1 /*
2 * LZ4 auto-framing library
3 * Copyright (C) 2011-2016, Yann Collet.
4 *
5 * BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions are
9 * met:
10 *
11 * - Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * - Redistributions in binary form must reproduce the above
14 * copyright notice, this list of conditions and the following disclaimer
15 * in the documentation and/or other materials provided with the
16 * distribution.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * You can contact the author at :
31 * - LZ4 homepage : http://www.lz4.org
32 * - LZ4 source repository : https://github.com/lz4/lz4
33 */
34
35 /* LZ4F is a stand-alone API to create LZ4-compressed Frames
36 * in full conformance with specification v1.6.1 .
37 * This library rely upon memory management capabilities (malloc, free)
38 * provided either by <stdlib.h>,
39 * or redirected towards another library of user's choice
40 * (see Memory Routines below).
41 */
42
43
44 /*-************************************
45 * Compiler Options
46 **************************************/
47 #ifdef _MSC_VER /* Visual Studio */
48 # pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
49 #endif
50
51
52 /*-************************************
53 * Tuning parameters
54 **************************************/
55 /*
56 * LZ4F_HEAPMODE :
57 * Select how default compression functions will allocate memory for their hash table,
58 * in memory stack (0:default, fastest), or in memory heap (1:requires malloc()).
59 */
60 #ifndef LZ4F_HEAPMODE
61 # define LZ4F_HEAPMODE 0
62 #endif
63
64
65 /*-************************************
66 * Library declarations
67 **************************************/
68 #define LZ4F_STATIC_LINKING_ONLY
69 #include "lz4frame.h"
70 #define LZ4_STATIC_LINKING_ONLY
71 #include "lz4.h"
72 #define LZ4_HC_STATIC_LINKING_ONLY
73 #include "lz4hc.h"
74 #define XXH_STATIC_LINKING_ONLY
75 #include "xxhash.h"
76
77
78 /*-************************************
79 * Memory routines
80 **************************************/
81 /*
82 * User may redirect invocations of
83 * malloc(), calloc() and free()
84 * towards another library or solution of their choice
85 * by modifying below section.
86 **/
87
88 #include <string.h> /* memset, memcpy, memmove */
89 #ifndef LZ4_SRC_INCLUDED /* avoid redefinition when sources are coalesced */
90 # define MEM_INIT(p,v,s) memset((p),(v),(s))
91 #endif
92
93 #ifndef LZ4_SRC_INCLUDED /* avoid redefinition when sources are coalesced */
94 # include <stdlib.h> /* malloc, calloc, free */
95 # define ALLOC(s) malloc(s)
96 # define ALLOC_AND_ZERO(s) calloc(1,(s))
97 # define FREEMEM(p) free(p)
98 #endif
99
LZ4F_calloc(size_t s,LZ4F_CustomMem cmem)100 static void* LZ4F_calloc(size_t s, LZ4F_CustomMem cmem)
101 {
102 /* custom calloc defined : use it */
103 if (cmem.customCalloc != NULL) {
104 return cmem.customCalloc(cmem.opaqueState, s);
105 }
106 /* nothing defined : use default <stdlib.h>'s calloc() */
107 if (cmem.customAlloc == NULL) {
108 return ALLOC_AND_ZERO(s);
109 }
110 /* only custom alloc defined : use it, and combine it with memset() */
111 { void* const p = cmem.customAlloc(cmem.opaqueState, s);
112 if (p != NULL) MEM_INIT(p, 0, s);
113 return p;
114 } }
115
LZ4F_malloc(size_t s,LZ4F_CustomMem cmem)116 static void* LZ4F_malloc(size_t s, LZ4F_CustomMem cmem)
117 {
118 /* custom malloc defined : use it */
119 if (cmem.customAlloc != NULL) {
120 return cmem.customAlloc(cmem.opaqueState, s);
121 }
122 /* nothing defined : use default <stdlib.h>'s malloc() */
123 return ALLOC(s);
124 }
125
LZ4F_free(void * p,LZ4F_CustomMem cmem)126 static void LZ4F_free(void* p, LZ4F_CustomMem cmem)
127 {
128 /* custom malloc defined : use it */
129 if (cmem.customFree != NULL) {
130 cmem.customFree(cmem.opaqueState, p);
131 return;
132 }
133 /* nothing defined : use default <stdlib.h>'s free() */
134 FREEMEM(p);
135 }
136
137
138 /*-************************************
139 * Debug
140 **************************************/
141 #if defined(LZ4_DEBUG) && (LZ4_DEBUG>=1)
142 # include <assert.h>
143 #else
144 # ifndef assert
145 # define assert(condition) ((void)0)
146 # endif
147 #endif
148
149 #define LZ4F_STATIC_ASSERT(c) { enum { LZ4F_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
150
151 #if defined(LZ4_DEBUG) && (LZ4_DEBUG>=2) && !defined(DEBUGLOG)
152 # include <stdio.h>
153 static int g_debuglog_enable = 1;
154 # define DEBUGLOG(l, ...) { \
155 if ((g_debuglog_enable) && (l<=LZ4_DEBUG)) { \
156 fprintf(stderr, __FILE__ ": "); \
157 fprintf(stderr, __VA_ARGS__); \
158 fprintf(stderr, " \n"); \
159 } }
160 #else
161 # define DEBUGLOG(l, ...) {} /* disabled */
162 #endif
163
164
165 /*-************************************
166 * Basic Types
167 **************************************/
168 #if !defined (__VMS) && (defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */) )
169 # include <stdint.h>
170 typedef uint8_t BYTE;
171 typedef uint16_t U16;
172 typedef uint32_t U32;
173 typedef int32_t S32;
174 typedef uint64_t U64;
175 #else
176 typedef unsigned char BYTE;
177 typedef unsigned short U16;
178 typedef unsigned int U32;
179 typedef signed int S32;
180 typedef unsigned long long U64;
181 #endif
182
183
184 /* unoptimized version; solves endianness & alignment issues */
LZ4F_readLE32(const void * src)185 static U32 LZ4F_readLE32 (const void* src)
186 {
187 const BYTE* const srcPtr = (const BYTE*)src;
188 U32 value32 = srcPtr[0];
189 value32 += ((U32)srcPtr[1])<< 8;
190 value32 += ((U32)srcPtr[2])<<16;
191 value32 += ((U32)srcPtr[3])<<24;
192 return value32;
193 }
194
LZ4F_writeLE32(void * dst,U32 value32)195 static void LZ4F_writeLE32 (void* dst, U32 value32)
196 {
197 BYTE* const dstPtr = (BYTE*)dst;
198 dstPtr[0] = (BYTE)value32;
199 dstPtr[1] = (BYTE)(value32 >> 8);
200 dstPtr[2] = (BYTE)(value32 >> 16);
201 dstPtr[3] = (BYTE)(value32 >> 24);
202 }
203
LZ4F_readLE64(const void * src)204 static U64 LZ4F_readLE64 (const void* src)
205 {
206 const BYTE* const srcPtr = (const BYTE*)src;
207 U64 value64 = srcPtr[0];
208 value64 += ((U64)srcPtr[1]<<8);
209 value64 += ((U64)srcPtr[2]<<16);
210 value64 += ((U64)srcPtr[3]<<24);
211 value64 += ((U64)srcPtr[4]<<32);
212 value64 += ((U64)srcPtr[5]<<40);
213 value64 += ((U64)srcPtr[6]<<48);
214 value64 += ((U64)srcPtr[7]<<56);
215 return value64;
216 }
217
LZ4F_writeLE64(void * dst,U64 value64)218 static void LZ4F_writeLE64 (void* dst, U64 value64)
219 {
220 BYTE* const dstPtr = (BYTE*)dst;
221 dstPtr[0] = (BYTE)value64;
222 dstPtr[1] = (BYTE)(value64 >> 8);
223 dstPtr[2] = (BYTE)(value64 >> 16);
224 dstPtr[3] = (BYTE)(value64 >> 24);
225 dstPtr[4] = (BYTE)(value64 >> 32);
226 dstPtr[5] = (BYTE)(value64 >> 40);
227 dstPtr[6] = (BYTE)(value64 >> 48);
228 dstPtr[7] = (BYTE)(value64 >> 56);
229 }
230
231
232 /*-************************************
233 * Constants
234 **************************************/
235 #ifndef LZ4_SRC_INCLUDED /* avoid double definition */
236 # define KB *(1<<10)
237 # define MB *(1<<20)
238 # define GB *(1<<30)
239 #endif
240
241 #define _1BIT 0x01
242 #define _2BITS 0x03
243 #define _3BITS 0x07
244 #define _4BITS 0x0F
245 #define _8BITS 0xFF
246
247 #define LZ4F_BLOCKUNCOMPRESSED_FLAG 0x80000000U
248 #define LZ4F_BLOCKSIZEID_DEFAULT LZ4F_max64KB
249
250 static const size_t minFHSize = LZ4F_HEADER_SIZE_MIN; /* 7 */
251 static const size_t maxFHSize = LZ4F_HEADER_SIZE_MAX; /* 19 */
252 static const size_t BHSize = LZ4F_BLOCK_HEADER_SIZE; /* block header : size, and compress flag */
253 static const size_t BFSize = LZ4F_BLOCK_CHECKSUM_SIZE; /* block footer : checksum (optional) */
254
255
256 /*-************************************
257 * Structures and local types
258 **************************************/
259
260 typedef enum { LZ4B_COMPRESSED, LZ4B_UNCOMPRESSED} LZ4F_blockCompression_t;
261
262 typedef struct LZ4F_cctx_s
263 {
264 LZ4F_CustomMem cmem;
265 LZ4F_preferences_t prefs;
266 U32 version;
267 U32 cStage;
268 const LZ4F_CDict* cdict;
269 size_t maxBlockSize;
270 size_t maxBufferSize;
271 BYTE* tmpBuff; /* internal buffer, for streaming */
272 BYTE* tmpIn; /* starting position of data compress within internal buffer (>= tmpBuff) */
273 size_t tmpInSize; /* amount of data to compress after tmpIn */
274 U64 totalInSize;
275 XXH32_state_t xxh;
276 void* lz4CtxPtr;
277 U16 lz4CtxAlloc; /* sized for: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */
278 U16 lz4CtxState; /* in use as: 0 = none, 1 = lz4 ctx, 2 = lz4hc ctx */
279 LZ4F_blockCompression_t blockCompression;
280 } LZ4F_cctx_t;
281
282
283 /*-************************************
284 * Error management
285 **************************************/
286 #define LZ4F_GENERATE_STRING(STRING) #STRING,
287 static const char* LZ4F_errorStrings[] = { LZ4F_LIST_ERRORS(LZ4F_GENERATE_STRING) };
288
289
LZ4F_isError(LZ4F_errorCode_t code)290 unsigned LZ4F_isError(LZ4F_errorCode_t code)
291 {
292 return (code > (LZ4F_errorCode_t)(-LZ4F_ERROR_maxCode));
293 }
294
LZ4F_getErrorName(LZ4F_errorCode_t code)295 const char* LZ4F_getErrorName(LZ4F_errorCode_t code)
296 {
297 static const char* codeError = "Unspecified error code";
298 if (LZ4F_isError(code)) return LZ4F_errorStrings[-(int)(code)];
299 return codeError;
300 }
301
LZ4F_getErrorCode(size_t functionResult)302 LZ4F_errorCodes LZ4F_getErrorCode(size_t functionResult)
303 {
304 if (!LZ4F_isError(functionResult)) return LZ4F_OK_NoError;
305 return (LZ4F_errorCodes)(-(ptrdiff_t)functionResult);
306 }
307
LZ4F_returnErrorCode(LZ4F_errorCodes code)308 static LZ4F_errorCode_t LZ4F_returnErrorCode(LZ4F_errorCodes code)
309 {
310 /* A compilation error here means sizeof(ptrdiff_t) is not large enough */
311 LZ4F_STATIC_ASSERT(sizeof(ptrdiff_t) >= sizeof(size_t));
312 return (LZ4F_errorCode_t)-(ptrdiff_t)code;
313 }
314
315 #define RETURN_ERROR(e) return LZ4F_returnErrorCode(LZ4F_ERROR_ ## e)
316
317 #define RETURN_ERROR_IF(c,e) if (c) RETURN_ERROR(e)
318
319 #define FORWARD_IF_ERROR(r) if (LZ4F_isError(r)) return (r)
320
LZ4F_getVersion(void)321 unsigned LZ4F_getVersion(void) { return LZ4F_VERSION; }
322
LZ4F_compressionLevel_max(void)323 int LZ4F_compressionLevel_max(void) { return LZ4HC_CLEVEL_MAX; }
324
LZ4F_getBlockSize(LZ4F_blockSizeID_t blockSizeID)325 size_t LZ4F_getBlockSize(LZ4F_blockSizeID_t blockSizeID)
326 {
327 static const size_t blockSizes[4] = { 64 KB, 256 KB, 1 MB, 4 MB };
328
329 if (blockSizeID == 0) blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT;
330 if (blockSizeID < LZ4F_max64KB || blockSizeID > LZ4F_max4MB)
331 RETURN_ERROR(maxBlockSize_invalid);
332 { int const blockSizeIdx = (int)blockSizeID - (int)LZ4F_max64KB;
333 return blockSizes[blockSizeIdx];
334 } }
335
336 /*-************************************
337 * Private functions
338 **************************************/
339 #define MIN(a,b) ( (a) < (b) ? (a) : (b) )
340
LZ4F_headerChecksum(const void * header,size_t length)341 static BYTE LZ4F_headerChecksum (const void* header, size_t length)
342 {
343 U32 const xxh = XXH32(header, length, 0);
344 return (BYTE)(xxh >> 8);
345 }
346
347
348 /*-************************************
349 * Simple-pass compression functions
350 **************************************/
LZ4F_optimalBSID(const LZ4F_blockSizeID_t requestedBSID,const size_t srcSize)351 static LZ4F_blockSizeID_t LZ4F_optimalBSID(const LZ4F_blockSizeID_t requestedBSID,
352 const size_t srcSize)
353 {
354 LZ4F_blockSizeID_t proposedBSID = LZ4F_max64KB;
355 size_t maxBlockSize = 64 KB;
356 while (requestedBSID > proposedBSID) {
357 if (srcSize <= maxBlockSize)
358 return proposedBSID;
359 proposedBSID = (LZ4F_blockSizeID_t)((int)proposedBSID + 1);
360 maxBlockSize <<= 2;
361 }
362 return requestedBSID;
363 }
364
365 /*! LZ4F_compressBound_internal() :
366 * Provides dstCapacity given a srcSize to guarantee operation success in worst case situations.
367 * prefsPtr is optional : if NULL is provided, preferences will be set to cover worst case scenario.
368 * @return is always the same for a srcSize and prefsPtr, so it can be relied upon to size reusable buffers.
369 * When srcSize==0, LZ4F_compressBound() provides an upper bound for LZ4F_flush() and LZ4F_compressEnd() operations.
370 */
LZ4F_compressBound_internal(size_t srcSize,const LZ4F_preferences_t * preferencesPtr,size_t alreadyBuffered)371 static size_t LZ4F_compressBound_internal(size_t srcSize,
372 const LZ4F_preferences_t* preferencesPtr,
373 size_t alreadyBuffered)
374 {
375 LZ4F_preferences_t prefsNull = LZ4F_INIT_PREFERENCES;
376 prefsNull.frameInfo.contentChecksumFlag = LZ4F_contentChecksumEnabled; /* worst case */
377 prefsNull.frameInfo.blockChecksumFlag = LZ4F_blockChecksumEnabled; /* worst case */
378 { const LZ4F_preferences_t* const prefsPtr = (preferencesPtr==NULL) ? &prefsNull : preferencesPtr;
379 U32 const flush = prefsPtr->autoFlush | (srcSize==0);
380 LZ4F_blockSizeID_t const blockID = prefsPtr->frameInfo.blockSizeID;
381 size_t const blockSize = LZ4F_getBlockSize(blockID);
382 size_t const maxBuffered = blockSize - 1;
383 size_t const bufferedSize = MIN(alreadyBuffered, maxBuffered);
384 size_t const maxSrcSize = srcSize + bufferedSize;
385 unsigned const nbFullBlocks = (unsigned)(maxSrcSize / blockSize);
386 size_t const partialBlockSize = maxSrcSize & (blockSize-1);
387 size_t const lastBlockSize = flush ? partialBlockSize : 0;
388 unsigned const nbBlocks = nbFullBlocks + (lastBlockSize>0);
389
390 size_t const blockCRCSize = BFSize * prefsPtr->frameInfo.blockChecksumFlag;
391 size_t const frameEnd = BHSize + (prefsPtr->frameInfo.contentChecksumFlag*BFSize);
392
393 return ((BHSize + blockCRCSize) * nbBlocks) +
394 (blockSize * nbFullBlocks) + lastBlockSize + frameEnd;
395 }
396 }
397
LZ4F_compressFrameBound(size_t srcSize,const LZ4F_preferences_t * preferencesPtr)398 size_t LZ4F_compressFrameBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr)
399 {
400 LZ4F_preferences_t prefs;
401 size_t const headerSize = maxFHSize; /* max header size, including optional fields */
402
403 if (preferencesPtr!=NULL) prefs = *preferencesPtr;
404 else MEM_INIT(&prefs, 0, sizeof(prefs));
405 prefs.autoFlush = 1;
406
407 return headerSize + LZ4F_compressBound_internal(srcSize, &prefs, 0);;
408 }
409
410
411 /*! LZ4F_compressFrame_usingCDict() :
412 * Compress srcBuffer using a dictionary, in a single step.
413 * cdict can be NULL, in which case, no dictionary is used.
414 * dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr).
415 * The LZ4F_preferences_t structure is optional : you may provide NULL as argument,
416 * however, it's the only way to provide a dictID, so it's not recommended.
417 * @return : number of bytes written into dstBuffer,
418 * or an error code if it fails (can be tested using LZ4F_isError())
419 */
LZ4F_compressFrame_usingCDict(LZ4F_cctx * cctx,void * dstBuffer,size_t dstCapacity,const void * srcBuffer,size_t srcSize,const LZ4F_CDict * cdict,const LZ4F_preferences_t * preferencesPtr)420 size_t LZ4F_compressFrame_usingCDict(LZ4F_cctx* cctx,
421 void* dstBuffer, size_t dstCapacity,
422 const void* srcBuffer, size_t srcSize,
423 const LZ4F_CDict* cdict,
424 const LZ4F_preferences_t* preferencesPtr)
425 {
426 LZ4F_preferences_t prefs;
427 LZ4F_compressOptions_t options;
428 BYTE* const dstStart = (BYTE*) dstBuffer;
429 BYTE* dstPtr = dstStart;
430 BYTE* const dstEnd = dstStart + dstCapacity;
431
432 if (preferencesPtr!=NULL)
433 prefs = *preferencesPtr;
434 else
435 MEM_INIT(&prefs, 0, sizeof(prefs));
436 if (prefs.frameInfo.contentSize != 0)
437 prefs.frameInfo.contentSize = (U64)srcSize; /* auto-correct content size if selected (!=0) */
438
439 prefs.frameInfo.blockSizeID = LZ4F_optimalBSID(prefs.frameInfo.blockSizeID, srcSize);
440 prefs.autoFlush = 1;
441 if (srcSize <= LZ4F_getBlockSize(prefs.frameInfo.blockSizeID))
442 prefs.frameInfo.blockMode = LZ4F_blockIndependent; /* only one block => no need for inter-block link */
443
444 MEM_INIT(&options, 0, sizeof(options));
445 options.stableSrc = 1;
446
447 RETURN_ERROR_IF(dstCapacity < LZ4F_compressFrameBound(srcSize, &prefs), dstMaxSize_tooSmall);
448
449 { size_t const headerSize = LZ4F_compressBegin_usingCDict(cctx, dstBuffer, dstCapacity, cdict, &prefs); /* write header */
450 FORWARD_IF_ERROR(headerSize);
451 dstPtr += headerSize; /* header size */ }
452
453 assert(dstEnd >= dstPtr);
454 { size_t const cSize = LZ4F_compressUpdate(cctx, dstPtr, (size_t)(dstEnd-dstPtr), srcBuffer, srcSize, &options);
455 FORWARD_IF_ERROR(cSize);
456 dstPtr += cSize; }
457
458 assert(dstEnd >= dstPtr);
459 { size_t const tailSize = LZ4F_compressEnd(cctx, dstPtr, (size_t)(dstEnd-dstPtr), &options); /* flush last block, and generate suffix */
460 FORWARD_IF_ERROR(tailSize);
461 dstPtr += tailSize; }
462
463 assert(dstEnd >= dstStart);
464 return (size_t)(dstPtr - dstStart);
465 }
466
467
468 /*! LZ4F_compressFrame() :
469 * Compress an entire srcBuffer into a valid LZ4 frame, in a single step.
470 * dstBuffer MUST be >= LZ4F_compressFrameBound(srcSize, preferencesPtr).
471 * The LZ4F_preferences_t structure is optional : you can provide NULL as argument. All preferences will be set to default.
472 * @return : number of bytes written into dstBuffer.
473 * or an error code if it fails (can be tested using LZ4F_isError())
474 */
LZ4F_compressFrame(void * dstBuffer,size_t dstCapacity,const void * srcBuffer,size_t srcSize,const LZ4F_preferences_t * preferencesPtr)475 size_t LZ4F_compressFrame(void* dstBuffer, size_t dstCapacity,
476 const void* srcBuffer, size_t srcSize,
477 const LZ4F_preferences_t* preferencesPtr)
478 {
479 size_t result;
480 #if (LZ4F_HEAPMODE)
481 LZ4F_cctx_t* cctxPtr;
482 result = LZ4F_createCompressionContext(&cctxPtr, LZ4F_VERSION);
483 FORWARD_IF_ERROR(result);
484 #else
485 LZ4F_cctx_t cctx;
486 LZ4_stream_t lz4ctx;
487 LZ4F_cctx_t* const cctxPtr = &cctx;
488
489 MEM_INIT(&cctx, 0, sizeof(cctx));
490 cctx.version = LZ4F_VERSION;
491 cctx.maxBufferSize = 5 MB; /* mess with real buffer size to prevent dynamic allocation; works only because autoflush==1 & stableSrc==1 */
492 if ( preferencesPtr == NULL
493 || preferencesPtr->compressionLevel < LZ4HC_CLEVEL_MIN ) {
494 LZ4_initStream(&lz4ctx, sizeof(lz4ctx));
495 cctxPtr->lz4CtxPtr = &lz4ctx;
496 cctxPtr->lz4CtxAlloc = 1;
497 cctxPtr->lz4CtxState = 1;
498 }
499 #endif
500 DEBUGLOG(4, "LZ4F_compressFrame");
501
502 result = LZ4F_compressFrame_usingCDict(cctxPtr, dstBuffer, dstCapacity,
503 srcBuffer, srcSize,
504 NULL, preferencesPtr);
505
506 #if (LZ4F_HEAPMODE)
507 LZ4F_freeCompressionContext(cctxPtr);
508 #else
509 if ( preferencesPtr != NULL
510 && preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN ) {
511 LZ4F_free(cctxPtr->lz4CtxPtr, cctxPtr->cmem);
512 }
513 #endif
514 return result;
515 }
516
517
518 /*-***************************************************
519 * Dictionary compression
520 *****************************************************/
521
522 struct LZ4F_CDict_s {
523 LZ4F_CustomMem cmem;
524 void* dictContent;
525 LZ4_stream_t* fastCtx;
526 LZ4_streamHC_t* HCCtx;
527 }; /* typedef'd to LZ4F_CDict within lz4frame_static.h */
528
529 LZ4F_CDict*
LZ4F_createCDict_advanced(LZ4F_CustomMem cmem,const void * dictBuffer,size_t dictSize)530 LZ4F_createCDict_advanced(LZ4F_CustomMem cmem, const void* dictBuffer, size_t dictSize)
531 {
532 const char* dictStart = (const char*)dictBuffer;
533 LZ4F_CDict* const cdict = (LZ4F_CDict*)LZ4F_malloc(sizeof(*cdict), cmem);
534 DEBUGLOG(4, "LZ4F_createCDict_advanced");
535 if (!cdict) return NULL;
536 cdict->cmem = cmem;
537 if (dictSize > 64 KB) {
538 dictStart += dictSize - 64 KB;
539 dictSize = 64 KB;
540 }
541 cdict->dictContent = LZ4F_malloc(dictSize, cmem);
542 cdict->fastCtx = (LZ4_stream_t*)LZ4F_malloc(sizeof(LZ4_stream_t), cmem);
543 if (cdict->fastCtx)
544 LZ4_initStream(cdict->fastCtx, sizeof(LZ4_stream_t));
545 cdict->HCCtx = (LZ4_streamHC_t*)LZ4F_malloc(sizeof(LZ4_streamHC_t), cmem);
546 if (cdict->HCCtx)
547 LZ4_initStream(cdict->HCCtx, sizeof(LZ4_streamHC_t));
548 if (!cdict->dictContent || !cdict->fastCtx || !cdict->HCCtx) {
549 LZ4F_freeCDict(cdict);
550 return NULL;
551 }
552 memcpy(cdict->dictContent, dictStart, dictSize);
553 LZ4_loadDict (cdict->fastCtx, (const char*)cdict->dictContent, (int)dictSize);
554 LZ4_setCompressionLevel(cdict->HCCtx, LZ4HC_CLEVEL_DEFAULT);
555 LZ4_loadDictHC(cdict->HCCtx, (const char*)cdict->dictContent, (int)dictSize);
556 return cdict;
557 }
558
559 /*! LZ4F_createCDict() :
560 * When compressing multiple messages / blocks with the same dictionary, it's recommended to load it just once.
561 * LZ4F_createCDict() will create a digested dictionary, ready to start future compression operations without startup delay.
562 * LZ4F_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only.
563 * @dictBuffer can be released after LZ4F_CDict creation, since its content is copied within CDict
564 * @return : digested dictionary for compression, or NULL if failed */
LZ4F_createCDict(const void * dictBuffer,size_t dictSize)565 LZ4F_CDict* LZ4F_createCDict(const void* dictBuffer, size_t dictSize)
566 {
567 DEBUGLOG(4, "LZ4F_createCDict");
568 return LZ4F_createCDict_advanced(LZ4F_defaultCMem, dictBuffer, dictSize);
569 }
570
LZ4F_freeCDict(LZ4F_CDict * cdict)571 void LZ4F_freeCDict(LZ4F_CDict* cdict)
572 {
573 if (cdict==NULL) return; /* support free on NULL */
574 LZ4F_free(cdict->dictContent, cdict->cmem);
575 LZ4F_free(cdict->fastCtx, cdict->cmem);
576 LZ4F_free(cdict->HCCtx, cdict->cmem);
577 LZ4F_free(cdict, cdict->cmem);
578 }
579
580
581 /*-*********************************
582 * Advanced compression functions
583 ***********************************/
584
585 LZ4F_cctx*
LZ4F_createCompressionContext_advanced(LZ4F_CustomMem customMem,unsigned version)586 LZ4F_createCompressionContext_advanced(LZ4F_CustomMem customMem, unsigned version)
587 {
588 LZ4F_cctx* const cctxPtr =
589 (LZ4F_cctx*)LZ4F_calloc(sizeof(LZ4F_cctx), customMem);
590 if (cctxPtr==NULL) return NULL;
591
592 cctxPtr->cmem = customMem;
593 cctxPtr->version = version;
594 cctxPtr->cStage = 0; /* Uninitialized. Next stage : init cctx */
595
596 return cctxPtr;
597 }
598
599 /*! LZ4F_createCompressionContext() :
600 * The first thing to do is to create a compressionContext object, which will be used in all compression operations.
601 * This is achieved using LZ4F_createCompressionContext(), which takes as argument a version and an LZ4F_preferences_t structure.
602 * The version provided MUST be LZ4F_VERSION. It is intended to track potential incompatible differences between different binaries.
603 * The function will provide a pointer to an allocated LZ4F_compressionContext_t object.
604 * If the result LZ4F_errorCode_t is not OK_NoError, there was an error during context creation.
605 * Object can release its memory using LZ4F_freeCompressionContext();
606 **/
607 LZ4F_errorCode_t
LZ4F_createCompressionContext(LZ4F_cctx ** LZ4F_compressionContextPtr,unsigned version)608 LZ4F_createCompressionContext(LZ4F_cctx** LZ4F_compressionContextPtr, unsigned version)
609 {
610 assert(LZ4F_compressionContextPtr != NULL); /* considered a violation of narrow contract */
611 /* in case it nonetheless happen in production */
612 RETURN_ERROR_IF(LZ4F_compressionContextPtr == NULL, parameter_null);
613
614 *LZ4F_compressionContextPtr = LZ4F_createCompressionContext_advanced(LZ4F_defaultCMem, version);
615 RETURN_ERROR_IF(*LZ4F_compressionContextPtr==NULL, allocation_failed);
616 return LZ4F_OK_NoError;
617 }
618
619
LZ4F_freeCompressionContext(LZ4F_cctx * cctxPtr)620 LZ4F_errorCode_t LZ4F_freeCompressionContext(LZ4F_cctx* cctxPtr)
621 {
622 if (cctxPtr != NULL) { /* support free on NULL */
623 LZ4F_free(cctxPtr->lz4CtxPtr, cctxPtr->cmem); /* note: LZ4_streamHC_t and LZ4_stream_t are simple POD types */
624 LZ4F_free(cctxPtr->tmpBuff, cctxPtr->cmem);
625 LZ4F_free(cctxPtr, cctxPtr->cmem);
626 }
627 return LZ4F_OK_NoError;
628 }
629
630
631 /**
632 * This function prepares the internal LZ4(HC) stream for a new compression,
633 * resetting the context and attaching the dictionary, if there is one.
634 *
635 * It needs to be called at the beginning of each independent compression
636 * stream (i.e., at the beginning of a frame in blockLinked mode, or at the
637 * beginning of each block in blockIndependent mode).
638 */
LZ4F_initStream(void * ctx,const LZ4F_CDict * cdict,int level,LZ4F_blockMode_t blockMode)639 static void LZ4F_initStream(void* ctx,
640 const LZ4F_CDict* cdict,
641 int level,
642 LZ4F_blockMode_t blockMode) {
643 if (level < LZ4HC_CLEVEL_MIN) {
644 if (cdict != NULL || blockMode == LZ4F_blockLinked) {
645 /* In these cases, we will call LZ4_compress_fast_continue(),
646 * which needs an already reset context. Otherwise, we'll call a
647 * one-shot API. The non-continued APIs internally perform their own
648 * resets at the beginning of their calls, where they know what
649 * tableType they need the context to be in. So in that case this
650 * would be misguided / wasted work. */
651 LZ4_resetStream_fast((LZ4_stream_t*)ctx);
652 }
653 LZ4_attach_dictionary((LZ4_stream_t *)ctx, cdict ? cdict->fastCtx : NULL);
654 } else {
655 LZ4_resetStreamHC_fast((LZ4_streamHC_t*)ctx, level);
656 LZ4_attach_HC_dictionary((LZ4_streamHC_t *)ctx, cdict ? cdict->HCCtx : NULL);
657 }
658 }
659
ctxTypeID_to_size(int ctxTypeID)660 static int ctxTypeID_to_size(int ctxTypeID) {
661 switch(ctxTypeID) {
662 case 1:
663 return LZ4_sizeofState();
664 case 2:
665 return LZ4_sizeofStateHC();
666 default:
667 return 0;
668 }
669 }
670
671 /*! LZ4F_compressBegin_usingCDict() :
672 * init streaming compression AND writes frame header into @dstBuffer.
673 * @dstCapacity must be >= LZ4F_HEADER_SIZE_MAX bytes.
674 * @return : number of bytes written into @dstBuffer for the header
675 * or an error code (can be tested using LZ4F_isError())
676 */
LZ4F_compressBegin_usingCDict(LZ4F_cctx * cctxPtr,void * dstBuffer,size_t dstCapacity,const LZ4F_CDict * cdict,const LZ4F_preferences_t * preferencesPtr)677 size_t LZ4F_compressBegin_usingCDict(LZ4F_cctx* cctxPtr,
678 void* dstBuffer, size_t dstCapacity,
679 const LZ4F_CDict* cdict,
680 const LZ4F_preferences_t* preferencesPtr)
681 {
682 LZ4F_preferences_t const prefNull = LZ4F_INIT_PREFERENCES;
683 BYTE* const dstStart = (BYTE*)dstBuffer;
684 BYTE* dstPtr = dstStart;
685
686 RETURN_ERROR_IF(dstCapacity < maxFHSize, dstMaxSize_tooSmall);
687 if (preferencesPtr == NULL) preferencesPtr = &prefNull;
688 cctxPtr->prefs = *preferencesPtr;
689
690 /* cctx Management */
691 { U16 const ctxTypeID = (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) ? 1 : 2;
692 int requiredSize = ctxTypeID_to_size(ctxTypeID);
693 int allocatedSize = ctxTypeID_to_size(cctxPtr->lz4CtxAlloc);
694 if (allocatedSize < requiredSize) {
695 /* not enough space allocated */
696 LZ4F_free(cctxPtr->lz4CtxPtr, cctxPtr->cmem);
697 if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) {
698 /* must take ownership of memory allocation,
699 * in order to respect custom allocator contract */
700 cctxPtr->lz4CtxPtr = LZ4F_malloc(sizeof(LZ4_stream_t), cctxPtr->cmem);
701 if (cctxPtr->lz4CtxPtr)
702 LZ4_initStream(cctxPtr->lz4CtxPtr, sizeof(LZ4_stream_t));
703 } else {
704 cctxPtr->lz4CtxPtr = LZ4F_malloc(sizeof(LZ4_streamHC_t), cctxPtr->cmem);
705 if (cctxPtr->lz4CtxPtr)
706 LZ4_initStreamHC(cctxPtr->lz4CtxPtr, sizeof(LZ4_streamHC_t));
707 }
708 RETURN_ERROR_IF(cctxPtr->lz4CtxPtr == NULL, allocation_failed);
709 cctxPtr->lz4CtxAlloc = ctxTypeID;
710 cctxPtr->lz4CtxState = ctxTypeID;
711 } else if (cctxPtr->lz4CtxState != ctxTypeID) {
712 /* otherwise, a sufficient buffer is already allocated,
713 * but we need to reset it to the correct context type */
714 if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN) {
715 LZ4_initStream((LZ4_stream_t*)cctxPtr->lz4CtxPtr, sizeof(LZ4_stream_t));
716 } else {
717 LZ4_initStreamHC((LZ4_streamHC_t*)cctxPtr->lz4CtxPtr, sizeof(LZ4_streamHC_t));
718 LZ4_setCompressionLevel((LZ4_streamHC_t*)cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel);
719 }
720 cctxPtr->lz4CtxState = ctxTypeID;
721 } }
722
723 /* Buffer Management */
724 if (cctxPtr->prefs.frameInfo.blockSizeID == 0)
725 cctxPtr->prefs.frameInfo.blockSizeID = LZ4F_BLOCKSIZEID_DEFAULT;
726 cctxPtr->maxBlockSize = LZ4F_getBlockSize(cctxPtr->prefs.frameInfo.blockSizeID);
727
728 { size_t const requiredBuffSize = preferencesPtr->autoFlush ?
729 ((cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) ? 64 KB : 0) : /* only needs past data up to window size */
730 cctxPtr->maxBlockSize + ((cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) ? 128 KB : 0);
731
732 if (cctxPtr->maxBufferSize < requiredBuffSize) {
733 cctxPtr->maxBufferSize = 0;
734 LZ4F_free(cctxPtr->tmpBuff, cctxPtr->cmem);
735 cctxPtr->tmpBuff = (BYTE*)LZ4F_calloc(requiredBuffSize, cctxPtr->cmem);
736 RETURN_ERROR_IF(cctxPtr->tmpBuff == NULL, allocation_failed);
737 cctxPtr->maxBufferSize = requiredBuffSize;
738 } }
739 cctxPtr->tmpIn = cctxPtr->tmpBuff;
740 cctxPtr->tmpInSize = 0;
741 (void)XXH32_reset(&(cctxPtr->xxh), 0);
742
743 /* context init */
744 cctxPtr->cdict = cdict;
745 if (cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked) {
746 /* frame init only for blockLinked : blockIndependent will be init at each block */
747 LZ4F_initStream(cctxPtr->lz4CtxPtr, cdict, cctxPtr->prefs.compressionLevel, LZ4F_blockLinked);
748 }
749 if (preferencesPtr->compressionLevel >= LZ4HC_CLEVEL_MIN) {
750 LZ4_favorDecompressionSpeed((LZ4_streamHC_t*)cctxPtr->lz4CtxPtr, (int)preferencesPtr->favorDecSpeed);
751 }
752
753 /* Magic Number */
754 LZ4F_writeLE32(dstPtr, LZ4F_MAGICNUMBER);
755 dstPtr += 4;
756 { BYTE* const headerStart = dstPtr;
757
758 /* FLG Byte */
759 *dstPtr++ = (BYTE)(((1 & _2BITS) << 6) /* Version('01') */
760 + ((cctxPtr->prefs.frameInfo.blockMode & _1BIT ) << 5)
761 + ((cctxPtr->prefs.frameInfo.blockChecksumFlag & _1BIT ) << 4)
762 + ((unsigned)(cctxPtr->prefs.frameInfo.contentSize > 0) << 3)
763 + ((cctxPtr->prefs.frameInfo.contentChecksumFlag & _1BIT ) << 2)
764 + (cctxPtr->prefs.frameInfo.dictID > 0) );
765 /* BD Byte */
766 *dstPtr++ = (BYTE)((cctxPtr->prefs.frameInfo.blockSizeID & _3BITS) << 4);
767 /* Optional Frame content size field */
768 if (cctxPtr->prefs.frameInfo.contentSize) {
769 LZ4F_writeLE64(dstPtr, cctxPtr->prefs.frameInfo.contentSize);
770 dstPtr += 8;
771 cctxPtr->totalInSize = 0;
772 }
773 /* Optional dictionary ID field */
774 if (cctxPtr->prefs.frameInfo.dictID) {
775 LZ4F_writeLE32(dstPtr, cctxPtr->prefs.frameInfo.dictID);
776 dstPtr += 4;
777 }
778 /* Header CRC Byte */
779 *dstPtr = LZ4F_headerChecksum(headerStart, (size_t)(dstPtr - headerStart));
780 dstPtr++;
781 }
782
783 cctxPtr->cStage = 1; /* header written, now request input data block */
784 return (size_t)(dstPtr - dstStart);
785 }
786
787
788 /*! LZ4F_compressBegin() :
789 * init streaming compression AND writes frame header into @dstBuffer.
790 * @dstCapacity must be >= LZ4F_HEADER_SIZE_MAX bytes.
791 * @preferencesPtr can be NULL, in which case default parameters are selected.
792 * @return : number of bytes written into dstBuffer for the header
793 * or an error code (can be tested using LZ4F_isError())
794 */
LZ4F_compressBegin(LZ4F_cctx * cctxPtr,void * dstBuffer,size_t dstCapacity,const LZ4F_preferences_t * preferencesPtr)795 size_t LZ4F_compressBegin(LZ4F_cctx* cctxPtr,
796 void* dstBuffer, size_t dstCapacity,
797 const LZ4F_preferences_t* preferencesPtr)
798 {
799 return LZ4F_compressBegin_usingCDict(cctxPtr, dstBuffer, dstCapacity,
800 NULL, preferencesPtr);
801 }
802
803
804 /* LZ4F_compressBound() :
805 * @return minimum capacity of dstBuffer for a given srcSize to handle worst case scenario.
806 * LZ4F_preferences_t structure is optional : if NULL, preferences will be set to cover worst case scenario.
807 * This function cannot fail.
808 */
LZ4F_compressBound(size_t srcSize,const LZ4F_preferences_t * preferencesPtr)809 size_t LZ4F_compressBound(size_t srcSize, const LZ4F_preferences_t* preferencesPtr)
810 {
811 if (preferencesPtr && preferencesPtr->autoFlush) {
812 return LZ4F_compressBound_internal(srcSize, preferencesPtr, 0);
813 }
814 return LZ4F_compressBound_internal(srcSize, preferencesPtr, (size_t)-1);
815 }
816
817
818 typedef int (*compressFunc_t)(void* ctx, const char* src, char* dst, int srcSize, int dstSize, int level, const LZ4F_CDict* cdict);
819
820
821 /*! LZ4F_makeBlock():
822 * compress a single block, add header and optional checksum.
823 * assumption : dst buffer capacity is >= BHSize + srcSize + crcSize
824 */
LZ4F_makeBlock(void * dst,const void * src,size_t srcSize,compressFunc_t compress,void * lz4ctx,int level,const LZ4F_CDict * cdict,LZ4F_blockChecksum_t crcFlag)825 static size_t LZ4F_makeBlock(void* dst,
826 const void* src, size_t srcSize,
827 compressFunc_t compress, void* lz4ctx, int level,
828 const LZ4F_CDict* cdict,
829 LZ4F_blockChecksum_t crcFlag)
830 {
831 BYTE* const cSizePtr = (BYTE*)dst;
832 U32 cSize;
833 assert(compress != NULL);
834 cSize = (U32)compress(lz4ctx, (const char*)src, (char*)(cSizePtr+BHSize),
835 (int)(srcSize), (int)(srcSize-1),
836 level, cdict);
837
838 if (cSize == 0 || cSize >= srcSize) {
839 cSize = (U32)srcSize;
840 LZ4F_writeLE32(cSizePtr, cSize | LZ4F_BLOCKUNCOMPRESSED_FLAG);
841 memcpy(cSizePtr+BHSize, src, srcSize);
842 } else {
843 LZ4F_writeLE32(cSizePtr, cSize);
844 }
845 if (crcFlag) {
846 U32 const crc32 = XXH32(cSizePtr+BHSize, cSize, 0); /* checksum of compressed data */
847 LZ4F_writeLE32(cSizePtr+BHSize+cSize, crc32);
848 }
849 return BHSize + cSize + ((U32)crcFlag)*BFSize;
850 }
851
852
LZ4F_compressBlock(void * ctx,const char * src,char * dst,int srcSize,int dstCapacity,int level,const LZ4F_CDict * cdict)853 static int LZ4F_compressBlock(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
854 {
855 int const acceleration = (level < 0) ? -level + 1 : 1;
856 DEBUGLOG(5, "LZ4F_compressBlock (srcSize=%i)", srcSize);
857 LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent);
858 if (cdict) {
859 return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration);
860 } else {
861 return LZ4_compress_fast_extState_fastReset(ctx, src, dst, srcSize, dstCapacity, acceleration);
862 }
863 }
864
LZ4F_compressBlock_continue(void * ctx,const char * src,char * dst,int srcSize,int dstCapacity,int level,const LZ4F_CDict * cdict)865 static int LZ4F_compressBlock_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
866 {
867 int const acceleration = (level < 0) ? -level + 1 : 1;
868 (void)cdict; /* init once at beginning of frame */
869 DEBUGLOG(5, "LZ4F_compressBlock_continue (srcSize=%i)", srcSize);
870 return LZ4_compress_fast_continue((LZ4_stream_t*)ctx, src, dst, srcSize, dstCapacity, acceleration);
871 }
872
LZ4F_compressBlockHC(void * ctx,const char * src,char * dst,int srcSize,int dstCapacity,int level,const LZ4F_CDict * cdict)873 static int LZ4F_compressBlockHC(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
874 {
875 LZ4F_initStream(ctx, cdict, level, LZ4F_blockIndependent);
876 if (cdict) {
877 return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity);
878 }
879 return LZ4_compress_HC_extStateHC_fastReset(ctx, src, dst, srcSize, dstCapacity, level);
880 }
881
LZ4F_compressBlockHC_continue(void * ctx,const char * src,char * dst,int srcSize,int dstCapacity,int level,const LZ4F_CDict * cdict)882 static int LZ4F_compressBlockHC_continue(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
883 {
884 (void)level; (void)cdict; /* init once at beginning of frame */
885 return LZ4_compress_HC_continue((LZ4_streamHC_t*)ctx, src, dst, srcSize, dstCapacity);
886 }
887
LZ4F_doNotCompressBlock(void * ctx,const char * src,char * dst,int srcSize,int dstCapacity,int level,const LZ4F_CDict * cdict)888 static int LZ4F_doNotCompressBlock(void* ctx, const char* src, char* dst, int srcSize, int dstCapacity, int level, const LZ4F_CDict* cdict)
889 {
890 (void)ctx; (void)src; (void)dst; (void)srcSize; (void)dstCapacity; (void)level; (void)cdict;
891 return 0;
892 }
893
LZ4F_selectCompression(LZ4F_blockMode_t blockMode,int level,LZ4F_blockCompression_t compressMode)894 static compressFunc_t LZ4F_selectCompression(LZ4F_blockMode_t blockMode, int level, LZ4F_blockCompression_t compressMode)
895 {
896 if (compressMode == LZ4B_UNCOMPRESSED) return LZ4F_doNotCompressBlock;
897 if (level < LZ4HC_CLEVEL_MIN) {
898 if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlock;
899 return LZ4F_compressBlock_continue;
900 }
901 if (blockMode == LZ4F_blockIndependent) return LZ4F_compressBlockHC;
902 return LZ4F_compressBlockHC_continue;
903 }
904
905 /* Save history (up to 64KB) into @tmpBuff */
LZ4F_localSaveDict(LZ4F_cctx_t * cctxPtr)906 static int LZ4F_localSaveDict(LZ4F_cctx_t* cctxPtr)
907 {
908 if (cctxPtr->prefs.compressionLevel < LZ4HC_CLEVEL_MIN)
909 return LZ4_saveDict ((LZ4_stream_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB);
910 return LZ4_saveDictHC ((LZ4_streamHC_t*)(cctxPtr->lz4CtxPtr), (char*)(cctxPtr->tmpBuff), 64 KB);
911 }
912
913 typedef enum { notDone, fromTmpBuffer, fromSrcBuffer } LZ4F_lastBlockStatus;
914
915 static const LZ4F_compressOptions_t k_cOptionsNull = { 0, { 0, 0, 0 } };
916
917
918 /*! LZ4F_compressUpdateImpl() :
919 * LZ4F_compressUpdate() can be called repetitively to compress as much data as necessary.
920 * When successful, the function always entirely consumes @srcBuffer.
921 * src data is either buffered or compressed into @dstBuffer.
922 * If the block compression does not match the compression of the previous block, the old data is flushed
923 * and operations continue with the new compression mode.
924 * @dstCapacity MUST be >= LZ4F_compressBound(srcSize, preferencesPtr) when block compression is turned on.
925 * @compressOptionsPtr is optional : provide NULL to mean "default".
926 * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered.
927 * or an error code if it fails (which can be tested using LZ4F_isError())
928 * After an error, the state is left in a UB state, and must be re-initialized.
929 */
LZ4F_compressUpdateImpl(LZ4F_cctx * cctxPtr,void * dstBuffer,size_t dstCapacity,const void * srcBuffer,size_t srcSize,const LZ4F_compressOptions_t * compressOptionsPtr,LZ4F_blockCompression_t blockCompression)930 static size_t LZ4F_compressUpdateImpl(LZ4F_cctx* cctxPtr,
931 void* dstBuffer, size_t dstCapacity,
932 const void* srcBuffer, size_t srcSize,
933 const LZ4F_compressOptions_t* compressOptionsPtr,
934 LZ4F_blockCompression_t blockCompression)
935 {
936 size_t const blockSize = cctxPtr->maxBlockSize;
937 const BYTE* srcPtr = (const BYTE*)srcBuffer;
938 const BYTE* const srcEnd = srcPtr + srcSize;
939 BYTE* const dstStart = (BYTE*)dstBuffer;
940 BYTE* dstPtr = dstStart;
941 LZ4F_lastBlockStatus lastBlockCompressed = notDone;
942 compressFunc_t const compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel, blockCompression);
943 size_t bytesWritten;
944 DEBUGLOG(4, "LZ4F_compressUpdate (srcSize=%zu)", srcSize);
945
946 RETURN_ERROR_IF(cctxPtr->cStage != 1, compressionState_uninitialized); /* state must be initialized and waiting for next block */
947 if (dstCapacity < LZ4F_compressBound_internal(srcSize, &(cctxPtr->prefs), cctxPtr->tmpInSize))
948 RETURN_ERROR(dstMaxSize_tooSmall);
949
950 if (blockCompression == LZ4B_UNCOMPRESSED && dstCapacity < srcSize)
951 RETURN_ERROR(dstMaxSize_tooSmall);
952
953 /* flush currently written block, to continue with new block compression */
954 if (cctxPtr->blockCompression != blockCompression) {
955 bytesWritten = LZ4F_flush(cctxPtr, dstBuffer, dstCapacity, compressOptionsPtr);
956 dstPtr += bytesWritten;
957 cctxPtr->blockCompression = blockCompression;
958 }
959
960 if (compressOptionsPtr == NULL) compressOptionsPtr = &k_cOptionsNull;
961
962 /* complete tmp buffer */
963 if (cctxPtr->tmpInSize > 0) { /* some data already within tmp buffer */
964 size_t const sizeToCopy = blockSize - cctxPtr->tmpInSize;
965 assert(blockSize > cctxPtr->tmpInSize);
966 if (sizeToCopy > srcSize) {
967 /* add src to tmpIn buffer */
968 memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, srcSize);
969 srcPtr = srcEnd;
970 cctxPtr->tmpInSize += srcSize;
971 /* still needs some CRC */
972 } else {
973 /* complete tmpIn block and then compress it */
974 lastBlockCompressed = fromTmpBuffer;
975 memcpy(cctxPtr->tmpIn + cctxPtr->tmpInSize, srcBuffer, sizeToCopy);
976 srcPtr += sizeToCopy;
977
978 dstPtr += LZ4F_makeBlock(dstPtr,
979 cctxPtr->tmpIn, blockSize,
980 compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel,
981 cctxPtr->cdict,
982 cctxPtr->prefs.frameInfo.blockChecksumFlag);
983 if (cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) cctxPtr->tmpIn += blockSize;
984 cctxPtr->tmpInSize = 0;
985 } }
986
987 while ((size_t)(srcEnd - srcPtr) >= blockSize) {
988 /* compress full blocks */
989 lastBlockCompressed = fromSrcBuffer;
990 dstPtr += LZ4F_makeBlock(dstPtr,
991 srcPtr, blockSize,
992 compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel,
993 cctxPtr->cdict,
994 cctxPtr->prefs.frameInfo.blockChecksumFlag);
995 srcPtr += blockSize;
996 }
997
998 if ((cctxPtr->prefs.autoFlush) && (srcPtr < srcEnd)) {
999 /* autoFlush : remaining input (< blockSize) is compressed */
1000 lastBlockCompressed = fromSrcBuffer;
1001 dstPtr += LZ4F_makeBlock(dstPtr,
1002 srcPtr, (size_t)(srcEnd - srcPtr),
1003 compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel,
1004 cctxPtr->cdict,
1005 cctxPtr->prefs.frameInfo.blockChecksumFlag);
1006 srcPtr = srcEnd;
1007 }
1008
1009 /* preserve dictionary within @tmpBuff whenever necessary */
1010 if ((cctxPtr->prefs.frameInfo.blockMode==LZ4F_blockLinked) && (lastBlockCompressed==fromSrcBuffer)) {
1011 /* linked blocks are only supported in compressed mode, see LZ4F_uncompressedUpdate */
1012 assert(blockCompression == LZ4B_COMPRESSED);
1013 if (compressOptionsPtr->stableSrc) {
1014 cctxPtr->tmpIn = cctxPtr->tmpBuff; /* src is stable : dictionary remains in src across invocations */
1015 } else {
1016 int const realDictSize = LZ4F_localSaveDict(cctxPtr);
1017 assert(0 <= realDictSize && realDictSize <= 64 KB);
1018 cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize;
1019 }
1020 }
1021
1022 /* keep tmpIn within limits */
1023 if (!(cctxPtr->prefs.autoFlush) /* no autoflush : there may be some data left within internal buffer */
1024 && (cctxPtr->tmpIn + blockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize) ) /* not enough room to store next block */
1025 {
1026 /* only preserve 64KB within internal buffer. Ensures there is enough room for next block.
1027 * note: this situation necessarily implies lastBlockCompressed==fromTmpBuffer */
1028 int const realDictSize = LZ4F_localSaveDict(cctxPtr);
1029 cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize;
1030 assert((cctxPtr->tmpIn + blockSize) <= (cctxPtr->tmpBuff + cctxPtr->maxBufferSize));
1031 }
1032
1033 /* some input data left, necessarily < blockSize */
1034 if (srcPtr < srcEnd) {
1035 /* fill tmp buffer */
1036 size_t const sizeToCopy = (size_t)(srcEnd - srcPtr);
1037 memcpy(cctxPtr->tmpIn, srcPtr, sizeToCopy);
1038 cctxPtr->tmpInSize = sizeToCopy;
1039 }
1040
1041 if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled)
1042 (void)XXH32_update(&(cctxPtr->xxh), srcBuffer, srcSize);
1043
1044 cctxPtr->totalInSize += srcSize;
1045 return (size_t)(dstPtr - dstStart);
1046 }
1047
1048 /*! LZ4F_compressUpdate() :
1049 * LZ4F_compressUpdate() can be called repetitively to compress as much data as necessary.
1050 * When successful, the function always entirely consumes @srcBuffer.
1051 * src data is either buffered or compressed into @dstBuffer.
1052 * If previously an uncompressed block was written, buffered data is flushed
1053 * before appending compressed data is continued.
1054 * @dstCapacity MUST be >= LZ4F_compressBound(srcSize, preferencesPtr).
1055 * @compressOptionsPtr is optional : provide NULL to mean "default".
1056 * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered.
1057 * or an error code if it fails (which can be tested using LZ4F_isError())
1058 * After an error, the state is left in a UB state, and must be re-initialized.
1059 */
LZ4F_compressUpdate(LZ4F_cctx * cctxPtr,void * dstBuffer,size_t dstCapacity,const void * srcBuffer,size_t srcSize,const LZ4F_compressOptions_t * compressOptionsPtr)1060 size_t LZ4F_compressUpdate(LZ4F_cctx* cctxPtr,
1061 void* dstBuffer, size_t dstCapacity,
1062 const void* srcBuffer, size_t srcSize,
1063 const LZ4F_compressOptions_t* compressOptionsPtr)
1064 {
1065 return LZ4F_compressUpdateImpl(cctxPtr,
1066 dstBuffer, dstCapacity,
1067 srcBuffer, srcSize,
1068 compressOptionsPtr, LZ4B_COMPRESSED);
1069 }
1070
1071 /*! LZ4F_compressUpdate() :
1072 * LZ4F_compressUpdate() can be called repetitively to compress as much data as necessary.
1073 * When successful, the function always entirely consumes @srcBuffer.
1074 * src data is either buffered or compressed into @dstBuffer.
1075 * If previously an uncompressed block was written, buffered data is flushed
1076 * before appending compressed data is continued.
1077 * This is only supported when LZ4F_blockIndependent is used
1078 * @dstCapacity MUST be >= LZ4F_compressBound(srcSize, preferencesPtr).
1079 * @compressOptionsPtr is optional : provide NULL to mean "default".
1080 * @return : the number of bytes written into dstBuffer. It can be zero, meaning input data was just buffered.
1081 * or an error code if it fails (which can be tested using LZ4F_isError())
1082 * After an error, the state is left in a UB state, and must be re-initialized.
1083 */
LZ4F_uncompressedUpdate(LZ4F_cctx * cctxPtr,void * dstBuffer,size_t dstCapacity,const void * srcBuffer,size_t srcSize,const LZ4F_compressOptions_t * compressOptionsPtr)1084 size_t LZ4F_uncompressedUpdate(LZ4F_cctx* cctxPtr,
1085 void* dstBuffer, size_t dstCapacity,
1086 const void* srcBuffer, size_t srcSize,
1087 const LZ4F_compressOptions_t* compressOptionsPtr) {
1088 RETURN_ERROR_IF(cctxPtr->prefs.frameInfo.blockMode != LZ4F_blockIndependent, blockMode_invalid);
1089 return LZ4F_compressUpdateImpl(cctxPtr,
1090 dstBuffer, dstCapacity,
1091 srcBuffer, srcSize,
1092 compressOptionsPtr, LZ4B_UNCOMPRESSED);
1093 }
1094
1095
1096 /*! LZ4F_flush() :
1097 * When compressed data must be sent immediately, without waiting for a block to be filled,
1098 * invoke LZ4_flush(), which will immediately compress any remaining data stored within LZ4F_cctx.
1099 * The result of the function is the number of bytes written into dstBuffer.
1100 * It can be zero, this means there was no data left within LZ4F_cctx.
1101 * The function outputs an error code if it fails (can be tested using LZ4F_isError())
1102 * LZ4F_compressOptions_t* is optional. NULL is a valid argument.
1103 */
LZ4F_flush(LZ4F_cctx * cctxPtr,void * dstBuffer,size_t dstCapacity,const LZ4F_compressOptions_t * compressOptionsPtr)1104 size_t LZ4F_flush(LZ4F_cctx* cctxPtr,
1105 void* dstBuffer, size_t dstCapacity,
1106 const LZ4F_compressOptions_t* compressOptionsPtr)
1107 {
1108 BYTE* const dstStart = (BYTE*)dstBuffer;
1109 BYTE* dstPtr = dstStart;
1110 compressFunc_t compress;
1111
1112 if (cctxPtr->tmpInSize == 0) return 0; /* nothing to flush */
1113 RETURN_ERROR_IF(cctxPtr->cStage != 1, compressionState_uninitialized);
1114 RETURN_ERROR_IF(dstCapacity < (cctxPtr->tmpInSize + BHSize + BFSize), dstMaxSize_tooSmall);
1115 (void)compressOptionsPtr; /* not useful (yet) */
1116
1117 /* select compression function */
1118 compress = LZ4F_selectCompression(cctxPtr->prefs.frameInfo.blockMode, cctxPtr->prefs.compressionLevel, cctxPtr->blockCompression);
1119
1120 /* compress tmp buffer */
1121 dstPtr += LZ4F_makeBlock(dstPtr,
1122 cctxPtr->tmpIn, cctxPtr->tmpInSize,
1123 compress, cctxPtr->lz4CtxPtr, cctxPtr->prefs.compressionLevel,
1124 cctxPtr->cdict,
1125 cctxPtr->prefs.frameInfo.blockChecksumFlag);
1126 assert(((void)"flush overflows dstBuffer!", (size_t)(dstPtr - dstStart) <= dstCapacity));
1127
1128 if (cctxPtr->prefs.frameInfo.blockMode == LZ4F_blockLinked)
1129 cctxPtr->tmpIn += cctxPtr->tmpInSize;
1130 cctxPtr->tmpInSize = 0;
1131
1132 /* keep tmpIn within limits */
1133 if ((cctxPtr->tmpIn + cctxPtr->maxBlockSize) > (cctxPtr->tmpBuff + cctxPtr->maxBufferSize)) { /* necessarily LZ4F_blockLinked */
1134 int const realDictSize = LZ4F_localSaveDict(cctxPtr);
1135 cctxPtr->tmpIn = cctxPtr->tmpBuff + realDictSize;
1136 }
1137
1138 return (size_t)(dstPtr - dstStart);
1139 }
1140
1141
1142 /*! LZ4F_compressEnd() :
1143 * When you want to properly finish the compressed frame, just call LZ4F_compressEnd().
1144 * It will flush whatever data remained within compressionContext (like LZ4_flush())
1145 * but also properly finalize the frame, with an endMark and an (optional) checksum.
1146 * LZ4F_compressOptions_t structure is optional : you can provide NULL as argument.
1147 * @return: the number of bytes written into dstBuffer (necessarily >= 4 (endMark size))
1148 * or an error code if it fails (can be tested using LZ4F_isError())
1149 * The context can then be used again to compress a new frame, starting with LZ4F_compressBegin().
1150 */
LZ4F_compressEnd(LZ4F_cctx * cctxPtr,void * dstBuffer,size_t dstCapacity,const LZ4F_compressOptions_t * compressOptionsPtr)1151 size_t LZ4F_compressEnd(LZ4F_cctx* cctxPtr,
1152 void* dstBuffer, size_t dstCapacity,
1153 const LZ4F_compressOptions_t* compressOptionsPtr)
1154 {
1155 BYTE* const dstStart = (BYTE*)dstBuffer;
1156 BYTE* dstPtr = dstStart;
1157
1158 size_t const flushSize = LZ4F_flush(cctxPtr, dstBuffer, dstCapacity, compressOptionsPtr);
1159 DEBUGLOG(5,"LZ4F_compressEnd: dstCapacity=%u", (unsigned)dstCapacity);
1160 FORWARD_IF_ERROR(flushSize);
1161 dstPtr += flushSize;
1162
1163 assert(flushSize <= dstCapacity);
1164 dstCapacity -= flushSize;
1165
1166 RETURN_ERROR_IF(dstCapacity < 4, dstMaxSize_tooSmall);
1167 LZ4F_writeLE32(dstPtr, 0);
1168 dstPtr += 4; /* endMark */
1169
1170 if (cctxPtr->prefs.frameInfo.contentChecksumFlag == LZ4F_contentChecksumEnabled) {
1171 U32 const xxh = XXH32_digest(&(cctxPtr->xxh));
1172 RETURN_ERROR_IF(dstCapacity < 8, dstMaxSize_tooSmall);
1173 DEBUGLOG(5,"Writing 32-bit content checksum");
1174 LZ4F_writeLE32(dstPtr, xxh);
1175 dstPtr+=4; /* content Checksum */
1176 }
1177
1178 cctxPtr->cStage = 0; /* state is now re-usable (with identical preferences) */
1179 cctxPtr->maxBufferSize = 0; /* reuse HC context */
1180
1181 if (cctxPtr->prefs.frameInfo.contentSize) {
1182 if (cctxPtr->prefs.frameInfo.contentSize != cctxPtr->totalInSize)
1183 RETURN_ERROR(frameSize_wrong);
1184 }
1185
1186 return (size_t)(dstPtr - dstStart);
1187 }
1188
1189
1190 /*-***************************************************
1191 * Frame Decompression
1192 *****************************************************/
1193
1194 typedef enum {
1195 dstage_getFrameHeader=0, dstage_storeFrameHeader,
1196 dstage_init,
1197 dstage_getBlockHeader, dstage_storeBlockHeader,
1198 dstage_copyDirect, dstage_getBlockChecksum,
1199 dstage_getCBlock, dstage_storeCBlock,
1200 dstage_flushOut,
1201 dstage_getSuffix, dstage_storeSuffix,
1202 dstage_getSFrameSize, dstage_storeSFrameSize,
1203 dstage_skipSkippable
1204 } dStage_t;
1205
1206 struct LZ4F_dctx_s {
1207 LZ4F_CustomMem cmem;
1208 LZ4F_frameInfo_t frameInfo;
1209 U32 version;
1210 dStage_t dStage;
1211 U64 frameRemainingSize;
1212 size_t maxBlockSize;
1213 size_t maxBufferSize;
1214 BYTE* tmpIn;
1215 size_t tmpInSize;
1216 size_t tmpInTarget;
1217 BYTE* tmpOutBuffer;
1218 const BYTE* dict;
1219 size_t dictSize;
1220 BYTE* tmpOut;
1221 size_t tmpOutSize;
1222 size_t tmpOutStart;
1223 XXH32_state_t xxh;
1224 XXH32_state_t blockChecksum;
1225 int skipChecksum;
1226 BYTE header[LZ4F_HEADER_SIZE_MAX];
1227 }; /* typedef'd to LZ4F_dctx in lz4frame.h */
1228
1229
LZ4F_createDecompressionContext_advanced(LZ4F_CustomMem customMem,unsigned version)1230 LZ4F_dctx* LZ4F_createDecompressionContext_advanced(LZ4F_CustomMem customMem, unsigned version)
1231 {
1232 LZ4F_dctx* const dctx = (LZ4F_dctx*)LZ4F_calloc(sizeof(LZ4F_dctx), customMem);
1233 if (dctx == NULL) return NULL;
1234
1235 dctx->cmem = customMem;
1236 dctx->version = version;
1237 return dctx;
1238 }
1239
1240 /*! LZ4F_createDecompressionContext() :
1241 * Create a decompressionContext object, which will track all decompression operations.
1242 * Provides a pointer to a fully allocated and initialized LZ4F_decompressionContext object.
1243 * Object can later be released using LZ4F_freeDecompressionContext().
1244 * @return : if != 0, there was an error during context creation.
1245 */
1246 LZ4F_errorCode_t
LZ4F_createDecompressionContext(LZ4F_dctx ** LZ4F_decompressionContextPtr,unsigned versionNumber)1247 LZ4F_createDecompressionContext(LZ4F_dctx** LZ4F_decompressionContextPtr, unsigned versionNumber)
1248 {
1249 assert(LZ4F_decompressionContextPtr != NULL); /* violation of narrow contract */
1250 RETURN_ERROR_IF(LZ4F_decompressionContextPtr == NULL, parameter_null); /* in case it nonetheless happen in production */
1251
1252 *LZ4F_decompressionContextPtr = LZ4F_createDecompressionContext_advanced(LZ4F_defaultCMem, versionNumber);
1253 if (*LZ4F_decompressionContextPtr == NULL) { /* failed allocation */
1254 RETURN_ERROR(allocation_failed);
1255 }
1256 return LZ4F_OK_NoError;
1257 }
1258
LZ4F_freeDecompressionContext(LZ4F_dctx * dctx)1259 LZ4F_errorCode_t LZ4F_freeDecompressionContext(LZ4F_dctx* dctx)
1260 {
1261 LZ4F_errorCode_t result = LZ4F_OK_NoError;
1262 if (dctx != NULL) { /* can accept NULL input, like free() */
1263 result = (LZ4F_errorCode_t)dctx->dStage;
1264 LZ4F_free(dctx->tmpIn, dctx->cmem);
1265 LZ4F_free(dctx->tmpOutBuffer, dctx->cmem);
1266 LZ4F_free(dctx, dctx->cmem);
1267 }
1268 return result;
1269 }
1270
1271
1272 /*==--- Streaming Decompression operations ---==*/
1273
LZ4F_resetDecompressionContext(LZ4F_dctx * dctx)1274 void LZ4F_resetDecompressionContext(LZ4F_dctx* dctx)
1275 {
1276 dctx->dStage = dstage_getFrameHeader;
1277 dctx->dict = NULL;
1278 dctx->dictSize = 0;
1279 dctx->skipChecksum = 0;
1280 }
1281
1282
1283 /*! LZ4F_decodeHeader() :
1284 * input : `src` points at the **beginning of the frame**
1285 * output : set internal values of dctx, such as
1286 * dctx->frameInfo and dctx->dStage.
1287 * Also allocates internal buffers.
1288 * @return : nb Bytes read from src (necessarily <= srcSize)
1289 * or an error code (testable with LZ4F_isError())
1290 */
LZ4F_decodeHeader(LZ4F_dctx * dctx,const void * src,size_t srcSize)1291 static size_t LZ4F_decodeHeader(LZ4F_dctx* dctx, const void* src, size_t srcSize)
1292 {
1293 unsigned blockMode, blockChecksumFlag, contentSizeFlag, contentChecksumFlag, dictIDFlag, blockSizeID;
1294 size_t frameHeaderSize;
1295 const BYTE* srcPtr = (const BYTE*)src;
1296
1297 DEBUGLOG(5, "LZ4F_decodeHeader");
1298 /* need to decode header to get frameInfo */
1299 RETURN_ERROR_IF(srcSize < minFHSize, frameHeader_incomplete); /* minimal frame header size */
1300 MEM_INIT(&(dctx->frameInfo), 0, sizeof(dctx->frameInfo));
1301
1302 /* special case : skippable frames */
1303 if ((LZ4F_readLE32(srcPtr) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START) {
1304 dctx->frameInfo.frameType = LZ4F_skippableFrame;
1305 if (src == (void*)(dctx->header)) {
1306 dctx->tmpInSize = srcSize;
1307 dctx->tmpInTarget = 8;
1308 dctx->dStage = dstage_storeSFrameSize;
1309 return srcSize;
1310 } else {
1311 dctx->dStage = dstage_getSFrameSize;
1312 return 4;
1313 } }
1314
1315 /* control magic number */
1316 #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1317 if (LZ4F_readLE32(srcPtr) != LZ4F_MAGICNUMBER) {
1318 DEBUGLOG(4, "frame header error : unknown magic number");
1319 RETURN_ERROR(frameType_unknown);
1320 }
1321 #endif
1322 dctx->frameInfo.frameType = LZ4F_frame;
1323
1324 /* Flags */
1325 { U32 const FLG = srcPtr[4];
1326 U32 const version = (FLG>>6) & _2BITS;
1327 blockChecksumFlag = (FLG>>4) & _1BIT;
1328 blockMode = (FLG>>5) & _1BIT;
1329 contentSizeFlag = (FLG>>3) & _1BIT;
1330 contentChecksumFlag = (FLG>>2) & _1BIT;
1331 dictIDFlag = FLG & _1BIT;
1332 /* validate */
1333 if (((FLG>>1)&_1BIT) != 0) RETURN_ERROR(reservedFlag_set); /* Reserved bit */
1334 if (version != 1) RETURN_ERROR(headerVersion_wrong); /* Version Number, only supported value */
1335 }
1336
1337 /* Frame Header Size */
1338 frameHeaderSize = minFHSize + (contentSizeFlag?8:0) + (dictIDFlag?4:0);
1339
1340 if (srcSize < frameHeaderSize) {
1341 /* not enough input to fully decode frame header */
1342 if (srcPtr != dctx->header)
1343 memcpy(dctx->header, srcPtr, srcSize);
1344 dctx->tmpInSize = srcSize;
1345 dctx->tmpInTarget = frameHeaderSize;
1346 dctx->dStage = dstage_storeFrameHeader;
1347 return srcSize;
1348 }
1349
1350 { U32 const BD = srcPtr[5];
1351 blockSizeID = (BD>>4) & _3BITS;
1352 /* validate */
1353 if (((BD>>7)&_1BIT) != 0) RETURN_ERROR(reservedFlag_set); /* Reserved bit */
1354 if (blockSizeID < 4) RETURN_ERROR(maxBlockSize_invalid); /* 4-7 only supported values for the time being */
1355 if (((BD>>0)&_4BITS) != 0) RETURN_ERROR(reservedFlag_set); /* Reserved bits */
1356 }
1357
1358 /* check header */
1359 assert(frameHeaderSize > 5);
1360 #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1361 { BYTE const HC = LZ4F_headerChecksum(srcPtr+4, frameHeaderSize-5);
1362 RETURN_ERROR_IF(HC != srcPtr[frameHeaderSize-1], headerChecksum_invalid);
1363 }
1364 #endif
1365
1366 /* save */
1367 dctx->frameInfo.blockMode = (LZ4F_blockMode_t)blockMode;
1368 dctx->frameInfo.blockChecksumFlag = (LZ4F_blockChecksum_t)blockChecksumFlag;
1369 dctx->frameInfo.contentChecksumFlag = (LZ4F_contentChecksum_t)contentChecksumFlag;
1370 dctx->frameInfo.blockSizeID = (LZ4F_blockSizeID_t)blockSizeID;
1371 dctx->maxBlockSize = LZ4F_getBlockSize((LZ4F_blockSizeID_t)blockSizeID);
1372 if (contentSizeFlag)
1373 dctx->frameRemainingSize = dctx->frameInfo.contentSize = LZ4F_readLE64(srcPtr+6);
1374 if (dictIDFlag)
1375 dctx->frameInfo.dictID = LZ4F_readLE32(srcPtr + frameHeaderSize - 5);
1376
1377 dctx->dStage = dstage_init;
1378
1379 return frameHeaderSize;
1380 }
1381
1382
1383 /*! LZ4F_headerSize() :
1384 * @return : size of frame header
1385 * or an error code, which can be tested using LZ4F_isError()
1386 */
LZ4F_headerSize(const void * src,size_t srcSize)1387 size_t LZ4F_headerSize(const void* src, size_t srcSize)
1388 {
1389 RETURN_ERROR_IF(src == NULL, srcPtr_wrong);
1390
1391 /* minimal srcSize to determine header size */
1392 if (srcSize < LZ4F_MIN_SIZE_TO_KNOW_HEADER_LENGTH)
1393 RETURN_ERROR(frameHeader_incomplete);
1394
1395 /* special case : skippable frames */
1396 if ((LZ4F_readLE32(src) & 0xFFFFFFF0U) == LZ4F_MAGIC_SKIPPABLE_START)
1397 return 8;
1398
1399 /* control magic number */
1400 #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1401 if (LZ4F_readLE32(src) != LZ4F_MAGICNUMBER)
1402 RETURN_ERROR(frameType_unknown);
1403 #endif
1404
1405 /* Frame Header Size */
1406 { BYTE const FLG = ((const BYTE*)src)[4];
1407 U32 const contentSizeFlag = (FLG>>3) & _1BIT;
1408 U32 const dictIDFlag = FLG & _1BIT;
1409 return minFHSize + (contentSizeFlag?8:0) + (dictIDFlag?4:0);
1410 }
1411 }
1412
1413 /*! LZ4F_getFrameInfo() :
1414 * This function extracts frame parameters (max blockSize, frame checksum, etc.).
1415 * Usage is optional. Objective is to provide relevant information for allocation purposes.
1416 * This function works in 2 situations :
1417 * - At the beginning of a new frame, in which case it will decode this information from `srcBuffer`, and start the decoding process.
1418 * Amount of input data provided must be large enough to successfully decode the frame header.
1419 * A header size is variable, but is guaranteed to be <= LZ4F_HEADER_SIZE_MAX bytes. It's possible to provide more input data than this minimum.
1420 * - After decoding has been started. In which case, no input is read, frame parameters are extracted from dctx.
1421 * The number of bytes consumed from srcBuffer will be updated within *srcSizePtr (necessarily <= original value).
1422 * Decompression must resume from (srcBuffer + *srcSizePtr).
1423 * @return : an hint about how many srcSize bytes LZ4F_decompress() expects for next call,
1424 * or an error code which can be tested using LZ4F_isError()
1425 * note 1 : in case of error, dctx is not modified. Decoding operations can resume from where they stopped.
1426 * note 2 : frame parameters are *copied into* an already allocated LZ4F_frameInfo_t structure.
1427 */
LZ4F_getFrameInfo(LZ4F_dctx * dctx,LZ4F_frameInfo_t * frameInfoPtr,const void * srcBuffer,size_t * srcSizePtr)1428 LZ4F_errorCode_t LZ4F_getFrameInfo(LZ4F_dctx* dctx,
1429 LZ4F_frameInfo_t* frameInfoPtr,
1430 const void* srcBuffer, size_t* srcSizePtr)
1431 {
1432 LZ4F_STATIC_ASSERT(dstage_getFrameHeader < dstage_storeFrameHeader);
1433 if (dctx->dStage > dstage_storeFrameHeader) {
1434 /* frameInfo already decoded */
1435 size_t o=0, i=0;
1436 *srcSizePtr = 0;
1437 *frameInfoPtr = dctx->frameInfo;
1438 /* returns : recommended nb of bytes for LZ4F_decompress() */
1439 return LZ4F_decompress(dctx, NULL, &o, NULL, &i, NULL);
1440 } else {
1441 if (dctx->dStage == dstage_storeFrameHeader) {
1442 /* frame decoding already started, in the middle of header => automatic fail */
1443 *srcSizePtr = 0;
1444 RETURN_ERROR(frameDecoding_alreadyStarted);
1445 } else {
1446 size_t const hSize = LZ4F_headerSize(srcBuffer, *srcSizePtr);
1447 if (LZ4F_isError(hSize)) { *srcSizePtr=0; return hSize; }
1448 if (*srcSizePtr < hSize) {
1449 *srcSizePtr=0;
1450 RETURN_ERROR(frameHeader_incomplete);
1451 }
1452
1453 { size_t decodeResult = LZ4F_decodeHeader(dctx, srcBuffer, hSize);
1454 if (LZ4F_isError(decodeResult)) {
1455 *srcSizePtr = 0;
1456 } else {
1457 *srcSizePtr = decodeResult;
1458 decodeResult = BHSize; /* block header size */
1459 }
1460 *frameInfoPtr = dctx->frameInfo;
1461 return decodeResult;
1462 } } }
1463 }
1464
1465
1466 /* LZ4F_updateDict() :
1467 * only used for LZ4F_blockLinked mode
1468 * Condition : @dstPtr != NULL
1469 */
LZ4F_updateDict(LZ4F_dctx * dctx,const BYTE * dstPtr,size_t dstSize,const BYTE * dstBufferStart,unsigned withinTmp)1470 static void LZ4F_updateDict(LZ4F_dctx* dctx,
1471 const BYTE* dstPtr, size_t dstSize, const BYTE* dstBufferStart,
1472 unsigned withinTmp)
1473 {
1474 assert(dstPtr != NULL);
1475 if (dctx->dictSize==0) dctx->dict = (const BYTE*)dstPtr; /* will lead to prefix mode */
1476 assert(dctx->dict != NULL);
1477
1478 if (dctx->dict + dctx->dictSize == dstPtr) { /* prefix mode, everything within dstBuffer */
1479 dctx->dictSize += dstSize;
1480 return;
1481 }
1482
1483 assert(dstPtr >= dstBufferStart);
1484 if ((size_t)(dstPtr - dstBufferStart) + dstSize >= 64 KB) { /* history in dstBuffer becomes large enough to become dictionary */
1485 dctx->dict = (const BYTE*)dstBufferStart;
1486 dctx->dictSize = (size_t)(dstPtr - dstBufferStart) + dstSize;
1487 return;
1488 }
1489
1490 assert(dstSize < 64 KB); /* if dstSize >= 64 KB, dictionary would be set into dstBuffer directly */
1491
1492 /* dstBuffer does not contain whole useful history (64 KB), so it must be saved within tmpOutBuffer */
1493 assert(dctx->tmpOutBuffer != NULL);
1494
1495 if (withinTmp && (dctx->dict == dctx->tmpOutBuffer)) { /* continue history within tmpOutBuffer */
1496 /* withinTmp expectation : content of [dstPtr,dstSize] is same as [dict+dictSize,dstSize], so we just extend it */
1497 assert(dctx->dict + dctx->dictSize == dctx->tmpOut + dctx->tmpOutStart);
1498 dctx->dictSize += dstSize;
1499 return;
1500 }
1501
1502 if (withinTmp) { /* copy relevant dict portion in front of tmpOut within tmpOutBuffer */
1503 size_t const preserveSize = (size_t)(dctx->tmpOut - dctx->tmpOutBuffer);
1504 size_t copySize = 64 KB - dctx->tmpOutSize;
1505 const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart;
1506 if (dctx->tmpOutSize > 64 KB) copySize = 0;
1507 if (copySize > preserveSize) copySize = preserveSize;
1508
1509 memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize);
1510
1511 dctx->dict = dctx->tmpOutBuffer;
1512 dctx->dictSize = preserveSize + dctx->tmpOutStart + dstSize;
1513 return;
1514 }
1515
1516 if (dctx->dict == dctx->tmpOutBuffer) { /* copy dst into tmp to complete dict */
1517 if (dctx->dictSize + dstSize > dctx->maxBufferSize) { /* tmp buffer not large enough */
1518 size_t const preserveSize = 64 KB - dstSize;
1519 memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize);
1520 dctx->dictSize = preserveSize;
1521 }
1522 memcpy(dctx->tmpOutBuffer + dctx->dictSize, dstPtr, dstSize);
1523 dctx->dictSize += dstSize;
1524 return;
1525 }
1526
1527 /* join dict & dest into tmp */
1528 { size_t preserveSize = 64 KB - dstSize;
1529 if (preserveSize > dctx->dictSize) preserveSize = dctx->dictSize;
1530 memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - preserveSize, preserveSize);
1531 memcpy(dctx->tmpOutBuffer + preserveSize, dstPtr, dstSize);
1532 dctx->dict = dctx->tmpOutBuffer;
1533 dctx->dictSize = preserveSize + dstSize;
1534 }
1535 }
1536
1537
1538 /*! LZ4F_decompress() :
1539 * Call this function repetitively to regenerate compressed data in srcBuffer.
1540 * The function will attempt to decode up to *srcSizePtr bytes from srcBuffer
1541 * into dstBuffer of capacity *dstSizePtr.
1542 *
1543 * The number of bytes regenerated into dstBuffer will be provided within *dstSizePtr (necessarily <= original value).
1544 *
1545 * The number of bytes effectively read from srcBuffer will be provided within *srcSizePtr (necessarily <= original value).
1546 * If number of bytes read is < number of bytes provided, then decompression operation is not complete.
1547 * Remaining data will have to be presented again in a subsequent invocation.
1548 *
1549 * The function result is an hint of the better srcSize to use for next call to LZ4F_decompress.
1550 * Schematically, it's the size of the current (or remaining) compressed block + header of next block.
1551 * Respecting the hint provides a small boost to performance, since it allows less buffer shuffling.
1552 * Note that this is just a hint, and it's always possible to any srcSize value.
1553 * When a frame is fully decoded, @return will be 0.
1554 * If decompression failed, @return is an error code which can be tested using LZ4F_isError().
1555 */
LZ4F_decompress(LZ4F_dctx * dctx,void * dstBuffer,size_t * dstSizePtr,const void * srcBuffer,size_t * srcSizePtr,const LZ4F_decompressOptions_t * decompressOptionsPtr)1556 size_t LZ4F_decompress(LZ4F_dctx* dctx,
1557 void* dstBuffer, size_t* dstSizePtr,
1558 const void* srcBuffer, size_t* srcSizePtr,
1559 const LZ4F_decompressOptions_t* decompressOptionsPtr)
1560 {
1561 LZ4F_decompressOptions_t optionsNull;
1562 const BYTE* const srcStart = (const BYTE*)srcBuffer;
1563 const BYTE* const srcEnd = srcStart + *srcSizePtr;
1564 const BYTE* srcPtr = srcStart;
1565 BYTE* const dstStart = (BYTE*)dstBuffer;
1566 BYTE* const dstEnd = dstStart ? dstStart + *dstSizePtr : NULL;
1567 BYTE* dstPtr = dstStart;
1568 const BYTE* selectedIn = NULL;
1569 unsigned doAnotherStage = 1;
1570 size_t nextSrcSizeHint = 1;
1571
1572
1573 DEBUGLOG(5, "LZ4F_decompress : %p,%u => %p,%u",
1574 srcBuffer, (unsigned)*srcSizePtr, dstBuffer, (unsigned)*dstSizePtr);
1575 if (dstBuffer == NULL) assert(*dstSizePtr == 0);
1576 MEM_INIT(&optionsNull, 0, sizeof(optionsNull));
1577 if (decompressOptionsPtr==NULL) decompressOptionsPtr = &optionsNull;
1578 *srcSizePtr = 0;
1579 *dstSizePtr = 0;
1580 assert(dctx != NULL);
1581 dctx->skipChecksum |= (decompressOptionsPtr->skipChecksums != 0); /* once set, disable for the remainder of the frame */
1582
1583 /* behaves as a state machine */
1584
1585 while (doAnotherStage) {
1586
1587 switch(dctx->dStage)
1588 {
1589
1590 case dstage_getFrameHeader:
1591 DEBUGLOG(6, "dstage_getFrameHeader");
1592 if ((size_t)(srcEnd-srcPtr) >= maxFHSize) { /* enough to decode - shortcut */
1593 size_t const hSize = LZ4F_decodeHeader(dctx, srcPtr, (size_t)(srcEnd-srcPtr)); /* will update dStage appropriately */
1594 FORWARD_IF_ERROR(hSize);
1595 srcPtr += hSize;
1596 break;
1597 }
1598 dctx->tmpInSize = 0;
1599 if (srcEnd-srcPtr == 0) return minFHSize; /* 0-size input */
1600 dctx->tmpInTarget = minFHSize; /* minimum size to decode header */
1601 dctx->dStage = dstage_storeFrameHeader;
1602 /* fall-through */
1603
1604 case dstage_storeFrameHeader:
1605 DEBUGLOG(6, "dstage_storeFrameHeader");
1606 { size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize, (size_t)(srcEnd - srcPtr));
1607 memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy);
1608 dctx->tmpInSize += sizeToCopy;
1609 srcPtr += sizeToCopy;
1610 }
1611 if (dctx->tmpInSize < dctx->tmpInTarget) {
1612 nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize) + BHSize; /* rest of header + nextBlockHeader */
1613 doAnotherStage = 0; /* not enough src data, ask for some more */
1614 break;
1615 }
1616 FORWARD_IF_ERROR( LZ4F_decodeHeader(dctx, dctx->header, dctx->tmpInTarget) ); /* will update dStage appropriately */
1617 break;
1618
1619 case dstage_init:
1620 DEBUGLOG(6, "dstage_init");
1621 if (dctx->frameInfo.contentChecksumFlag) (void)XXH32_reset(&(dctx->xxh), 0);
1622 /* internal buffers allocation */
1623 { size_t const bufferNeeded = dctx->maxBlockSize
1624 + ((dctx->frameInfo.blockMode==LZ4F_blockLinked) ? 128 KB : 0);
1625 if (bufferNeeded > dctx->maxBufferSize) { /* tmp buffers too small */
1626 dctx->maxBufferSize = 0; /* ensure allocation will be re-attempted on next entry*/
1627 LZ4F_free(dctx->tmpIn, dctx->cmem);
1628 dctx->tmpIn = (BYTE*)LZ4F_malloc(dctx->maxBlockSize + BFSize /* block checksum */, dctx->cmem);
1629 RETURN_ERROR_IF(dctx->tmpIn == NULL, allocation_failed);
1630 LZ4F_free(dctx->tmpOutBuffer, dctx->cmem);
1631 dctx->tmpOutBuffer= (BYTE*)LZ4F_malloc(bufferNeeded, dctx->cmem);
1632 RETURN_ERROR_IF(dctx->tmpOutBuffer== NULL, allocation_failed);
1633 dctx->maxBufferSize = bufferNeeded;
1634 } }
1635 dctx->tmpInSize = 0;
1636 dctx->tmpInTarget = 0;
1637 dctx->tmpOut = dctx->tmpOutBuffer;
1638 dctx->tmpOutStart = 0;
1639 dctx->tmpOutSize = 0;
1640
1641 dctx->dStage = dstage_getBlockHeader;
1642 /* fall-through */
1643
1644 case dstage_getBlockHeader:
1645 if ((size_t)(srcEnd - srcPtr) >= BHSize) {
1646 selectedIn = srcPtr;
1647 srcPtr += BHSize;
1648 } else {
1649 /* not enough input to read cBlockSize field */
1650 dctx->tmpInSize = 0;
1651 dctx->dStage = dstage_storeBlockHeader;
1652 }
1653
1654 if (dctx->dStage == dstage_storeBlockHeader) /* can be skipped */
1655 case dstage_storeBlockHeader:
1656 { size_t const remainingInput = (size_t)(srcEnd - srcPtr);
1657 size_t const wantedData = BHSize - dctx->tmpInSize;
1658 size_t const sizeToCopy = MIN(wantedData, remainingInput);
1659 memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy);
1660 srcPtr += sizeToCopy;
1661 dctx->tmpInSize += sizeToCopy;
1662
1663 if (dctx->tmpInSize < BHSize) { /* not enough input for cBlockSize */
1664 nextSrcSizeHint = BHSize - dctx->tmpInSize;
1665 doAnotherStage = 0;
1666 break;
1667 }
1668 selectedIn = dctx->tmpIn;
1669 } /* if (dctx->dStage == dstage_storeBlockHeader) */
1670
1671 /* decode block header */
1672 { U32 const blockHeader = LZ4F_readLE32(selectedIn);
1673 size_t const nextCBlockSize = blockHeader & 0x7FFFFFFFU;
1674 size_t const crcSize = dctx->frameInfo.blockChecksumFlag * BFSize;
1675 if (blockHeader==0) { /* frameEnd signal, no more block */
1676 DEBUGLOG(5, "end of frame");
1677 dctx->dStage = dstage_getSuffix;
1678 break;
1679 }
1680 if (nextCBlockSize > dctx->maxBlockSize) {
1681 RETURN_ERROR(maxBlockSize_invalid);
1682 }
1683 if (blockHeader & LZ4F_BLOCKUNCOMPRESSED_FLAG) {
1684 /* next block is uncompressed */
1685 dctx->tmpInTarget = nextCBlockSize;
1686 DEBUGLOG(5, "next block is uncompressed (size %u)", (U32)nextCBlockSize);
1687 if (dctx->frameInfo.blockChecksumFlag) {
1688 (void)XXH32_reset(&dctx->blockChecksum, 0);
1689 }
1690 dctx->dStage = dstage_copyDirect;
1691 break;
1692 }
1693 /* next block is a compressed block */
1694 dctx->tmpInTarget = nextCBlockSize + crcSize;
1695 dctx->dStage = dstage_getCBlock;
1696 if (dstPtr==dstEnd || srcPtr==srcEnd) {
1697 nextSrcSizeHint = BHSize + nextCBlockSize + crcSize;
1698 doAnotherStage = 0;
1699 }
1700 break;
1701 }
1702
1703 case dstage_copyDirect: /* uncompressed block */
1704 DEBUGLOG(6, "dstage_copyDirect");
1705 { size_t sizeToCopy;
1706 if (dstPtr == NULL) {
1707 sizeToCopy = 0;
1708 } else {
1709 size_t const minBuffSize = MIN((size_t)(srcEnd-srcPtr), (size_t)(dstEnd-dstPtr));
1710 sizeToCopy = MIN(dctx->tmpInTarget, minBuffSize);
1711 memcpy(dstPtr, srcPtr, sizeToCopy);
1712 if (!dctx->skipChecksum) {
1713 if (dctx->frameInfo.blockChecksumFlag) {
1714 (void)XXH32_update(&dctx->blockChecksum, srcPtr, sizeToCopy);
1715 }
1716 if (dctx->frameInfo.contentChecksumFlag)
1717 (void)XXH32_update(&dctx->xxh, srcPtr, sizeToCopy);
1718 }
1719 if (dctx->frameInfo.contentSize)
1720 dctx->frameRemainingSize -= sizeToCopy;
1721
1722 /* history management (linked blocks only)*/
1723 if (dctx->frameInfo.blockMode == LZ4F_blockLinked) {
1724 LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 0);
1725 } }
1726
1727 srcPtr += sizeToCopy;
1728 dstPtr += sizeToCopy;
1729 if (sizeToCopy == dctx->tmpInTarget) { /* all done */
1730 if (dctx->frameInfo.blockChecksumFlag) {
1731 dctx->tmpInSize = 0;
1732 dctx->dStage = dstage_getBlockChecksum;
1733 } else
1734 dctx->dStage = dstage_getBlockHeader; /* new block */
1735 break;
1736 }
1737 dctx->tmpInTarget -= sizeToCopy; /* need to copy more */
1738 }
1739 nextSrcSizeHint = dctx->tmpInTarget +
1740 +(dctx->frameInfo.blockChecksumFlag ? BFSize : 0)
1741 + BHSize /* next header size */;
1742 doAnotherStage = 0;
1743 break;
1744
1745 /* check block checksum for recently transferred uncompressed block */
1746 case dstage_getBlockChecksum:
1747 DEBUGLOG(6, "dstage_getBlockChecksum");
1748 { const void* crcSrc;
1749 if ((srcEnd-srcPtr >= 4) && (dctx->tmpInSize==0)) {
1750 crcSrc = srcPtr;
1751 srcPtr += 4;
1752 } else {
1753 size_t const stillToCopy = 4 - dctx->tmpInSize;
1754 size_t const sizeToCopy = MIN(stillToCopy, (size_t)(srcEnd-srcPtr));
1755 memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy);
1756 dctx->tmpInSize += sizeToCopy;
1757 srcPtr += sizeToCopy;
1758 if (dctx->tmpInSize < 4) { /* all input consumed */
1759 doAnotherStage = 0;
1760 break;
1761 }
1762 crcSrc = dctx->header;
1763 }
1764 if (!dctx->skipChecksum) {
1765 U32 const readCRC = LZ4F_readLE32(crcSrc);
1766 U32 const calcCRC = XXH32_digest(&dctx->blockChecksum);
1767 #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1768 DEBUGLOG(6, "compare block checksum");
1769 if (readCRC != calcCRC) {
1770 DEBUGLOG(4, "incorrect block checksum: %08X != %08X",
1771 readCRC, calcCRC);
1772 RETURN_ERROR(blockChecksum_invalid);
1773 }
1774 #else
1775 (void)readCRC;
1776 (void)calcCRC;
1777 #endif
1778 } }
1779 dctx->dStage = dstage_getBlockHeader; /* new block */
1780 break;
1781
1782 case dstage_getCBlock:
1783 DEBUGLOG(6, "dstage_getCBlock");
1784 if ((size_t)(srcEnd-srcPtr) < dctx->tmpInTarget) {
1785 dctx->tmpInSize = 0;
1786 dctx->dStage = dstage_storeCBlock;
1787 break;
1788 }
1789 /* input large enough to read full block directly */
1790 selectedIn = srcPtr;
1791 srcPtr += dctx->tmpInTarget;
1792
1793 if (0) /* always jump over next block */
1794 case dstage_storeCBlock:
1795 { size_t const wantedData = dctx->tmpInTarget - dctx->tmpInSize;
1796 size_t const inputLeft = (size_t)(srcEnd-srcPtr);
1797 size_t const sizeToCopy = MIN(wantedData, inputLeft);
1798 memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy);
1799 dctx->tmpInSize += sizeToCopy;
1800 srcPtr += sizeToCopy;
1801 if (dctx->tmpInSize < dctx->tmpInTarget) { /* need more input */
1802 nextSrcSizeHint = (dctx->tmpInTarget - dctx->tmpInSize)
1803 + (dctx->frameInfo.blockChecksumFlag ? BFSize : 0)
1804 + BHSize /* next header size */;
1805 doAnotherStage = 0;
1806 break;
1807 }
1808 selectedIn = dctx->tmpIn;
1809 }
1810
1811 /* At this stage, input is large enough to decode a block */
1812
1813 /* First, decode and control block checksum if it exists */
1814 if (dctx->frameInfo.blockChecksumFlag) {
1815 assert(dctx->tmpInTarget >= 4);
1816 dctx->tmpInTarget -= 4;
1817 assert(selectedIn != NULL); /* selectedIn is defined at this stage (either srcPtr, or dctx->tmpIn) */
1818 { U32 const readBlockCrc = LZ4F_readLE32(selectedIn + dctx->tmpInTarget);
1819 U32 const calcBlockCrc = XXH32(selectedIn, dctx->tmpInTarget, 0);
1820 #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1821 RETURN_ERROR_IF(readBlockCrc != calcBlockCrc, blockChecksum_invalid);
1822 #else
1823 (void)readBlockCrc;
1824 (void)calcBlockCrc;
1825 #endif
1826 } }
1827
1828 /* decode directly into destination buffer if there is enough room */
1829 if ( ((size_t)(dstEnd-dstPtr) >= dctx->maxBlockSize)
1830 /* unless the dictionary is stored in tmpOut:
1831 * in which case it's faster to decode within tmpOut
1832 * to benefit from prefix speedup */
1833 && !(dctx->dict!= NULL && (const BYTE*)dctx->dict + dctx->dictSize == dctx->tmpOut) )
1834 {
1835 const char* dict = (const char*)dctx->dict;
1836 size_t dictSize = dctx->dictSize;
1837 int decodedSize;
1838 assert(dstPtr != NULL);
1839 if (dict && dictSize > 1 GB) {
1840 /* overflow control : dctx->dictSize is an int, avoid truncation / sign issues */
1841 dict += dictSize - 64 KB;
1842 dictSize = 64 KB;
1843 }
1844 decodedSize = LZ4_decompress_safe_usingDict(
1845 (const char*)selectedIn, (char*)dstPtr,
1846 (int)dctx->tmpInTarget, (int)dctx->maxBlockSize,
1847 dict, (int)dictSize);
1848 RETURN_ERROR_IF(decodedSize < 0, decompressionFailed);
1849 if ((dctx->frameInfo.contentChecksumFlag) && (!dctx->skipChecksum))
1850 XXH32_update(&(dctx->xxh), dstPtr, (size_t)decodedSize);
1851 if (dctx->frameInfo.contentSize)
1852 dctx->frameRemainingSize -= (size_t)decodedSize;
1853
1854 /* dictionary management */
1855 if (dctx->frameInfo.blockMode==LZ4F_blockLinked) {
1856 LZ4F_updateDict(dctx, dstPtr, (size_t)decodedSize, dstStart, 0);
1857 }
1858
1859 dstPtr += decodedSize;
1860 dctx->dStage = dstage_getBlockHeader; /* end of block, let's get another one */
1861 break;
1862 }
1863
1864 /* not enough place into dst : decode into tmpOut */
1865
1866 /* manage dictionary */
1867 if (dctx->frameInfo.blockMode == LZ4F_blockLinked) {
1868 if (dctx->dict == dctx->tmpOutBuffer) {
1869 /* truncate dictionary to 64 KB if too big */
1870 if (dctx->dictSize > 128 KB) {
1871 memcpy(dctx->tmpOutBuffer, dctx->dict + dctx->dictSize - 64 KB, 64 KB);
1872 dctx->dictSize = 64 KB;
1873 }
1874 dctx->tmpOut = dctx->tmpOutBuffer + dctx->dictSize;
1875 } else { /* dict not within tmpOut */
1876 size_t const reservedDictSpace = MIN(dctx->dictSize, 64 KB);
1877 dctx->tmpOut = dctx->tmpOutBuffer + reservedDictSpace;
1878 } }
1879
1880 /* Decode block into tmpOut */
1881 { const char* dict = (const char*)dctx->dict;
1882 size_t dictSize = dctx->dictSize;
1883 int decodedSize;
1884 if (dict && dictSize > 1 GB) {
1885 /* the dictSize param is an int, avoid truncation / sign issues */
1886 dict += dictSize - 64 KB;
1887 dictSize = 64 KB;
1888 }
1889 decodedSize = LZ4_decompress_safe_usingDict(
1890 (const char*)selectedIn, (char*)dctx->tmpOut,
1891 (int)dctx->tmpInTarget, (int)dctx->maxBlockSize,
1892 dict, (int)dictSize);
1893 RETURN_ERROR_IF(decodedSize < 0, decompressionFailed);
1894 if (dctx->frameInfo.contentChecksumFlag && !dctx->skipChecksum)
1895 XXH32_update(&(dctx->xxh), dctx->tmpOut, (size_t)decodedSize);
1896 if (dctx->frameInfo.contentSize)
1897 dctx->frameRemainingSize -= (size_t)decodedSize;
1898 dctx->tmpOutSize = (size_t)decodedSize;
1899 dctx->tmpOutStart = 0;
1900 dctx->dStage = dstage_flushOut;
1901 }
1902 /* fall-through */
1903
1904 case dstage_flushOut: /* flush decoded data from tmpOut to dstBuffer */
1905 DEBUGLOG(6, "dstage_flushOut");
1906 if (dstPtr != NULL) {
1907 size_t const sizeToCopy = MIN(dctx->tmpOutSize - dctx->tmpOutStart, (size_t)(dstEnd-dstPtr));
1908 memcpy(dstPtr, dctx->tmpOut + dctx->tmpOutStart, sizeToCopy);
1909
1910 /* dictionary management */
1911 if (dctx->frameInfo.blockMode == LZ4F_blockLinked)
1912 LZ4F_updateDict(dctx, dstPtr, sizeToCopy, dstStart, 1 /*withinTmp*/);
1913
1914 dctx->tmpOutStart += sizeToCopy;
1915 dstPtr += sizeToCopy;
1916 }
1917 if (dctx->tmpOutStart == dctx->tmpOutSize) { /* all flushed */
1918 dctx->dStage = dstage_getBlockHeader; /* get next block */
1919 break;
1920 }
1921 /* could not flush everything : stop there, just request a block header */
1922 doAnotherStage = 0;
1923 nextSrcSizeHint = BHSize;
1924 break;
1925
1926 case dstage_getSuffix:
1927 RETURN_ERROR_IF(dctx->frameRemainingSize, frameSize_wrong); /* incorrect frame size decoded */
1928 if (!dctx->frameInfo.contentChecksumFlag) { /* no checksum, frame is completed */
1929 nextSrcSizeHint = 0;
1930 LZ4F_resetDecompressionContext(dctx);
1931 doAnotherStage = 0;
1932 break;
1933 }
1934 if ((srcEnd - srcPtr) < 4) { /* not enough size for entire CRC */
1935 dctx->tmpInSize = 0;
1936 dctx->dStage = dstage_storeSuffix;
1937 } else {
1938 selectedIn = srcPtr;
1939 srcPtr += 4;
1940 }
1941
1942 if (dctx->dStage == dstage_storeSuffix) /* can be skipped */
1943 case dstage_storeSuffix:
1944 { size_t const remainingInput = (size_t)(srcEnd - srcPtr);
1945 size_t const wantedData = 4 - dctx->tmpInSize;
1946 size_t const sizeToCopy = MIN(wantedData, remainingInput);
1947 memcpy(dctx->tmpIn + dctx->tmpInSize, srcPtr, sizeToCopy);
1948 srcPtr += sizeToCopy;
1949 dctx->tmpInSize += sizeToCopy;
1950 if (dctx->tmpInSize < 4) { /* not enough input to read complete suffix */
1951 nextSrcSizeHint = 4 - dctx->tmpInSize;
1952 doAnotherStage=0;
1953 break;
1954 }
1955 selectedIn = dctx->tmpIn;
1956 } /* if (dctx->dStage == dstage_storeSuffix) */
1957
1958 /* case dstage_checkSuffix: */ /* no direct entry, avoid initialization risks */
1959 if (!dctx->skipChecksum) {
1960 U32 const readCRC = LZ4F_readLE32(selectedIn);
1961 U32 const resultCRC = XXH32_digest(&(dctx->xxh));
1962 #ifndef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
1963 RETURN_ERROR_IF(readCRC != resultCRC, contentChecksum_invalid);
1964 #else
1965 (void)readCRC;
1966 (void)resultCRC;
1967 #endif
1968 }
1969 nextSrcSizeHint = 0;
1970 LZ4F_resetDecompressionContext(dctx);
1971 doAnotherStage = 0;
1972 break;
1973
1974 case dstage_getSFrameSize:
1975 if ((srcEnd - srcPtr) >= 4) {
1976 selectedIn = srcPtr;
1977 srcPtr += 4;
1978 } else {
1979 /* not enough input to read cBlockSize field */
1980 dctx->tmpInSize = 4;
1981 dctx->tmpInTarget = 8;
1982 dctx->dStage = dstage_storeSFrameSize;
1983 }
1984
1985 if (dctx->dStage == dstage_storeSFrameSize)
1986 case dstage_storeSFrameSize:
1987 { size_t const sizeToCopy = MIN(dctx->tmpInTarget - dctx->tmpInSize,
1988 (size_t)(srcEnd - srcPtr) );
1989 memcpy(dctx->header + dctx->tmpInSize, srcPtr, sizeToCopy);
1990 srcPtr += sizeToCopy;
1991 dctx->tmpInSize += sizeToCopy;
1992 if (dctx->tmpInSize < dctx->tmpInTarget) {
1993 /* not enough input to get full sBlockSize; wait for more */
1994 nextSrcSizeHint = dctx->tmpInTarget - dctx->tmpInSize;
1995 doAnotherStage = 0;
1996 break;
1997 }
1998 selectedIn = dctx->header + 4;
1999 } /* if (dctx->dStage == dstage_storeSFrameSize) */
2000
2001 /* case dstage_decodeSFrameSize: */ /* no direct entry */
2002 { size_t const SFrameSize = LZ4F_readLE32(selectedIn);
2003 dctx->frameInfo.contentSize = SFrameSize;
2004 dctx->tmpInTarget = SFrameSize;
2005 dctx->dStage = dstage_skipSkippable;
2006 break;
2007 }
2008
2009 case dstage_skipSkippable:
2010 { size_t const skipSize = MIN(dctx->tmpInTarget, (size_t)(srcEnd-srcPtr));
2011 srcPtr += skipSize;
2012 dctx->tmpInTarget -= skipSize;
2013 doAnotherStage = 0;
2014 nextSrcSizeHint = dctx->tmpInTarget;
2015 if (nextSrcSizeHint) break; /* still more to skip */
2016 /* frame fully skipped : prepare context for a new frame */
2017 LZ4F_resetDecompressionContext(dctx);
2018 break;
2019 }
2020 } /* switch (dctx->dStage) */
2021 } /* while (doAnotherStage) */
2022
2023 /* preserve history within tmpOut whenever necessary */
2024 LZ4F_STATIC_ASSERT((unsigned)dstage_init == 2);
2025 if ( (dctx->frameInfo.blockMode==LZ4F_blockLinked) /* next block will use up to 64KB from previous ones */
2026 && (dctx->dict != dctx->tmpOutBuffer) /* dictionary is not already within tmp */
2027 && (dctx->dict != NULL) /* dictionary exists */
2028 && (!decompressOptionsPtr->stableDst) /* cannot rely on dst data to remain there for next call */
2029 && ((unsigned)(dctx->dStage)-2 < (unsigned)(dstage_getSuffix)-2) ) /* valid stages : [init ... getSuffix[ */
2030 {
2031 if (dctx->dStage == dstage_flushOut) {
2032 size_t const preserveSize = (size_t)(dctx->tmpOut - dctx->tmpOutBuffer);
2033 size_t copySize = 64 KB - dctx->tmpOutSize;
2034 const BYTE* oldDictEnd = dctx->dict + dctx->dictSize - dctx->tmpOutStart;
2035 if (dctx->tmpOutSize > 64 KB) copySize = 0;
2036 if (copySize > preserveSize) copySize = preserveSize;
2037 assert(dctx->tmpOutBuffer != NULL);
2038
2039 memcpy(dctx->tmpOutBuffer + preserveSize - copySize, oldDictEnd - copySize, copySize);
2040
2041 dctx->dict = dctx->tmpOutBuffer;
2042 dctx->dictSize = preserveSize + dctx->tmpOutStart;
2043 } else {
2044 const BYTE* const oldDictEnd = dctx->dict + dctx->dictSize;
2045 size_t const newDictSize = MIN(dctx->dictSize, 64 KB);
2046
2047 memcpy(dctx->tmpOutBuffer, oldDictEnd - newDictSize, newDictSize);
2048
2049 dctx->dict = dctx->tmpOutBuffer;
2050 dctx->dictSize = newDictSize;
2051 dctx->tmpOut = dctx->tmpOutBuffer + newDictSize;
2052 }
2053 }
2054
2055 *srcSizePtr = (size_t)(srcPtr - srcStart);
2056 *dstSizePtr = (size_t)(dstPtr - dstStart);
2057 return nextSrcSizeHint;
2058 }
2059
2060 /*! LZ4F_decompress_usingDict() :
2061 * Same as LZ4F_decompress(), using a predefined dictionary.
2062 * Dictionary is used "in place", without any preprocessing.
2063 * It must remain accessible throughout the entire frame decoding.
2064 */
LZ4F_decompress_usingDict(LZ4F_dctx * dctx,void * dstBuffer,size_t * dstSizePtr,const void * srcBuffer,size_t * srcSizePtr,const void * dict,size_t dictSize,const LZ4F_decompressOptions_t * decompressOptionsPtr)2065 size_t LZ4F_decompress_usingDict(LZ4F_dctx* dctx,
2066 void* dstBuffer, size_t* dstSizePtr,
2067 const void* srcBuffer, size_t* srcSizePtr,
2068 const void* dict, size_t dictSize,
2069 const LZ4F_decompressOptions_t* decompressOptionsPtr)
2070 {
2071 if (dctx->dStage <= dstage_init) {
2072 dctx->dict = (const BYTE*)dict;
2073 dctx->dictSize = dictSize;
2074 }
2075 return LZ4F_decompress(dctx, dstBuffer, dstSizePtr,
2076 srcBuffer, srcSizePtr,
2077 decompressOptionsPtr);
2078 }
2079