• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""`LinearOperator` acting like the identity matrix."""
16
17import numpy as np
18
19from tensorflow.python.framework import dtypes
20from tensorflow.python.framework import ops
21from tensorflow.python.framework import tensor_shape
22from tensorflow.python.framework import tensor_util
23from tensorflow.python.ops import array_ops
24from tensorflow.python.ops import check_ops
25from tensorflow.python.ops import control_flow_ops
26from tensorflow.python.ops import math_ops
27from tensorflow.python.ops.linalg import linalg_impl as linalg
28from tensorflow.python.ops.linalg import linear_operator
29from tensorflow.python.ops.linalg import linear_operator_util
30from tensorflow.python.util.tf_export import tf_export
31
32__all__ = [
33    "LinearOperatorIdentity",
34    "LinearOperatorScaledIdentity",
35]
36
37
38class BaseLinearOperatorIdentity(linear_operator.LinearOperator):
39  """Base class for Identity operators."""
40
41  def _check_num_rows_possibly_add_asserts(self):
42    """Static check of init arg `num_rows`, possibly add asserts."""
43    # Possibly add asserts.
44    if self._assert_proper_shapes:
45      self._num_rows = control_flow_ops.with_dependencies([
46          check_ops.assert_rank(
47              self._num_rows,
48              0,
49              message="Argument num_rows must be a 0-D Tensor."),
50          check_ops.assert_non_negative(
51              self._num_rows,
52              message="Argument num_rows must be non-negative."),
53      ], self._num_rows)
54
55    # Static checks.
56    if not self._num_rows.dtype.is_integer:
57      raise TypeError("Argument num_rows must be integer type.  Found:"
58                      " %s" % self._num_rows)
59
60    num_rows_static = self._num_rows_static
61
62    if num_rows_static is None:
63      return  # Cannot do any other static checks.
64
65    if num_rows_static.ndim != 0:
66      raise ValueError("Argument num_rows must be a 0-D Tensor.  Found:"
67                       " %s" % num_rows_static)
68
69    if num_rows_static < 0:
70      raise ValueError("Argument num_rows must be non-negative.  Found:"
71                       " %s" % num_rows_static)
72
73  def _min_matrix_dim(self):
74    """Minimum of domain/range dimension, if statically available, else None."""
75    domain_dim = tensor_shape.dimension_value(self.domain_dimension)
76    range_dim = tensor_shape.dimension_value(self.range_dimension)
77    if domain_dim is None or range_dim is None:
78      return None
79    return min(domain_dim, range_dim)
80
81  def _min_matrix_dim_tensor(self):
82    """Minimum of domain/range dimension, as a tensor."""
83    return math_ops.reduce_min(self.shape_tensor()[-2:])
84
85  def _ones_diag(self):
86    """Returns the diagonal of this operator as all ones."""
87    if self.shape.is_fully_defined():
88      d_shape = self.batch_shape.concatenate([self._min_matrix_dim()])
89    else:
90      d_shape = array_ops.concat(
91          [self.batch_shape_tensor(),
92           [self._min_matrix_dim_tensor()]], axis=0)
93
94    return array_ops.ones(shape=d_shape, dtype=self.dtype)
95
96
97@tf_export("linalg.LinearOperatorIdentity")
98@linear_operator.make_composite_tensor
99class LinearOperatorIdentity(BaseLinearOperatorIdentity):
100  """`LinearOperator` acting like a [batch] square identity matrix.
101
102  This operator acts like a [batch] identity matrix `A` with shape
103  `[B1,...,Bb, N, N]` for some `b >= 0`.  The first `b` indices index a
104  batch member.  For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is
105  an `N x N` matrix.  This matrix `A` is not materialized, but for
106  purposes of broadcasting this shape will be relevant.
107
108  `LinearOperatorIdentity` is initialized with `num_rows`, and optionally
109  `batch_shape`, and `dtype` arguments.  If `batch_shape` is `None`, this
110  operator efficiently passes through all arguments.  If `batch_shape` is
111  provided, broadcasting may occur, which will require making copies.
112
113  ```python
114  # Create a 2 x 2 identity matrix.
115  operator = LinearOperatorIdentity(num_rows=2, dtype=tf.float32)
116
117  operator.to_dense()
118  ==> [[1., 0.]
119       [0., 1.]]
120
121  operator.shape
122  ==> [2, 2]
123
124  operator.log_abs_determinant()
125  ==> 0.
126
127  x = ... Shape [2, 4] Tensor
128  operator.matmul(x)
129  ==> Shape [2, 4] Tensor, same as x.
130
131  y = tf.random.normal(shape=[3, 2, 4])
132  # Note that y.shape is compatible with operator.shape because operator.shape
133  # is broadcast to [3, 2, 2].
134  # This broadcast does NOT require copying data, since we can infer that y
135  # will be passed through without changing shape.  We are always able to infer
136  # this if the operator has no batch_shape.
137  x = operator.solve(y)
138  ==> Shape [3, 2, 4] Tensor, same as y.
139
140  # Create a 2-batch of 2x2 identity matrices
141  operator = LinearOperatorIdentity(num_rows=2, batch_shape=[2])
142  operator.to_dense()
143  ==> [[[1., 0.]
144        [0., 1.]],
145       [[1., 0.]
146        [0., 1.]]]
147
148  # Here, even though the operator has a batch shape, the input is the same as
149  # the output, so x can be passed through without a copy.  The operator is able
150  # to detect that no broadcast is necessary because both x and the operator
151  # have statically defined shape.
152  x = ... Shape [2, 2, 3]
153  operator.matmul(x)
154  ==> Shape [2, 2, 3] Tensor, same as x
155
156  # Here the operator and x have different batch_shape, and are broadcast.
157  # This requires a copy, since the output is different size than the input.
158  x = ... Shape [1, 2, 3]
159  operator.matmul(x)
160  ==> Shape [2, 2, 3] Tensor, equal to [x, x]
161  ```
162
163  ### Shape compatibility
164
165  This operator acts on [batch] matrix with compatible shape.
166  `x` is a batch matrix with compatible shape for `matmul` and `solve` if
167
168  ```
169  operator.shape = [B1,...,Bb] + [N, N],  with b >= 0
170  x.shape =   [C1,...,Cc] + [N, R],
171  and [C1,...,Cc] broadcasts with [B1,...,Bb] to [D1,...,Dd]
172  ```
173
174  ### Performance
175
176  If `batch_shape` initialization arg is `None`:
177
178  * `operator.matmul(x)` is `O(1)`
179  * `operator.solve(x)` is `O(1)`
180  * `operator.determinant()` is `O(1)`
181
182  If `batch_shape` initialization arg is provided, and static checks cannot
183  rule out the need to broadcast:
184
185  * `operator.matmul(x)` is `O(D1*...*Dd*N*R)`
186  * `operator.solve(x)` is `O(D1*...*Dd*N*R)`
187  * `operator.determinant()` is `O(B1*...*Bb)`
188
189  #### Matrix property hints
190
191  This `LinearOperator` is initialized with boolean flags of the form `is_X`,
192  for `X = non_singular, self_adjoint, positive_definite, square`.
193  These have the following meaning:
194
195  * If `is_X == True`, callers should expect the operator to have the
196    property `X`.  This is a promise that should be fulfilled, but is *not* a
197    runtime assert.  For example, finite floating point precision may result
198    in these promises being violated.
199  * If `is_X == False`, callers should expect the operator to not have `X`.
200  * If `is_X == None` (the default), callers should have no expectation either
201    way.
202  """
203
204  def __init__(self,
205               num_rows,
206               batch_shape=None,
207               dtype=None,
208               is_non_singular=True,
209               is_self_adjoint=True,
210               is_positive_definite=True,
211               is_square=True,
212               assert_proper_shapes=False,
213               name="LinearOperatorIdentity"):
214    r"""Initialize a `LinearOperatorIdentity`.
215
216    The `LinearOperatorIdentity` is initialized with arguments defining `dtype`
217    and shape.
218
219    This operator is able to broadcast the leading (batch) dimensions, which
220    sometimes requires copying data.  If `batch_shape` is `None`, the operator
221    can take arguments of any batch shape without copying.  See examples.
222
223    Args:
224      num_rows:  Scalar non-negative integer `Tensor`.  Number of rows in the
225        corresponding identity matrix.
226      batch_shape:  Optional `1-D` integer `Tensor`.  The shape of the leading
227        dimensions.  If `None`, this operator has no leading dimensions.
228      dtype:  Data type of the matrix that this operator represents.
229      is_non_singular:  Expect that this operator is non-singular.
230      is_self_adjoint:  Expect that this operator is equal to its hermitian
231        transpose.
232      is_positive_definite:  Expect that this operator is positive definite,
233        meaning the quadratic form `x^H A x` has positive real part for all
234        nonzero `x`.  Note that we do not require the operator to be
235        self-adjoint to be positive-definite.  See:
236        https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices
237      is_square:  Expect that this operator acts like square [batch] matrices.
238      assert_proper_shapes:  Python `bool`.  If `False`, only perform static
239        checks that initialization and method arguments have proper shape.
240        If `True`, and static checks are inconclusive, add asserts to the graph.
241      name: A name for this `LinearOperator`
242
243    Raises:
244      ValueError:  If `num_rows` is determined statically to be non-scalar, or
245        negative.
246      ValueError:  If `batch_shape` is determined statically to not be 1-D, or
247        negative.
248      ValueError:  If any of the following is not `True`:
249        `{is_self_adjoint, is_non_singular, is_positive_definite}`.
250      TypeError:  If `num_rows` or `batch_shape` is ref-type (e.g. Variable).
251    """
252    parameters = dict(
253        num_rows=num_rows,
254        batch_shape=batch_shape,
255        dtype=dtype,
256        is_non_singular=is_non_singular,
257        is_self_adjoint=is_self_adjoint,
258        is_positive_definite=is_positive_definite,
259        is_square=is_square,
260        assert_proper_shapes=assert_proper_shapes,
261        name=name)
262
263    dtype = dtype or dtypes.float32
264    self._assert_proper_shapes = assert_proper_shapes
265
266    with ops.name_scope(name):
267      dtype = dtypes.as_dtype(dtype)
268      if not is_self_adjoint:
269        raise ValueError("An identity operator is always self adjoint.")
270      if not is_non_singular:
271        raise ValueError("An identity operator is always non-singular.")
272      if not is_positive_definite:
273        raise ValueError("An identity operator is always positive-definite.")
274      if not is_square:
275        raise ValueError("An identity operator is always square.")
276
277      super(LinearOperatorIdentity, self).__init__(
278          dtype=dtype,
279          is_non_singular=is_non_singular,
280          is_self_adjoint=is_self_adjoint,
281          is_positive_definite=is_positive_definite,
282          is_square=is_square,
283          parameters=parameters,
284          name=name)
285
286      linear_operator_util.assert_not_ref_type(num_rows, "num_rows")
287      linear_operator_util.assert_not_ref_type(batch_shape, "batch_shape")
288
289      self._num_rows = linear_operator_util.shape_tensor(
290          num_rows, name="num_rows")
291      self._num_rows_static = tensor_util.constant_value(self._num_rows)
292      self._check_num_rows_possibly_add_asserts()
293
294      if batch_shape is None:
295        self._batch_shape_arg = None
296      else:
297        self._batch_shape_arg = linear_operator_util.shape_tensor(
298            batch_shape, name="batch_shape_arg")
299        self._batch_shape_static = tensor_util.constant_value(
300            self._batch_shape_arg)
301        self._check_batch_shape_possibly_add_asserts()
302
303  def _shape(self):
304    matrix_shape = tensor_shape.TensorShape((self._num_rows_static,
305                                             self._num_rows_static))
306    if self._batch_shape_arg is None:
307      return matrix_shape
308
309    batch_shape = tensor_shape.TensorShape(self._batch_shape_static)
310    return batch_shape.concatenate(matrix_shape)
311
312  def _shape_tensor(self):
313    matrix_shape = array_ops.stack((self._num_rows, self._num_rows), axis=0)
314    if self._batch_shape_arg is None:
315      return matrix_shape
316
317    return array_ops.concat((self._batch_shape_arg, matrix_shape), 0)
318
319  def _assert_non_singular(self):
320    return control_flow_ops.no_op("assert_non_singular")
321
322  def _assert_positive_definite(self):
323    return control_flow_ops.no_op("assert_positive_definite")
324
325  def _assert_self_adjoint(self):
326    return control_flow_ops.no_op("assert_self_adjoint")
327
328  def _possibly_broadcast_batch_shape(self, x):
329    """Return 'x', possibly after broadcasting the leading dimensions."""
330    # If we have no batch shape, our batch shape broadcasts with everything!
331    if self._batch_shape_arg is None:
332      return x
333
334    # Static attempt:
335    #   If we determine that no broadcast is necessary, pass x through
336    #   If we need a broadcast, add to an array of zeros.
337    #
338    # special_shape is the shape that, when broadcast with x's shape, will give
339    # the correct broadcast_shape.  Note that
340    #   We have already verified the second to last dimension of self.shape
341    #   matches x's shape in assert_compatible_matrix_dimensions.
342    #   Also, the final dimension of 'x' can have any shape.
343    #   Therefore, the final two dimensions of special_shape are 1's.
344    special_shape = self.batch_shape.concatenate([1, 1])
345    bshape = array_ops.broadcast_static_shape(x.shape, special_shape)
346    if special_shape.is_fully_defined():
347      # bshape.is_fully_defined iff special_shape.is_fully_defined.
348      if bshape == x.shape:
349        return x
350      # Use the built in broadcasting of addition.
351      zeros = array_ops.zeros(shape=special_shape, dtype=self.dtype)
352      return x + zeros
353
354    # Dynamic broadcast:
355    #   Always add to an array of zeros, rather than using a "cond", since a
356    #   cond would require copying data from GPU --> CPU.
357    special_shape = array_ops.concat((self.batch_shape_tensor(), [1, 1]), 0)
358    zeros = array_ops.zeros(shape=special_shape, dtype=self.dtype)
359    return x + zeros
360
361  def _matmul(self, x, adjoint=False, adjoint_arg=False):
362    # Note that adjoint has no effect since this matrix is self-adjoint.
363    x = linalg.adjoint(x) if adjoint_arg else x
364    if self._assert_proper_shapes:
365      aps = linear_operator_util.assert_compatible_matrix_dimensions(self, x)
366      x = control_flow_ops.with_dependencies([aps], x)
367    return self._possibly_broadcast_batch_shape(x)
368
369  def _determinant(self):
370    return array_ops.ones(shape=self.batch_shape_tensor(), dtype=self.dtype)
371
372  def _log_abs_determinant(self):
373    return array_ops.zeros(shape=self.batch_shape_tensor(), dtype=self.dtype)
374
375  def _solve(self, rhs, adjoint=False, adjoint_arg=False):
376    return self._matmul(rhs, adjoint_arg=adjoint_arg)
377
378  def _trace(self):
379    # Get Tensor of all ones of same shape as self.batch_shape.
380    if self.batch_shape.is_fully_defined():
381      batch_of_ones = array_ops.ones(shape=self.batch_shape, dtype=self.dtype)
382    else:
383      batch_of_ones = array_ops.ones(
384          shape=self.batch_shape_tensor(), dtype=self.dtype)
385
386    if self._min_matrix_dim() is not None:
387      return self._min_matrix_dim() * batch_of_ones
388    else:
389      return (math_ops.cast(self._min_matrix_dim_tensor(), self.dtype) *
390              batch_of_ones)
391
392  def _diag_part(self):
393    return self._ones_diag()
394
395  def add_to_tensor(self, mat, name="add_to_tensor"):
396    """Add matrix represented by this operator to `mat`.  Equiv to `I + mat`.
397
398    Args:
399      mat:  `Tensor` with same `dtype` and shape broadcastable to `self`.
400      name:  A name to give this `Op`.
401
402    Returns:
403      A `Tensor` with broadcast shape and same `dtype` as `self`.
404    """
405    with self._name_scope(name):  # pylint: disable=not-callable
406      mat = ops.convert_to_tensor_v2_with_dispatch(mat, name="mat")
407      mat_diag = array_ops.matrix_diag_part(mat)
408      new_diag = 1 + mat_diag
409      return array_ops.matrix_set_diag(mat, new_diag)
410
411  def _eigvals(self):
412    return self._ones_diag()
413
414  def _cond(self):
415    return array_ops.ones(self.batch_shape_tensor(), dtype=self.dtype)
416
417  def _check_num_rows_possibly_add_asserts(self):
418    """Static check of init arg `num_rows`, possibly add asserts."""
419    # Possibly add asserts.
420    if self._assert_proper_shapes:
421      self._num_rows = control_flow_ops.with_dependencies([
422          check_ops.assert_rank(
423              self._num_rows,
424              0,
425              message="Argument num_rows must be a 0-D Tensor."),
426          check_ops.assert_non_negative(
427              self._num_rows,
428              message="Argument num_rows must be non-negative."),
429      ], self._num_rows)
430
431    # Static checks.
432    if not self._num_rows.dtype.is_integer:
433      raise TypeError("Argument num_rows must be integer type.  Found:"
434                      " %s" % self._num_rows)
435
436    num_rows_static = self._num_rows_static
437
438    if num_rows_static is None:
439      return  # Cannot do any other static checks.
440
441    if num_rows_static.ndim != 0:
442      raise ValueError("Argument num_rows must be a 0-D Tensor.  Found:"
443                       " %s" % num_rows_static)
444
445    if num_rows_static < 0:
446      raise ValueError("Argument num_rows must be non-negative.  Found:"
447                       " %s" % num_rows_static)
448
449  def _check_batch_shape_possibly_add_asserts(self):
450    """Static check of init arg `batch_shape`, possibly add asserts."""
451    if self._batch_shape_arg is None:
452      return
453
454    # Possibly add asserts
455    if self._assert_proper_shapes:
456      self._batch_shape_arg = control_flow_ops.with_dependencies([
457          check_ops.assert_rank(
458              self._batch_shape_arg,
459              1,
460              message="Argument batch_shape must be a 1-D Tensor."),
461          check_ops.assert_non_negative(
462              self._batch_shape_arg,
463              message="Argument batch_shape must be non-negative."),
464      ], self._batch_shape_arg)
465
466    # Static checks
467    if not self._batch_shape_arg.dtype.is_integer:
468      raise TypeError("Argument batch_shape must be integer type.  Found:"
469                      " %s" % self._batch_shape_arg)
470
471    if self._batch_shape_static is None:
472      return  # Cannot do any other static checks.
473
474    if self._batch_shape_static.ndim != 1:
475      raise ValueError("Argument batch_shape must be a 1-D Tensor.  Found:"
476                       " %s" % self._batch_shape_static)
477
478    if np.any(self._batch_shape_static < 0):
479      raise ValueError("Argument batch_shape must be non-negative.  Found:"
480                       "%s" % self._batch_shape_static)
481
482  @property
483  def _composite_tensor_prefer_static_fields(self):
484    return ("num_rows", "batch_shape")
485
486  @property
487  def _composite_tensor_fields(self):
488    return ("num_rows", "batch_shape", "dtype", "assert_proper_shapes")
489
490  def __getitem__(self, slices):
491    # Slice the batch shape and return a new LinearOperatorIdentity.
492    # Use a proxy shape and slice it. Use this as the new batch shape
493    new_batch_shape = array_ops.shape(
494        array_ops.ones(self._batch_shape_arg)[slices])
495    parameters = dict(self.parameters, batch_shape=new_batch_shape)
496    return LinearOperatorIdentity(**parameters)
497
498
499@tf_export("linalg.LinearOperatorScaledIdentity")
500@linear_operator.make_composite_tensor
501class LinearOperatorScaledIdentity(BaseLinearOperatorIdentity):
502  """`LinearOperator` acting like a scaled [batch] identity matrix `A = c I`.
503
504  This operator acts like a scaled [batch] identity matrix `A` with shape
505  `[B1,...,Bb, N, N]` for some `b >= 0`.  The first `b` indices index a
506  batch member.  For every batch index `(i1,...,ib)`, `A[i1,...,ib, : :]` is
507  a scaled version of the `N x N` identity matrix.
508
509  `LinearOperatorIdentity` is initialized with `num_rows`, and a `multiplier`
510  (a `Tensor`) of shape `[B1,...,Bb]`.  `N` is set to `num_rows`, and the
511  `multiplier` determines the scale for each batch member.
512
513  ```python
514  # Create a 2 x 2 scaled identity matrix.
515  operator = LinearOperatorIdentity(num_rows=2, multiplier=3.)
516
517  operator.to_dense()
518  ==> [[3., 0.]
519       [0., 3.]]
520
521  operator.shape
522  ==> [2, 2]
523
524  operator.log_abs_determinant()
525  ==> 2 * Log[3]
526
527  x = ... Shape [2, 4] Tensor
528  operator.matmul(x)
529  ==> 3 * x
530
531  y = tf.random.normal(shape=[3, 2, 4])
532  # Note that y.shape is compatible with operator.shape because operator.shape
533  # is broadcast to [3, 2, 2].
534  x = operator.solve(y)
535  ==> 3 * x
536
537  # Create a 2-batch of 2x2 identity matrices
538  operator = LinearOperatorIdentity(num_rows=2, multiplier=5.)
539  operator.to_dense()
540  ==> [[[5., 0.]
541        [0., 5.]],
542       [[5., 0.]
543        [0., 5.]]]
544
545  x = ... Shape [2, 2, 3]
546  operator.matmul(x)
547  ==> 5 * x
548
549  # Here the operator and x have different batch_shape, and are broadcast.
550  x = ... Shape [1, 2, 3]
551  operator.matmul(x)
552  ==> 5 * x
553  ```
554
555  ### Shape compatibility
556
557  This operator acts on [batch] matrix with compatible shape.
558  `x` is a batch matrix with compatible shape for `matmul` and `solve` if
559
560  ```
561  operator.shape = [B1,...,Bb] + [N, N],  with b >= 0
562  x.shape =   [C1,...,Cc] + [N, R],
563  and [C1,...,Cc] broadcasts with [B1,...,Bb] to [D1,...,Dd]
564  ```
565
566  ### Performance
567
568  * `operator.matmul(x)` is `O(D1*...*Dd*N*R)`
569  * `operator.solve(x)` is `O(D1*...*Dd*N*R)`
570  * `operator.determinant()` is `O(D1*...*Dd)`
571
572  #### Matrix property hints
573
574  This `LinearOperator` is initialized with boolean flags of the form `is_X`,
575  for `X = non_singular, self_adjoint, positive_definite, square`.
576  These have the following meaning
577  * If `is_X == True`, callers should expect the operator to have the
578    property `X`.  This is a promise that should be fulfilled, but is *not* a
579    runtime assert.  For example, finite floating point precision may result
580    in these promises being violated.
581  * If `is_X == False`, callers should expect the operator to not have `X`.
582  * If `is_X == None` (the default), callers should have no expectation either
583    way.
584  """
585
586  def __init__(self,
587               num_rows,
588               multiplier,
589               is_non_singular=None,
590               is_self_adjoint=None,
591               is_positive_definite=None,
592               is_square=True,
593               assert_proper_shapes=False,
594               name="LinearOperatorScaledIdentity"):
595    r"""Initialize a `LinearOperatorScaledIdentity`.
596
597    The `LinearOperatorScaledIdentity` is initialized with `num_rows`, which
598    determines the size of each identity matrix, and a `multiplier`,
599    which defines `dtype`, batch shape, and scale of each matrix.
600
601    This operator is able to broadcast the leading (batch) dimensions.
602
603    Args:
604      num_rows:  Scalar non-negative integer `Tensor`.  Number of rows in the
605        corresponding identity matrix.
606      multiplier:  `Tensor` of shape `[B1,...,Bb]`, or `[]` (a scalar).
607      is_non_singular:  Expect that this operator is non-singular.
608      is_self_adjoint:  Expect that this operator is equal to its hermitian
609        transpose.
610      is_positive_definite:  Expect that this operator is positive definite,
611        meaning the quadratic form `x^H A x` has positive real part for all
612        nonzero `x`.  Note that we do not require the operator to be
613        self-adjoint to be positive-definite.  See:
614        https://en.wikipedia.org/wiki/Positive-definite_matrix#Extension_for_non-symmetric_matrices
615      is_square:  Expect that this operator acts like square [batch] matrices.
616      assert_proper_shapes:  Python `bool`.  If `False`, only perform static
617        checks that initialization and method arguments have proper shape.
618        If `True`, and static checks are inconclusive, add asserts to the graph.
619      name: A name for this `LinearOperator`
620
621    Raises:
622      ValueError:  If `num_rows` is determined statically to be non-scalar, or
623        negative.
624    """
625    parameters = dict(
626        num_rows=num_rows,
627        multiplier=multiplier,
628        is_non_singular=is_non_singular,
629        is_self_adjoint=is_self_adjoint,
630        is_positive_definite=is_positive_definite,
631        is_square=is_square,
632        assert_proper_shapes=assert_proper_shapes,
633        name=name)
634
635    self._assert_proper_shapes = assert_proper_shapes
636
637    with ops.name_scope(name, values=[multiplier, num_rows]):
638      self._multiplier = linear_operator_util.convert_nonref_to_tensor(
639          multiplier, name="multiplier")
640
641      # Check and auto-set hints.
642      if not self._multiplier.dtype.is_complex:
643        if is_self_adjoint is False:  # pylint: disable=g-bool-id-comparison
644          raise ValueError("A real diagonal operator is always self adjoint.")
645        else:
646          is_self_adjoint = True
647
648      if not is_square:
649        raise ValueError("A ScaledIdentity operator is always square.")
650
651      linear_operator_util.assert_not_ref_type(num_rows, "num_rows")
652
653      super(LinearOperatorScaledIdentity, self).__init__(
654          dtype=self._multiplier.dtype.base_dtype,
655          is_non_singular=is_non_singular,
656          is_self_adjoint=is_self_adjoint,
657          is_positive_definite=is_positive_definite,
658          is_square=is_square,
659          parameters=parameters,
660          name=name)
661
662      self._num_rows = linear_operator_util.shape_tensor(
663          num_rows, name="num_rows")
664      self._num_rows_static = tensor_util.constant_value(self._num_rows)
665      self._check_num_rows_possibly_add_asserts()
666      self._num_rows_cast_to_dtype = math_ops.cast(self._num_rows, self.dtype)
667      self._num_rows_cast_to_real_dtype = math_ops.cast(self._num_rows,
668                                                        self.dtype.real_dtype)
669
670  def _shape(self):
671    matrix_shape = tensor_shape.TensorShape((self._num_rows_static,
672                                             self._num_rows_static))
673
674    batch_shape = self.multiplier.shape
675    return batch_shape.concatenate(matrix_shape)
676
677  def _shape_tensor(self):
678    matrix_shape = array_ops.stack((self._num_rows, self._num_rows), axis=0)
679
680    batch_shape = array_ops.shape(self.multiplier)
681    return array_ops.concat((batch_shape, matrix_shape), 0)
682
683  def _assert_non_singular(self):
684    return check_ops.assert_positive(
685        math_ops.abs(self.multiplier), message="LinearOperator was singular")
686
687  def _assert_positive_definite(self):
688    return check_ops.assert_positive(
689        math_ops.real(self.multiplier),
690        message="LinearOperator was not positive definite.")
691
692  def _assert_self_adjoint(self):
693    imag_multiplier = math_ops.imag(self.multiplier)
694    return check_ops.assert_equal(
695        array_ops.zeros_like(imag_multiplier),
696        imag_multiplier,
697        message="LinearOperator was not self-adjoint")
698
699  def _make_multiplier_matrix(self, conjugate=False):
700    # Shape [B1,...Bb, 1, 1]
701    multiplier_matrix = array_ops.expand_dims(
702        array_ops.expand_dims(self.multiplier, -1), -1)
703    if conjugate:
704      multiplier_matrix = math_ops.conj(multiplier_matrix)
705    return multiplier_matrix
706
707  def _matmul(self, x, adjoint=False, adjoint_arg=False):
708    x = linalg.adjoint(x) if adjoint_arg else x
709    if self._assert_proper_shapes:
710      aps = linear_operator_util.assert_compatible_matrix_dimensions(self, x)
711      x = control_flow_ops.with_dependencies([aps], x)
712    return x * self._make_multiplier_matrix(conjugate=adjoint)
713
714  def _determinant(self):
715    return self.multiplier**self._num_rows_cast_to_dtype
716
717  def _log_abs_determinant(self):
718    return self._num_rows_cast_to_real_dtype * math_ops.log(
719        math_ops.abs(self.multiplier))
720
721  def _solve(self, rhs, adjoint=False, adjoint_arg=False):
722    rhs = linalg.adjoint(rhs) if adjoint_arg else rhs
723    if self._assert_proper_shapes:
724      aps = linear_operator_util.assert_compatible_matrix_dimensions(self, rhs)
725      rhs = control_flow_ops.with_dependencies([aps], rhs)
726    return rhs / self._make_multiplier_matrix(conjugate=adjoint)
727
728  def _trace(self):
729    # Get Tensor of all ones of same shape as self.batch_shape.
730    if self.batch_shape.is_fully_defined():
731      batch_of_ones = array_ops.ones(shape=self.batch_shape, dtype=self.dtype)
732    else:
733      batch_of_ones = array_ops.ones(
734          shape=self.batch_shape_tensor(), dtype=self.dtype)
735
736    if self._min_matrix_dim() is not None:
737      return self.multiplier * self._min_matrix_dim() * batch_of_ones
738    else:
739      return (self.multiplier * math_ops.cast(self._min_matrix_dim_tensor(),
740                                              self.dtype) * batch_of_ones)
741
742  def _diag_part(self):
743    return self._ones_diag() * self.multiplier[..., array_ops.newaxis]
744
745  def add_to_tensor(self, mat, name="add_to_tensor"):
746    """Add matrix represented by this operator to `mat`.  Equiv to `I + mat`.
747
748    Args:
749      mat:  `Tensor` with same `dtype` and shape broadcastable to `self`.
750      name:  A name to give this `Op`.
751
752    Returns:
753      A `Tensor` with broadcast shape and same `dtype` as `self`.
754    """
755    with self._name_scope(name):  # pylint: disable=not-callable
756      # Shape [B1,...,Bb, 1]
757      multiplier_vector = array_ops.expand_dims(self.multiplier, -1)
758
759      # Shape [C1,...,Cc, M, M]
760      mat = ops.convert_to_tensor_v2_with_dispatch(mat, name="mat")
761
762      # Shape [C1,...,Cc, M]
763      mat_diag = array_ops.matrix_diag_part(mat)
764
765      # multiplier_vector broadcasts here.
766      new_diag = multiplier_vector + mat_diag
767
768      return array_ops.matrix_set_diag(mat, new_diag)
769
770  def _eigvals(self):
771    return self._ones_diag() * self.multiplier[..., array_ops.newaxis]
772
773  def _cond(self):
774    # Condition number for a scalar time identity matrix is one, except when the
775    # scalar is zero.
776    return array_ops.where_v2(
777        math_ops.equal(self._multiplier, 0.),
778        math_ops.cast(np.nan, dtype=self.dtype),
779        math_ops.cast(1., dtype=self.dtype))
780
781  @property
782  def multiplier(self):
783    """The [batch] scalar `Tensor`, `c` in `cI`."""
784    return self._multiplier
785
786  @property
787  def _composite_tensor_prefer_static_fields(self):
788    return ("num_rows",)
789
790  @property
791  def _composite_tensor_fields(self):
792    return ("num_rows", "multiplier", "assert_proper_shapes")
793
794  @property
795  def _experimental_parameter_ndims_to_matrix_ndims(self):
796    return {"multiplier": 0}
797