
397 }
398
399 Value ToValue() const;
400 void Dump(std::ostream& oss) const;
401
Equals(PriorValueHolder other) const402 constexpr bool Equals(PriorValueHolder other) const {
403 return value_ == other.value_;
404 }
405
406 private:
407 std::variant<Marker, HInstruction*, PhiPlaceholder> value_;
408 };
409
410 friend constexpr bool operator==(const Marker&, const Marker&);
411 friend constexpr bool operator==(const PriorValueHolder& p1, const PriorValueHolder& p2);
412 friend constexpr bool operator==(const PhiPlaceholder& p1, const PhiPlaceholder& p2);
413 friend std::ostream& operator<<(std::ostream& oss, const PhiPlaceholder& p2);
414
415 class Value {
416 public:
417 enum class ValuelessType {
418 kInvalid,
419 kPureUnknown,
420 kDefault,
421 };
422 struct MergedUnknownMarker {
423 PhiPlaceholder phi_;
424 };
425 struct NeedsNonLoopPhiMarker {
426 PhiPlaceholder phi_;
427 };
428 struct NeedsLoopPhiMarker {
429 PhiPlaceholder phi_;
430 };
431
Invalid()432 static constexpr Value Invalid() {
433 return Value(ValuelessType::kInvalid);
434 }
435
436 // An unknown heap value. Loads with such a value in the heap location cannot be eliminated.
437 // A heap location can be set to an unknown heap value when:
438 // - it is coming from outside the method,
439 // - it is killed due to aliasing, or side effects, or merging with an unknown value.
PureUnknown()440 static constexpr Value PureUnknown() {
441 return Value(ValuelessType::kPureUnknown);
442 }
443
PartialUnknown(Value old_value)444 static constexpr Value PartialUnknown(Value old_value) {
445 if (old_value.IsInvalid() || old_value.IsPureUnknown()) {
446 return PureUnknown();
447 } else {
448 return Value(PriorValueHolder(old_value));
449 }
450 }
451
MergedUnknown(PhiPlaceholder phi_placeholder)452 static constexpr Value MergedUnknown(PhiPlaceholder phi_placeholder) {
453 return Value(MergedUnknownMarker{phi_placeholder});
454 }
455
456 // Default heap value after an allocation.
457 // A heap location can be set to that value right after an allocation.
Default()458 static constexpr Value Default() {
459 return Value(ValuelessType::kDefault);
460 }
461
ForInstruction(HInstruction * instruction)462 static constexpr Value ForInstruction(HInstruction* instruction) {
463 return Value(instruction);
464 }
465
ForNonLoopPhiPlaceholder(PhiPlaceholder phi_placeholder)466 static constexpr Value ForNonLoopPhiPlaceholder(PhiPlaceholder phi_placeholder) {
467 return Value(NeedsNonLoopPhiMarker{phi_placeholder});
468 }
469
ForLoopPhiPlaceholder(PhiPlaceholder phi_placeholder)470 static constexpr Value ForLoopPhiPlaceholder(PhiPlaceholder phi_placeholder) {
471 return Value(NeedsLoopPhiMarker{phi_placeholder});
472 }
473
ForPhiPlaceholder(PhiPlaceholder phi_placeholder,bool needs_loop_phi)474 static constexpr Value ForPhiPlaceholder(PhiPlaceholder phi_placeholder, bool needs_loop_phi) {
475 return needs_loop_phi ? ForLoopPhiPlaceholder(phi_placeholder)
476 : ForNonLoopPhiPlaceholder(phi_placeholder);
477 }
478
IsValid() const479 constexpr bool IsValid() const {
480 return !IsInvalid();
481 }
482
IsInvalid() const483 constexpr bool IsInvalid() const {
484 return std::holds_alternative<ValuelessType>(value_) &&
485 GetValuelessType() == ValuelessType::kInvalid;
486 }
487
IsPartialUnknown() const488 bool IsPartialUnknown() const {
489 return std::holds_alternative<PriorValueHolder>(value_);
490 }
491
IsMergedUnknown() const492 bool IsMergedUnknown() const {
493 return std::holds_alternative<MergedUnknownMarker>(value_);
494 }
495
IsPureUnknown() const496 bool IsPureUnknown() const {
497 return std::holds_alternative<ValuelessType>(value_) &&
498 GetValuelessType() == ValuelessType::kPureUnknown;
499 }
500
IsUnknown() const501 bool IsUnknown() const {
502 return IsPureUnknown() || IsMergedUnknown() || IsPartialUnknown();
503 }
504
IsDefault() const505 bool IsDefault() const {
506 return std::holds_alternative<ValuelessType>(value_) &&
507 GetValuelessType() == ValuelessType::kDefault;
508 }
509
IsInstruction() const510 bool IsInstruction() const {
511 return std::holds_alternative<HInstruction*>(value_);
512 }
513
NeedsNonLoopPhi() const514 bool NeedsNonLoopPhi() const {
515 return std::holds_alternative<NeedsNonLoopPhiMarker>(value_);
516 }
517
NeedsLoopPhi() const518 bool NeedsLoopPhi() const {
519 return std::holds_alternative<NeedsLoopPhiMarker>(value_);
520 }
521
NeedsPhi() const522 bool NeedsPhi() const {
523 return NeedsNonLoopPhi() || NeedsLoopPhi();
524 }
525
GetInstruction() const526 HInstruction* GetInstruction() const {
527 DCHECK(IsInstruction()) << *this;
528 return std::get<HInstruction*>(value_);
529 }
530
GetPriorValue() const531 PriorValueHolder GetPriorValue() const {
532 DCHECK(IsPartialUnknown());
533 return std::get<PriorValueHolder>(value_);
534 }
535
GetPhiPlaceholder() const536 PhiPlaceholder GetPhiPlaceholder() const {
537 DCHECK(NeedsPhi() || IsMergedUnknown());
538 if (NeedsNonLoopPhi()) {
539 return std::get<NeedsNonLoopPhiMarker>(value_).phi_;
540 } else if (NeedsLoopPhi()) {
541 return std::get<NeedsLoopPhiMarker>(value_).phi_;
542 } else {
543 return std::get<MergedUnknownMarker>(value_).phi_;
544 }
545 }
546
GetMergeBlockId() const547 uint32_t GetMergeBlockId() const {
548 DCHECK(IsMergedUnknown()) << this;
549 return std::get<MergedUnknownMarker>(value_).phi_.GetBlockId();
550 }
551
GetMergeBlock(const HGraph * graph) const552 HBasicBlock* GetMergeBlock(const HGraph* graph) const {
553 DCHECK(IsMergedUnknown()) << *this;
554 return graph->GetBlocks()[GetMergeBlockId()];
555 }
556
GetHeapLocation() const557 size_t GetHeapLocation() const {
558 DCHECK(IsMergedUnknown() || NeedsPhi()) << this;
559 return GetPhiPlaceholder().GetHeapLocation();
560 }
561
562 constexpr bool ExactEquals(Value other) const;
563
564 constexpr bool Equals(Value other) const;
565
Equals(HInstruction * instruction) const566 constexpr bool Equals(HInstruction* instruction) const {
567 return Equals(ForInstruction(instruction));
568 }
569
570 std::ostream& Dump(std::ostream& os) const;
571
572 // Public for use with lists.
Value()573 constexpr Value() : value_(ValuelessType::kInvalid) {}
574
575 private:
576 using ValueHolder = std::variant<ValuelessType,
577 HInstruction*,
578 MergedUnknownMarker,
579 NeedsNonLoopPhiMarker,
580 NeedsLoopPhiMarker,
581 PriorValueHolder>;
GetValuelessType() const582 constexpr ValuelessType GetValuelessType() const {
583 return std::get<ValuelessType>(value_);
584 }
585
Value(ValueHolder v)586 constexpr explicit Value(ValueHolder v) : value_(v) {}
587
588 friend std::ostream& operator<<(std::ostream& os, const Value& v);
589
590 ValueHolder value_;
591
592 static_assert(std::is_move_assignable<PhiPlaceholder>::value);
593 };
594
595 friend constexpr bool operator==(const Value::NeedsLoopPhiMarker& p1,
596 const Value::NeedsLoopPhiMarker& p2);
597 friend constexpr bool operator==(const Value::NeedsNonLoopPhiMarker& p1,
598 const Value::NeedsNonLoopPhiMarker& p2);
599 friend constexpr bool operator==(const Value::MergedUnknownMarker& p1,
600 const Value::MergedUnknownMarker& p2);
601
602 // Get Phi placeholder index for access to `phi_placeholder_replacements_`
603 // and "visited" bit vectors during depth-first searches.
PhiPlaceholderIndex(PhiPlaceholder phi_placeholder) const604 size_t PhiPlaceholderIndex(PhiPlaceholder phi_placeholder) const {
605 size_t res =
606 phi_placeholder.GetBlockId() * heap_location_collector_.GetNumberOfHeapLocations() +
607 phi_placeholder.GetHeapLocation();
608 DCHECK_EQ(phi_placeholder, GetPhiPlaceholderAt(res))
609 << res << "blks: " << GetGraph()->GetBlocks().size()
610 << " hls: " << heap_location_collector_.GetNumberOfHeapLocations();
611 return res;
612 }
613
PhiPlaceholderIndex(Value phi_placeholder) const614 size_t PhiPlaceholderIndex(Value phi_placeholder) const {
615 return PhiPlaceholderIndex(phi_placeholder.GetPhiPlaceholder());
616 }
617
IsEscapingObject(ReferenceInfo * info,HBasicBlock * block,size_t index)618 bool IsEscapingObject(ReferenceInfo* info, HBasicBlock* block, size_t index) {
619 return !info->IsSingletonAndRemovable() &&
620 !(info->IsPartialSingleton() && IsPartialNoEscape(block, index));
621 }
622
IsPartialNoEscape(HBasicBlock * blk,size_t idx)623 bool IsPartialNoEscape(HBasicBlock* blk, size_t idx) {
624 auto* ri = heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo();
625 if (!ri->IsPartialSingleton()) {
626 return false;
627 }
628 ArrayRef<const ExecutionSubgraph::ExcludedCohort> cohorts =
629 ri->GetNoEscapeSubgraph()->GetExcludedCohorts();
630 return std::none_of(cohorts.cbegin(),
631 cohorts.cend(),
632 [&](const ExecutionSubgraph::ExcludedCohort& ex) -> bool {
633 // Make sure we haven't yet and never will escape.
634 return ex.PrecedesBlock(blk) ||
635 ex.ContainsBlock(blk) ||
636 ex.SucceedsBlock(blk);
637 });
638 }
639
GetPhiPlaceholderAt(size_t off) const640 PhiPlaceholder GetPhiPlaceholderAt(size_t off) const {
641 DCHECK_LT(off, num_phi_placeholders_);
642 size_t id = off % heap_location_collector_.GetNumberOfHeapLocations();
643 // Technically this should be (off - id) / NumberOfHeapLocations
644 // but due to truncation it's all the same.
645 size_t blk_id = off / heap_location_collector_.GetNumberOfHeapLocations();
646 return GetPhiPlaceholder(blk_id, id);
647 }
648
GetPhiPlaceholder(uint32_t block_id,size_t idx) const649 PhiPlaceholder GetPhiPlaceholder(uint32_t block_id, size_t idx) const {
650 DCHECK(GetGraph()->GetBlocks()[block_id] != nullptr) << block_id;
651 return PhiPlaceholder(block_id, idx);
652 }
653
Replacement(Value value) const654 Value Replacement(Value value) const {
655 DCHECK(value.NeedsPhi() ||
656 (current_phase_ == Phase::kPartialElimination && value.IsMergedUnknown()))
657 << value << " phase: " << current_phase_;
658 Value replacement = phi_placeholder_replacements_[PhiPlaceholderIndex(value)];
659 DCHECK(replacement.IsUnknown() || replacement.IsInstruction());
660 DCHECK(replacement.IsUnknown() ||
661 FindSubstitute(replacement.GetInstruction()) == replacement.GetInstruction());
662 return replacement;
663 }
664
ReplacementOrValue(Value value) const665 Value ReplacementOrValue(Value value) const {
666 if (current_phase_ == Phase::kPartialElimination) {
667 // In this phase we are materializing the default values which are used
668 // only if the partial singleton did not escape, so we can replace
669 // a partial unknown with the prior value.
670 if (value.IsPartialUnknown()) {
671 value = value.GetPriorValue().ToValue();
672 }
673 if ((value.IsMergedUnknown() || value.NeedsPhi()) &&
674 phi_placeholder_replacements_[PhiPlaceholderIndex(value)].IsValid()) {
675 value = phi_placeholder_replacements_[PhiPlaceholderIndex(value)];
676 DCHECK(!value.IsMergedUnknown());
677 DCHECK(!value.NeedsPhi());
678 } else if (value.IsMergedUnknown()) {
679 return Value::ForLoopPhiPlaceholder(value.GetPhiPlaceholder());
680 }
681 if (value.IsInstruction() && value.GetInstruction()->IsInstanceFieldGet()) {
682 DCHECK_LT(static_cast<size_t>(value.GetInstruction()->GetId()),
683 substitute_instructions_for_loads_.size());
684 HInstruction* substitute =
685 substitute_instructions_for_loads_[value.GetInstruction()->GetId()];
686 if (substitute != nullptr) {
687 DCHECK(substitute->IsPredicatedInstanceFieldGet());
688 return Value::ForInstruction(substitute);
689 }
690 }
691 DCHECK_IMPLIES(value.IsInstruction(),
692 FindSubstitute(value.GetInstruction()) == value.GetInstruction());
693 return value;
694 }
695 if (value.NeedsPhi() && phi_placeholder_replacements_[PhiPlaceholderIndex(value)].IsValid()) {
696 return Replacement(value);
697 } else {
698 DCHECK_IMPLIES(value.IsInstruction(),
699 FindSubstitute(value.GetInstruction()) == value.GetInstruction());
700 return value;
701 }
702 }
703
704 // The record of a heap value and instruction(s) that feed that value.
705 struct ValueRecord {
706 Value value;
707 Value stored_by;
708 };
709
FindOrAddTypeConversionIfNecessary(HInstruction * instruction,HInstruction * value,DataType::Type expected_type)710 HTypeConversion* FindOrAddTypeConversionIfNecessary(HInstruction* instruction,
711 HInstruction* value,
712 DataType::Type expected_type) {
713 // Should never add type conversion into boolean value.
714 if (expected_type == DataType::Type::kBool ||
715 DataType::IsTypeConversionImplicit(value->GetType(), expected_type) ||
716 // TODO: This prevents type conversion of default values but we can still insert
717 // type conversion of other constants and there is no constant folding pass after LSE.
718 IsZeroBitPattern(value)) {
719 return nullptr;
720 }
721
722 // Check if there is already a suitable TypeConversion we can reuse.
723 for (const HUseListNode<HInstruction*>& use : value->GetUses()) {
724 if (use.GetUser()->IsTypeConversion() &&
725 use.GetUser()->GetType() == expected_type &&
726 // TODO: We could move the TypeConversion to a common dominator
727 // if it does not cross irreducible loop header.
728 use.GetUser()->GetBlock()->Dominates(instruction->GetBlock()) &&
729 // Don't share across irreducible loop headers.
730 // TODO: can be more fine-grained than this by testing each dominator.
731 (use.GetUser()->GetBlock() == instruction->GetBlock() ||
732 !GetGraph()->HasIrreducibleLoops())) {
733 if (use.GetUser()->GetBlock() == instruction->GetBlock() &&
734 use.GetUser()->GetBlock()->GetInstructions().FoundBefore(instruction, use.GetUser())) {
735 // Move the TypeConversion before the instruction.
736 use.GetUser()->MoveBefore(instruction);
737 }
738 DCHECK(use.GetUser()->StrictlyDominates(instruction));
739 return use.GetUser()->AsTypeConversion();
740 }
741 }
742
743 // We must create a new TypeConversion instruction.
744 HTypeConversion* type_conversion = new (GetGraph()->GetAllocator()) HTypeConversion(
745 expected_type, value, instruction->GetDexPc());
746 instruction->GetBlock()->InsertInstructionBefore(type_conversion, instruction);
747 return type_conversion;
748 }
749
750 // Find an instruction's substitute if it's a removed load.
751 // Return the same instruction if it should not be removed.
FindSubstitute(HInstruction * instruction) const752 HInstruction* FindSubstitute(HInstruction* instruction) const {
753 size_t id = static_cast<size_t>(instruction->GetId());
754 if (id >= substitute_instructions_for_loads_.size()) {
755 // New Phi (may not be in the graph yet), default value or PredicatedInstanceFieldGet.
756 DCHECK_IMPLIES(IsLoad(instruction), instruction->IsPredicatedInstanceFieldGet());
757 return instruction;
758 }
759 HInstruction* substitute = substitute_instructions_for_loads_[id];
760 DCHECK(substitute == nullptr || IsLoad(instruction));
761 return (substitute != nullptr) ? substitute : instruction;
762 }
763
AddRemovedLoad(HInstruction * load,HInstruction * heap_value)764 void AddRemovedLoad(HInstruction* load, HInstruction* heap_value) {
765 DCHECK(IsLoad(load));
766 DCHECK_EQ(FindSubstitute(load), load);
767 DCHECK_EQ(FindSubstitute(heap_value), heap_value) <<
768 "Unexpected heap_value that has a substitute " << heap_value->DebugName();
769
770 // The load expects to load the heap value as type load->GetType().
771 // However the tracked heap value may not be of that type. An explicit
772 // type conversion may be needed.
773 // There are actually three types involved here:
774 // (1) tracked heap value's type (type A)
775 // (2) heap location (field or element)'s type (type B)
776 // (3) load's type (type C)
777 // We guarantee that type A stored as type B and then fetched out as
778 // type C is the same as casting from type A to type C directly, since
779 // type B and type C will have the same size which is guaranteed in
780 // HInstanceFieldGet/HStaticFieldGet/HArrayGet/HVecLoad's SetType().
781 // So we only need one type conversion from type A to type C.
782 HTypeConversion* type_conversion = FindOrAddTypeConversionIfNecessary(
783 load, heap_value, load->GetType());
784
785 substitute_instructions_for_loads_[load->GetId()] =
786 type_conversion != nullptr ? type_conversion : heap_value;
787 }
788
IsLoad(HInstruction * instruction)789 static bool IsLoad(HInstruction* instruction) {
790 // Unresolved load is not treated as a load.
791 return instruction->IsInstanceFieldGet() ||
792 instruction->IsPredicatedInstanceFieldGet() ||
793 instruction->IsStaticFieldGet() ||
794 instruction->IsVecLoad() ||
795 instruction->IsArrayGet();
796 }
797
IsStore(HInstruction * instruction)798 static bool IsStore(HInstruction* instruction) {
799 // Unresolved store is not treated as a store.
800 return instruction->IsInstanceFieldSet() ||
801 instruction->IsArraySet() ||
802 instruction->IsVecStore() ||
803 instruction->IsStaticFieldSet();
804 }
805
806 // Check if it is allowed to use default values or Phis for the specified load.
IsDefaultOrPhiAllowedForLoad(HInstruction * instruction)807 static bool IsDefaultOrPhiAllowedForLoad(HInstruction* instruction) {
808 DCHECK(IsLoad(instruction));
809 // Using defaults for VecLoads requires to create additional vector operations.
810 // As there are some issues with scheduling vector operations it is better to avoid creating
811 // them.
812 return !instruction->IsVecOperation();
813 }
814
815 // Keep the store referenced by the instruction, or all stores that feed a Phi placeholder.
816 // This is necessary if the stored heap value can be observed.
KeepStores(Value value)817 void KeepStores(Value value) {
818 if (value.IsPureUnknown() || value.IsPartialUnknown()) {
819 return;
820 }
821 if (value.IsMergedUnknown()) {
822 kept_merged_unknowns_.SetBit(PhiPlaceholderIndex(value));
823 phi_placeholders_to_search_for_kept_stores_.SetBit(PhiPlaceholderIndex(value));
824 return;
825 }
826 if (value.NeedsPhi()) {
827 phi_placeholders_to_search_for_kept_stores_.SetBit(PhiPlaceholderIndex(value));
828 } else {
829 HInstruction* instruction = value.GetInstruction();
830 DCHECK(IsStore(instruction));
831 kept_stores_.SetBit(instruction->GetId());
832 }
833 }
834
835 // If a heap location X may alias with heap location at `loc_index`
836 // and heap_values of that heap location X holds a store, keep that store.
837 // It's needed for a dependent load that's not eliminated since any store
838 // that may put value into the load's heap location needs to be kept.
KeepStoresIfAliasedToLocation(ScopedArenaVector<ValueRecord> & heap_values,size_t loc_index)839 void KeepStoresIfAliasedToLocation(ScopedArenaVector<ValueRecord>& heap_values,
840 size_t loc_index) {
841 for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
842 if (i == loc_index) {
843 // We use this function when reading a location with unknown value and
844 // therefore we cannot know what exact store wrote that unknown value.
845 // But we can have a phi placeholder here marking multiple stores to keep.
846 DCHECK(
847 !heap_values[i].stored_by.IsInstruction() ||
848 heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo()->IsPartialSingleton());
849 KeepStores(heap_values[i].stored_by);
850 heap_values[i].stored_by = Value::PureUnknown();
851 } else if (heap_location_collector_.MayAlias(i, loc_index)) {
852 KeepStores(heap_values[i].stored_by);
853 heap_values[i].stored_by = Value::PureUnknown();
854 }
855 }
856 }
857
GetDefaultValue(DataType::Type type)858 HInstruction* GetDefaultValue(DataType::Type type) {
859 switch (type) {
860 case DataType::Type::kReference:
861 return GetGraph()->GetNullConstant();
862 case DataType::Type::kBool:
863 case DataType::Type::kUint8:
864 case DataType::Type::kInt8:
865 case DataType::Type::kUint16:
866 case DataType::Type::kInt16:
867 case DataType::Type::kInt32:
868 return GetGraph()->GetIntConstant(0);
869 case DataType::Type::kInt64:
870 return GetGraph()->GetLongConstant(0);
871 case DataType::Type::kFloat32:
872 return GetGraph()->GetFloatConstant(0);
873 case DataType::Type::kFloat64:
874 return GetGraph()->GetDoubleConstant(0);
875 default:
876 UNREACHABLE();
877 }
878 }
879
CanValueBeKeptIfSameAsNew(Value value,HInstruction * new_value,HInstruction * new_value_set_instr)880 bool CanValueBeKeptIfSameAsNew(Value value,
881 HInstruction* new_value,
882 HInstruction* new_value_set_instr) {
883 // For field/array set location operations, if the value is the same as the new_value
884 // it can be kept even if aliasing happens. All aliased operations will access the same memory
885 // range.
886 // For vector values, this is not true. For example:
887 // packed_data = [0xA, 0xB, 0xC, 0xD]; <-- Different values in each lane.
888 // VecStore array[i ,i+1,i+2,i+3] = packed_data;
889 // VecStore array[i+1,i+2,i+3,i+4] = packed_data; <-- We are here (partial overlap).
890 // VecLoad vx = array[i,i+1,i+2,i+3]; <-- Cannot be eliminated because the value
891 // here is not packed_data anymore.
892 //
893 // TODO: to allow such 'same value' optimization on vector data,
894 // LSA needs to report more fine-grain MAY alias information:
895 // (1) May alias due to two vector data partial overlap.
896 // e.g. a[i..i+3] and a[i+1,..,i+4].
897 // (2) May alias due to two vector data may complete overlap each other.
898 // e.g. a[i..i+3] and b[i..i+3].
899 // (3) May alias but the exact relationship between two locations is unknown.
900 // e.g. a[i..i+3] and b[j..j+3], where values of a,b,i,j are all unknown.
901 // This 'same value' optimization can apply only on case (2).
902 if (new_value_set_instr->IsVecOperation()) {
903 return false;
904 }
905
906 return value.Equals(new_value);
907 }
908
909 Value PrepareLoopValue(HBasicBlock* block, size_t idx);
910 Value PrepareLoopStoredBy(HBasicBlock* block, size_t idx);
911 void PrepareLoopRecords(HBasicBlock* block);
912 Value MergePredecessorValues(HBasicBlock* block, size_t idx);
913 void MergePredecessorRecords(HBasicBlock* block);
914
915 void MaterializeNonLoopPhis(PhiPlaceholder phi_placeholder, DataType::Type type);
916
917 void VisitGetLocation(HInstruction* instruction, size_t idx);
918 void VisitSetLocation(HInstruction* instruction, size_t idx, HInstruction* value);
RecordFieldInfo(const FieldInfo * info,size_t heap_loc)919 void RecordFieldInfo(const FieldInfo* info, size_t heap_loc) {
920 field_infos_[heap_loc] = info;
921 }
922
923 void VisitBasicBlock(HBasicBlock* block) override;
924
925 enum class Phase {
926 kLoadElimination,
927 kStoreElimination,
928 kPartialElimination,
929 };
930
931 bool MayAliasOnBackEdge(HBasicBlock* loop_header, size_t idx1, size_t idx2) const;
932
933 bool TryReplacingLoopPhiPlaceholderWithDefault(
934 PhiPlaceholder phi_placeholder,
935 DataType::Type type,
936 /*inout*/ ArenaBitVector* phi_placeholders_to_materialize);
937 bool TryReplacingLoopPhiPlaceholderWithSingleInput(
938 PhiPlaceholder phi_placeholder,
939 /*inout*/ ArenaBitVector* phi_placeholders_to_materialize);
940 std::optional<PhiPlaceholder> FindLoopPhisToMaterialize(
941 PhiPlaceholder phi_placeholder,
942 /*out*/ ArenaBitVector* phi_placeholders_to_materialize,
943 DataType::Type type,
944 bool can_use_default_or_phi);
945 bool MaterializeLoopPhis(const ScopedArenaVector<size_t>& phi_placeholder_indexes,
946 DataType::Type type);
947 bool MaterializeLoopPhis(ArrayRef<const size_t> phi_placeholder_indexes, DataType::Type type);
948 bool MaterializeLoopPhis(const ArenaBitVector& phi_placeholders_to_materialize,
949 DataType::Type type);
950 bool FullyMaterializePhi(PhiPlaceholder phi_placeholder, DataType::Type type);
951 std::optional<PhiPlaceholder> TryToMaterializeLoopPhis(PhiPlaceholder phi_placeholder,
952 HInstruction* load);
953 void ProcessLoopPhiWithUnknownInput(PhiPlaceholder loop_phi_with_unknown_input);
954 void ProcessLoadsRequiringLoopPhis();
955
956 void SearchPhiPlaceholdersForKeptStores();
957 void UpdateValueRecordForStoreElimination(/*inout*/ValueRecord* value_record);
958 void FindOldValueForPhiPlaceholder(PhiPlaceholder phi_placeholder, DataType::Type type);
959 void FindStoresWritingOldValues();
960 void FinishFullLSE();
961 void PrepareForPartialPhiComputation();
962 // Create materialization block and materialization object for the given predecessor of entry.
963 HInstruction* SetupPartialMaterialization(PartialLoadStoreEliminationHelper& helper,
964 HeapRefHolder&& holder,
965 size_t pred_idx,
966 HBasicBlock* blk);
967 // Returns the value that would be read by the 'read' instruction on
968 // 'orig_new_inst' if 'orig_new_inst' has not escaped.
969 HInstruction* GetPartialValueAt(HNewInstance* orig_new_inst, HInstruction* read);
970 void MovePartialEscapes();
971
VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet * instruction)972 void VisitPredicatedInstanceFieldGet(HPredicatedInstanceFieldGet* instruction) override {
973 LOG(FATAL) << "Visited instruction " << instruction->DumpWithoutArgs()
974 << " but LSE should be the only source of predicated-ifield-gets!";
975 }
976
HandleAcquireLoad(HInstruction * instruction)977 void HandleAcquireLoad(HInstruction* instruction) {
978 DCHECK((instruction->IsInstanceFieldGet() && instruction->AsInstanceFieldGet()->IsVolatile()) ||
979 (instruction->IsStaticFieldGet() && instruction->AsStaticFieldGet()->IsVolatile()) ||
980 (instruction->IsMonitorOperation() && instruction->AsMonitorOperation()->IsEnter()))
981 << "Unexpected instruction " << instruction->GetId() << ": " << instruction->DebugName();
982
983 // Acquire operations e.g. MONITOR_ENTER change the thread's view of the memory, so we must
984 // invalidate all current values.
985 ScopedArenaVector<ValueRecord>& heap_values =
986 heap_values_for_[instruction->GetBlock()->GetBlockId()];
987 for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
988 KeepStores(heap_values[i].stored_by);
989 heap_values[i].stored_by = Value::PureUnknown();
990 heap_values[i].value = Value::PartialUnknown(heap_values[i].value);
991 }
992
993 // Note that there's no need to record the load as subsequent acquire loads shouldn't be
994 // eliminated either.
995 }
996
HandleReleaseStore(HInstruction * instruction)997 void HandleReleaseStore(HInstruction* instruction) {
998 DCHECK((instruction->IsInstanceFieldSet() && instruction->AsInstanceFieldSet()->IsVolatile()) ||
999 (instruction->IsStaticFieldSet() && instruction->AsStaticFieldSet()->IsVolatile()) ||
1000 (instruction->IsMonitorOperation() && !instruction->AsMonitorOperation()->IsEnter()))
1001 << "Unexpected instruction " << instruction->GetId() << ": " << instruction->DebugName();
1002
1003 // Release operations e.g. MONITOR_EXIT do not affect this thread's view of the memory, but
1004 // they will push the modifications for other threads to see. Therefore, we must keep the
1005 // stores but there's no need to clobber the value.
1006 ScopedArenaVector<ValueRecord>& heap_values =
1007 heap_values_for_[instruction->GetBlock()->GetBlockId()];
1008 for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
1009 KeepStores(heap_values[i].stored_by);
1010 heap_values[i].stored_by = Value::PureUnknown();
1011 }
1012
1013 // Note that there's no need to record the store as subsequent release store shouldn't be
1014 // eliminated either.
1015 }
1016
VisitInstanceFieldGet(HInstanceFieldGet * instruction)1017 void VisitInstanceFieldGet(HInstanceFieldGet* instruction) override {
1018 if (instruction->IsVolatile()) {
1019 HandleAcquireLoad(instruction);
1020 return;
1021 }
1022
1023 HInstruction* object = instruction->InputAt(0);
1024 const FieldInfo& field = instruction->GetFieldInfo();
1025 VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(object, &field));
1026 }
1027
VisitInstanceFieldSet(HInstanceFieldSet * instruction)1028 void VisitInstanceFieldSet(HInstanceFieldSet* instruction) override {
1029 if (instruction->IsVolatile()) {
1030 HandleReleaseStore(instruction);
1031 return;
1032 }
1033
1034 HInstruction* object = instruction->InputAt(0);
1035 const FieldInfo& field = instruction->GetFieldInfo();
1036 HInstruction* value = instruction->InputAt(1);
1037 size_t idx = heap_location_collector_.GetFieldHeapLocation(object, &field);
1038 VisitSetLocation(instruction, idx, value);
1039 }
1040
VisitStaticFieldGet(HStaticFieldGet * instruction)1041 void VisitStaticFieldGet(HStaticFieldGet* instruction) override {
1042 if (instruction->IsVolatile()) {
1043 HandleAcquireLoad(instruction);
1044 return;
1045 }
1046
1047 HInstruction* cls = instruction->InputAt(0);
1048 const FieldInfo& field = instruction->GetFieldInfo();
1049 VisitGetLocation(instruction, heap_location_collector_.GetFieldHeapLocation(cls, &field));
1050 }
1051
VisitStaticFieldSet(HStaticFieldSet * instruction)1052 void VisitStaticFieldSet(HStaticFieldSet* instruction) override {
1053 if (instruction->IsVolatile()) {
1054 HandleReleaseStore(instruction);
1055 return;
1056 }
1057
1058 HInstruction* cls = instruction->InputAt(0);
1059 const FieldInfo& field = instruction->GetFieldInfo();
1060 HInstruction* value = instruction->InputAt(1);
1061 size_t idx = heap_location_collector_.GetFieldHeapLocation(cls, &field);
1062 VisitSetLocation(instruction, idx, value);
1063 }
1064
VisitMonitorOperation(HMonitorOperation * monitor_op)1065 void VisitMonitorOperation(HMonitorOperation* monitor_op) override {
1066 if (monitor_op->IsEnter()) {
1067 HandleAcquireLoad(monitor_op);
1068 } else {
1069 HandleReleaseStore(monitor_op);
1070 }
1071 }
1072
VisitArrayGet(HArrayGet * instruction)1073 void VisitArrayGet(HArrayGet* instruction) override {
1074 VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction));
1075 }
1076
VisitArraySet(HArraySet * instruction)1077 void VisitArraySet(HArraySet* instruction) override {
1078 size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction);
1079 VisitSetLocation(instruction, idx, instruction->GetValue());
1080 }
1081
VisitVecLoad(HVecLoad * instruction)1082 void VisitVecLoad(HVecLoad* instruction) override {
1083 VisitGetLocation(instruction, heap_location_collector_.GetArrayHeapLocation(instruction));
1084 }
1085
VisitVecStore(HVecStore * instruction)1086 void VisitVecStore(HVecStore* instruction) override {
1087 size_t idx = heap_location_collector_.GetArrayHeapLocation(instruction);
1088 VisitSetLocation(instruction, idx, instruction->GetValue());
1089 }
1090
VisitDeoptimize(HDeoptimize * instruction)1091 void VisitDeoptimize(HDeoptimize* instruction) override {
1092 // If we are in a try, even singletons are observable.
1093 const bool inside_a_try = instruction->GetBlock()->IsTryBlock();
1094 HBasicBlock* block = instruction->GetBlock();
1095 ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
1096 for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
1097 Value* stored_by = &heap_values[i].stored_by;
1098 if (stored_by->IsUnknown()) {
1099 continue;
1100 }
1101 // Stores are generally observeable after deoptimization, except
1102 // for singletons that don't escape in the deoptimization environment.
1103 bool observable = true;
1104 ReferenceInfo* info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
1105 if (!inside_a_try && info->IsSingleton()) {
1106 HInstruction* reference = info->GetReference();
1107 // Finalizable objects always escape.
1108 const bool finalizable_object =
1109 reference->IsNewInstance() && reference->AsNewInstance()->IsFinalizable();
1110 if (!finalizable_object && !IsEscapingObject(info, block, i)) {
1111 // Check whether the reference for a store is used by an environment local of
1112 // the HDeoptimize. If not, the singleton is not observed after deoptimization.
1113 const HUseList<HEnvironment*>& env_uses = reference->GetEnvUses();
1114 observable = std::any_of(
1115 env_uses.begin(),
1116 env_uses.end(),
1117 [instruction](const HUseListNode<HEnvironment*>& use) {
1118 return use.GetUser()->GetHolder() == instruction;
1119 });
1120 }
1121 }
1122 if (observable) {
1123 KeepStores(*stored_by);
1124 *stored_by = Value::PureUnknown();
1125 }
1126 }
1127 }
1128
1129 // Keep necessary stores before exiting a method via return/throw.
HandleExit(HBasicBlock * block,bool must_keep_stores=false)1130 void HandleExit(HBasicBlock* block, bool must_keep_stores = false) {
1131 ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
1132 for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
1133 ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
1134 if (must_keep_stores || IsEscapingObject(ref_info, block, i)) {
1135 KeepStores(heap_values[i].stored_by);
1136 heap_values[i].stored_by = Value::PureUnknown();
1137 }
1138 }
1139 }
1140
VisitReturn(HReturn * instruction)1141 void VisitReturn(HReturn* instruction) override {
1142 HandleExit(instruction->GetBlock());
1143 }
1144
VisitReturnVoid(HReturnVoid * return_void)1145 void VisitReturnVoid(HReturnVoid* return_void) override {
1146 HandleExit(return_void->GetBlock());
1147 }
1148
HandleThrowingInstruction(HInstruction * instruction)1149 void HandleThrowingInstruction(HInstruction* instruction) {
1150 DCHECK(instruction->CanThrow());
1151 // If we are inside of a try, singletons can become visible since we may not exit the method.
1152 HandleExit(instruction->GetBlock(), instruction->GetBlock()->IsTryBlock());
1153 }
1154
VisitMethodEntryHook(HMethodEntryHook * method_entry)1155 void VisitMethodEntryHook(HMethodEntryHook* method_entry) override {
1156 HandleThrowingInstruction(method_entry);
1157 }
1158
VisitMethodExitHook(HMethodExitHook * method_exit)1159 void VisitMethodExitHook(HMethodExitHook* method_exit) override {
1160 HandleThrowingInstruction(method_exit);
1161 }
1162
VisitDivZeroCheck(HDivZeroCheck * div_zero_check)1163 void VisitDivZeroCheck(HDivZeroCheck* div_zero_check) override {
1164 HandleThrowingInstruction(div_zero_check);
1165 }
1166
VisitNullCheck(HNullCheck * null_check)1167 void VisitNullCheck(HNullCheck* null_check) override {
1168 HandleThrowingInstruction(null_check);
1169 }
1170
VisitBoundsCheck(HBoundsCheck * bounds_check)1171 void VisitBoundsCheck(HBoundsCheck* bounds_check) override {
1172 HandleThrowingInstruction(bounds_check);
1173 }
1174
VisitLoadClass(HLoadClass * load_class)1175 void VisitLoadClass(HLoadClass* load_class) override {
1176 if (load_class->CanThrow()) {
1177 HandleThrowingInstruction(load_class);
1178 }
1179 }
1180
VisitLoadString(HLoadString * load_string)1181 void VisitLoadString(HLoadString* load_string) override {
1182 if (load_string->CanThrow()) {
1183 HandleThrowingInstruction(load_string);
1184 }
1185 }
1186
VisitLoadMethodHandle(HLoadMethodHandle * load_method_handle)1187 void VisitLoadMethodHandle(HLoadMethodHandle* load_method_handle) override {
1188 HandleThrowingInstruction(load_method_handle);
1189 }
1190
VisitLoadMethodType(HLoadMethodType * load_method_type)1191 void VisitLoadMethodType(HLoadMethodType* load_method_type) override {
1192 HandleThrowingInstruction(load_method_type);
1193 }
1194
VisitStringBuilderAppend(HStringBuilderAppend * sb_append)1195 void VisitStringBuilderAppend(HStringBuilderAppend* sb_append) override {
1196 HandleThrowingInstruction(sb_append);
1197 }
1198
VisitThrow(HThrow * throw_instruction)1199 void VisitThrow(HThrow* throw_instruction) override {
1200 HandleThrowingInstruction(throw_instruction);
1201 }
1202
VisitCheckCast(HCheckCast * check_cast)1203 void VisitCheckCast(HCheckCast* check_cast) override {
1204 HandleThrowingInstruction(check_cast);
1205 }
1206
HandleInvoke(HInstruction * instruction)1207 void HandleInvoke(HInstruction* instruction) {
1208 // If `instruction` can throw we have to presume all stores are visible.
1209 const bool can_throw = instruction->CanThrow();
1210 // If we are in a try, even singletons are observable.
1211 const bool can_throw_inside_a_try = can_throw && instruction->GetBlock()->IsTryBlock();
1212 SideEffects side_effects = instruction->GetSideEffects();
1213 ScopedArenaVector<ValueRecord>& heap_values =
1214 heap_values_for_[instruction->GetBlock()->GetBlockId()];
1215 for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
1216 ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
1217 HBasicBlock* blk = instruction->GetBlock();
1218 // We don't need to do anything if the reference has not escaped at this point.
1219 // This is true if either we (1) never escape or (2) sometimes escape but
1220 // there is no possible execution where we have done so at this time. NB
1221 // We count being in the excluded cohort as escaping. Technically, this is
1222 // a bit over-conservative (since we can have multiple non-escaping calls
1223 // before a single escaping one) but this simplifies everything greatly.
1224 auto partial_singleton_did_not_escape = [](ReferenceInfo* ref_info, HBasicBlock* blk) {
1225 DCHECK(ref_info->IsPartialSingleton());
1226 if (!ref_info->GetNoEscapeSubgraph()->ContainsBlock(blk)) {
1227 return false;
1228 }
1229 ArrayRef<const ExecutionSubgraph::ExcludedCohort> cohorts =
1230 ref_info->GetNoEscapeSubgraph()->GetExcludedCohorts();
1231 return std::none_of(cohorts.begin(),
1232 cohorts.end(),
1233 [&](const ExecutionSubgraph::ExcludedCohort& cohort) {
1234 return cohort.PrecedesBlock(blk);
1235 });
1236 };
1237 if (!can_throw_inside_a_try &&
1238 (ref_info->IsSingleton() ||
1239 // partial and we aren't currently escaping and we haven't escaped yet.
1240 (ref_info->IsPartialSingleton() && partial_singleton_did_not_escape(ref_info, blk)))) {
1241 // Singleton references cannot be seen by the callee.
1242 } else {
1243 if (can_throw || side_effects.DoesAnyRead() || side_effects.DoesAnyWrite()) {
1244 // Previous stores may become visible (read) and/or impossible for LSE to track (write).
1245 KeepStores(heap_values[i].stored_by);
1246 heap_values[i].stored_by = Value::PureUnknown();
1247 }
1248 if (side_effects.DoesAnyWrite()) {
1249 // The value may be clobbered.
1250 heap_values[i].value = Value::PartialUnknown(heap_values[i].value);
1251 }
1252 }
1253 }
1254 }
1255
VisitInvoke(HInvoke * invoke)1256 void VisitInvoke(HInvoke* invoke) override {
1257 HandleInvoke(invoke);
1258 }
1259
VisitClinitCheck(HClinitCheck * clinit)1260 void VisitClinitCheck(HClinitCheck* clinit) override {
1261 // Class initialization check can result in class initializer calling arbitrary methods.
1262 HandleInvoke(clinit);
1263 }
1264
VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet * instruction)1265 void VisitUnresolvedInstanceFieldGet(HUnresolvedInstanceFieldGet* instruction) override {
1266 // Conservatively treat it as an invocation.
1267 HandleInvoke(instruction);
1268 }
1269
VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet * instruction)1270 void VisitUnresolvedInstanceFieldSet(HUnresolvedInstanceFieldSet* instruction) override {
1271 // Conservatively treat it as an invocation.
1272 HandleInvoke(instruction);
1273 }
1274
VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet * instruction)1275 void VisitUnresolvedStaticFieldGet(HUnresolvedStaticFieldGet* instruction) override {
1276 // Conservatively treat it as an invocation.
1277 HandleInvoke(instruction);
1278 }
1279
VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet * instruction)1280 void VisitUnresolvedStaticFieldSet(HUnresolvedStaticFieldSet* instruction) override {
1281 // Conservatively treat it as an invocation.
1282 HandleInvoke(instruction);
1283 }
1284
VisitNewInstance(HNewInstance * new_instance)1285 void VisitNewInstance(HNewInstance* new_instance) override {
1286 // If we are in a try, even singletons are observable.
1287 const bool inside_a_try = new_instance->GetBlock()->IsTryBlock();
1288 ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_instance);
1289 if (ref_info == nullptr) {
1290 // new_instance isn't used for field accesses. No need to process it.
1291 return;
1292 }
1293 if (ref_info->IsSingletonAndRemovable() && !new_instance->NeedsChecks()) {
1294 DCHECK(!new_instance->IsFinalizable());
1295 // new_instance can potentially be eliminated.
1296 singleton_new_instances_.push_back(new_instance);
1297 }
1298 HBasicBlock* block = new_instance->GetBlock();
1299 ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
1300 for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
1301 ReferenceInfo* info = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
1302 HInstruction* ref = info->GetReference();
1303 size_t offset = heap_location_collector_.GetHeapLocation(i)->GetOffset();
1304 if (ref == new_instance) {
1305 if (offset >= mirror::kObjectHeaderSize ||
1306 MemberOffset(offset) == mirror::Object::MonitorOffset()) {
1307 // Instance fields except the header fields are set to default heap values.
1308 // The shadow$_monitor_ field is set to the default value however.
1309 heap_values[i].value = Value::Default();
1310 heap_values[i].stored_by = Value::PureUnknown();
1311 } else if (MemberOffset(offset) == mirror::Object::ClassOffset()) {
1312 // The shadow$_klass_ field is special and has an actual value however.
1313 heap_values[i].value = Value::ForInstruction(new_instance->GetLoadClass());
1314 heap_values[i].stored_by = Value::PureUnknown();
1315 }
1316 } else if (inside_a_try || IsEscapingObject(info, block, i)) {
1317 // Since NewInstance can throw, we presume all previous stores could be visible.
1318 KeepStores(heap_values[i].stored_by);
1319 heap_values[i].stored_by = Value::PureUnknown();
1320 }
1321 }
1322 }
1323
VisitNewArray(HNewArray * new_array)1324 void VisitNewArray(HNewArray* new_array) override {
1325 // If we are in a try, even singletons are observable.
1326 const bool inside_a_try = new_array->GetBlock()->IsTryBlock();
1327 ReferenceInfo* ref_info = heap_location_collector_.FindReferenceInfoOf(new_array);
1328 if (ref_info == nullptr) {
1329 // new_array isn't used for array accesses. No need to process it.
1330 return;
1331 }
1332 if (ref_info->IsSingletonAndRemovable()) {
1333 if (new_array->GetLength()->IsIntConstant() &&
1334 new_array->GetLength()->AsIntConstant()->GetValue() >= 0) {
1335 // new_array can potentially be eliminated.
1336 singleton_new_instances_.push_back(new_array);
1337 } else {
1338 // new_array may throw NegativeArraySizeException. Keep it.
1339 }
1340 }
1341 HBasicBlock* block = new_array->GetBlock();
1342 ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
1343 for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
1344 HeapLocation* location = heap_location_collector_.GetHeapLocation(i);
1345 ReferenceInfo* info = location->GetReferenceInfo();
1346 HInstruction* ref = info->GetReference();
1347 if (ref == new_array && location->GetIndex() != nullptr) {
1348 // Array elements are set to default heap values.
1349 heap_values[i].value = Value::Default();
1350 heap_values[i].stored_by = Value::PureUnknown();
1351 } else if (inside_a_try || IsEscapingObject(info, block, i)) {
1352 // Since NewArray can throw, we presume all previous stores could be visible.
1353 KeepStores(heap_values[i].stored_by);
1354 heap_values[i].stored_by = Value::PureUnknown();
1355 }
1356 }
1357 }
1358
VisitInstruction(HInstruction * instruction)1359 void VisitInstruction(HInstruction* instruction) override {
1360 // Throwing instructions must be handled specially.
1361 DCHECK(!instruction->CanThrow());
1362 }
1363
ShouldPerformPartialLSE() const1364 bool ShouldPerformPartialLSE() const {
1365 return perform_partial_lse_ && !GetGraph()->IsCompilingOsr();
1366 }
1367
1368 bool perform_partial_lse_;
1369
1370 const HeapLocationCollector& heap_location_collector_;
1371
1372 // Use local allocator for allocating memory.
1373 ScopedArenaAllocator allocator_;
1374
1375 // The number of unique phi_placeholders there possibly are
1376 size_t num_phi_placeholders_;
1377
1378 // One array of heap value records for each block.
1379 ScopedArenaVector<ScopedArenaVector<ValueRecord>> heap_values_for_;
1380
1381 // We record loads and stores for re-processing when we find a loop Phi placeholder
1382 // with unknown value from a predecessor, and also for removing stores that are
1383 // found to be dead, i.e. not marked in `kept_stores_` at the end.
1384 struct LoadStoreRecord {
1385 HInstruction* load_or_store;
1386 size_t heap_location_index;
1387 };
1388 ScopedArenaVector<LoadStoreRecord> loads_and_stores_;
1389
1390 // We record the substitute instructions for loads that should be
1391 // eliminated but may be used by heap locations. They'll be removed
1392 // in the end. These are indexed by the load's id.
1393 ScopedArenaVector<HInstruction*> substitute_instructions_for_loads_;
1394
1395 // Value at the start of the given instruction for instructions which directly
1396 // read from a heap-location (i.e. FieldGet). The mapping to heap-location is
1397 // implicit through the fact that each instruction can only directly refer to
1398 // a single heap-location.
1399 ScopedArenaHashMap<HInstruction*, Value> intermediate_values_;
1400
1401 // Record stores to keep in a bit vector indexed by instruction ID.
1402 ArenaBitVector kept_stores_;
1403 // When we need to keep all stores that feed a Phi placeholder, we just record the
1404 // index of that placeholder for processing after graph traversal.
1405 ArenaBitVector phi_placeholders_to_search_for_kept_stores_;
1406
1407 // Loads that would require a loop Phi to replace are recorded for processing
1408 // later as we do not have enough information from back-edges to determine if
1409 // a suitable Phi can be found or created when we visit these loads.
1410 ScopedArenaHashMap<HInstruction*, ValueRecord> loads_requiring_loop_phi_;
1411
1412 // For stores, record the old value records that were replaced and the stored values.
1413 struct StoreRecord {
1414 ValueRecord old_value_record;
1415 HInstruction* stored_value;
1416 };
1417 // Small pre-allocated initial buffer avoids initializing a large one until it's really needed.
1418 static constexpr size_t kStoreRecordsInitialBufferSize = 16;
1419 std::pair<HInstruction*, StoreRecord> store_records_buffer_[kStoreRecordsInitialBufferSize];
1420 ScopedArenaHashMap<HInstruction*, StoreRecord> store_records_;
1421
1422 // Replacements for Phi placeholders.
1423 // The invalid heap value is used to mark Phi placeholders that cannot be replaced.
1424 ScopedArenaVector<Value> phi_placeholder_replacements_;
1425
1426 // Merged-unknowns that must have their predecessor values kept to ensure
1427 // partially escaped values are written
1428 ArenaBitVector kept_merged_unknowns_;
1429
1430 ScopedArenaVector<HInstruction*> singleton_new_instances_;
1431
1432 // The field infos for each heap location (if relevant).
1433 ScopedArenaVector<const FieldInfo*> field_infos_;
1434
1435 Phase current_phase_;
1436
1437 friend class PartialLoadStoreEliminationHelper;
1438 friend struct ScopedRestoreHeapValues;
1439
1440 friend std::ostream& operator<<(std::ostream& os, const Value& v);
1441 friend std::ostream& operator<<(std::ostream& os, const PriorValueHolder& v);
1442 friend std::ostream& operator<<(std::ostream& oss, const LSEVisitor::Phase& phase);
1443
1444 DISALLOW_COPY_AND_ASSIGN(LSEVisitor);
1445 };
1446
operator <<(std::ostream & oss,const LSEVisitor::PriorValueHolder & p)1447 std::ostream& operator<<(std::ostream& oss, const LSEVisitor::PriorValueHolder& p) {
1448 p.Dump(oss);
1449 return oss;
1450 }
1451
operator <<(std::ostream & oss,const LSEVisitor::Phase & phase)1452 std::ostream& operator<<(std::ostream& oss, const LSEVisitor::Phase& phase) {
1453 switch (phase) {
1454 case LSEVisitor::Phase::kLoadElimination:
1455 return oss << "kLoadElimination";
1456 case LSEVisitor::Phase::kStoreElimination:
1457 return oss << "kStoreElimination";
1458 case LSEVisitor::Phase::kPartialElimination:
1459 return oss << "kPartialElimination";
1460 }
1461 }
1462
Dump(std::ostream & oss) const1463 void LSEVisitor::PriorValueHolder::Dump(std::ostream& oss) const {
1464 if (IsDefault()) {
1465 oss << "Default";
1466 } else if (IsPhi()) {
1467 oss << "Phi: " << GetPhiPlaceholder();
1468 } else {
1469 oss << "Instruction: " << *GetInstruction();
1470 }
1471 }
1472
PriorValueHolder(Value val)1473 constexpr LSEVisitor::PriorValueHolder::PriorValueHolder(Value val)
1474 : value_(Marker{}) {
1475 DCHECK(!val.IsInvalid() && !val.IsPureUnknown());
1476 if (val.IsPartialUnknown()) {
1477 value_ = val.GetPriorValue().value_;
1478 } else if (val.IsMergedUnknown() || val.NeedsPhi()) {
1479 value_ = val.GetPhiPlaceholder();
1480 } else if (val.IsInstruction()) {
1481 value_ = val.GetInstruction();
1482 } else {
1483 DCHECK(val.IsDefault());
1484 }
1485 }
1486
operator ==(const LSEVisitor::Marker &,const LSEVisitor::Marker &)1487 constexpr bool operator==(const LSEVisitor::Marker&, const LSEVisitor::Marker&) {
1488 return true;
1489 }
1490
operator ==(const LSEVisitor::PriorValueHolder & p1,const LSEVisitor::PriorValueHolder & p2)1491 constexpr bool operator==(const LSEVisitor::PriorValueHolder& p1,
1492 const LSEVisitor::PriorValueHolder& p2) {
1493 return p1.Equals(p2);
1494 }
1495
operator ==(const LSEVisitor::PhiPlaceholder & p1,const LSEVisitor::PhiPlaceholder & p2)1496 constexpr bool operator==(const LSEVisitor::PhiPlaceholder& p1,
1497 const LSEVisitor::PhiPlaceholder& p2) {
1498 return p1.Equals(p2);
1499 }
1500
operator ==(const LSEVisitor::Value::NeedsLoopPhiMarker & p1,const LSEVisitor::Value::NeedsLoopPhiMarker & p2)1501 constexpr bool operator==(const LSEVisitor::Value::NeedsLoopPhiMarker& p1,
1502 const LSEVisitor::Value::NeedsLoopPhiMarker& p2) {
1503 return p1.phi_ == p2.phi_;
1504 }
1505
operator ==(const LSEVisitor::Value::NeedsNonLoopPhiMarker & p1,const LSEVisitor::Value::NeedsNonLoopPhiMarker & p2)1506 constexpr bool operator==(const LSEVisitor::Value::NeedsNonLoopPhiMarker& p1,
1507 const LSEVisitor::Value::NeedsNonLoopPhiMarker& p2) {
1508 return p1.phi_ == p2.phi_;
1509 }
1510
operator ==(const LSEVisitor::Value::MergedUnknownMarker & p1,const LSEVisitor::Value::MergedUnknownMarker & p2)1511 constexpr bool operator==(const LSEVisitor::Value::MergedUnknownMarker& p1,
1512 const LSEVisitor::Value::MergedUnknownMarker& p2) {
1513 return p1.phi_ == p2.phi_;
1514 }
1515
operator <<(std::ostream & oss,const LSEVisitor::PhiPlaceholder & p)1516 std::ostream& operator<<(std::ostream& oss, const LSEVisitor::PhiPlaceholder& p) {
1517 p.Dump(oss);
1518 return oss;
1519 }
1520
ToValue() const1521 LSEVisitor::Value LSEVisitor::PriorValueHolder::ToValue() const {
1522 if (IsDefault()) {
1523 return Value::Default();
1524 } else if (IsPhi()) {
1525 return Value::ForLoopPhiPlaceholder(GetPhiPlaceholder());
1526 } else {
1527 return Value::ForInstruction(GetInstruction());
1528 }
1529 }
1530
ExactEquals(LSEVisitor::Value other) const1531 constexpr bool LSEVisitor::Value::ExactEquals(LSEVisitor::Value other) const {
1532 return value_ == other.value_;
1533 }
1534
Equals(LSEVisitor::Value other) const1535 constexpr bool LSEVisitor::Value::Equals(LSEVisitor::Value other) const {
1536 // Only valid values can be compared.
1537 DCHECK(IsValid());
1538 DCHECK(other.IsValid());
1539 if (value_ == other.value_) {
1540 // Note: Two unknown values are considered different.
1541 return !IsUnknown();
1542 } else {
1543 // Default is considered equal to zero-bit-pattern instructions.
1544 return (IsDefault() && other.IsInstruction() && IsZeroBitPattern(other.GetInstruction())) ||
1545 (other.IsDefault() && IsInstruction() && IsZeroBitPattern(GetInstruction()));
1546 }
1547 }
1548
Dump(std::ostream & os) const1549 std::ostream& LSEVisitor::Value::Dump(std::ostream& os) const {
1550 if (std::holds_alternative<LSEVisitor::Value::ValuelessType>(value_)) {
1551 switch (GetValuelessType()) {
1552 case ValuelessType::kDefault:
1553 return os << "Default";
1554 case ValuelessType::kPureUnknown:
1555 return os << "PureUnknown";
1556 case ValuelessType::kInvalid:
1557 return os << "Invalid";
1558 }
1559 } else if (IsPartialUnknown()) {
1560 return os << "PartialUnknown[" << GetPriorValue() << "]";
1561 } else if (IsInstruction()) {
1562 return os << "Instruction[id: " << GetInstruction()->GetId()
1563 << ", block: " << GetInstruction()->GetBlock()->GetBlockId() << "]";
1564 } else if (IsMergedUnknown()) {
1565 return os << "MergedUnknown[block: " << GetPhiPlaceholder().GetBlockId()
1566 << ", heap_loc: " << GetPhiPlaceholder().GetHeapLocation() << "]";
1567
1568 } else if (NeedsLoopPhi()) {
1569 return os << "NeedsLoopPhi[block: " << GetPhiPlaceholder().GetBlockId()
1570 << ", heap_loc: " << GetPhiPlaceholder().GetHeapLocation() << "]";
1571 } else {
1572 return os << "NeedsNonLoopPhi[block: " << GetPhiPlaceholder().GetBlockId()
1573 << ", heap_loc: " << GetPhiPlaceholder().GetHeapLocation() << "]";
1574 }
1575 }
1576
operator <<(std::ostream & os,const LSEVisitor::Value & v)1577 std::ostream& operator<<(std::ostream& os, const LSEVisitor::Value& v) {
1578 return v.Dump(os);
1579 }
1580
LSEVisitor(HGraph * graph,const HeapLocationCollector & heap_location_collector,bool perform_partial_lse,OptimizingCompilerStats * stats)1581 LSEVisitor::LSEVisitor(HGraph* graph,
1582 const HeapLocationCollector& heap_location_collector,
1583 bool perform_partial_lse,
1584 OptimizingCompilerStats* stats)
1585 : HGraphDelegateVisitor(graph, stats),
1586 perform_partial_lse_(perform_partial_lse),
1587 heap_location_collector_(heap_location_collector),
1588 allocator_(graph->GetArenaStack()),
1589 num_phi_placeholders_(GetGraph()->GetBlocks().size() *
1590 heap_location_collector_.GetNumberOfHeapLocations()),
1591 heap_values_for_(graph->GetBlocks().size(),
1592 ScopedArenaVector<ValueRecord>(allocator_.Adapter(kArenaAllocLSE)),
1593 allocator_.Adapter(kArenaAllocLSE)),
1594 loads_and_stores_(allocator_.Adapter(kArenaAllocLSE)),
1595 // We may add new instructions (default values, Phis) but we're not adding loads
1596 // or stores, so we shall not need to resize following vector and BitVector.
1597 substitute_instructions_for_loads_(graph->GetCurrentInstructionId(),
1598 nullptr,
1599 allocator_.Adapter(kArenaAllocLSE)),
1600 intermediate_values_(allocator_.Adapter(kArenaAllocLSE)),
1601 kept_stores_(&allocator_,
1602 /*start_bits=*/graph->GetCurrentInstructionId(),
1603 /*expandable=*/false,
1604 kArenaAllocLSE),
1605 phi_placeholders_to_search_for_kept_stores_(&allocator_,
1606 num_phi_placeholders_,
1607 /*expandable=*/false,
1608 kArenaAllocLSE),
1609 loads_requiring_loop_phi_(allocator_.Adapter(kArenaAllocLSE)),
1610 store_records_(store_records_buffer_,
1611 kStoreRecordsInitialBufferSize,
1612 allocator_.Adapter(kArenaAllocLSE)),
1613 phi_placeholder_replacements_(num_phi_placeholders_,
1614 Value::Invalid(),
1615 allocator_.Adapter(kArenaAllocLSE)),
1616 kept_merged_unknowns_(&allocator_,
1617 /*start_bits=*/num_phi_placeholders_,
1618 /*expandable=*/false,
1619 kArenaAllocLSE),
1620 singleton_new_instances_(allocator_.Adapter(kArenaAllocLSE)),
1621 field_infos_(heap_location_collector_.GetNumberOfHeapLocations(),
1622 allocator_.Adapter(kArenaAllocLSE)),
1623 current_phase_(Phase::kLoadElimination) {
1624 // Clear bit vectors.
1625 phi_placeholders_to_search_for_kept_stores_.ClearAllBits();
1626 kept_stores_.ClearAllBits();
1627 }
1628
PrepareLoopValue(HBasicBlock * block,size_t idx)1629 LSEVisitor::Value LSEVisitor::PrepareLoopValue(HBasicBlock* block, size_t idx) {
1630 // If the pre-header value is known (which implies that the reference dominates this
1631 // block), use a Phi placeholder for the value in the loop header. If all predecessors
1632 // are later found to have a known value, we can replace loads from this location,
1633 // either with the pre-header value or with a new Phi. For array locations, the index
1634 // may be defined inside the loop but the only known value in that case should be the
1635 // default value or a Phi placeholder that can be replaced only with the default value.
1636 HLoopInformation* loop_info = block->GetLoopInformation();
1637 uint32_t pre_header_block_id = loop_info->GetPreHeader()->GetBlockId();
1638 Value pre_header_value = ReplacementOrValue(heap_values_for_[pre_header_block_id][idx].value);
1639 if (pre_header_value.IsUnknown()) {
1640 return pre_header_value;
1641 }
1642 if (kIsDebugBuild) {
1643 // Check that the reference indeed dominates this loop.
1644 HeapLocation* location = heap_location_collector_.GetHeapLocation(idx);
1645 HInstruction* ref = location->GetReferenceInfo()->GetReference();
1646 CHECK(ref->GetBlock() != block && ref->GetBlock()->Dominates(block))
1647 << GetGraph()->PrettyMethod();
1648 // Check that the index, if defined inside the loop, tracks a default value
1649 // or a Phi placeholder requiring a loop Phi.
1650 HInstruction* index = location->GetIndex();
1651 if (index != nullptr && loop_info->Contains(*index->GetBlock())) {
1652 CHECK(pre_header_value.NeedsLoopPhi() || pre_header_value.Equals(Value::Default()))
1653 << GetGraph()->PrettyMethod() << " blk: " << block->GetBlockId() << " "
1654 << pre_header_value;
1655 }
1656 }
1657 PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx);
1658 return ReplacementOrValue(Value::ForLoopPhiPlaceholder(phi_placeholder));
1659 }
1660
PrepareLoopStoredBy(HBasicBlock * block,size_t idx)1661 LSEVisitor::Value LSEVisitor::PrepareLoopStoredBy(HBasicBlock* block, size_t idx) {
1662 // Use the Phi placeholder for `stored_by` to make sure all incoming stores are kept
1663 // if the value in the location escapes. This is not applicable to singletons that are
1664 // defined inside the loop as they shall be dead in the loop header.
1665 const ReferenceInfo* ref_info = heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo();
1666 const HInstruction* reference = ref_info->GetReference();
1667 // Finalizable objects always escape.
1668 const bool is_finalizable =
1669 reference->IsNewInstance() && reference->AsNewInstance()->IsFinalizable();
1670 if (ref_info->IsSingleton() &&
1671 block->GetLoopInformation()->Contains(*reference->GetBlock()) &&
1672 !is_finalizable) {
1673 return Value::PureUnknown();
1674 }
1675 PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx);
1676 return Value::ForLoopPhiPlaceholder(phi_placeholder);
1677 }
1678
PrepareLoopRecords(HBasicBlock * block)1679 void LSEVisitor::PrepareLoopRecords(HBasicBlock* block) {
1680 DCHECK(block->IsLoopHeader());
1681 int block_id = block->GetBlockId();
1682 HBasicBlock* pre_header = block->GetLoopInformation()->GetPreHeader();
1683 ScopedArenaVector<ValueRecord>& pre_header_heap_values =
1684 heap_values_for_[pre_header->GetBlockId()];
1685 size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations();
1686 DCHECK_EQ(num_heap_locations, pre_header_heap_values.size());
1687 ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block_id];
1688 DCHECK(heap_values.empty());
1689
1690 // Don't eliminate loads in irreducible loops.
1691 if (block->GetLoopInformation()->IsIrreducible()) {
1692 heap_values.resize(num_heap_locations,
1693 {/*value=*/Value::Invalid(), /*stored_by=*/Value::PureUnknown()});
1694 // Also keep the stores before the loop header, including in blocks that were not visited yet.
1695 bool is_osr = GetGraph()->IsCompilingOsr();
1696 for (size_t idx = 0u; idx != num_heap_locations; ++idx) {
1697 heap_values[idx].value =
1698 is_osr ? Value::PureUnknown()
1699 : Value::MergedUnknown(GetPhiPlaceholder(block->GetBlockId(), idx));
1700 KeepStores(Value::ForLoopPhiPlaceholder(GetPhiPlaceholder(block->GetBlockId(), idx)));
1701 }
1702 return;
1703 }
1704
1705 // Fill `heap_values` based on values from pre-header.
1706 heap_values.reserve(num_heap_locations);
1707 for (size_t idx = 0u; idx != num_heap_locations; ++idx) {
1708 heap_values.push_back({ PrepareLoopValue(block, idx), PrepareLoopStoredBy(block, idx) });
1709 }
1710 }
1711
MergePredecessorValues(HBasicBlock * block,size_t idx)1712 LSEVisitor::Value LSEVisitor::MergePredecessorValues(HBasicBlock* block, size_t idx) {
1713 ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors());
1714 DCHECK(!predecessors.empty());
1715 Value merged_value =
1716 ReplacementOrValue(heap_values_for_[predecessors[0]->GetBlockId()][idx].value);
1717 for (size_t i = 1u, size = predecessors.size(); i != size; ++i) {
1718 Value pred_value =
1719 ReplacementOrValue(heap_values_for_[predecessors[i]->GetBlockId()][idx].value);
1720 if (pred_value.Equals(merged_value)) {
1721 // Value is the same. No need to update our merged value.
1722 continue;
1723 } else if (pred_value.IsUnknown() || merged_value.IsUnknown()) {
1724 // If one is unknown and the other is a different type of unknown
1725 PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx);
1726 merged_value = Value::MergedUnknown(phi_placeholder);
1727 // We know that at least one of the merge points is unknown (and both are
1728 // not pure-unknowns since that's captured above). This means that the
1729 // overall value needs to be a MergedUnknown. Just return that.
1730 break;
1731 } else {
1732 // There are conflicting known values. We may still be able to replace loads with a Phi.
1733 PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx);
1734 // Propagate the need for a new loop Phi from all predecessors.
1735 bool needs_loop_phi = merged_value.NeedsLoopPhi() || pred_value.NeedsLoopPhi();
1736 merged_value = ReplacementOrValue(Value::ForPhiPlaceholder(phi_placeholder, needs_loop_phi));
1737 }
1738 }
1739 DCHECK_IMPLIES(merged_value.IsPureUnknown(), block->GetPredecessors().size() <= 1)
1740 << merged_value << " in " << GetGraph()->PrettyMethod();
1741 return merged_value;
1742 }
1743
MergePredecessorRecords(HBasicBlock * block)1744 void LSEVisitor::MergePredecessorRecords(HBasicBlock* block) {
1745 if (block->IsExitBlock()) {
1746 // Exit block doesn't really merge values since the control flow ends in
1747 // its predecessors. Each predecessor needs to make sure stores are kept
1748 // if necessary.
1749 return;
1750 }
1751
1752 ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
1753 DCHECK(heap_values.empty());
1754 size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations();
1755 if (block->GetPredecessors().empty() || block->IsCatchBlock()) {
1756 DCHECK_IMPLIES(block->GetPredecessors().empty(), block->IsEntryBlock());
1757 heap_values.resize(num_heap_locations,
1758 {/*value=*/Value::PureUnknown(), /*stored_by=*/Value::PureUnknown()});
1759 return;
1760 }
1761
1762 heap_values.reserve(num_heap_locations);
1763 for (size_t idx = 0u; idx != num_heap_locations; ++idx) {
1764 Value merged_value = MergePredecessorValues(block, idx);
1765 if (kIsDebugBuild) {
1766 if (merged_value.NeedsPhi()) {
1767 uint32_t block_id = merged_value.GetPhiPlaceholder().GetBlockId();
1768 CHECK(GetGraph()->GetBlocks()[block_id]->Dominates(block));
1769 } else if (merged_value.IsInstruction()) {
1770 CHECK(merged_value.GetInstruction()->GetBlock()->Dominates(block));
1771 }
1772 }
1773 ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors());
1774 Value merged_stored_by = heap_values_for_[predecessors[0]->GetBlockId()][idx].stored_by;
1775 for (size_t predecessor_idx = 1u; predecessor_idx != predecessors.size(); ++predecessor_idx) {
1776 uint32_t predecessor_block_id = predecessors[predecessor_idx]->GetBlockId();
1777 Value stored_by = heap_values_for_[predecessor_block_id][idx].stored_by;
1778 if ((!stored_by.IsUnknown() || !merged_stored_by.IsUnknown()) &&
1779 !merged_stored_by.Equals(stored_by)) {
1780 // Use the Phi placeholder to track that we need to keep stores from all predecessors.
1781 PhiPlaceholder phi_placeholder = GetPhiPlaceholder(block->GetBlockId(), idx);
1782 merged_stored_by = Value::ForNonLoopPhiPlaceholder(phi_placeholder);
1783 break;
1784 }
1785 }
1786 heap_values.push_back({ merged_value, merged_stored_by });
1787 }
1788 }
1789
FindOrConstructNonLoopPhi(HBasicBlock * block,const ScopedArenaVector<HInstruction * > & phi_inputs,DataType::Type type)1790 static HInstruction* FindOrConstructNonLoopPhi(
1791 HBasicBlock* block,
1792 const ScopedArenaVector<HInstruction*>& phi_inputs,
1793 DataType::Type type) {
1794 for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
1795 HInstruction* phi = phi_it.Current();
1796 DCHECK_EQ(phi->InputCount(), phi_inputs.size());
1797 auto cmp = [](HInstruction* lhs, const HUserRecord<HInstruction*>& rhs) {
1798 return lhs == rhs.GetInstruction();
1799 };
1800 if (std::equal(phi_inputs.begin(), phi_inputs.end(), phi->GetInputRecords().begin(), cmp)) {
1801 return phi;
1802 }
1803 }
1804 ArenaAllocator* allocator = block->GetGraph()->GetAllocator();
1805 HPhi* phi = new (allocator) HPhi(allocator, kNoRegNumber, phi_inputs.size(), type);
1806 for (size_t i = 0, size = phi_inputs.size(); i != size; ++i) {
1807 DCHECK_NE(phi_inputs[i]->GetType(), DataType::Type::kVoid) << phi_inputs[i]->DebugName();
1808 phi->SetRawInputAt(i, phi_inputs[i]);
1809 }
1810 block->AddPhi(phi);
1811 if (type == DataType::Type::kReference) {
1812 // Update reference type information. Pass invalid handles, these are not used for Phis.
1813 ReferenceTypePropagation rtp_fixup(block->GetGraph(),
1814 Handle<mirror::DexCache>(),
1815 /* is_first_run= */ false);
1816 rtp_fixup.Visit(phi);
1817 }
1818 return phi;
1819 }
1820
MaterializeNonLoopPhis(PhiPlaceholder phi_placeholder,DataType::Type type)1821 void LSEVisitor::MaterializeNonLoopPhis(PhiPlaceholder phi_placeholder, DataType::Type type) {
1822 DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid());
1823 const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
1824 size_t idx = phi_placeholder.GetHeapLocation();
1825
1826 // Use local allocator to reduce peak memory usage.
1827 ScopedArenaAllocator allocator(allocator_.GetArenaStack());
1828 // Reuse the same vector for collecting phi inputs.
1829 ScopedArenaVector<HInstruction*> phi_inputs(allocator.Adapter(kArenaAllocLSE));
1830
1831 ScopedArenaVector<PhiPlaceholder> work_queue(allocator.Adapter(kArenaAllocLSE));
1832 work_queue.push_back(phi_placeholder);
1833 while (!work_queue.empty()) {
1834 PhiPlaceholder current_phi_placeholder = work_queue.back();
1835 if (phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)].IsValid()) {
1836 // This Phi placeholder was pushed to the `work_queue` followed by another Phi placeholder
1837 // that directly or indirectly depends on it, so it was already processed as part of the
1838 // other Phi placeholder's dependencies before this one got back to the top of the stack.
1839 work_queue.pop_back();
1840 continue;
1841 }
1842 uint32_t current_block_id = current_phi_placeholder.GetBlockId();
1843 HBasicBlock* current_block = blocks[current_block_id];
1844 DCHECK_GE(current_block->GetPredecessors().size(), 2u);
1845
1846 // Non-loop Phis cannot depend on a loop Phi, so we should not see any loop header here.
1847 // And the only way for such merged value to reach a different heap location is through
1848 // a load at which point we materialize the Phi. Therefore all non-loop Phi placeholders
1849 // seen here are tied to one heap location.
1850 DCHECK(!current_block->IsLoopHeader())
1851 << current_phi_placeholder << " phase: " << current_phase_;
1852 DCHECK_EQ(current_phi_placeholder.GetHeapLocation(), idx);
1853
1854 phi_inputs.clear();
1855 for (HBasicBlock* predecessor : current_block->GetPredecessors()) {
1856 Value pred_value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value);
1857 DCHECK(!pred_value.IsPureUnknown()) << pred_value << " block " << current_block->GetBlockId()
1858 << " pred: " << predecessor->GetBlockId();
1859 if (pred_value.NeedsNonLoopPhi() ||
1860 (current_phase_ == Phase::kPartialElimination && pred_value.IsMergedUnknown())) {
1861 // We need to process the Phi placeholder first.
1862 work_queue.push_back(pred_value.GetPhiPlaceholder());
1863 } else if (pred_value.IsDefault()) {
1864 phi_inputs.push_back(GetDefaultValue(type));
1865 } else {
1866 DCHECK(pred_value.IsInstruction()) << pred_value << " block " << current_block->GetBlockId()
1867 << " pred: " << predecessor->GetBlockId();
1868 phi_inputs.push_back(pred_value.GetInstruction());
1869 }
1870 }
1871 if (phi_inputs.size() == current_block->GetPredecessors().size()) {
1872 // All inputs are available. Find or construct the Phi replacement.
1873 phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)] =
1874 Value::ForInstruction(FindOrConstructNonLoopPhi(current_block, phi_inputs, type));
1875 // Remove the block from the queue.
1876 DCHECK_EQ(current_phi_placeholder, work_queue.back());
1877 work_queue.pop_back();
1878 }
1879 }
1880 }
1881
VisitGetLocation(HInstruction * instruction,size_t idx)1882 void LSEVisitor::VisitGetLocation(HInstruction* instruction, size_t idx) {
1883 DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
1884 uint32_t block_id = instruction->GetBlock()->GetBlockId();
1885 ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block_id];
1886 ValueRecord& record = heap_values[idx];
1887 if (instruction->IsFieldAccess()) {
1888 RecordFieldInfo(&instruction->GetFieldInfo(), idx);
1889 }
1890 DCHECK(record.value.IsUnknown() || record.value.Equals(ReplacementOrValue(record.value)));
1891 // If we are unknown, we either come from somewhere untracked or we can reconstruct the partial
1892 // value.
1893 DCHECK(!record.value.IsPureUnknown() ||
1894 heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo() == nullptr ||
1895 !heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo()->IsPartialSingleton())
1896 << "In " << GetGraph()->PrettyMethod() << ": " << record.value << " for " << *instruction;
1897 intermediate_values_.insert({instruction, record.value});
1898 loads_and_stores_.push_back({ instruction, idx });
1899 if ((record.value.IsDefault() || record.value.NeedsNonLoopPhi()) &&
1900 !IsDefaultOrPhiAllowedForLoad(instruction)) {
1901 record.value = Value::PureUnknown();
1902 }
1903 if (record.value.IsDefault()) {
1904 KeepStores(record.stored_by);
1905 HInstruction* constant = GetDefaultValue(instruction->GetType());
1906 AddRemovedLoad(instruction, constant);
1907 record.value = Value::ForInstruction(constant);
1908 } else if (record.value.IsUnknown()) {
1909 // Load isn't eliminated. Put the load as the value into the HeapLocation.
1910 // This acts like GVN but with better aliasing analysis.
1911 Value old_value = record.value;
1912 record.value = Value::ForInstruction(instruction);
1913 KeepStoresIfAliasedToLocation(heap_values, idx);
1914 KeepStores(old_value);
1915 } else if (record.value.NeedsLoopPhi()) {
1916 // We do not know yet if the value is known for all back edges. Record for future processing.
1917 loads_requiring_loop_phi_.insert(std::make_pair(instruction, record));
1918 } else {
1919 // This load can be eliminated but we may need to construct non-loop Phis.
1920 if (record.value.NeedsNonLoopPhi()) {
1921 MaterializeNonLoopPhis(record.value.GetPhiPlaceholder(), instruction->GetType());
1922 record.value = Replacement(record.value);
1923 }
1924 HInstruction* heap_value = FindSubstitute(record.value.GetInstruction());
1925 AddRemovedLoad(instruction, heap_value);
1926 }
1927 }
1928
VisitSetLocation(HInstruction * instruction,size_t idx,HInstruction * value)1929 void LSEVisitor::VisitSetLocation(HInstruction* instruction, size_t idx, HInstruction* value) {
1930 DCHECK_NE(idx, HeapLocationCollector::kHeapLocationNotFound);
1931 DCHECK(!IsStore(value)) << value->DebugName();
1932 if (instruction->IsFieldAccess()) {
1933 RecordFieldInfo(&instruction->GetFieldInfo(), idx);
1934 }
1935 // value may already have a substitute.
1936 value = FindSubstitute(value);
1937 HBasicBlock* block = instruction->GetBlock();
1938 ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
1939 ValueRecord& record = heap_values[idx];
1940 DCHECK_IMPLIES(record.value.IsInstruction(),
1941 FindSubstitute(record.value.GetInstruction()) == record.value.GetInstruction());
1942
1943 if (record.value.Equals(value)) {
1944 // Store into the heap location with the same value.
1945 // This store can be eliminated right away.
1946 block->RemoveInstruction(instruction);
1947 return;
1948 }
1949
1950 store_records_.insert(std::make_pair(instruction, StoreRecord{record, value}));
1951 loads_and_stores_.push_back({ instruction, idx });
1952
1953 // If the `record.stored_by` specified a store from this block, it shall be removed
1954 // at the end, except for throwing ArraySet; it cannot be marked for keeping in
1955 // `kept_stores_` anymore after we update the `record.stored_by` below.
1956 DCHECK(!record.stored_by.IsInstruction() ||
1957 record.stored_by.GetInstruction()->GetBlock() != block ||
1958 record.stored_by.GetInstruction()->CanThrow() ||
1959 !kept_stores_.IsBitSet(record.stored_by.GetInstruction()->GetId()));
1960
1961 if (instruction->CanThrow()) {
1962 // Previous stores can become visible.
1963 HandleThrowingInstruction(instruction);
1964 // We cannot remove a possibly throwing store.
1965 // After marking it as kept, it does not matter if we track it in `stored_by` or not.
1966 kept_stores_.SetBit(instruction->GetId());
1967 }
1968
1969 // Update the record.
1970 auto it = loads_requiring_loop_phi_.find(value);
1971 if (it != loads_requiring_loop_phi_.end()) {
1972 // Propapate the Phi placeholder to the record.
1973 record.value = it->second.value;
1974 DCHECK(record.value.NeedsLoopPhi());
1975 } else {
1976 record.value = Value::ForInstruction(value);
1977 }
1978 // Track the store in the value record. If the value is loaded or needed after
1979 // return/deoptimization later, this store isn't really redundant.
1980 record.stored_by = Value::ForInstruction(instruction);
1981
1982 // This store may kill values in other heap locations due to aliasing.
1983 for (size_t i = 0u, size = heap_values.size(); i != size; ++i) {
1984 if (i == idx ||
1985 heap_values[i].value.IsUnknown() ||
1986 CanValueBeKeptIfSameAsNew(heap_values[i].value, value, instruction) ||
1987 !heap_location_collector_.MayAlias(i, idx)) {
1988 continue;
1989 }
1990 // Kill heap locations that may alias and keep previous stores to these locations.
1991 KeepStores(heap_values[i].stored_by);
1992 heap_values[i].stored_by = Value::PureUnknown();
1993 heap_values[i].value = Value::PartialUnknown(heap_values[i].value);
1994 }
1995 }
1996
VisitBasicBlock(HBasicBlock * block)1997 void LSEVisitor::VisitBasicBlock(HBasicBlock* block) {
1998 // Populate the heap_values array for this block.
1999 // TODO: try to reuse the heap_values array from one predecessor if possible.
2000 if (block->IsLoopHeader()) {
2001 PrepareLoopRecords(block);
2002 } else {
2003 MergePredecessorRecords(block);
2004 }
2005 // Visit instructions.
2006 HGraphVisitor::VisitBasicBlock(block);
2007 }
2008
MayAliasOnBackEdge(HBasicBlock * loop_header,size_t idx1,size_t idx2) const2009 bool LSEVisitor::MayAliasOnBackEdge(HBasicBlock* loop_header, size_t idx1, size_t idx2) const {
2010 DCHECK_NE(idx1, idx2);
2011 DCHECK(loop_header->IsLoopHeader());
2012 if (heap_location_collector_.MayAlias(idx1, idx2)) {
2013 return true;
2014 }
2015 // For array locations with index defined inside the loop, include
2016 // all other locations in the array, even those that LSA declares
2017 // non-aliasing, such as `a[i]` and `a[i + 1]`, as they may actually
2018 // refer to the same locations for different iterations. (LSA's
2019 // `ComputeMayAlias()` does not consider different loop iterations.)
2020 HeapLocation* loc1 = heap_location_collector_.GetHeapLocation(idx1);
2021 HeapLocation* loc2 = heap_location_collector_.GetHeapLocation(idx2);
2022 if (loc1->IsArray() &&
2023 loc2->IsArray() &&
2024 HeapLocationCollector::CanReferencesAlias(loc1->GetReferenceInfo(),
2025 loc2->GetReferenceInfo())) {
2026 HLoopInformation* loop_info = loop_header->GetLoopInformation();
2027 if (loop_info->Contains(*loc1->GetIndex()->GetBlock()) ||
2028 loop_info->Contains(*loc2->GetIndex()->GetBlock())) {
2029 // Consider the locations aliasing. Do not optimize the case where both indexes
2030 // are loop invariants defined inside the loop, rely on LICM to pull them out.
2031 return true;
2032 }
2033 }
2034 return false;
2035 }
2036
TryReplacingLoopPhiPlaceholderWithDefault(PhiPlaceholder phi_placeholder,DataType::Type type,ArenaBitVector * phi_placeholders_to_materialize)2037 bool LSEVisitor::TryReplacingLoopPhiPlaceholderWithDefault(
2038 PhiPlaceholder phi_placeholder,
2039 DataType::Type type,
2040 /*inout*/ ArenaBitVector* phi_placeholders_to_materialize) {
2041 // Use local allocator to reduce peak memory usage.
2042 ScopedArenaAllocator allocator(allocator_.GetArenaStack());
2043 ArenaBitVector visited(&allocator,
2044 /*start_bits=*/ num_phi_placeholders_,
2045 /*expandable=*/ false,
2046 kArenaAllocLSE);
2047 visited.ClearAllBits();
2048 ScopedArenaVector<PhiPlaceholder> work_queue(allocator.Adapter(kArenaAllocLSE));
2049
2050 // Use depth first search to check if any non-Phi input is unknown.
2051 const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
2052 size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations();
2053 visited.SetBit(PhiPlaceholderIndex(phi_placeholder));
2054 work_queue.push_back(phi_placeholder);
2055 while (!work_queue.empty()) {
2056 PhiPlaceholder current_phi_placeholder = work_queue.back();
2057 work_queue.pop_back();
2058 HBasicBlock* block = blocks[current_phi_placeholder.GetBlockId()];
2059 DCHECK_GE(block->GetPredecessors().size(), 2u);
2060 size_t idx = current_phi_placeholder.GetHeapLocation();
2061 for (HBasicBlock* predecessor : block->GetPredecessors()) {
2062 Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value);
2063 if (value.NeedsPhi()) {
2064 // Visit the predecessor Phi placeholder if it's not visited yet.
2065 if (!visited.IsBitSet(PhiPlaceholderIndex(value))) {
2066 visited.SetBit(PhiPlaceholderIndex(value));
2067 work_queue.push_back(value.GetPhiPlaceholder());
2068 }
2069 } else if (!value.Equals(Value::Default())) {
2070 return false; // Report failure.
2071 }
2072 }
2073 if (block->IsLoopHeader()) {
2074 // For back-edges we need to check all locations that write to the same array,
2075 // even those that LSA declares non-aliasing, such as `a[i]` and `a[i + 1]`
2076 // as they may actually refer to the same locations for different iterations.
2077 for (size_t i = 0; i != num_heap_locations; ++i) {
2078 if (i == idx ||
2079 heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo() !=
2080 heap_location_collector_.GetHeapLocation(idx)->GetReferenceInfo()) {
2081 continue;
2082 }
2083 for (HBasicBlock* predecessor : block->GetPredecessors()) {
2084 // Check if there were any writes to this location.
2085 // Note: We could simply process the values but due to the vector operation
2086 // carve-out (see `IsDefaultOrPhiAllowedForLoad()`), a vector load can cause
2087 // the value to change and not be equal to default. To work around this and
2088 // allow replacing the non-vector load of loop-invariant default values
2089 // anyway, skip over paths that do not have any writes.
2090 ValueRecord record = heap_values_for_[predecessor->GetBlockId()][i];
2091 while (record.stored_by.NeedsLoopPhi() &&
2092 blocks[record.stored_by.GetPhiPlaceholder().GetBlockId()]->IsLoopHeader()) {
2093 HLoopInformation* loop_info =
2094 blocks[record.stored_by.GetPhiPlaceholder().GetBlockId()]->GetLoopInformation();
2095 record = heap_values_for_[loop_info->GetPreHeader()->GetBlockId()][i];
2096 }
2097 Value value = ReplacementOrValue(record.value);
2098 if (value.NeedsPhi()) {
2099 // Visit the predecessor Phi placeholder if it's not visited yet.
2100 if (!visited.IsBitSet(PhiPlaceholderIndex(value))) {
2101 visited.SetBit(PhiPlaceholderIndex(value));
2102 work_queue.push_back(value.GetPhiPlaceholder());
2103 }
2104 } else if (!value.Equals(Value::Default())) {
2105 return false; // Report failure.
2106 }
2107 }
2108 }
2109 }
2110 }
2111
2112 // Record replacement and report success.
2113 HInstruction* replacement = GetDefaultValue(type);
2114 for (uint32_t phi_placeholder_index : visited.Indexes()) {
2115 DCHECK(phi_placeholder_replacements_[phi_placeholder_index].IsInvalid());
2116 PhiPlaceholder curr = GetPhiPlaceholderAt(phi_placeholder_index);
2117 HeapLocation* hl = heap_location_collector_.GetHeapLocation(curr.GetHeapLocation());
2118 // We use both vector and non vector operations to analyze the information. However, we replace
2119 // only non vector operations in this code path.
2120 if (!hl->IsVecOp()) {
2121 phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement);
2122 phi_placeholders_to_materialize->ClearBit(phi_placeholder_index);
2123 }
2124 }
2125 return true;
2126 }
2127
TryReplacingLoopPhiPlaceholderWithSingleInput(PhiPlaceholder phi_placeholder,ArenaBitVector * phi_placeholders_to_materialize)2128 bool LSEVisitor::TryReplacingLoopPhiPlaceholderWithSingleInput(
2129 PhiPlaceholder phi_placeholder,
2130 /*inout*/ ArenaBitVector* phi_placeholders_to_materialize) {
2131 // Use local allocator to reduce peak memory usage.
2132 ScopedArenaAllocator allocator(allocator_.GetArenaStack());
2133 ArenaBitVector visited(&allocator,
2134 /*start_bits=*/ num_phi_placeholders_,
2135 /*expandable=*/ false,
2136 kArenaAllocLSE);
2137 visited.ClearAllBits();
2138 ScopedArenaVector<PhiPlaceholder> work_queue(allocator.Adapter(kArenaAllocLSE));
2139
2140 // Use depth first search to check if any non-Phi input is unknown.
2141 HInstruction* replacement = nullptr;
2142 const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
2143 visited.SetBit(PhiPlaceholderIndex(phi_placeholder));
2144 work_queue.push_back(phi_placeholder);
2145 while (!work_queue.empty()) {
2146 PhiPlaceholder current_phi_placeholder = work_queue.back();
2147 work_queue.pop_back();
2148 HBasicBlock* current_block = blocks[current_phi_placeholder.GetBlockId()];
2149 DCHECK_GE(current_block->GetPredecessors().size(), 2u);
2150 size_t idx = current_phi_placeholder.GetHeapLocation();
2151 for (HBasicBlock* predecessor : current_block->GetPredecessors()) {
2152 Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value);
2153 if (value.NeedsPhi()) {
2154 // Visit the predecessor Phi placeholder if it's not visited yet.
2155 if (!visited.IsBitSet(PhiPlaceholderIndex(value))) {
2156 visited.SetBit(PhiPlaceholderIndex(value));
2157 work_queue.push_back(value.GetPhiPlaceholder());
2158 }
2159 } else {
2160 if (!value.IsInstruction() ||
2161 (replacement != nullptr && replacement != value.GetInstruction())) {
2162 return false; // Report failure.
2163 }
2164 replacement = value.GetInstruction();
2165 }
2166 }
2167 // While `TryReplacingLoopPhiPlaceholderWithDefault()` has special treatment
2168 // for back-edges, it is not needed here. When looking for a single input
2169 // instruction coming from before the loop, the array index must also be
2170 // defined before the loop and the aliasing analysis done by LSA is sufficient.
2171 // Any writes of a different value with an index that is not loop invariant
2172 // would invalidate the heap location in `VisitSetLocation()`.
2173 }
2174
2175 // Record replacement and report success.
2176 DCHECK(replacement != nullptr);
2177 for (uint32_t phi_placeholder_index : visited.Indexes()) {
2178 DCHECK(phi_placeholder_replacements_[phi_placeholder_index].IsInvalid());
2179 PhiPlaceholder curr = GetPhiPlaceholderAt(phi_placeholder_index);
2180 HeapLocation* hl = heap_location_collector_.GetHeapLocation(curr.GetHeapLocation());
2181 // We use both vector and non vector operations to analyze the information. However, we replace
2182 // only vector operations in this code path.
2183 if (hl->IsVecOp()) {
2184 phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement);
2185 phi_placeholders_to_materialize->ClearBit(phi_placeholder_index);
2186 }
2187 }
2188 return true;
2189 }
2190
FindLoopPhisToMaterialize(PhiPlaceholder phi_placeholder,ArenaBitVector * phi_placeholders_to_materialize,DataType::Type type,bool can_use_default_or_phi)2191 std::optional<LSEVisitor::PhiPlaceholder> LSEVisitor::FindLoopPhisToMaterialize(
2192 PhiPlaceholder phi_placeholder,
2193 /*inout*/ ArenaBitVector* phi_placeholders_to_materialize,
2194 DataType::Type type,
2195 bool can_use_default_or_phi) {
2196 DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid());
2197
2198 // Use local allocator to reduce peak memory usage.
2199 ScopedArenaAllocator allocator(allocator_.GetArenaStack());
2200 ScopedArenaVector<PhiPlaceholder> work_queue(allocator.Adapter(kArenaAllocLSE));
2201
2202 // Use depth first search to check if any non-Phi input is unknown.
2203 const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
2204 phi_placeholders_to_materialize->ClearAllBits();
2205 phi_placeholders_to_materialize->SetBit(PhiPlaceholderIndex(phi_placeholder));
2206 work_queue.push_back(phi_placeholder);
2207 while (!work_queue.empty()) {
2208 PhiPlaceholder current_phi_placeholder = work_queue.back();
2209 work_queue.pop_back();
2210 if (!phi_placeholders_to_materialize->IsBitSet(PhiPlaceholderIndex(current_phi_placeholder))) {
2211 // Replaced by `TryReplacingLoopPhiPlaceholderWith{Default,SingleInput}()`.
2212 DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(current_phi_placeholder)].Equals(
2213 Value::Default()));
2214 continue;
2215 }
2216 HBasicBlock* current_block = blocks[current_phi_placeholder.GetBlockId()];
2217 DCHECK_GE(current_block->GetPredecessors().size(), 2u);
2218 size_t idx = current_phi_placeholder.GetHeapLocation();
2219 if (current_block->IsLoopHeader()) {
2220 // If the index is defined inside the loop, it may reference different elements of the
2221 // array on each iteration. Since we do not track if all elements of an array are set
2222 // to the same value explicitly, the only known value in pre-header can be the default
2223 // value from NewArray or a Phi placeholder depending on a default value from some outer
2224 // loop pre-header. This Phi placeholder can be replaced only by the default value.
2225 HInstruction* index = heap_location_collector_.GetHeapLocation(idx)->GetIndex();
2226 if (index != nullptr && current_block->GetLoopInformation()->Contains(*index->GetBlock())) {
2227 if (can_use_default_or_phi &&
2228 TryReplacingLoopPhiPlaceholderWithDefault(current_phi_placeholder,
2229 type,
2230 phi_placeholders_to_materialize)) {
2231 continue;
2232 } else {
2233 return current_phi_placeholder; // Report the loop Phi placeholder.
2234 }
2235 }
2236 // A similar situation arises with the index defined outside the loop if we cannot use
2237 // default values or Phis, i.e. for vector loads, as we can only replace the Phi
2238 // placeholder with a single instruction defined before the loop.
2239 if (!can_use_default_or_phi) {
2240 DCHECK(index != nullptr); // Vector operations are array operations.
2241 if (TryReplacingLoopPhiPlaceholderWithSingleInput(current_phi_placeholder,
2242 phi_placeholders_to_materialize)) {
2243 continue;
2244 } else {
2245 return current_phi_placeholder; // Report the loop Phi placeholder.
2246 }
2247 }
2248 }
2249 for (HBasicBlock* predecessor : current_block->GetPredecessors()) {
2250 ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[predecessor->GetBlockId()];
2251 Value value = ReplacementOrValue(heap_values[idx].value);
2252 if (value.IsUnknown()) {
2253 // We cannot create a Phi for this loop Phi placeholder.
2254 return current_phi_placeholder; // Report the loop Phi placeholder.
2255 }
2256 // For arrays, the location may have been clobbered by writes to other locations
2257 // in a loop that LSA does not consider aliasing, such as `a[i]` and `a[i + 1]`.
2258 if (current_block->IsLoopHeader() &&
2259 predecessor != current_block->GetLoopInformation()->GetPreHeader() &&
2260 heap_location_collector_.GetHeapLocation(idx)->GetIndex() != nullptr) {
2261 for (size_t i = 0, size = heap_values.size(); i != size; ++i) {
2262 if (i != idx &&
2263 !heap_values[i].stored_by.IsUnknown() &&
2264 MayAliasOnBackEdge(current_block, idx, i)) {
2265 // We cannot create a Phi for this loop Phi placeholder.
2266 return current_phi_placeholder;
2267 }
2268 }
2269 }
2270 if (value.NeedsLoopPhi()) {
2271 // Visit the predecessor Phi placeholder if it's not visited yet.
2272 if (!phi_placeholders_to_materialize->IsBitSet(PhiPlaceholderIndex(value))) {
2273 phi_placeholders_to_materialize->SetBit(PhiPlaceholderIndex(value));
2274 work_queue.push_back(value.GetPhiPlaceholder());
2275 LSE_VLOG << "For materialization of " << phi_placeholder
2276 << " we need to materialize " << value;
2277 }
2278 }
2279 }
2280 }
2281
2282 // There are no unknown values feeding this Phi, so we can construct the Phis if needed.
2283 return std::nullopt;
2284 }
2285
MaterializeLoopPhis(const ScopedArenaVector<size_t> & phi_placeholder_indexes,DataType::Type type)2286 bool LSEVisitor::MaterializeLoopPhis(const ScopedArenaVector<size_t>& phi_placeholder_indexes,
2287 DataType::Type type) {
2288 return MaterializeLoopPhis(ArrayRef<const size_t>(phi_placeholder_indexes), type);
2289 }
2290
MaterializeLoopPhis(ArrayRef<const size_t> phi_placeholder_indexes,DataType::Type type)2291 bool LSEVisitor::MaterializeLoopPhis(ArrayRef<const size_t> phi_placeholder_indexes,
2292 DataType::Type type) {
2293 // Materialize all predecessors that do not need a loop Phi and determine if all inputs
2294 // other than loop Phis are the same.
2295 const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
2296 std::optional<Value> other_value = std::nullopt;
2297 for (size_t phi_placeholder_index : phi_placeholder_indexes) {
2298 PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_index);
2299 HBasicBlock* block = blocks[phi_placeholder.GetBlockId()];
2300 DCHECK_GE(block->GetPredecessors().size(), 2u);
2301 size_t idx = phi_placeholder.GetHeapLocation();
2302 for (HBasicBlock* predecessor : block->GetPredecessors()) {
2303 Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value);
2304 if (value.NeedsNonLoopPhi()) {
2305 DCHECK(current_phase_ == Phase::kLoadElimination ||
2306 current_phase_ == Phase::kPartialElimination)
2307 << current_phase_;
2308 MaterializeNonLoopPhis(value.GetPhiPlaceholder(), type);
2309 value = Replacement(value);
2310 }
2311 if (!value.NeedsLoopPhi()) {
2312 if (!other_value) {
2313 // The first other value we found.
2314 other_value = value;
2315 } else if (!other_value->IsInvalid()) {
2316 // Check if the current `value` differs from the previous `other_value`.
2317 if (!value.Equals(*other_value)) {
2318 other_value = Value::Invalid();
2319 }
2320 }
2321 }
2322 }
2323 }
2324
2325 DCHECK(other_value.has_value());
2326 if (!other_value->IsInvalid()) {
2327 HInstruction* replacement =
2328 (other_value->IsDefault()) ? GetDefaultValue(type) : other_value->GetInstruction();
2329 for (size_t phi_placeholder_index : phi_placeholder_indexes) {
2330 phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(replacement);
2331 }
2332 return true;
2333 }
2334
2335 // If we're materializing only a single Phi, try to match it with an existing Phi.
2336 // (Matching multiple Phis would need investigation. It may be prohibitively slow.)
2337 // This also covers the case when after replacing a previous set of Phi placeholders,
2338 // we continue with a Phi placeholder that does not really need a loop Phi anymore.
2339 if (phi_placeholder_indexes.size() == 1u) {
2340 PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_indexes[0]);
2341 size_t idx = phi_placeholder.GetHeapLocation();
2342 HBasicBlock* block = GetGraph()->GetBlocks()[phi_placeholder.GetBlockId()];
2343 ArrayRef<HBasicBlock* const> predecessors(block->GetPredecessors());
2344 for (HInstructionIterator phi_it(block->GetPhis()); !phi_it.Done(); phi_it.Advance()) {
2345 HInstruction* phi = phi_it.Current();
2346 DCHECK_EQ(phi->InputCount(), predecessors.size());
2347 ArrayRef<HUserRecord<HInstruction*>> phi_inputs = phi->GetInputRecords();
2348 auto cmp = [=](const HUserRecord<HInstruction*>& lhs, HBasicBlock* rhs) {
2349 Value value = ReplacementOrValue(heap_values_for_[rhs->GetBlockId()][idx].value);
2350 if (value.NeedsPhi()) {
2351 DCHECK(value.GetPhiPlaceholder() == phi_placeholder);
2352 return lhs.GetInstruction() == phi;
2353 } else {
2354 DCHECK(value.IsDefault() || value.IsInstruction());
2355 return value.Equals(lhs.GetInstruction());
2356 }
2357 };
2358 if (std::equal(phi_inputs.begin(), phi_inputs.end(), predecessors.begin(), cmp)) {
2359 phi_placeholder_replacements_[phi_placeholder_indexes[0]] = Value::ForInstruction(phi);
2360 return true;
2361 }
2362 }
2363 }
2364
2365 if (current_phase_ == Phase::kStoreElimination) {
2366 // We're not creating Phis during the final store elimination phase.
2367 return false;
2368 }
2369
2370 // There are different inputs to the Phi chain. Create the Phis.
2371 ArenaAllocator* allocator = GetGraph()->GetAllocator();
2372 for (size_t phi_placeholder_index : phi_placeholder_indexes) {
2373 PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_index);
2374 HBasicBlock* block = blocks[phi_placeholder.GetBlockId()];
2375 CHECK_GE(block->GetPredecessors().size(), 2u);
2376 phi_placeholder_replacements_[phi_placeholder_index] = Value::ForInstruction(
2377 new (allocator) HPhi(allocator, kNoRegNumber, block->GetPredecessors().size(), type));
2378 }
2379 // Fill the Phi inputs.
2380 for (size_t phi_placeholder_index : phi_placeholder_indexes) {
2381 PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_index);
2382 HBasicBlock* block = blocks[phi_placeholder.GetBlockId()];
2383 size_t idx = phi_placeholder.GetHeapLocation();
2384 HInstruction* phi = phi_placeholder_replacements_[phi_placeholder_index].GetInstruction();
2385 DCHECK(DataType::IsTypeConversionImplicit(type, phi->GetType()))
2386 << "type=" << type << " vs phi-type=" << phi->GetType();
2387 for (size_t i = 0, size = block->GetPredecessors().size(); i != size; ++i) {
2388 HBasicBlock* predecessor = block->GetPredecessors()[i];
2389 Value value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value);
2390 HInstruction* input = value.IsDefault() ? GetDefaultValue(type) : value.GetInstruction();
2391 DCHECK_NE(input->GetType(), DataType::Type::kVoid);
2392 phi->SetRawInputAt(i, input);
2393 DCHECK(DataType::IsTypeConversionImplicit(input->GetType(), phi->GetType()))
2394 << " input: " << input->GetType() << value << " phi: " << phi->GetType()
2395 << " request: " << type;
2396 }
2397 }
2398 // Add the Phis to their blocks.
2399 for (size_t phi_placeholder_index : phi_placeholder_indexes) {
2400 PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(phi_placeholder_index);
2401 HBasicBlock* block = blocks[phi_placeholder.GetBlockId()];
2402 block->AddPhi(phi_placeholder_replacements_[phi_placeholder_index].GetInstruction()->AsPhi());
2403 }
2404 if (type == DataType::Type::kReference) {
2405 ScopedArenaAllocator local_allocator(allocator_.GetArenaStack());
2406 ScopedArenaVector<HInstruction*> phis(local_allocator.Adapter(kArenaAllocLSE));
2407 for (size_t phi_placeholder_index : phi_placeholder_indexes) {
2408 phis.push_back(phi_placeholder_replacements_[phi_placeholder_index].GetInstruction());
2409 }
2410 // Update reference type information. Pass invalid handles, these are not used for Phis.
2411 ReferenceTypePropagation rtp_fixup(GetGraph(),
2412 Handle<mirror::DexCache>(),
2413 /* is_first_run= */ false);
2414 rtp_fixup.Visit(ArrayRef<HInstruction* const>(phis));
2415 }
2416
2417 return true;
2418 }
2419
MaterializeLoopPhis(const ArenaBitVector & phi_placeholders_to_materialize,DataType::Type type)2420 bool LSEVisitor::MaterializeLoopPhis(const ArenaBitVector& phi_placeholders_to_materialize,
2421 DataType::Type type) {
2422 // Use local allocator to reduce peak memory usage.
2423 ScopedArenaAllocator allocator(allocator_.GetArenaStack());
2424
2425 // We want to recognize when a subset of these loop Phis that do not need other
2426 // loop Phis, i.e. a transitive closure, has only one other instruction as an input,
2427 // i.e. that instruction can be used instead of each Phi in the set. See for example
2428 // Main.testLoop{5,6,7,8}() in the test 530-checker-lse. To do that, we shall
2429 // materialize these loop Phis from the smallest transitive closure.
2430
2431 // Construct a matrix of loop phi placeholder dependencies. To reduce the memory usage,
2432 // assign new indexes to the Phi placeholders, making the matrix dense.
2433 ScopedArenaVector<size_t> matrix_indexes(num_phi_placeholders_,
2434 static_cast<size_t>(-1), // Invalid.
2435 allocator.Adapter(kArenaAllocLSE));
2436 ScopedArenaVector<size_t> phi_placeholder_indexes(allocator.Adapter(kArenaAllocLSE));
2437 size_t num_phi_placeholders = phi_placeholders_to_materialize.NumSetBits();
2438 phi_placeholder_indexes.reserve(num_phi_placeholders);
2439 for (uint32_t marker_index : phi_placeholders_to_materialize.Indexes()) {
2440 matrix_indexes[marker_index] = phi_placeholder_indexes.size();
2441 phi_placeholder_indexes.push_back(marker_index);
2442 }
2443 const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
2444 ScopedArenaVector<ArenaBitVector*> dependencies(allocator.Adapter(kArenaAllocLSE));
2445 dependencies.reserve(num_phi_placeholders);
2446 for (size_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) {
2447 static constexpr bool kExpandable = false;
2448 dependencies.push_back(
2449 ArenaBitVector::Create(&allocator, num_phi_placeholders, kExpandable, kArenaAllocLSE));
2450 ArenaBitVector* current_dependencies = dependencies.back();
2451 current_dependencies->ClearAllBits();
2452 current_dependencies->SetBit(matrix_index); // Count the Phi placeholder as its own dependency.
2453 PhiPlaceholder current_phi_placeholder =
2454 GetPhiPlaceholderAt(phi_placeholder_indexes[matrix_index]);
2455 HBasicBlock* current_block = blocks[current_phi_placeholder.GetBlockId()];
2456 DCHECK_GE(current_block->GetPredecessors().size(), 2u);
2457 size_t idx = current_phi_placeholder.GetHeapLocation();
2458 for (HBasicBlock* predecessor : current_block->GetPredecessors()) {
2459 Value pred_value = ReplacementOrValue(heap_values_for_[predecessor->GetBlockId()][idx].value);
2460 if (pred_value.NeedsLoopPhi()) {
2461 size_t pred_value_index = PhiPlaceholderIndex(pred_value);
2462 DCHECK(phi_placeholder_replacements_[pred_value_index].IsInvalid());
2463 DCHECK_NE(matrix_indexes[pred_value_index], static_cast<size_t>(-1));
2464 current_dependencies->SetBit(matrix_indexes[PhiPlaceholderIndex(pred_value)]);
2465 }
2466 }
2467 }
2468
2469 // Use the Floyd-Warshall algorithm to determine all transitive dependencies.
2470 for (size_t k = 0; k != num_phi_placeholders; ++k) {
2471 for (size_t i = 0; i != num_phi_placeholders; ++i) {
2472 for (size_t j = 0; j != num_phi_placeholders; ++j) {
2473 if (dependencies[i]->IsBitSet(k) && dependencies[k]->IsBitSet(j)) {
2474 dependencies[i]->SetBit(j);
2475 }
2476 }
2477 }
2478 }
2479
2480 // Count the number of transitive dependencies for each replaceable Phi placeholder.
2481 ScopedArenaVector<size_t> num_dependencies(allocator.Adapter(kArenaAllocLSE));
2482 num_dependencies.reserve(num_phi_placeholders);
2483 for (size_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) {
2484 num_dependencies.push_back(dependencies[matrix_index]->NumSetBits());
2485 }
2486
2487 // Pick a Phi placeholder with the smallest number of transitive dependencies and
2488 // materialize it and its dependencies. Repeat until we have materialized all.
2489 ScopedArenaVector<size_t> current_subset(allocator.Adapter(kArenaAllocLSE));
2490 current_subset.reserve(num_phi_placeholders);
2491 size_t remaining_phi_placeholders = num_phi_placeholders;
2492 while (remaining_phi_placeholders != 0u) {
2493 auto it = std::min_element(num_dependencies.begin(), num_dependencies.end());
2494 DCHECK_LE(*it, remaining_phi_placeholders);
2495 size_t current_matrix_index = std::distance(num_dependencies.begin(), it);
2496 ArenaBitVector* current_dependencies = dependencies[current_matrix_index];
2497 size_t current_num_dependencies = num_dependencies[current_matrix_index];
2498 current_subset.clear();
2499 for (uint32_t matrix_index : current_dependencies->Indexes()) {
2500 current_subset.push_back(phi_placeholder_indexes[matrix_index]);
2501 }
2502 if (!MaterializeLoopPhis(current_subset, type)) {
2503 DCHECK_EQ(current_phase_, Phase::kStoreElimination);
2504 // This is the final store elimination phase and we shall not be able to eliminate any
2505 // stores that depend on the current subset, so mark these Phi placeholders unreplaceable.
2506 for (uint32_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) {
2507 if (dependencies[matrix_index]->IsBitSet(current_matrix_index)) {
2508 DCHECK(phi_placeholder_replacements_[phi_placeholder_indexes[matrix_index]].IsInvalid());
2509 phi_placeholder_replacements_[phi_placeholder_indexes[matrix_index]] =
2510 Value::PureUnknown();
2511 }
2512 }
2513 return false;
2514 }
2515 for (uint32_t matrix_index = 0; matrix_index != num_phi_placeholders; ++matrix_index) {
2516 if (current_dependencies->IsBitSet(matrix_index)) {
2517 // Mark all dependencies as done by incrementing their `num_dependencies[.]`,
2518 // so that they shall never be the minimum again.
2519 num_dependencies[matrix_index] = num_phi_placeholders;
2520 } else if (dependencies[matrix_index]->IsBitSet(current_matrix_index)) {
2521 // Remove dependencies from other Phi placeholders.
2522 dependencies[matrix_index]->Subtract(current_dependencies);
2523 num_dependencies[matrix_index] -= current_num_dependencies;
2524 }
2525 }
2526 remaining_phi_placeholders -= current_num_dependencies;
2527 }
2528 return true;
2529 }
2530
FullyMaterializePhi(PhiPlaceholder phi_placeholder,DataType::Type type)2531 bool LSEVisitor::FullyMaterializePhi(PhiPlaceholder phi_placeholder, DataType::Type type) {
2532 ScopedArenaAllocator saa(GetGraph()->GetArenaStack());
2533 ArenaBitVector abv(&saa, num_phi_placeholders_, false, ArenaAllocKind::kArenaAllocLSE);
2534 auto res =
2535 FindLoopPhisToMaterialize(phi_placeholder, &abv, type, /* can_use_default_or_phi=*/true);
2536 CHECK(!res.has_value()) << *res;
2537 return MaterializeLoopPhis(abv, type);
2538 }
2539
TryToMaterializeLoopPhis(PhiPlaceholder phi_placeholder,HInstruction * load)2540 std::optional<LSEVisitor::PhiPlaceholder> LSEVisitor::TryToMaterializeLoopPhis(
2541 PhiPlaceholder phi_placeholder, HInstruction* load) {
2542 DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid());
2543
2544 // Use local allocator to reduce peak memory usage.
2545 ScopedArenaAllocator allocator(allocator_.GetArenaStack());
2546
2547 // Find Phi placeholders to materialize.
2548 ArenaBitVector phi_placeholders_to_materialize(
2549 &allocator, num_phi_placeholders_, /*expandable=*/ false, kArenaAllocLSE);
2550 phi_placeholders_to_materialize.ClearAllBits();
2551 DataType::Type type = load->GetType();
2552 bool can_use_default_or_phi = IsDefaultOrPhiAllowedForLoad(load);
2553 std::optional<PhiPlaceholder> loop_phi_with_unknown_input = FindLoopPhisToMaterialize(
2554 phi_placeholder, &phi_placeholders_to_materialize, type, can_use_default_or_phi);
2555 if (loop_phi_with_unknown_input) {
2556 DCHECK_GE(GetGraph()
2557 ->GetBlocks()[loop_phi_with_unknown_input->GetBlockId()]
2558 ->GetPredecessors()
2559 .size(),
2560 2u);
2561 return loop_phi_with_unknown_input; // Return failure.
2562 }
2563
2564 DCHECK_EQ(current_phase_, Phase::kLoadElimination);
2565 bool success = MaterializeLoopPhis(phi_placeholders_to_materialize, type);
2566 DCHECK(success);
2567
2568 // Report success.
2569 return std::nullopt;
2570 }
2571
2572 // Re-process loads and stores in successors from the `loop_phi_with_unknown_input`. This may
2573 // find one or more loads from `loads_requiring_loop_phi_` which cannot be replaced by Phis and
2574 // propagate the load(s) as the new value(s) to successors; this may uncover new elimination
2575 // opportunities. If we find no such load, we shall at least propagate an unknown value to some
2576 // heap location that is needed by another loop Phi placeholder.
ProcessLoopPhiWithUnknownInput(PhiPlaceholder loop_phi_with_unknown_input)2577 void LSEVisitor::ProcessLoopPhiWithUnknownInput(PhiPlaceholder loop_phi_with_unknown_input) {
2578 size_t loop_phi_with_unknown_input_index = PhiPlaceholderIndex(loop_phi_with_unknown_input);
2579 DCHECK(phi_placeholder_replacements_[loop_phi_with_unknown_input_index].IsInvalid());
2580 phi_placeholder_replacements_[loop_phi_with_unknown_input_index] =
2581 Value::MergedUnknown(loop_phi_with_unknown_input);
2582
2583 uint32_t block_id = loop_phi_with_unknown_input.GetBlockId();
2584 const ArenaVector<HBasicBlock*> reverse_post_order = GetGraph()->GetReversePostOrder();
2585 size_t reverse_post_order_index = 0;
2586 size_t reverse_post_order_size = reverse_post_order.size();
2587 size_t loads_and_stores_index = 0u;
2588 size_t loads_and_stores_size = loads_and_stores_.size();
2589
2590 // Skip blocks and instructions before the block containing the loop phi with unknown input.
2591 DCHECK_NE(reverse_post_order_index, reverse_post_order_size);
2592 while (reverse_post_order[reverse_post_order_index]->GetBlockId() != block_id) {
2593 HBasicBlock* block = reverse_post_order[reverse_post_order_index];
2594 while (loads_and_stores_index != loads_and_stores_size &&
2595 loads_and_stores_[loads_and_stores_index].load_or_store->GetBlock() == block) {
2596 ++loads_and_stores_index;
2597 }
2598 ++reverse_post_order_index;
2599 DCHECK_NE(reverse_post_order_index, reverse_post_order_size);
2600 }
2601
2602 // Use local allocator to reduce peak memory usage.
2603 ScopedArenaAllocator allocator(allocator_.GetArenaStack());
2604 // Reuse one temporary vector for all remaining blocks.
2605 size_t num_heap_locations = heap_location_collector_.GetNumberOfHeapLocations();
2606 ScopedArenaVector<Value> local_heap_values(allocator.Adapter(kArenaAllocLSE));
2607
2608 auto get_initial_value = [this](HBasicBlock* block, size_t idx) {
2609 Value value;
2610 if (block->IsLoopHeader()) {
2611 if (block->GetLoopInformation()->IsIrreducible()) {
2612 PhiPlaceholder placeholder = GetPhiPlaceholder(block->GetBlockId(), idx);
2613 value = Value::MergedUnknown(placeholder);
2614 } else {
2615 value = PrepareLoopValue(block, idx);
2616 }
2617 } else {
2618 value = MergePredecessorValues(block, idx);
2619 }
2620 DCHECK(value.IsUnknown() || ReplacementOrValue(value).Equals(value));
2621 return value;
2622 };
2623
2624 // Process remaining blocks and instructions.
2625 bool found_unreplaceable_load = false;
2626 bool replaced_heap_value_with_unknown = false;
2627 for (; reverse_post_order_index != reverse_post_order_size; ++reverse_post_order_index) {
2628 HBasicBlock* block = reverse_post_order[reverse_post_order_index];
2629 if (block->IsExitBlock()) {
2630 continue;
2631 }
2632
2633 // We shall reconstruct only the heap values that we need for processing loads and stores.
2634 local_heap_values.clear();
2635 local_heap_values.resize(num_heap_locations, Value::Invalid());
2636
2637 for (; loads_and_stores_index != loads_and_stores_size; ++loads_and_stores_index) {
2638 HInstruction* load_or_store = loads_and_stores_[loads_and_stores_index].load_or_store;
2639 size_t idx = loads_and_stores_[loads_and_stores_index].heap_location_index;
2640 if (load_or_store->GetBlock() != block) {
2641 break; // End of instructions from the current block.
2642 }
2643 bool is_store = load_or_store->GetSideEffects().DoesAnyWrite();
2644 DCHECK_EQ(is_store, IsStore(load_or_store));
2645 HInstruction* stored_value = nullptr;
2646 if (is_store) {
2647 auto it = store_records_.find(load_or_store);
2648 DCHECK(it != store_records_.end());
2649 stored_value = it->second.stored_value;
2650 }
2651 auto it = loads_requiring_loop_phi_.find(
2652 stored_value != nullptr ? stored_value : load_or_store);
2653 if (it == loads_requiring_loop_phi_.end()) {
2654 continue; // This load or store never needed a loop Phi.
2655 }
2656 ValueRecord& record = it->second;
2657 if (is_store) {
2658 // Process the store by updating `local_heap_values[idx]`. The last update shall
2659 // be propagated to the `heap_values[idx].value` if it previously needed a loop Phi
2660 // at the end of the block.
2661 Value replacement = ReplacementOrValue(record.value);
2662 if (replacement.NeedsLoopPhi()) {
2663 // No replacement yet, use the Phi placeholder from the load.
2664 DCHECK(record.value.NeedsLoopPhi());
2665 local_heap_values[idx] = record.value;
2666 } else {
2667 // If the load fetched a known value, use it, otherwise use the load.
2668 local_heap_values[idx] = Value::ForInstruction(
2669 replacement.IsUnknown() ? stored_value : replacement.GetInstruction());
2670 }
2671 } else {
2672 // Process the load unless it has previously been marked unreplaceable.
2673 if (record.value.NeedsLoopPhi()) {
2674 if (local_heap_values[idx].IsInvalid()) {
2675 local_heap_values[idx] = get_initial_value(block, idx);
2676 }
2677 if (local_heap_values[idx].IsUnknown()) {
2678 // This load cannot be replaced. Keep stores that feed the Phi placeholder
2679 // (no aliasing since then, otherwise the Phi placeholder would not have been
2680 // propagated as a value to this load) and store the load as the new heap value.
2681 found_unreplaceable_load = true;
2682 KeepStores(record.value);
2683 record.value = Value::MergedUnknown(record.value.GetPhiPlaceholder());
2684 local_heap_values[idx] = Value::ForInstruction(load_or_store);
2685 } else if (local_heap_values[idx].NeedsLoopPhi()) {
2686 // The load may still be replaced with a Phi later.
2687 DCHECK(local_heap_values[idx].Equals(record.value));
2688 } else {
2689 // This load can be eliminated but we may need to construct non-loop Phis.
2690 if (local_heap_values[idx].NeedsNonLoopPhi()) {
2691 MaterializeNonLoopPhis(local_heap_values[idx].GetPhiPlaceholder(),
2692 load_or_store->GetType());
2693 local_heap_values[idx] = Replacement(local_heap_values[idx]);
2694 }
2695 record.value = local_heap_values[idx];
2696 HInstruction* heap_value = local_heap_values[idx].GetInstruction();
2697 AddRemovedLoad(load_or_store, heap_value);
2698 }
2699 }
2700 }
2701 }
2702
2703 // All heap values that previously needed a loop Phi at the end of the block
2704 // need to be updated for processing successors.
2705 ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[block->GetBlockId()];
2706 for (size_t idx = 0; idx != num_heap_locations; ++idx) {
2707 if (heap_values[idx].value.NeedsLoopPhi()) {
2708 if (local_heap_values[idx].IsValid()) {
2709 heap_values[idx].value = local_heap_values[idx];
2710 } else {
2711 heap_values[idx].value = get_initial_value(block, idx);
2712 }
2713 if (heap_values[idx].value.IsUnknown()) {
2714 replaced_heap_value_with_unknown = true;
2715 }
2716 }
2717 }
2718 }
2719 DCHECK(found_unreplaceable_load || replaced_heap_value_with_unknown);
2720 }
2721
ProcessLoadsRequiringLoopPhis()2722 void LSEVisitor::ProcessLoadsRequiringLoopPhis() {
2723 // Note: The vector operations carve-out (see `IsDefaultOrPhiAllowedForLoad()`) can possibly
2724 // make the result of the processing depend on the order in which we process these loads.
2725 // To make sure the result is deterministic, iterate over `loads_and_stores_` instead of the
2726 // `loads_requiring_loop_phi_` indexed by non-deterministic pointers.
2727 for (const LoadStoreRecord& load_store_record : loads_and_stores_) {
2728 auto it = loads_requiring_loop_phi_.find(load_store_record.load_or_store);
2729 if (it == loads_requiring_loop_phi_.end()) {
2730 continue;
2731 }
2732 HInstruction* load = it->first;
2733 ValueRecord& record = it->second;
2734 while (record.value.NeedsLoopPhi() &&
2735 phi_placeholder_replacements_[PhiPlaceholderIndex(record.value)].IsInvalid()) {
2736 std::optional<PhiPlaceholder> loop_phi_with_unknown_input =
2737 TryToMaterializeLoopPhis(record.value.GetPhiPlaceholder(), load);
2738 DCHECK_EQ(loop_phi_with_unknown_input.has_value(),
2739 phi_placeholder_replacements_[PhiPlaceholderIndex(record.value)].IsInvalid());
2740 if (loop_phi_with_unknown_input) {
2741 DCHECK_GE(GetGraph()
2742 ->GetBlocks()[loop_phi_with_unknown_input->GetBlockId()]
2743 ->GetPredecessors()
2744 .size(),
2745 2u);
2746 ProcessLoopPhiWithUnknownInput(*loop_phi_with_unknown_input);
2747 }
2748 }
2749 // The load could have been marked as unreplaceable (and stores marked for keeping)
2750 // or marked for replacement with an instruction in ProcessLoopPhiWithUnknownInput().
2751 DCHECK(record.value.IsUnknown() || record.value.IsInstruction() || record.value.NeedsLoopPhi());
2752 if (record.value.NeedsLoopPhi()) {
2753 record.value = Replacement(record.value);
2754 HInstruction* heap_value = record.value.GetInstruction();
2755 AddRemovedLoad(load, heap_value);
2756 }
2757 }
2758 }
2759
SearchPhiPlaceholdersForKeptStores()2760 void LSEVisitor::SearchPhiPlaceholdersForKeptStores() {
2761 ScopedArenaVector<uint32_t> work_queue(allocator_.Adapter(kArenaAllocLSE));
2762 size_t start_size = phi_placeholders_to_search_for_kept_stores_.NumSetBits();
2763 work_queue.reserve(((start_size * 3u) + 1u) / 2u); // Reserve 1.5x start size, rounded up.
2764 for (uint32_t index : phi_placeholders_to_search_for_kept_stores_.Indexes()) {
2765 work_queue.push_back(index);
2766 }
2767 const ArenaVector<HBasicBlock*>& blocks = GetGraph()->GetBlocks();
2768 std::optional<ArenaBitVector> not_kept_stores;
2769 if (stats_) {
2770 not_kept_stores.emplace(GetGraph()->GetAllocator(),
2771 kept_stores_.GetBitSizeOf(),
2772 false,
2773 ArenaAllocKind::kArenaAllocLSE);
2774 }
2775 while (!work_queue.empty()) {
2776 uint32_t cur_phi_idx = work_queue.back();
2777 PhiPlaceholder phi_placeholder = GetPhiPlaceholderAt(cur_phi_idx);
2778 // Only writes to partial-escapes need to be specifically kept.
2779 bool is_partial_kept_merged_unknown =
2780 kept_merged_unknowns_.IsBitSet(cur_phi_idx) &&
2781 heap_location_collector_.GetHeapLocation(phi_placeholder.GetHeapLocation())
2782 ->GetReferenceInfo()
2783 ->IsPartialSingleton();
2784 work_queue.pop_back();
2785 size_t idx = phi_placeholder.GetHeapLocation();
2786 HBasicBlock* block = blocks[phi_placeholder.GetBlockId()];
2787 DCHECK(block != nullptr) << cur_phi_idx << " phi: " << phi_placeholder
2788 << " (blocks: " << blocks.size() << ")";
2789 for (HBasicBlock* predecessor : block->GetPredecessors()) {
2790 ScopedArenaVector<ValueRecord>& heap_values = heap_values_for_[predecessor->GetBlockId()];
2791 // For loop back-edges we must also preserve all stores to locations that
2792 // may alias with the location `idx`.
2793 // TODO: Add tests cases around this.
2794 bool is_back_edge =
2795 block->IsLoopHeader() && predecessor != block->GetLoopInformation()->GetPreHeader();
2796 size_t start = is_back_edge ? 0u : idx;
2797 size_t end = is_back_edge ? heap_values.size() : idx + 1u;
2798 for (size_t i = start; i != end; ++i) {
2799 Value stored_by = heap_values[i].stored_by;
2800 if (!stored_by.IsUnknown() && (i == idx || MayAliasOnBackEdge(block, idx, i))) {
2801 if (stored_by.NeedsPhi()) {
2802 size_t phi_placeholder_index = PhiPlaceholderIndex(stored_by);
2803 if (is_partial_kept_merged_unknown) {
2804 // Propagate merged-unknown keep since otherwise this might look
2805 // like a partial escape we can remove.
2806 kept_merged_unknowns_.SetBit(phi_placeholder_index);
2807 }
2808 if (!phi_placeholders_to_search_for_kept_stores_.IsBitSet(phi_placeholder_index)) {
2809 phi_placeholders_to_search_for_kept_stores_.SetBit(phi_placeholder_index);
2810 work_queue.push_back(phi_placeholder_index);
2811 }
2812 } else {
2813 DCHECK(IsStore(stored_by.GetInstruction()));
2814 ReferenceInfo* ri = heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
2815 DCHECK(ri != nullptr) << "No heap value for " << stored_by.GetInstruction()->DebugName()
2816 << " id: " << stored_by.GetInstruction()->GetId() << " block: "
2817 << stored_by.GetInstruction()->GetBlock()->GetBlockId();
2818 if (!is_partial_kept_merged_unknown && IsPartialNoEscape(predecessor, idx)) {
2819 if (not_kept_stores) {
2820 not_kept_stores->SetBit(stored_by.GetInstruction()->GetId());
2821 }
2822 } else {
2823 kept_stores_.SetBit(stored_by.GetInstruction()->GetId());
2824 }
2825 }
2826 }
2827 }
2828 }
2829 }
2830 if (not_kept_stores) {
2831 // a - b := (a & ~b)
2832 not_kept_stores->Subtract(&kept_stores_);
2833 auto num_removed = not_kept_stores->NumSetBits();
2834 MaybeRecordStat(stats_, MethodCompilationStat::kPartialStoreRemoved, num_removed);
2835 }
2836 }
2837
UpdateValueRecordForStoreElimination(ValueRecord * value_record)2838 void LSEVisitor::UpdateValueRecordForStoreElimination(/*inout*/ValueRecord* value_record) {
2839 while (value_record->stored_by.IsInstruction() &&
2840 !kept_stores_.IsBitSet(value_record->stored_by.GetInstruction()->GetId())) {
2841 auto it = store_records_.find(value_record->stored_by.GetInstruction());
2842 DCHECK(it != store_records_.end());
2843 *value_record = it->second.old_value_record;
2844 }
2845 if (value_record->stored_by.NeedsPhi() &&
2846 !phi_placeholders_to_search_for_kept_stores_.IsBitSet(
2847 PhiPlaceholderIndex(value_record->stored_by))) {
2848 // Some stores feeding this heap location may have been eliminated. Use the `stored_by`
2849 // Phi placeholder to recalculate the actual value.
2850 value_record->value = value_record->stored_by;
2851 }
2852 value_record->value = ReplacementOrValue(value_record->value);
2853 if (value_record->value.NeedsNonLoopPhi()) {
2854 // Treat all Phi placeholders as requiring loop Phis at this point.
2855 // We do not want MaterializeLoopPhis() to call MaterializeNonLoopPhis().
2856 value_record->value = Value::ForLoopPhiPlaceholder(value_record->value.GetPhiPlaceholder());
2857 }
2858 }
2859
FindOldValueForPhiPlaceholder(PhiPlaceholder phi_placeholder,DataType::Type type)2860 void LSEVisitor::FindOldValueForPhiPlaceholder(PhiPlaceholder phi_placeholder,
2861 DataType::Type type) {
2862 DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsInvalid());
2863
2864 // Use local allocator to reduce peak memory usage.
2865 ScopedArenaAllocator allocator(allocator_.GetArenaStack());
2866 ArenaBitVector visited(&allocator,
2867 /*start_bits=*/ num_phi_placeholders_,
2868 /*expandable=*/ false,
2869 kArenaAllocLSE);
2870 visited.ClearAllBits();
2871
2872 // Find Phi placeholders to try and match against existing Phis or other replacement values.
2873 ArenaBitVector phi_placeholders_to_materialize(
2874 &allocator, num_phi_placeholders_, /*expandable=*/ false, kArenaAllocLSE);
2875 phi_placeholders_to_materialize.ClearAllBits();
2876 std::optional<PhiPlaceholder> loop_phi_with_unknown_input = FindLoopPhisToMaterialize(
2877 phi_placeholder, &phi_placeholders_to_materialize, type, /*can_use_default_or_phi=*/true);
2878 if (loop_phi_with_unknown_input) {
2879 DCHECK_GE(GetGraph()
2880 ->GetBlocks()[loop_phi_with_unknown_input->GetBlockId()]
2881 ->GetPredecessors()
2882 .size(),
2883 2u);
2884 // Mark the unreplacable placeholder as well as the input Phi placeholder as unreplaceable.
2885 phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)] = Value::PureUnknown();
2886 phi_placeholder_replacements_[PhiPlaceholderIndex(*loop_phi_with_unknown_input)] =
2887 Value::PureUnknown();
2888 return;
2889 }
2890
2891 DCHECK_EQ(current_phase_, Phase::kStoreElimination);
2892 bool success = MaterializeLoopPhis(phi_placeholders_to_materialize, type);
2893 DCHECK(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsValid());
2894 DCHECK_EQ(phi_placeholder_replacements_[PhiPlaceholderIndex(phi_placeholder)].IsUnknown(),
2895 !success);
2896 }
2897
2898 struct ScopedRestoreHeapValues {
2899 public:
ScopedRestoreHeapValuesart::ScopedRestoreHeapValues2900 ScopedRestoreHeapValues(ArenaStack* alloc,
2901 size_t num_heap_locs,
2902 ScopedArenaVector<ScopedArenaVector<LSEVisitor::ValueRecord>>& to_restore)
2903 : alloc_(alloc),
2904 updated_values_(alloc_.Adapter(kArenaAllocLSE)),
2905 to_restore_(to_restore) {
2906 updated_values_.reserve(num_heap_locs * to_restore_.size());
2907 }
2908
~ScopedRestoreHeapValuesart::ScopedRestoreHeapValues2909 ~ScopedRestoreHeapValues() {
2910 for (const auto& rec : updated_values_) {
2911 to_restore_[rec.blk_id][rec.heap_loc].value = rec.val_;
2912 }
2913 }
2914
2915 template<typename Func>
ForEachRecordart::ScopedRestoreHeapValues2916 void ForEachRecord(Func func) {
2917 for (size_t blk_id : Range(to_restore_.size())) {
2918 for (size_t heap_loc : Range(to_restore_[blk_id].size())) {
2919 LSEVisitor::ValueRecord* vr = &to_restore_[blk_id][heap_loc];
2920 LSEVisitor::Value initial = vr->value;
2921 func(vr);
2922 if (!vr->value.ExactEquals(initial)) {
2923 updated_values_.push_back({blk_id, heap_loc, initial});
2924 }
2925 }
2926 }
2927 }
2928
2929 private:
2930 struct UpdateRecord {
2931 size_t blk_id;
2932 size_t heap_loc;
2933 LSEVisitor::Value val_;
2934 };
2935 ScopedArenaAllocator alloc_;
2936 ScopedArenaVector<UpdateRecord> updated_values_;
2937 ScopedArenaVector<ScopedArenaVector<LSEVisitor::ValueRecord>>& to_restore_;
2938
2939 DISALLOW_COPY_AND_ASSIGN(ScopedRestoreHeapValues);
2940 };
2941
FindStoresWritingOldValues()2942 void LSEVisitor::FindStoresWritingOldValues() {
2943 // Partial LSE relies on knowing the real heap-values not the
2944 // store-replacement versions so we need to restore the map after removing
2945 // stores.
2946 ScopedRestoreHeapValues heap_vals(allocator_.GetArenaStack(),
2947 heap_location_collector_.GetNumberOfHeapLocations(),
2948 heap_values_for_);
2949 // The Phi placeholder replacements have so far been used for eliminating loads,
2950 // tracking values that would be stored if all stores were kept. As we want to
2951 // compare actual old values after removing unmarked stores, prune the Phi
2952 // placeholder replacements that can be fed by values we may not actually store.
2953 // Replacements marked as unknown can be kept as they are fed by some unknown
2954 // value and would end up as unknown again if we recalculated them.
2955 for (size_t i = 0, size = phi_placeholder_replacements_.size(); i != size; ++i) {
2956 if (!phi_placeholder_replacements_[i].IsUnknown() &&
2957 !phi_placeholders_to_search_for_kept_stores_.IsBitSet(i)) {
2958 phi_placeholder_replacements_[i] = Value::Invalid();
2959 }
2960 }
2961
2962 // Update heap values at end of blocks.
2963 heap_vals.ForEachRecord([&](ValueRecord* rec) {
2964 UpdateValueRecordForStoreElimination(rec);
2965 });
2966
2967 if (kIsDebugBuild) {
2968 heap_vals.ForEachRecord([](ValueRecord* rec) {
2969 DCHECK(!rec->value.NeedsNonLoopPhi()) << rec->value;
2970 });
2971 }
2972
2973 // Use local allocator to reduce peak memory usage.
2974 ScopedArenaAllocator allocator(allocator_.GetArenaStack());
2975 // Mark the stores we want to eliminate in a separate bit vector.
2976 ArenaBitVector eliminated_stores(&allocator,
2977 /*start_bits=*/ GetGraph()->GetCurrentInstructionId(),
2978 /*expandable=*/ false,
2979 kArenaAllocLSE);
2980 eliminated_stores.ClearAllBits();
2981
2982 for (auto& entry : store_records_) {
2983 HInstruction* store = entry.first;
2984 StoreRecord& store_record = entry.second;
2985 if (!kept_stores_.IsBitSet(store->GetId())) {
2986 continue; // Ignore stores that are not kept.
2987 }
2988 UpdateValueRecordForStoreElimination(&store_record.old_value_record);
2989 if (store_record.old_value_record.value.NeedsPhi()) {
2990 DataType::Type type = store_record.stored_value->GetType();
2991 FindOldValueForPhiPlaceholder(store_record.old_value_record.value.GetPhiPlaceholder(), type);
2992 store_record.old_value_record.value = ReplacementOrValue(store_record.old_value_record.value);
2993 }
2994 DCHECK(!store_record.old_value_record.value.NeedsPhi());
2995 HInstruction* stored_value = FindSubstitute(store_record.stored_value);
2996 if (store_record.old_value_record.value.Equals(stored_value)) {
2997 eliminated_stores.SetBit(store->GetId());
2998 }
2999 }
3000
3001 // Commit the stores to eliminate by removing them from `kept_stores_`.
3002 kept_stores_.Subtract(&eliminated_stores);
3003 }
3004
Run()3005 void LSEVisitor::Run() {
3006 // 1. Process blocks and instructions in reverse post order.
3007 for (HBasicBlock* block : GetGraph()->GetReversePostOrder()) {
3008 VisitBasicBlock(block);
3009 }
3010
3011 // 2. Process loads that require loop Phis, trying to find/create replacements.
3012 current_phase_ = Phase::kLoadElimination;
3013 ProcessLoadsRequiringLoopPhis();
3014
3015 // 3. Determine which stores to keep and which to eliminate.
3016 current_phase_ = Phase::kStoreElimination;
3017 // Finish marking stores for keeping.
3018 SearchPhiPlaceholdersForKeptStores();
3019
3020 // Find stores that write the same value as is already present in the location.
3021 FindStoresWritingOldValues();
3022
3023 // 4. Replace loads and remove unnecessary stores and singleton allocations.
3024 FinishFullLSE();
3025
3026 // 5. Move partial escapes down and fixup with PHIs.
3027 current_phase_ = Phase::kPartialElimination;
3028 MovePartialEscapes();
3029 }
3030
3031 // Clear unknown loop-phi results. Here we'll be able to use partial-unknowns so we need to
3032 // retry all of them with more information about where they come from.
PrepareForPartialPhiComputation()3033 void LSEVisitor::PrepareForPartialPhiComputation() {
3034 std::replace_if(
3035 phi_placeholder_replacements_.begin(),
3036 phi_placeholder_replacements_.end(),
3037 [](const Value& val) { return !val.IsDefault() && !val.IsInstruction(); },
3038 Value::Invalid());
3039 }
3040
3041 class PartialLoadStoreEliminationHelper {
3042 public:
PartialLoadStoreEliminationHelper(LSEVisitor * lse,ScopedArenaAllocator * alloc)3043 PartialLoadStoreEliminationHelper(LSEVisitor* lse, ScopedArenaAllocator* alloc)
3044 : lse_(lse),
3045 alloc_(alloc),
3046 new_ref_phis_(alloc_->Adapter(kArenaAllocLSE)),
3047 heap_refs_(alloc_->Adapter(kArenaAllocLSE)),
3048 max_preds_per_block_((*std::max_element(GetGraph()->GetActiveBlocks().begin(),
3049 GetGraph()->GetActiveBlocks().end(),
3050 [](HBasicBlock* a, HBasicBlock* b) {
3051 return a->GetNumberOfPredecessors() <
3052 b->GetNumberOfPredecessors();
3053 }))
3054 ->GetNumberOfPredecessors()),
3055 materialization_blocks_(GetGraph()->GetBlocks().size() * max_preds_per_block_,
3056 nullptr,
3057 alloc_->Adapter(kArenaAllocLSE)),
3058 first_materialization_block_id_(GetGraph()->GetBlocks().size()) {
3059 size_t num_partial_singletons = lse_->heap_location_collector_.CountPartialSingletons();
3060 heap_refs_.reserve(num_partial_singletons);
3061 new_ref_phis_.reserve(num_partial_singletons * GetGraph()->GetBlocks().size());
3062 CollectInterestingHeapRefs();
3063 }
3064
~PartialLoadStoreEliminationHelper()3065 ~PartialLoadStoreEliminationHelper() {
3066 if (heap_refs_.empty()) {
3067 return;
3068 }
3069 ReferenceTypePropagation rtp_fixup(GetGraph(),
3070 Handle<mirror::DexCache>(),
3071 /* is_first_run= */ false);
3072 rtp_fixup.Visit(ArrayRef<HInstruction* const>(new_ref_phis_));
3073 GetGraph()->ClearLoopInformation();
3074 GetGraph()->ClearDominanceInformation();
3075 GetGraph()->ClearReachabilityInformation();
3076 GetGraph()->BuildDominatorTree();
3077 GetGraph()->ComputeReachabilityInformation();
3078 }
3079
3080 class IdxToHeapLoc {
3081 public:
IdxToHeapLoc(const HeapLocationCollector * hlc)3082 explicit IdxToHeapLoc(const HeapLocationCollector* hlc) : collector_(hlc) {}
operator ()(size_t idx) const3083 HeapLocation* operator()(size_t idx) const {
3084 return collector_->GetHeapLocation(idx);
3085 }
3086
3087 private:
3088 const HeapLocationCollector* collector_;
3089 };
3090
3091
3092 class HeapReferenceData {
3093 public:
3094 using LocIterator = IterationRange<TransformIterator<BitVector::IndexIterator, IdxToHeapLoc>>;
HeapReferenceData(PartialLoadStoreEliminationHelper * helper,HNewInstance * new_inst,const ExecutionSubgraph * subgraph,ScopedArenaAllocator * alloc)3095 HeapReferenceData(PartialLoadStoreEliminationHelper* helper,
3096 HNewInstance* new_inst,
3097 const ExecutionSubgraph* subgraph,
3098 ScopedArenaAllocator* alloc)
3099 : new_instance_(new_inst),
3100 helper_(helper),
3101 heap_locs_(alloc,
3102 helper->lse_->heap_location_collector_.GetNumberOfHeapLocations(),
3103 /* expandable= */ false,
3104 kArenaAllocLSE),
3105 materializations_(
3106 // We generally won't need to create too many materialization blocks and we can expand
3107 // this as needed so just start off with 2x.
3108 2 * helper->lse_->GetGraph()->GetBlocks().size(),
3109 nullptr,
3110 alloc->Adapter(kArenaAllocLSE)),
3111 collector_(helper->lse_->heap_location_collector_),
3112 subgraph_(subgraph) {}
3113
IterateLocations()3114 LocIterator IterateLocations() {
3115 auto idxs = heap_locs_.Indexes();
3116 return MakeTransformRange(idxs, IdxToHeapLoc(&collector_));
3117 }
3118
AddHeapLocation(size_t idx)3119 void AddHeapLocation(size_t idx) {
3120 heap_locs_.SetBit(idx);
3121 }
3122
GetNoEscapeSubgraph() const3123 const ExecutionSubgraph* GetNoEscapeSubgraph() const {
3124 return subgraph_;
3125 }
3126
IsPostEscape(HBasicBlock * blk)3127 bool IsPostEscape(HBasicBlock* blk) {
3128 return std::any_of(
3129 subgraph_->GetExcludedCohorts().cbegin(),
3130 subgraph_->GetExcludedCohorts().cend(),
3131 [&](const ExecutionSubgraph::ExcludedCohort& ec) { return ec.PrecedesBlock(blk); });
3132 }
3133
InEscapeCohort(HBasicBlock * blk)3134 bool InEscapeCohort(HBasicBlock* blk) {
3135 return std::any_of(
3136 subgraph_->GetExcludedCohorts().cbegin(),
3137 subgraph_->GetExcludedCohorts().cend(),
3138 [&](const ExecutionSubgraph::ExcludedCohort& ec) { return ec.ContainsBlock(blk); });
3139 }
3140
BeforeAllEscapes(HBasicBlock * b)3141 bool BeforeAllEscapes(HBasicBlock* b) {
3142 return std::none_of(subgraph_->GetExcludedCohorts().cbegin(),
3143 subgraph_->GetExcludedCohorts().cend(),
3144 [&](const ExecutionSubgraph::ExcludedCohort& ec) {
3145 return ec.PrecedesBlock(b) || ec.ContainsBlock(b);
3146 });
3147 }
3148
OriginalNewInstance() const3149 HNewInstance* OriginalNewInstance() const {
3150 return new_instance_;
3151 }
3152
3153 // Collect and replace all uses. We need to perform this twice since we will
3154 // generate PHIs and additional uses as we create the default-values for
3155 // pred-gets. These values might be other references that are also being
3156 // partially eliminated. By running just the replacement part again we are
3157 // able to avoid having to keep another whole in-progress partial map
3158 // around. Since we will have already handled all the other uses in the
3159 // first pass the second one will be quite fast.
FixupUses(bool first_pass)3160 void FixupUses(bool first_pass) {
3161 ScopedArenaAllocator saa(GetGraph()->GetArenaStack());
3162 // Replace uses with materialized values.
3163 ScopedArenaVector<InstructionUse<HInstruction>> to_replace(saa.Adapter(kArenaAllocLSE));
3164 ScopedArenaVector<HInstruction*> to_remove(saa.Adapter(kArenaAllocLSE));
3165 // Do we need to add a constructor-fence.
3166 ScopedArenaVector<InstructionUse<HConstructorFence>> constructor_fences(
3167 saa.Adapter(kArenaAllocLSE));
3168 ScopedArenaVector<InstructionUse<HInstruction>> to_predicate(saa.Adapter(kArenaAllocLSE));
3169
3170 CollectReplacements(to_replace, to_remove, constructor_fences, to_predicate);
3171
3172 if (!first_pass) {
3173 // If another partial creates new references they can only be in Phis or pred-get defaults
3174 // so they must be in the to_replace group.
3175 DCHECK(to_predicate.empty());
3176 DCHECK(constructor_fences.empty());
3177 DCHECK(to_remove.empty());
3178 }
3179
3180 ReplaceInput(to_replace);
3181 RemoveAndReplaceInputs(to_remove);
3182 CreateConstructorFences(constructor_fences);
3183 PredicateInstructions(to_predicate);
3184
3185 CHECK(OriginalNewInstance()->GetUses().empty())
3186 << OriginalNewInstance()->GetUses() << ", " << OriginalNewInstance()->GetEnvUses();
3187 }
3188
AddMaterialization(HBasicBlock * blk,HInstruction * ins)3189 void AddMaterialization(HBasicBlock* blk, HInstruction* ins) {
3190 if (blk->GetBlockId() >= materializations_.size()) {
3191 // Make sure the materialization array is large enough, try to avoid
3192 // re-sizing too many times by giving extra space.
3193 materializations_.resize(blk->GetBlockId() * 2, nullptr);
3194 }
3195 DCHECK(materializations_[blk->GetBlockId()] == nullptr)
3196 << "Already have a materialization in block " << blk->GetBlockId() << ": "
3197 << *materializations_[blk->GetBlockId()] << " when trying to set materialization to "
3198 << *ins;
3199 materializations_[blk->GetBlockId()] = ins;
3200 LSE_VLOG << "In block " << blk->GetBlockId() << " materialization is " << *ins;
3201 helper_->NotifyNewMaterialization(ins);
3202 }
3203
HasMaterialization(HBasicBlock * blk) const3204 bool HasMaterialization(HBasicBlock* blk) const {
3205 return blk->GetBlockId() < materializations_.size() &&
3206 materializations_[blk->GetBlockId()] != nullptr;
3207 }
3208
GetMaterialization(HBasicBlock * blk) const3209 HInstruction* GetMaterialization(HBasicBlock* blk) const {
3210 if (materializations_.size() <= blk->GetBlockId() ||
3211 materializations_[blk->GetBlockId()] == nullptr) {
3212 // This must be a materialization block added after the partial LSE of
3213 // the current reference finished. Since every edge can only have at
3214 // most one materialization block added to it we can just check the
3215 // blocks predecessor.
3216 DCHECK(helper_->IsMaterializationBlock(blk));
3217 blk = helper_->FindDominatingNonMaterializationBlock(blk);
3218 DCHECK(!helper_->IsMaterializationBlock(blk));
3219 }
3220 DCHECK_GT(materializations_.size(), blk->GetBlockId());
3221 DCHECK(materializations_[blk->GetBlockId()] != nullptr);
3222 return materializations_[blk->GetBlockId()];
3223 }
3224
GenerateMaterializationValueFromPredecessors(HBasicBlock * blk)3225 void GenerateMaterializationValueFromPredecessors(HBasicBlock* blk) {
3226 DCHECK(std::none_of(GetNoEscapeSubgraph()->GetExcludedCohorts().begin(),
3227 GetNoEscapeSubgraph()->GetExcludedCohorts().end(),
3228 [&](const ExecutionSubgraph::ExcludedCohort& cohort) {
3229 return cohort.IsEntryBlock(blk);
3230 }));
3231 DCHECK(!HasMaterialization(blk));
3232 if (blk->IsExitBlock()) {
3233 return;
3234 } else if (blk->IsLoopHeader()) {
3235 // See comment in execution_subgraph.h. Currently we act as though every
3236 // allocation for partial elimination takes place in the entry block.
3237 // This simplifies the analysis by making it so any escape cohort
3238 // expands to contain any loops it is a part of. This is something that
3239 // we should rectify at some point. In either case however we can still
3240 // special case the loop-header since (1) currently the loop can't have
3241 // any merges between different cohort entries since the pre-header will
3242 // be the earliest place entry can happen and (2) even if the analysis
3243 // is improved to consider lifetime of the object WRT loops any values
3244 // which would require loop-phis would have to make the whole loop
3245 // escape anyway.
3246 // This all means we can always use value from the pre-header when the
3247 // block is the loop-header and we didn't already create a
3248 // materialization block. (NB when we do improve the analysis we will
3249 // need to modify the materialization creation code to deal with this
3250 // correctly.)
3251 HInstruction* pre_header_val =
3252 GetMaterialization(blk->GetLoopInformation()->GetPreHeader());
3253 AddMaterialization(blk, pre_header_val);
3254 return;
3255 }
3256 ScopedArenaAllocator saa(GetGraph()->GetArenaStack());
3257 ScopedArenaVector<HInstruction*> pred_vals(saa.Adapter(kArenaAllocLSE));
3258 pred_vals.reserve(blk->GetNumberOfPredecessors());
3259 for (HBasicBlock* pred : blk->GetPredecessors()) {
3260 DCHECK(HasMaterialization(pred));
3261 pred_vals.push_back(GetMaterialization(pred));
3262 }
3263 GenerateMaterializationValueFromPredecessorsDirect(blk, pred_vals);
3264 }
3265
GenerateMaterializationValueFromPredecessorsForEntry(HBasicBlock * entry,const ScopedArenaVector<HInstruction * > & pred_vals)3266 void GenerateMaterializationValueFromPredecessorsForEntry(
3267 HBasicBlock* entry, const ScopedArenaVector<HInstruction*>& pred_vals) {
3268 DCHECK(std::any_of(GetNoEscapeSubgraph()->GetExcludedCohorts().begin(),
3269 GetNoEscapeSubgraph()->GetExcludedCohorts().end(),
3270 [&](const ExecutionSubgraph::ExcludedCohort& cohort) {
3271 return cohort.IsEntryBlock(entry);
3272 }));
3273 GenerateMaterializationValueFromPredecessorsDirect(entry, pred_vals);
3274 }
3275
3276 private:
3277 template <typename InstructionType>
3278 struct InstructionUse {
3279 InstructionType* instruction_;
3280 size_t index_;
3281 };
3282
ReplaceInput(const ScopedArenaVector<InstructionUse<HInstruction>> & to_replace)3283 void ReplaceInput(const ScopedArenaVector<InstructionUse<HInstruction>>& to_replace) {
3284 for (auto& [ins, idx] : to_replace) {
3285 HInstruction* merged_inst = GetMaterialization(ins->GetBlock());
3286 if (ins->IsPhi() && merged_inst->IsPhi() && ins->GetBlock() == merged_inst->GetBlock()) {
3287 // Phis we just pass through the appropriate inputs.
3288 ins->ReplaceInput(merged_inst->InputAt(idx), idx);
3289 } else {
3290 ins->ReplaceInput(merged_inst, idx);
3291 }
3292 }
3293 }
3294
RemoveAndReplaceInputs(const ScopedArenaVector<HInstruction * > & to_remove)3295 void RemoveAndReplaceInputs(const ScopedArenaVector<HInstruction*>& to_remove) {
3296 for (HInstruction* ins : to_remove) {
3297 if (ins->GetBlock() == nullptr) {
3298 // Already dealt with.
3299 continue;
3300 }
3301 DCHECK(BeforeAllEscapes(ins->GetBlock())) << *ins;
3302 if (ins->IsInstanceFieldGet() || ins->IsInstanceFieldSet()) {
3303 bool instruction_has_users =
3304 ins->IsInstanceFieldGet() && (!ins->GetUses().empty() || !ins->GetEnvUses().empty());
3305 if (instruction_has_users) {
3306 // Make sure any remaining users of read are replaced.
3307 HInstruction* replacement =
3308 helper_->lse_->GetPartialValueAt(OriginalNewInstance(), ins);
3309 // NB ReplaceInput will remove a use from the list so this is
3310 // guaranteed to finish eventually.
3311 while (!ins->GetUses().empty()) {
3312 const HUseListNode<HInstruction*>& use = ins->GetUses().front();
3313 use.GetUser()->ReplaceInput(replacement, use.GetIndex());
3314 }
3315 while (!ins->GetEnvUses().empty()) {
3316 const HUseListNode<HEnvironment*>& use = ins->GetEnvUses().front();
3317 use.GetUser()->ReplaceInput(replacement, use.GetIndex());
3318 }
3319 } else {
3320 DCHECK(ins->GetUses().empty())
3321 << "Instruction has users!\n"
3322 << ins->DumpWithArgs() << "\nUsers are " << ins->GetUses();
3323 DCHECK(ins->GetEnvUses().empty())
3324 << "Instruction has users!\n"
3325 << ins->DumpWithArgs() << "\nUsers are " << ins->GetEnvUses();
3326 }
3327 ins->GetBlock()->RemoveInstruction(ins);
3328 } else {
3329 // Can only be obj == other, obj != other, obj == obj (!?) or, obj != obj (!?)
3330 // Since PHIs are escapes as far as LSE is concerned and we are before
3331 // any escapes these are the only 4 options.
3332 DCHECK(ins->IsEqual() || ins->IsNotEqual()) << *ins;
3333 HInstruction* replacement;
3334 if (UNLIKELY(ins->InputAt(0) == ins->InputAt(1))) {
3335 replacement = ins->IsEqual() ? GetGraph()->GetIntConstant(1)
3336 : GetGraph()->GetIntConstant(0);
3337 } else {
3338 replacement = ins->IsEqual() ? GetGraph()->GetIntConstant(0)
3339 : GetGraph()->GetIntConstant(1);
3340 }
3341 ins->ReplaceWith(replacement);
3342 ins->GetBlock()->RemoveInstruction(ins);
3343 }
3344 }
3345 }
3346
CreateConstructorFences(const ScopedArenaVector<InstructionUse<HConstructorFence>> & constructor_fences)3347 void CreateConstructorFences(
3348 const ScopedArenaVector<InstructionUse<HConstructorFence>>& constructor_fences) {
3349 if (!constructor_fences.empty()) {
3350 uint32_t pc = constructor_fences.front().instruction_->GetDexPc();
3351 for (auto& [cf, idx] : constructor_fences) {
3352 if (cf->GetInputs().size() == 1) {
3353 cf->GetBlock()->RemoveInstruction(cf);
3354 } else {
3355 cf->RemoveInputAt(idx);
3356 }
3357 }
3358 for (const ExecutionSubgraph::ExcludedCohort& ec :
3359 GetNoEscapeSubgraph()->GetExcludedCohorts()) {
3360 for (HBasicBlock* blk : ec.EntryBlocks()) {
3361 for (HBasicBlock* materializer :
3362 Filter(MakeIterationRange(blk->GetPredecessors()),
3363 [&](HBasicBlock* blk) { return helper_->IsMaterializationBlock(blk); })) {
3364 HInstruction* new_cf = new (GetGraph()->GetAllocator()) HConstructorFence(
3365 GetMaterialization(materializer), pc, GetGraph()->GetAllocator());
3366 materializer->InsertInstructionBefore(new_cf, materializer->GetLastInstruction());
3367 }
3368 }
3369 }
3370 }
3371 }
3372
PredicateInstructions(const ScopedArenaVector<InstructionUse<HInstruction>> & to_predicate)3373 void PredicateInstructions(
3374 const ScopedArenaVector<InstructionUse<HInstruction>>& to_predicate) {
3375 for (auto& [ins, idx] : to_predicate) {
3376 if (UNLIKELY(ins->GetBlock() == nullptr)) {
3377 // Already handled due to obj == obj;
3378 continue;
3379 } else if (ins->IsInstanceFieldGet()) {
3380 // IFieldGet[obj] => PredicatedIFieldGet[PartialValue, obj]
3381 HInstruction* new_fget = new (GetGraph()->GetAllocator()) HPredicatedInstanceFieldGet(
3382 ins->AsInstanceFieldGet(),
3383 GetMaterialization(ins->GetBlock()),
3384 helper_->lse_->GetPartialValueAt(OriginalNewInstance(), ins));
3385 MaybeRecordStat(helper_->lse_->stats_, MethodCompilationStat::kPredicatedLoadAdded);
3386 ins->GetBlock()->InsertInstructionBefore(new_fget, ins);
3387 if (ins->GetType() == DataType::Type::kReference) {
3388 // Reference info is the same
3389 new_fget->SetReferenceTypeInfoIfValid(ins->GetReferenceTypeInfo());
3390 }
3391 // In this phase, substitute instructions are used only for the predicated get
3392 // default values which are used only if the partial singleton did not escape,
3393 // so the out value of the `new_fget` for the relevant cases is the same as
3394 // the default value.
3395 // TODO: Use the default value for materializing default values used by
3396 // other predicated loads to avoid some unnecessary Phis. (This shall
3397 // complicate the search for replacement in `ReplacementOrValue()`.)
3398 DCHECK(helper_->lse_->substitute_instructions_for_loads_[ins->GetId()] == nullptr);
3399 helper_->lse_->substitute_instructions_for_loads_[ins->GetId()] = new_fget;
3400 ins->ReplaceWith(new_fget);
3401 ins->ReplaceEnvUsesDominatedBy(ins, new_fget);
3402 CHECK(ins->GetEnvUses().empty() && ins->GetUses().empty())
3403 << "Instruction: " << *ins << " uses: " << ins->GetUses()
3404 << ", env: " << ins->GetEnvUses();
3405 ins->GetBlock()->RemoveInstruction(ins);
3406 } else if (ins->IsInstanceFieldSet()) {
3407 // Any predicated sets shouldn't require movement.
3408 ins->AsInstanceFieldSet()->SetIsPredicatedSet();
3409 MaybeRecordStat(helper_->lse_->stats_, MethodCompilationStat::kPredicatedStoreAdded);
3410 HInstruction* merged_inst = GetMaterialization(ins->GetBlock());
3411 ins->ReplaceInput(merged_inst, idx);
3412 } else {
3413 // comparisons need to be split into 2.
3414 DCHECK(ins->IsEqual() || ins->IsNotEqual()) << "bad instruction " << *ins;
3415 bool this_is_first = idx == 0;
3416 if (ins->InputAt(0) == ins->InputAt(1)) {
3417 // This is a obj == obj or obj != obj.
3418 // No idea why anyone would do this but whatever.
3419 ins->ReplaceWith(GetGraph()->GetIntConstant(ins->IsEqual() ? 1 : 0));
3420 ins->GetBlock()->RemoveInstruction(ins);
3421 continue;
3422 } else {
3423 HInstruction* is_escaped = new (GetGraph()->GetAllocator())
3424 HNotEqual(GetMaterialization(ins->GetBlock()), GetGraph()->GetNullConstant());
3425 HInstruction* combine_inst =
3426 ins->IsEqual() ? static_cast<HInstruction*>(new (GetGraph()->GetAllocator()) HAnd(
3427 DataType::Type::kBool, is_escaped, ins))
3428 : static_cast<HInstruction*>(new (GetGraph()->GetAllocator()) HOr(
3429 DataType::Type::kBool, is_escaped, ins));
3430 ins->ReplaceInput(GetMaterialization(ins->GetBlock()), this_is_first ? 0 : 1);
3431 ins->GetBlock()->InsertInstructionBefore(is_escaped, ins);
3432 ins->GetBlock()->InsertInstructionAfter(combine_inst, ins);
3433 ins->ReplaceWith(combine_inst);
3434 combine_inst->ReplaceInput(ins, 1);
3435 }
3436 }
3437 }
3438 }
3439
3440 // Figure out all the instructions we need to
3441 // fixup/replace/remove/duplicate. Since this requires an iteration of an
3442 // intrusive linked list we want to do it only once and collect all the data
3443 // here.
CollectReplacements(ScopedArenaVector<InstructionUse<HInstruction>> & to_replace,ScopedArenaVector<HInstruction * > & to_remove,ScopedArenaVector<InstructionUse<HConstructorFence>> & constructor_fences,ScopedArenaVector<InstructionUse<HInstruction>> & to_predicate)3444 void CollectReplacements(
3445 ScopedArenaVector<InstructionUse<HInstruction>>& to_replace,
3446 ScopedArenaVector<HInstruction*>& to_remove,
3447 ScopedArenaVector<InstructionUse<HConstructorFence>>& constructor_fences,
3448 ScopedArenaVector<InstructionUse<HInstruction>>& to_predicate) {
3449 size_t size = new_instance_->GetUses().SizeSlow();
3450 to_replace.reserve(size);
3451 to_remove.reserve(size);
3452 constructor_fences.reserve(size);
3453 to_predicate.reserve(size);
3454 for (auto& use : new_instance_->GetUses()) {
3455 HBasicBlock* blk =
3456 helper_->FindDominatingNonMaterializationBlock(use.GetUser()->GetBlock());
3457 if (InEscapeCohort(blk)) {
3458 LSE_VLOG << "Replacing " << *new_instance_ << " use in " << *use.GetUser() << " with "
3459 << *GetMaterialization(blk);
3460 to_replace.push_back({use.GetUser(), use.GetIndex()});
3461 } else if (IsPostEscape(blk)) {
3462 LSE_VLOG << "User " << *use.GetUser() << " after escapes!";
3463 // The fields + cmp are normal uses. Phi can only be here if it was
3464 // generated by full LSE so whatever store+load that created the phi
3465 // is the escape.
3466 if (use.GetUser()->IsPhi()) {
3467 to_replace.push_back({use.GetUser(), use.GetIndex()});
3468 } else {
3469 DCHECK(use.GetUser()->IsFieldAccess() ||
3470 use.GetUser()->IsEqual() ||
3471 use.GetUser()->IsNotEqual())
3472 << *use.GetUser() << "@" << use.GetIndex();
3473 to_predicate.push_back({use.GetUser(), use.GetIndex()});
3474 }
3475 } else if (use.GetUser()->IsConstructorFence()) {
3476 LSE_VLOG << "User " << *use.GetUser() << " being moved to materialization!";
3477 constructor_fences.push_back({use.GetUser()->AsConstructorFence(), use.GetIndex()});
3478 } else {
3479 LSE_VLOG << "User " << *use.GetUser() << " not contained in cohort!";
3480 to_remove.push_back(use.GetUser());
3481 }
3482 }
3483 DCHECK_EQ(
3484 to_replace.size() + to_remove.size() + constructor_fences.size() + to_predicate.size(),
3485 size);
3486 }
3487
GenerateMaterializationValueFromPredecessorsDirect(HBasicBlock * blk,const ScopedArenaVector<HInstruction * > & pred_vals)3488 void GenerateMaterializationValueFromPredecessorsDirect(
3489 HBasicBlock* blk, const ScopedArenaVector<HInstruction*>& pred_vals) {
3490 DCHECK(!pred_vals.empty());
3491 bool all_equal = std::all_of(pred_vals.begin() + 1, pred_vals.end(), [&](HInstruction* val) {
3492 return val == pred_vals.front();
3493 });
3494 if (LIKELY(all_equal)) {
3495 AddMaterialization(blk, pred_vals.front());
3496 } else {
3497 // Make a PHI for the predecessors.
3498 HPhi* phi = new (GetGraph()->GetAllocator()) HPhi(
3499 GetGraph()->GetAllocator(), kNoRegNumber, pred_vals.size(), DataType::Type::kReference);
3500 for (const auto& [ins, off] : ZipCount(MakeIterationRange(pred_vals))) {
3501 phi->SetRawInputAt(off, ins);
3502 }
3503 blk->AddPhi(phi);
3504 AddMaterialization(blk, phi);
3505 }
3506 }
3507
GetGraph() const3508 HGraph* GetGraph() const {
3509 return helper_->GetGraph();
3510 }
3511
3512 HNewInstance* new_instance_;
3513 PartialLoadStoreEliminationHelper* helper_;
3514 ArenaBitVector heap_locs_;
3515 ScopedArenaVector<HInstruction*> materializations_;
3516 const HeapLocationCollector& collector_;
3517 const ExecutionSubgraph* subgraph_;
3518 };
3519
GetHeapRefs()3520 ArrayRef<HeapReferenceData> GetHeapRefs() {
3521 return ArrayRef<HeapReferenceData>(heap_refs_);
3522 }
3523
IsMaterializationBlock(HBasicBlock * blk) const3524 bool IsMaterializationBlock(HBasicBlock* blk) const {
3525 return blk->GetBlockId() >= first_materialization_block_id_;
3526 }
3527
GetOrCreateMaterializationBlock(HBasicBlock * entry,size_t pred_num)3528 HBasicBlock* GetOrCreateMaterializationBlock(HBasicBlock* entry, size_t pred_num) {
3529 size_t idx = GetMaterializationBlockIndex(entry, pred_num);
3530 HBasicBlock* blk = materialization_blocks_[idx];
3531 if (blk == nullptr) {
3532 blk = new (GetGraph()->GetAllocator()) HBasicBlock(GetGraph());
3533 GetGraph()->AddBlock(blk);
3534 LSE_VLOG << "creating materialization block " << blk->GetBlockId() << " on edge "
3535 << entry->GetPredecessors()[pred_num]->GetBlockId() << "->" << entry->GetBlockId();
3536 blk->AddInstruction(new (GetGraph()->GetAllocator()) HGoto());
3537 materialization_blocks_[idx] = blk;
3538 }
3539 return blk;
3540 }
3541
GetMaterializationBlock(HBasicBlock * entry,size_t pred_num)3542 HBasicBlock* GetMaterializationBlock(HBasicBlock* entry, size_t pred_num) {
3543 HBasicBlock* out = materialization_blocks_[GetMaterializationBlockIndex(entry, pred_num)];
3544 DCHECK(out != nullptr) << "No materialization block for edge " << entry->GetBlockId() << "->"
3545 << entry->GetPredecessors()[pred_num]->GetBlockId();
3546 return out;
3547 }
3548
IterateMaterializationBlocks()3549 IterationRange<ArenaVector<HBasicBlock*>::const_iterator> IterateMaterializationBlocks() {
3550 return MakeIterationRange(GetGraph()->GetBlocks().begin() + first_materialization_block_id_,
3551 GetGraph()->GetBlocks().end());
3552 }
3553
FixupPartialObjectUsers()3554 void FixupPartialObjectUsers() {
3555 for (PartialLoadStoreEliminationHelper::HeapReferenceData& ref_data : GetHeapRefs()) {
3556 // Use the materialized instances to replace original instance
3557 ref_data.FixupUses(/*first_pass=*/true);
3558 CHECK(ref_data.OriginalNewInstance()->GetUses().empty())
3559 << ref_data.OriginalNewInstance()->GetUses() << ", "
3560 << ref_data.OriginalNewInstance()->GetEnvUses();
3561 }
3562 // This can cause new uses to be created due to the creation of phis/pred-get defaults
3563 for (PartialLoadStoreEliminationHelper::HeapReferenceData& ref_data : GetHeapRefs()) {
3564 // Only need to handle new phis/pred-get defaults. DCHECK that's all we find.
3565 ref_data.FixupUses(/*first_pass=*/false);
3566 CHECK(ref_data.OriginalNewInstance()->GetUses().empty())
3567 << ref_data.OriginalNewInstance()->GetUses() << ", "
3568 << ref_data.OriginalNewInstance()->GetEnvUses();
3569 }
3570 }
3571
3572 // Finds the first block which either is or dominates the given block which is
3573 // not a materialization block
FindDominatingNonMaterializationBlock(HBasicBlock * blk)3574 HBasicBlock* FindDominatingNonMaterializationBlock(HBasicBlock* blk) {
3575 if (LIKELY(!IsMaterializationBlock(blk))) {
3576 // Not a materialization block so itself.
3577 return blk;
3578 } else if (blk->GetNumberOfPredecessors() != 0) {
3579 // We're far enough along that the materialization blocks have been
3580 // inserted into the graph so no need to go searching.
3581 return blk->GetSinglePredecessor();
3582 }
3583 // Search through the materialization blocks to find where it will be
3584 // inserted.
3585 for (auto [mat, idx] : ZipCount(MakeIterationRange(materialization_blocks_))) {
3586 if (mat == blk) {
3587 size_t cur_pred_idx = idx % max_preds_per_block_;
3588 HBasicBlock* entry = GetGraph()->GetBlocks()[idx / max_preds_per_block_];
3589 return entry->GetPredecessors()[cur_pred_idx];
3590 }
3591 }
3592 LOG(FATAL) << "Unable to find materialization block position for " << blk->GetBlockId() << "!";
3593 return nullptr;
3594 }
3595
InsertMaterializationBlocks()3596 void InsertMaterializationBlocks() {
3597 for (auto [mat, idx] : ZipCount(MakeIterationRange(materialization_blocks_))) {
3598 if (mat == nullptr) {
3599 continue;
3600 }
3601 size_t cur_pred_idx = idx % max_preds_per_block_;
3602 HBasicBlock* entry = GetGraph()->GetBlocks()[idx / max_preds_per_block_];
3603 HBasicBlock* pred = entry->GetPredecessors()[cur_pred_idx];
3604 mat->InsertBetween(pred, entry);
3605 LSE_VLOG << "Adding materialization block " << mat->GetBlockId() << " on edge "
3606 << pred->GetBlockId() << "->" << entry->GetBlockId();
3607 }
3608 }
3609
3610 // Replace any env-uses remaining of the partial singletons with the
3611 // appropriate phis and remove the instructions.
RemoveReplacedInstructions()3612 void RemoveReplacedInstructions() {
3613 for (HeapReferenceData& ref_data : GetHeapRefs()) {
3614 CHECK(ref_data.OriginalNewInstance()->GetUses().empty())
3615 << ref_data.OriginalNewInstance()->GetUses() << ", "
3616 << ref_data.OriginalNewInstance()->GetEnvUses()
3617 << " inst is: " << ref_data.OriginalNewInstance();
3618 const auto& env_uses = ref_data.OriginalNewInstance()->GetEnvUses();
3619 while (!env_uses.empty()) {
3620 const HUseListNode<HEnvironment*>& use = env_uses.front();
3621 HInstruction* merged_inst =
3622 ref_data.GetMaterialization(use.GetUser()->GetHolder()->GetBlock());
3623 LSE_VLOG << "Replacing env use of " << *use.GetUser()->GetHolder() << "@" << use.GetIndex()
3624 << " with " << *merged_inst;
3625 use.GetUser()->ReplaceInput(merged_inst, use.GetIndex());
3626 }
3627 ref_data.OriginalNewInstance()->GetBlock()->RemoveInstruction(ref_data.OriginalNewInstance());
3628 }
3629 }
3630
3631 // We need to make sure any allocations dominate their environment uses.
3632 // Technically we could probably remove the env-uses and be fine but this is easy.
ReorderMaterializationsForEnvDominance()3633 void ReorderMaterializationsForEnvDominance() {
3634 for (HBasicBlock* blk : IterateMaterializationBlocks()) {
3635 ScopedArenaAllocator alloc(alloc_->GetArenaStack());
3636 ArenaBitVector still_unsorted(
3637 &alloc, GetGraph()->GetCurrentInstructionId(), false, kArenaAllocLSE);
3638 // This is guaranteed to be very short (since we will abandon LSE if there
3639 // are >= kMaxNumberOfHeapLocations (32) heap locations so that is the
3640 // absolute maximum size this list can be) so doing a selection sort is
3641 // fine. This avoids the need to do a complicated recursive check to
3642 // ensure transitivity for std::sort.
3643 ScopedArenaVector<HNewInstance*> materializations(alloc.Adapter(kArenaAllocLSE));
3644 materializations.reserve(GetHeapRefs().size());
3645 for (HInstruction* ins :
3646 MakeSTLInstructionIteratorRange(HInstructionIterator(blk->GetInstructions()))) {
3647 if (ins->IsNewInstance()) {
3648 materializations.push_back(ins->AsNewInstance());
3649 still_unsorted.SetBit(ins->GetId());
3650 }
3651 }
3652 using Iter = ScopedArenaVector<HNewInstance*>::iterator;
3653 Iter unsorted_start = materializations.begin();
3654 Iter unsorted_end = materializations.end();
3655 // selection sort. Required since the only check we can easily perform a
3656 // is-before-all-unsorted check.
3657 while (unsorted_start != unsorted_end) {
3658 bool found_instruction = false;
3659 for (Iter candidate = unsorted_start; candidate != unsorted_end; ++candidate) {
3660 HNewInstance* ni = *candidate;
3661 if (std::none_of(ni->GetAllEnvironments().cbegin(),
3662 ni->GetAllEnvironments().cend(),
3663 [&](const HEnvironment* env) {
3664 return std::any_of(
3665 env->GetEnvInputs().cbegin(),
3666 env->GetEnvInputs().cend(),
3667 [&](const HInstruction* env_element) {
3668 return env_element != nullptr &&
3669 still_unsorted.IsBitSet(env_element->GetId());
3670 });
3671 })) {
3672 still_unsorted.ClearBit(ni->GetId());
3673 std::swap(*unsorted_start, *candidate);
3674 ++unsorted_start;
3675 found_instruction = true;
3676 break;
3677 }
3678 }
3679 CHECK(found_instruction) << "Unable to select next materialization instruction."
3680 << " Environments have a dependency loop!";
3681 }
3682 // Reverse so we as we prepend them we end up with the correct order.
3683 auto reverse_iter = MakeIterationRange(materializations.rbegin(), materializations.rend());
3684 for (HNewInstance* ins : reverse_iter) {
3685 if (blk->GetFirstInstruction() != ins) {
3686 // Don't do checks since that makes sure the move is safe WRT
3687 // ins->CanBeMoved which for NewInstance is false.
3688 ins->MoveBefore(blk->GetFirstInstruction(), /*do_checks=*/false);
3689 }
3690 }
3691 }
3692 }
3693
3694 private:
CollectInterestingHeapRefs()3695 void CollectInterestingHeapRefs() {
3696 // Get all the partials we need to move around.
3697 for (size_t i = 0; i < lse_->heap_location_collector_.GetNumberOfHeapLocations(); ++i) {
3698 ReferenceInfo* ri = lse_->heap_location_collector_.GetHeapLocation(i)->GetReferenceInfo();
3699 if (ri->IsPartialSingleton() &&
3700 ri->GetReference()->GetBlock() != nullptr &&
3701 ri->GetNoEscapeSubgraph()->ContainsBlock(ri->GetReference()->GetBlock())) {
3702 RecordHeapRefField(ri->GetReference()->AsNewInstance(), i);
3703 }
3704 }
3705 }
3706
RecordHeapRefField(HNewInstance * ni,size_t loc)3707 void RecordHeapRefField(HNewInstance* ni, size_t loc) {
3708 DCHECK(ni != nullptr);
3709 // This is likely to be very short so just do a linear search.
3710 auto it = std::find_if(heap_refs_.begin(), heap_refs_.end(), [&](HeapReferenceData& data) {
3711 return data.OriginalNewInstance() == ni;
3712 });
3713 HeapReferenceData& cur_ref =
3714 (it == heap_refs_.end())
3715 ? heap_refs_.emplace_back(this,
3716 ni,
3717 lse_->heap_location_collector_.GetHeapLocation(loc)
3718 ->GetReferenceInfo()
3719 ->GetNoEscapeSubgraph(),
3720 alloc_)
3721 : *it;
3722 cur_ref.AddHeapLocation(loc);
3723 }
3724
3725
NotifyNewMaterialization(HInstruction * ins)3726 void NotifyNewMaterialization(HInstruction* ins) {
3727 if (ins->IsPhi()) {
3728 new_ref_phis_.push_back(ins->AsPhi());
3729 }
3730 }
3731
GetMaterializationBlockIndex(HBasicBlock * blk,size_t pred_num) const3732 size_t GetMaterializationBlockIndex(HBasicBlock* blk, size_t pred_num) const {
3733 DCHECK_LT(blk->GetBlockId(), first_materialization_block_id_)
3734 << "block is a materialization block!";
3735 DCHECK_LT(pred_num, max_preds_per_block_);
3736 return blk->GetBlockId() * max_preds_per_block_ + pred_num;
3737 }
3738
GetGraph() const3739 HGraph* GetGraph() const {
3740 return lse_->GetGraph();
3741 }
3742
3743 LSEVisitor* lse_;
3744 ScopedArenaAllocator* alloc_;
3745 ScopedArenaVector<HInstruction*> new_ref_phis_;
3746 ScopedArenaVector<HeapReferenceData> heap_refs_;
3747 size_t max_preds_per_block_;
3748 // An array of (# of non-materialization blocks) * max_preds_per_block
3749 // arranged in block-id major order. Since we can only have at most one
3750 // materialization block on each edge this is the maximum possible number of
3751 // materialization blocks.
3752 ScopedArenaVector<HBasicBlock*> materialization_blocks_;
3753 size_t first_materialization_block_id_;
3754
3755 friend void LSEVisitor::MovePartialEscapes();
3756 };
3757
3758 // Work around c++ type checking annoyances with not being able to forward-declare inner types.
3759 class HeapRefHolder
3760 : public std::reference_wrapper<PartialLoadStoreEliminationHelper::HeapReferenceData> {};
3761
SetupPartialMaterialization(PartialLoadStoreEliminationHelper & helper,HeapRefHolder && holder,size_t pred_idx,HBasicBlock * entry)3762 HInstruction* LSEVisitor::SetupPartialMaterialization(PartialLoadStoreEliminationHelper& helper,
3763 HeapRefHolder&& holder,
3764 size_t pred_idx,
3765 HBasicBlock* entry) {
3766 PartialLoadStoreEliminationHelper::HeapReferenceData& ref_data = holder.get();
3767 HBasicBlock* old_pred = entry->GetPredecessors()[pred_idx];
3768 HInstruction* new_inst = ref_data.OriginalNewInstance();
3769 if (UNLIKELY(!new_inst->GetBlock()->Dominates(entry))) {
3770 LSE_VLOG << "Initial materialization in non-dominating block " << entry->GetBlockId()
3771 << " is null!";
3772 return GetGraph()->GetNullConstant();
3773 }
3774 HBasicBlock* bb = helper.GetOrCreateMaterializationBlock(entry, pred_idx);
3775 CHECK(bb != nullptr) << "entry " << entry->GetBlockId() << " -> " << old_pred->GetBlockId();
3776 HNewInstance* repl_create = new_inst->Clone(GetGraph()->GetAllocator())->AsNewInstance();
3777 repl_create->SetPartialMaterialization();
3778 bb->InsertInstructionBefore(repl_create, bb->GetLastInstruction());
3779 repl_create->CopyEnvironmentFrom(new_inst->GetEnvironment());
3780 MaybeRecordStat(stats_, MethodCompilationStat::kPartialAllocationMoved);
3781 LSE_VLOG << "In blk " << bb->GetBlockId() << " initial materialization is " << *repl_create;
3782 ref_data.AddMaterialization(bb, repl_create);
3783 const FieldInfo* info = nullptr;
3784 for (const HeapLocation* loc : ref_data.IterateLocations()) {
3785 size_t loc_off = heap_location_collector_.GetHeapLocationIndex(loc);
3786 info = field_infos_[loc_off];
3787 DCHECK(loc->GetIndex() == nullptr);
3788 Value value = ReplacementOrValue(heap_values_for_[old_pred->GetBlockId()][loc_off].value);
3789 if (value.NeedsLoopPhi() || value.IsMergedUnknown()) {
3790 Value repl = phi_placeholder_replacements_[PhiPlaceholderIndex(value.GetPhiPlaceholder())];
3791 DCHECK(repl.IsDefault() || repl.IsInvalid() || repl.IsInstruction())
3792 << repl << " from " << value << " pred is " << old_pred->GetBlockId();
3793 if (!repl.IsInvalid()) {
3794 value = repl;
3795 } else {
3796 FullyMaterializePhi(value.GetPhiPlaceholder(), info->GetFieldType());
3797 value = phi_placeholder_replacements_[PhiPlaceholderIndex(value.GetPhiPlaceholder())];
3798 }
3799 } else if (value.NeedsNonLoopPhi()) {
3800 Value repl = phi_placeholder_replacements_[PhiPlaceholderIndex(value.GetPhiPlaceholder())];
3801 DCHECK(repl.IsDefault() || repl.IsInvalid() || repl.IsInstruction())
3802 << repl << " from " << value << " pred is " << old_pred->GetBlockId();
3803 if (!repl.IsInvalid()) {
3804 value = repl;
3805 } else {
3806 MaterializeNonLoopPhis(value.GetPhiPlaceholder(), info->GetFieldType());
3807 value = phi_placeholder_replacements_[PhiPlaceholderIndex(value.GetPhiPlaceholder())];
3808 }
3809 }
3810 DCHECK(value.IsDefault() || value.IsInstruction())
3811 << GetGraph()->PrettyMethod() << ": " << value;
3812
3813 if (!value.IsDefault() &&
3814 // shadow$_klass_ doesn't need to be manually initialized.
3815 MemberOffset(loc->GetOffset()) != mirror::Object::ClassOffset()) {
3816 CHECK(info != nullptr);
3817 HInstruction* set_value =
3818 new (GetGraph()->GetAllocator()) HInstanceFieldSet(repl_create,
3819 value.GetInstruction(),
3820 field_infos_[loc_off]->GetField(),
3821 loc->GetType(),
3822 MemberOffset(loc->GetOffset()),
3823 false,
3824 field_infos_[loc_off]->GetFieldIndex(),
3825 loc->GetDeclaringClassDefIndex(),
3826 field_infos_[loc_off]->GetDexFile(),
3827 0u);
3828 bb->InsertInstructionAfter(set_value, repl_create);
3829 LSE_VLOG << "Adding " << *set_value << " for materialization setup!";
3830 }
3831 }
3832 return repl_create;
3833 }
3834
GetPartialValueAt(HNewInstance * orig_new_inst,HInstruction * read)3835 HInstruction* LSEVisitor::GetPartialValueAt(HNewInstance* orig_new_inst, HInstruction* read) {
3836 size_t loc = heap_location_collector_.GetFieldHeapLocation(orig_new_inst, &read->GetFieldInfo());
3837 Value pred = ReplacementOrValue(intermediate_values_.find(read)->second);
3838 LSE_VLOG << "using " << pred << " as default value for " << *read;
3839 if (pred.IsInstruction()) {
3840 return pred.GetInstruction();
3841 } else if (pred.IsMergedUnknown() || pred.NeedsPhi()) {
3842 FullyMaterializePhi(pred.GetPhiPlaceholder(),
3843 heap_location_collector_.GetHeapLocation(loc)->GetType());
3844 HInstruction* res = Replacement(pred).GetInstruction();
3845 LSE_VLOG << pred << " materialized to " << res->DumpWithArgs();
3846 return res;
3847 } else if (pred.IsDefault()) {
3848 HInstruction* res = GetDefaultValue(read->GetType());
3849 LSE_VLOG << pred << " materialized to " << res->DumpWithArgs();
3850 return res;
3851 }
3852 LOG(FATAL) << "Unable to find unescaped value at " << read->DumpWithArgs()
3853 << "! This should be impossible! Value is " << pred;
3854 UNREACHABLE();
3855 }
3856
MovePartialEscapes()3857 void LSEVisitor::MovePartialEscapes() {
3858 if (!ShouldPerformPartialLSE()) {
3859 return;
3860 }
3861
3862 ScopedArenaAllocator saa(allocator_.GetArenaStack());
3863 PartialLoadStoreEliminationHelper helper(this, &saa);
3864
3865 // Since for PHIs we now will have more information (since we know the object
3866 // hasn't escaped) we need to clear the old phi-replacements where we weren't
3867 // able to find the value.
3868 PrepareForPartialPhiComputation();
3869
3870 for (PartialLoadStoreEliminationHelper::HeapReferenceData& ref_data : helper.GetHeapRefs()) {
3871 LSE_VLOG << "Creating materializations for " << *ref_data.OriginalNewInstance();
3872 // Setup entry and exit blocks.
3873 for (const auto& excluded_cohort : ref_data.GetNoEscapeSubgraph()->GetExcludedCohorts()) {
3874 // Setup materialization blocks.
3875 for (HBasicBlock* entry : excluded_cohort.EntryBlocksReversePostOrder()) {
3876 // Setup entries.
3877 // TODO Assuming we correctly break critical edges every entry block
3878 // must have only a single predecessor so we could just put all this
3879 // stuff in there. OTOH simplifier can do it for us and this is simpler
3880 // to implement - giving clean separation between the original graph and
3881 // materialization blocks - so for now we might as well have these new
3882 // blocks.
3883 ScopedArenaAllocator pred_alloc(saa.GetArenaStack());
3884 ScopedArenaVector<HInstruction*> pred_vals(pred_alloc.Adapter(kArenaAllocLSE));
3885 pred_vals.reserve(entry->GetNumberOfPredecessors());
3886 for (const auto& [pred, pred_idx] :
3887 ZipCount(MakeIterationRange(entry->GetPredecessors()))) {
3888 DCHECK(!helper.IsMaterializationBlock(pred));
3889 if (excluded_cohort.IsEntryBlock(pred)) {
3890 pred_vals.push_back(ref_data.GetMaterialization(pred));
3891 continue;
3892 } else {
3893 pred_vals.push_back(SetupPartialMaterialization(helper, {ref_data}, pred_idx, entry));
3894 }
3895 }
3896 ref_data.GenerateMaterializationValueFromPredecessorsForEntry(entry, pred_vals);
3897 }
3898
3899 // Setup exit block heap-values for later phi-generation.
3900 for (HBasicBlock* exit : excluded_cohort.ExitBlocks()) {
3901 // mark every exit of cohorts as having a value so we can easily
3902 // materialize the PHIs.
3903 // TODO By setting this we can easily use the normal MaterializeLoopPhis
3904 // (via FullyMaterializePhis) in order to generate the default-values
3905 // for predicated-gets. This has the unfortunate side effect of creating
3906 // somewhat more phis than are really needed (in some cases). We really
3907 // should try to eventually know that we can lower these PHIs to only
3908 // the non-escaping value in cases where it is possible. Currently this
3909 // is done to some extent in instruction_simplifier but we have more
3910 // information here to do the right thing.
3911 for (const HeapLocation* loc : ref_data.IterateLocations()) {
3912 size_t loc_off = heap_location_collector_.GetHeapLocationIndex(loc);
3913 // This Value::Default() is only used to fill in PHIs used as the
3914 // default value for PredicatedInstanceFieldGets. The actual value
3915 // stored there is meaningless since the Predicated-iget will use the
3916 // actual field value instead on these paths.
3917 heap_values_for_[exit->GetBlockId()][loc_off].value = Value::Default();
3918 }
3919 }
3920 }
3921
3922 // string materialization through the graph.
3923 // // Visit RPO to PHI the materialized object through the cohort.
3924 for (HBasicBlock* blk : GetGraph()->GetReversePostOrder()) {
3925 // NB This doesn't include materialization blocks.
3926 DCHECK(!helper.IsMaterializationBlock(blk))
3927 << "Materialization blocks should not be in RPO yet.";
3928 if (ref_data.HasMaterialization(blk)) {
3929 continue;
3930 } else if (ref_data.BeforeAllEscapes(blk)) {
3931 ref_data.AddMaterialization(blk, GetGraph()->GetNullConstant());
3932 continue;
3933 } else {
3934 ref_data.GenerateMaterializationValueFromPredecessors(blk);
3935 }
3936 }
3937 }
3938
3939 // Once we've generated all the materializations we can update the users.
3940 helper.FixupPartialObjectUsers();
3941
3942 // Actually put materialization blocks into the graph
3943 helper.InsertMaterializationBlocks();
3944
3945 // Get rid of the original instructions.
3946 helper.RemoveReplacedInstructions();
3947
3948 // Ensure everything is ordered correctly in the materialization blocks. This
3949 // involves moving every NewInstance to the top and ordering them so that any
3950 // required env-uses are correctly ordered.
3951 helper.ReorderMaterializationsForEnvDominance();
3952 }
3953
FinishFullLSE()3954 void LSEVisitor::FinishFullLSE() {
3955 // Remove recorded load instructions that should be eliminated.
3956 for (const LoadStoreRecord& record : loads_and_stores_) {
3957 size_t id = dchecked_integral_cast<size_t>(record.load_or_store->GetId());
3958 HInstruction* substitute = substitute_instructions_for_loads_[id];
3959 if (substitute == nullptr) {
3960 continue;
3961 }
3962 HInstruction* load = record.load_or_store;
3963 DCHECK(load != nullptr);
3964 DCHECK(IsLoad(load));
3965 DCHECK(load->GetBlock() != nullptr) << load->DebugName() << "@" << load->GetDexPc();
3966 // We proactively retrieve the substitute for a removed load, so
3967 // a load that has a substitute should not be observed as a heap
3968 // location value.
3969 DCHECK_EQ(FindSubstitute(substitute), substitute);
3970
3971 load->ReplaceWith(substitute);
3972 load->GetBlock()->RemoveInstruction(load);
3973 }
3974
3975 // Remove all the stores we can.
3976 for (const LoadStoreRecord& record : loads_and_stores_) {
3977 bool is_store = record.load_or_store->GetSideEffects().DoesAnyWrite();
3978 DCHECK_EQ(is_store, IsStore(record.load_or_store));
3979 if (is_store && !kept_stores_.IsBitSet(record.load_or_store->GetId())) {
3980 record.load_or_store->GetBlock()->RemoveInstruction(record.load_or_store);
3981 }
3982 }
3983
3984 // Eliminate singleton-classified instructions:
3985 // * - Constructor fences (they never escape this thread).
3986 // * - Allocations (if they are unused).
3987 for (HInstruction* new_instance : singleton_new_instances_) {
3988 size_t removed = HConstructorFence::RemoveConstructorFences(new_instance);
3989 MaybeRecordStat(stats_,
3990 MethodCompilationStat::kConstructorFenceRemovedLSE,
3991 removed);
3992
3993 if (!new_instance->HasNonEnvironmentUses()) {
3994 new_instance->RemoveEnvironmentUsers();
3995 new_instance->GetBlock()->RemoveInstruction(new_instance);
3996 MaybeRecordStat(stats_, MethodCompilationStat::kFullLSEAllocationRemoved);
3997 }
3998 }
3999 }
4000
4001 // The LSEVisitor is a ValueObject (indirectly through base classes) and therefore
4002 // cannot be directly allocated with an arena allocator, so we need to wrap it.
4003 class LSEVisitorWrapper : public DeletableArenaObject<kArenaAllocLSE> {
4004 public:
LSEVisitorWrapper(HGraph * graph,const HeapLocationCollector & heap_location_collector,bool perform_partial_lse,OptimizingCompilerStats * stats)4005 LSEVisitorWrapper(HGraph* graph,
4006 const HeapLocationCollector& heap_location_collector,
4007 bool perform_partial_lse,
4008 OptimizingCompilerStats* stats)
4009 : lse_visitor_(graph, heap_location_collector, perform_partial_lse, stats) {}
4010
Run()4011 void Run() {
4012 lse_visitor_.Run();
4013 }
4014
4015 private:
4016 LSEVisitor lse_visitor_;
4017 };
4018
Run(bool enable_partial_lse)4019 bool LoadStoreElimination::Run(bool enable_partial_lse) {
4020 if (graph_->IsDebuggable()) {
4021 // Debugger may set heap values or trigger deoptimization of callers.
4022 // Skip this optimization.
4023 return false;
4024 }
4025 // We need to be able to determine reachability. Clear it just to be safe but
4026 // this should initially be empty.
4027 graph_->ClearReachabilityInformation();
4028 // This is O(blocks^3) time complexity. It means we can query reachability in
4029 // O(1) though.
4030 graph_->ComputeReachabilityInformation();
4031 ScopedArenaAllocator allocator(graph_->GetArenaStack());
4032 LoadStoreAnalysis lsa(graph_,
4033 stats_,
4034 &allocator,
4035 enable_partial_lse ? LoadStoreAnalysisType::kFull
4036 : LoadStoreAnalysisType::kBasic);
4037 lsa.Run();
4038 const HeapLocationCollector& heap_location_collector = lsa.GetHeapLocationCollector();
4039 if (heap_location_collector.GetNumberOfHeapLocations() == 0) {
4040 // No HeapLocation information from LSA, skip this optimization.
4041 return false;
4042 }
4043
4044 std::unique_ptr<LSEVisitorWrapper> lse_visitor(new (&allocator) LSEVisitorWrapper(
4045 graph_, heap_location_collector, enable_partial_lse, stats_));
4046 lse_visitor->Run();
4047 return true;
4048 }
4049
4050 #undef LSE_VLOG
4051
4052 } // namespace art
4053