• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/runtime/NEON/functions/NEScale.h"
25 
26 #include "src/common/utils/Log.h"
27 #include "src/core/utils/ScaleUtils.h"
28 #include "src/cpu/operators/CpuScale.h"
29 
30 namespace arm_compute
31 {
32 struct NEScale::Impl
33 {
34     const ITensor                 *src{ nullptr };
35     ITensor                       *dst{ nullptr };
36     Tensor                         dx{ nullptr };      /**< Element's distance between the X real coordinate and the smallest X following integer */
37     Tensor                         dy{ nullptr };      /**< Element's distance between the Y real coordinate and the smallest Y following integer */
38     Tensor                         offsets{ nullptr }; /**< Offset to access the element with NEAREST interpolation or the top-left element with BILINEAR interpolation in the input tensor */
39     std::unique_ptr<cpu::CpuScale> op{ nullptr };
40 };
41 
NEScale()42 NEScale::NEScale()
43     : _impl(std::make_unique<Impl>())
44 {
45 }
46 NEScale::~NEScale() = default;
47 
configure(ITensor * input,ITensor * output,const ScaleKernelInfo & info)48 void NEScale::configure(ITensor *input, ITensor *output, const ScaleKernelInfo &info)
49 {
50     ARM_COMPUTE_LOG_PARAMS(input, output, info);
51 
52     _impl->src = input;
53     _impl->dst = output;
54     _impl->op  = std::make_unique<cpu::CpuScale>();
55     _impl->op->configure(input->info(), output->info(), info);
56 
57     // Configure for size of allocation of internal tensors
58     // Get data layout and width/height indices
59     const DataLayout data_layout = info.data_layout == DataLayout::UNKNOWN ? input->info()->data_layout() : info.data_layout;
60     const int        idx_width   = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
61     const int        idx_height  = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
62 
63     // Compute the ratio between source width/height and destination width/height
64     const bool is_align_corners_used = info.align_corners && arm_compute::scale_utils::is_align_corners_allowed_sampling_policy(info.sampling_policy);
65     const auto wr                    = arm_compute::scale_utils::calculate_resize_ratio(input->info()->dimension(idx_width), output->info()->dimension(idx_width), is_align_corners_used);
66     const auto hr                    = arm_compute::scale_utils::calculate_resize_ratio(input->info()->dimension(idx_height), output->info()->dimension(idx_height), is_align_corners_used);
67 
68     // Area interpolation behaves as Nearest Neighbour in case of up-sampling
69     InterpolationPolicy policy_to_use = (info.interpolation_policy == InterpolationPolicy::AREA && wr <= 1.f && hr <= 1.f) ? InterpolationPolicy::NEAREST_NEIGHBOR : info.interpolation_policy;
70 
71     // Get the tensor shape
72     TensorShape shape(output->info()->dimension(idx_width));
73     shape.set(1, output->info()->dimension(idx_height), false);
74 
75     bool precompute_indices_weights = arm_compute::scale_utils::is_precomputation_required(data_layout, input->info()->data_type(), policy_to_use, info.border_mode);
76 
77     if(precompute_indices_weights)
78     {
79         const TensorInfo tensor_info_dxdy(shape, Format::F32);
80         const TensorInfo tensor_info_offsets(shape, Format::S32);
81 
82         _impl->dx.allocator()->init(tensor_info_dxdy);
83         _impl->dy.allocator()->init(tensor_info_dxdy);
84         _impl->offsets.allocator()->init(tensor_info_offsets);
85         switch(policy_to_use)
86         {
87             case InterpolationPolicy::NEAREST_NEIGHBOR:
88             {
89                 // Allocate once the configure methods have been called
90                 _impl->offsets.allocator()->allocate();
91                 break;
92             }
93             case InterpolationPolicy::BILINEAR:
94             {
95                 // Allocate once the configure methods have been called
96                 _impl->dx.allocator()->allocate();
97                 _impl->dy.allocator()->allocate();
98                 _impl->offsets.allocator()->allocate();
99                 break;
100             }
101             case InterpolationPolicy::AREA:
102             {
103                 break;
104             }
105             default:
106                 ARM_COMPUTE_ERROR("Unsupported interpolation mode");
107         }
108     }
109     else
110     {
111         if(policy_to_use != InterpolationPolicy::NEAREST_NEIGHBOR && policy_to_use != InterpolationPolicy::BILINEAR && policy_to_use != InterpolationPolicy::AREA)
112         {
113             ARM_COMPUTE_ERROR("Unsupported interpolation mode");
114         }
115     }
116 }
117 
validate(const ITensorInfo * input,const ITensorInfo * output,const ScaleKernelInfo & info)118 Status NEScale::validate(const ITensorInfo *input, const ITensorInfo *output, const ScaleKernelInfo &info)
119 {
120     return cpu::CpuScale::validate(input, output, info);
121 }
122 
run()123 void NEScale::run()
124 {
125     ITensorPack pack;
126     pack.add_tensor(TensorType::ACL_SRC, _impl->src);
127     pack.add_tensor(TensorType::ACL_DST, _impl->dst);
128     pack.add_tensor(TensorType::ACL_INT_0, &_impl->dx);
129     pack.add_tensor(TensorType::ACL_INT_1, &_impl->dy);
130     pack.add_tensor(TensorType::ACL_INT_2, &_impl->offsets);
131     _impl->op->run(pack);
132 }
133 } // namespace arm_compute
134