• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016-2023 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #ifndef __UTILS_UTILS_H__
25 #define __UTILS_UTILS_H__
26 
27 /** @dir .
28  *  brief Boiler plate code used by examples. Various utilities to print types, load / store assets, etc.
29  */
30 
31 #include "arm_compute/core/Helpers.h"
32 #include "arm_compute/core/ITensor.h"
33 #include "arm_compute/core/Types.h"
34 #include "arm_compute/core/Window.h"
35 #include "arm_compute/runtime/Tensor.h"
36 #pragma GCC diagnostic push
37 #pragma GCC diagnostic ignored "-Wunused-parameter"
38 #pragma GCC diagnostic ignored "-Wstrict-overflow"
39 #include "libnpy/npy.hpp"
40 #pragma GCC diagnostic pop
41 #include "support/StringSupport.h"
42 
43 #ifdef ARM_COMPUTE_CL
44 #include "arm_compute/core/CL/OpenCL.h"
45 #include "arm_compute/runtime/CL/CLTensor.h"
46 #endif /* ARM_COMPUTE_CL */
47 
48 #include <cstdlib>
49 #include <cstring>
50 #include <fstream>
51 #include <iostream>
52 #include <memory>
53 #include <random>
54 #include <string>
55 #include <tuple>
56 #include <vector>
57 
58 namespace arm_compute
59 {
60 namespace utils
61 {
62 /** Supported image types */
63 enum class ImageType
64 {
65     UNKNOWN,
66     PPM,
67     JPEG
68 };
69 
70 /** Abstract Example class.
71  *
72  * All examples have to inherit from this class.
73  */
74 class Example
75 {
76 public:
77     /** Setup the example.
78      *
79      * @param[in] argc Argument count.
80      * @param[in] argv Argument values.
81      *
82      * @return True in case of no errors in setup else false
83      */
do_setup(int argc,char ** argv)84     virtual bool do_setup(int argc, char **argv)
85     {
86         ARM_COMPUTE_UNUSED(argc, argv);
87         return true;
88     };
89     /** Run the example. */
do_run()90     virtual void do_run() {};
91     /** Teardown the example. */
do_teardown()92     virtual void do_teardown() {};
93 
94     /** Default destructor. */
95     virtual ~Example() = default;
96 };
97 
98 /** Run an example and handle the potential exceptions it throws
99  *
100  * @param[in] argc    Number of command line arguments
101  * @param[in] argv    Command line arguments
102  * @param[in] example Example to run
103  */
104 int run_example(int argc, char **argv, std::unique_ptr<Example> example);
105 
106 template <typename T>
run_example(int argc,char ** argv)107 int run_example(int argc, char **argv)
108 {
109     return run_example(argc, argv, std::make_unique<T>());
110 }
111 
112 /** Draw a RGB rectangular window for the detected object
113  *
114  * @param[in, out] tensor Input tensor where the rectangle will be drawn on. Format supported: RGB888
115  * @param[in]      rect   Geometry of the rectangular window
116  * @param[in]      r      Red colour to use
117  * @param[in]      g      Green colour to use
118  * @param[in]      b      Blue colour to use
119  */
120 void draw_detection_rectangle(arm_compute::ITensor *tensor, const arm_compute::DetectionWindow &rect, uint8_t r, uint8_t g, uint8_t b);
121 
122 /** Gets image type given a file
123  *
124  * @param[in] filename File to identify its image type
125  *
126  * @return Image type
127  */
128 ImageType get_image_type_from_file(const std::string &filename);
129 
130 /** Parse the ppm header from an input file stream. At the end of the execution,
131  *  the file position pointer will be located at the first pixel stored in the ppm file
132  *
133  * @param[in] fs Input file stream to parse
134  *
135  * @return The width, height and max value stored in the header of the PPM file
136  */
137 std::tuple<unsigned int, unsigned int, int> parse_ppm_header(std::ifstream &fs);
138 
139 /** Parse the npy header from an input file stream. At the end of the execution,
140  *  the file position pointer will be located at the first pixel stored in the npy file //TODO
141  *
142  * @param[in] fs Input file stream to parse
143  *
144  * @return The width and height stored in the header of the NPY file
145  */
146 npy::header_t parse_npy_header(std::ifstream &fs);
147 
148 /** Obtain numpy type string from DataType.
149  *
150  * @param[in] data_type Data type.
151  *
152  * @return numpy type string.
153  */
get_typestring(DataType data_type)154 inline std::string get_typestring(DataType data_type)
155 {
156     // Check endianness
157     const unsigned int i = 1;
158     const char        *c = reinterpret_cast<const char *>(&i);
159     std::string        endianness;
160     if(*c == 1)
161     {
162         endianness = std::string("<");
163     }
164     else
165     {
166         endianness = std::string(">");
167     }
168     const std::string no_endianness("|");
169 
170     switch(data_type)
171     {
172         case DataType::U8:
173         case DataType::QASYMM8:
174             return no_endianness + "u" + support::cpp11::to_string(sizeof(uint8_t));
175         case DataType::S8:
176         case DataType::QSYMM8:
177         case DataType::QSYMM8_PER_CHANNEL:
178             return no_endianness + "i" + support::cpp11::to_string(sizeof(int8_t));
179         case DataType::U16:
180         case DataType::QASYMM16:
181             return endianness + "u" + support::cpp11::to_string(sizeof(uint16_t));
182         case DataType::S16:
183         case DataType::QSYMM16:
184             return endianness + "i" + support::cpp11::to_string(sizeof(int16_t));
185         case DataType::U32:
186             return endianness + "u" + support::cpp11::to_string(sizeof(uint32_t));
187         case DataType::S32:
188             return endianness + "i" + support::cpp11::to_string(sizeof(int32_t));
189         case DataType::U64:
190             return endianness + "u" + support::cpp11::to_string(sizeof(uint64_t));
191         case DataType::S64:
192             return endianness + "i" + support::cpp11::to_string(sizeof(int64_t));
193         case DataType::F16:
194             return endianness + "f" + support::cpp11::to_string(sizeof(half));
195         case DataType::F32:
196             return endianness + "f" + support::cpp11::to_string(sizeof(float));
197         case DataType::F64:
198             return endianness + "f" + support::cpp11::to_string(sizeof(double));
199         case DataType::SIZET:
200             return endianness + "u" + support::cpp11::to_string(sizeof(size_t));
201         default:
202             ARM_COMPUTE_ERROR("Data type not supported");
203     }
204 }
205 
206 /** Maps a tensor if needed
207  *
208  * @param[in] tensor   Tensor to be mapped
209  * @param[in] blocking Specified if map is blocking or not
210  */
211 template <typename T>
map(T & tensor,bool blocking)212 inline void map(T &tensor, bool blocking)
213 {
214     ARM_COMPUTE_UNUSED(tensor);
215     ARM_COMPUTE_UNUSED(blocking);
216 }
217 
218 /** Unmaps a tensor if needed
219  *
220  * @param tensor  Tensor to be unmapped
221  */
222 template <typename T>
unmap(T & tensor)223 inline void unmap(T &tensor)
224 {
225     ARM_COMPUTE_UNUSED(tensor);
226 }
227 
228 #ifdef ARM_COMPUTE_CL
229 /** Maps a tensor if needed
230  *
231  * @param[in] tensor   Tensor to be mapped
232  * @param[in] blocking Specified if map is blocking or not
233  */
map(CLTensor & tensor,bool blocking)234 inline void map(CLTensor &tensor, bool blocking)
235 {
236     tensor.map(blocking);
237 }
238 
239 /** Unmaps a tensor if needed
240  *
241  * @param tensor  Tensor to be unmapped
242  */
unmap(CLTensor & tensor)243 inline void unmap(CLTensor &tensor)
244 {
245     tensor.unmap();
246 }
247 #endif /* ARM_COMPUTE_CL */
248 
249 /** Specialized class to generate random non-zero FP16 values.
250  *  uniform_real_distribution<half> generates values that get rounded off to zero, causing
251  *  differences between ACL and reference implementation
252 */
253 template <typename T>
254 class uniform_real_distribution_16bit
255 {
256     static_assert(std::is_same<T, half>::value || std::is_same<T, bfloat16>::value, "Only half and bfloat16 data types supported");
257 
258 public:
259     using result_type = T;
260     /** Constructor
261      *
262      * @param[in] min Minimum value of the distribution
263      * @param[in] max Maximum value of the distribution
264      */
265     explicit uniform_real_distribution_16bit(float min = 0.f, float max = 1.0)
dist(min,max)266         : dist(min, max)
267     {
268     }
269 
270     /** () operator to generate next value
271      *
272      * @param[in] gen an uniform random bit generator object
273      */
operator()274     T operator()(std::mt19937 &gen)
275     {
276         return T(dist(gen));
277     }
278 
279 private:
280     std::uniform_real_distribution<float> dist;
281 };
282 
283 /** Numpy data loader */
284 class NPYLoader
285 {
286 public:
287     /** Default constructor */
NPYLoader()288     NPYLoader()
289         : _fs(), _shape(), _fortran_order(false), _typestring(), _file_layout(DataLayout::NCHW)
290     {
291     }
292 
293     /** Open a NPY file and reads its metadata
294      *
295      * @param[in] npy_filename File to open
296      * @param[in] file_layout  (Optional) Layout in which the weights are stored in the file.
297      */
298     void open(const std::string &npy_filename, DataLayout file_layout = DataLayout::NCHW)
299     {
300         ARM_COMPUTE_ERROR_ON(is_open());
301         try
302         {
303             _fs.open(npy_filename, std::ios::in | std::ios::binary);
304             ARM_COMPUTE_EXIT_ON_MSG_VAR(!_fs.good(), "Failed to load binary data from %s", npy_filename.c_str());
305             _fs.exceptions(std::ifstream::failbit | std::ifstream::badbit);
306             _file_layout = file_layout;
307 
308             npy::header_t header = parse_npy_header(_fs);
309             _shape               = header.shape;
310             _fortran_order       = header.fortran_order;
311             _typestring          = header.dtype.str();
312         }
catch(const std::ifstream::failure & e)313         catch(const std::ifstream::failure &e)
314         {
315             ARM_COMPUTE_ERROR_VAR("Accessing %s: %s", npy_filename.c_str(), e.what());
316         }
317     }
318     /** Return true if a NPY file is currently open */
is_open()319     bool is_open()
320     {
321         return _fs.is_open();
322     }
323 
324     /** Return true if a NPY file is in fortran order */
is_fortran()325     bool is_fortran()
326     {
327         return _fortran_order;
328     }
329 
330     /** Initialise the tensor's metadata with the dimensions of the NPY file currently open
331      *
332      * @param[out] tensor Tensor to initialise
333      * @param[in]  dt     Data type to use for the tensor
334      */
335     template <typename T>
init_tensor(T & tensor,arm_compute::DataType dt)336     void init_tensor(T &tensor, arm_compute::DataType dt)
337     {
338         ARM_COMPUTE_ERROR_ON(!is_open());
339         ARM_COMPUTE_ERROR_ON(dt != arm_compute::DataType::F32);
340 
341         // Use the size of the input NPY tensor
342         TensorShape shape;
343         shape.set_num_dimensions(_shape.size());
344         for(size_t i = 0; i < _shape.size(); ++i)
345         {
346             size_t src = i;
347             if(_fortran_order)
348             {
349                 src = _shape.size() - 1 - i;
350             }
351             shape.set(i, _shape.at(src));
352         }
353 
354         arm_compute::TensorInfo tensor_info(shape, 1, dt);
355         tensor.allocator()->init(tensor_info);
356     }
357 
358     /** Fill a tensor with the content of the currently open NPY file.
359      *
360      * @note If the tensor is a CLTensor, the function maps and unmaps the tensor
361      *
362      * @param[in,out] tensor Tensor to fill (Must be allocated, and of matching dimensions with the opened NPY).
363      */
364     template <typename T>
fill_tensor(T & tensor)365     void fill_tensor(T &tensor)
366     {
367         ARM_COMPUTE_ERROR_ON(!is_open());
368         ARM_COMPUTE_ERROR_ON_DATA_TYPE_NOT_IN(&tensor, arm_compute::DataType::QASYMM8, arm_compute::DataType::S32, arm_compute::DataType::F32, arm_compute::DataType::F16);
369         try
370         {
371             // Map buffer if creating a CLTensor
372             map(tensor, true);
373 
374             // Check if the file is large enough to fill the tensor
375             const size_t current_position = _fs.tellg();
376             _fs.seekg(0, std::ios_base::end);
377             const size_t end_position = _fs.tellg();
378             _fs.seekg(current_position, std::ios_base::beg);
379 
380             ARM_COMPUTE_ERROR_ON_MSG((end_position - current_position) < tensor.info()->tensor_shape().total_size() * tensor.info()->element_size(),
381                                      "Not enough data in file");
382             ARM_COMPUTE_UNUSED(end_position);
383 
384             // Check if the typestring matches the given one
385             std::string expect_typestr = get_typestring(tensor.info()->data_type());
386             ARM_COMPUTE_ERROR_ON_MSG(_typestring != expect_typestr, "Typestrings mismatch");
387 
388             bool are_layouts_different = (_file_layout != tensor.info()->data_layout());
389             // Correct dimensions (Needs to match TensorShape dimension corrections)
390             if(_shape.size() != tensor.info()->tensor_shape().num_dimensions())
391             {
392                 for(int i = static_cast<int>(_shape.size()) - 1; i > 0; --i)
393                 {
394                     if(_shape[i] == 1)
395                     {
396                         _shape.pop_back();
397                     }
398                     else
399                     {
400                         break;
401                     }
402                 }
403             }
404 
405             TensorShape                    permuted_shape = tensor.info()->tensor_shape();
406             arm_compute::PermutationVector perm;
407             if(are_layouts_different && tensor.info()->tensor_shape().num_dimensions() > 2)
408             {
409                 perm                                    = (tensor.info()->data_layout() == arm_compute::DataLayout::NHWC) ? arm_compute::PermutationVector(2U, 0U, 1U) : arm_compute::PermutationVector(1U, 2U, 0U);
410                 arm_compute::PermutationVector perm_vec = (tensor.info()->data_layout() == arm_compute::DataLayout::NCHW) ? arm_compute::PermutationVector(2U, 0U, 1U) : arm_compute::PermutationVector(1U, 2U, 0U);
411 
412                 arm_compute::permute(permuted_shape, perm_vec);
413             }
414 
415             // Validate tensor shape
416             ARM_COMPUTE_ERROR_ON_MSG(_shape.size() != tensor.info()->tensor_shape().num_dimensions(), "Tensor ranks mismatch");
417             for(size_t i = 0; i < _shape.size(); ++i)
418             {
419                 ARM_COMPUTE_ERROR_ON_MSG(permuted_shape[i] != _shape[i], "Tensor dimensions mismatch");
420             }
421 
422             switch(tensor.info()->data_type())
423             {
424                 case arm_compute::DataType::QASYMM8:
425                 case arm_compute::DataType::S32:
426                 case arm_compute::DataType::F32:
427                 case arm_compute::DataType::F16:
428                 {
429                     // Read data
430                     if(!are_layouts_different && !_fortran_order && tensor.info()->padding().empty())
431                     {
432                         // If tensor has no padding read directly from stream.
433                         _fs.read(reinterpret_cast<char *>(tensor.buffer()), tensor.info()->total_size());
434                     }
435                     else
436                     {
437                         // If tensor has padding or is in fortran order accessing tensor elements through execution window.
438                         Window             window;
439                         const unsigned int num_dims = _shape.size();
440                         if(_fortran_order)
441                         {
442                             for(unsigned int dim = 0; dim < num_dims; dim++)
443                             {
444                                 permuted_shape.set(dim, _shape[num_dims - dim - 1]);
445                                 perm.set(dim, num_dims - dim - 1);
446                             }
447                             if(are_layouts_different)
448                             {
449                                 // Permute only if num_dimensions greater than 2
450                                 if(num_dims > 2)
451                                 {
452                                     if(_file_layout == DataLayout::NHWC) // i.e destination is NCHW --> permute(1,2,0)
453                                     {
454                                         arm_compute::permute(perm, arm_compute::PermutationVector(1U, 2U, 0U));
455                                     }
456                                     else
457                                     {
458                                         arm_compute::permute(perm, arm_compute::PermutationVector(2U, 0U, 1U));
459                                     }
460                                 }
461                             }
462                         }
463                         window.use_tensor_dimensions(permuted_shape);
464 
465                         execute_window_loop(window, [&](const Coordinates & id)
466                         {
467                             Coordinates dst(id);
468                             arm_compute::permute(dst, perm);
469                             _fs.read(reinterpret_cast<char *>(tensor.ptr_to_element(dst)), tensor.info()->element_size());
470                         });
471                     }
472 
473                     break;
474                 }
475                 default:
476                     ARM_COMPUTE_ERROR("Unsupported data type");
477             }
478 
479             // Unmap buffer if creating a CLTensor
480             unmap(tensor);
481         }
482         catch(const std::ifstream::failure &e)
483         {
484             ARM_COMPUTE_ERROR_VAR("Loading NPY file: %s", e.what());
485         }
486     }
487 
488 private:
489     std::ifstream              _fs;
490     std::vector<unsigned long> _shape;
491     bool                       _fortran_order;
492     std::string                _typestring;
493     DataLayout                 _file_layout;
494 };
495 
496 /** Template helper function to save a tensor image to a PPM file.
497  *
498  * @note Only U8 and RGB888 formats supported.
499  * @note Only works with 2D tensors.
500  * @note If the input tensor is a CLTensor, the function maps and unmaps the image
501  *
502  * @param[in] tensor       The tensor to save as PPM file
503  * @param[in] ppm_filename Filename of the file to create.
504  */
505 template <typename T>
save_to_ppm(T & tensor,const std::string & ppm_filename)506 void save_to_ppm(T &tensor, const std::string &ppm_filename)
507 {
508     ARM_COMPUTE_ERROR_ON_FORMAT_NOT_IN(&tensor, arm_compute::Format::RGB888, arm_compute::Format::U8);
509     ARM_COMPUTE_ERROR_ON(tensor.info()->num_dimensions() > 2);
510 
511     std::ofstream fs;
512 
513     try
514     {
515         fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit);
516         fs.open(ppm_filename, std::ios::out | std::ios::binary);
517 
518         const unsigned int width  = tensor.info()->tensor_shape()[0];
519         const unsigned int height = tensor.info()->tensor_shape()[1];
520 
521         fs << "P6\n"
522            << width << " " << height << " 255\n";
523 
524         // Map buffer if creating a CLTensor
525         map(tensor, true);
526 
527         switch(tensor.info()->format())
528         {
529             case arm_compute::Format::U8:
530             {
531                 arm_compute::Window window;
532                 window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, width, 1));
533                 window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, height, 1));
534 
535                 arm_compute::Iterator in(&tensor, window);
536 
537                 arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates &)
538                 {
539                     const unsigned char value = *in.ptr();
540 
541                     fs << value << value << value;
542                 },
543                 in);
544 
545                 break;
546             }
547             case arm_compute::Format::RGB888:
548             {
549                 arm_compute::Window window;
550                 window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, width, width));
551                 window.set(arm_compute::Window::DimY, arm_compute::Window::Dimension(0, height, 1));
552 
553                 arm_compute::Iterator in(&tensor, window);
554 
555                 arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates &)
556                 {
557                     fs.write(reinterpret_cast<std::fstream::char_type *>(in.ptr()), width * tensor.info()->element_size());
558                 },
559                 in);
560 
561                 break;
562             }
563             default:
564                 ARM_COMPUTE_ERROR("Unsupported format");
565         }
566 
567         // Unmap buffer if creating a CLTensor
568         unmap(tensor);
569     }
570     catch(const std::ofstream::failure &e)
571     {
572         ARM_COMPUTE_ERROR_VAR("Writing %s: (%s)", ppm_filename.c_str(), e.what());
573     }
574 }
575 
576 /** Template helper function to save a tensor image to a NPY file.
577  *
578  * @note Only F32 data type supported.
579  * @note If the input tensor is a CLTensor, the function maps and unmaps the image
580  *
581  * @param[in] tensor        The tensor to save as NPY file
582  * @param[in] npy_filename  Filename of the file to create.
583  * @param[in] fortran_order If true, save matrix in fortran order.
584  */
585 template <typename T, typename U = float>
save_to_npy(T & tensor,const std::string & npy_filename,bool fortran_order)586 void save_to_npy(T &tensor, const std::string &npy_filename, bool fortran_order)
587 {
588     ARM_COMPUTE_ERROR_ON_DATA_TYPE_NOT_IN(&tensor, arm_compute::DataType::F32, arm_compute::DataType::QASYMM8);
589 
590     std::ofstream fs;
591     try
592     {
593         fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit);
594         fs.open(npy_filename, std::ios::out | std::ios::binary);
595 
596         std::vector<npy::ndarray_len_t> shape(tensor.info()->num_dimensions());
597 
598         for(unsigned int i = 0, j = tensor.info()->num_dimensions() - 1; i < tensor.info()->num_dimensions(); ++i, --j)
599         {
600             shape[i] = tensor.info()->tensor_shape()[!fortran_order ? j : i];
601         }
602 
603         // Map buffer if creating a CLTensor
604         map(tensor, true);
605 
606         using typestring_type = typename std::conditional<std::is_floating_point<U>::value, float, qasymm8_t>::type;
607 
608         std::vector<typestring_type> tmp; /* Used only to get the typestring */
609         const npy::dtype_t           dtype = npy::dtype_map.at(std::type_index(typeid(tmp)));
610 
611         std::ofstream stream(npy_filename, std::ofstream::binary);
612         npy::header_t header{ dtype, fortran_order, shape };
613         npy::write_header(stream, header);
614 
615         arm_compute::Window window;
616         window.use_tensor_dimensions(tensor.info()->tensor_shape());
617 
618         arm_compute::Iterator in(&tensor, window);
619 
620         arm_compute::execute_window_loop(window, [&](const arm_compute::Coordinates &)
621         {
622             stream.write(reinterpret_cast<const char *>(in.ptr()), sizeof(typestring_type));
623         },
624         in);
625 
626         // Unmap buffer if creating a CLTensor
627         unmap(tensor);
628     }
629     catch(const std::ofstream::failure &e)
630     {
631         ARM_COMPUTE_ERROR_VAR("Writing %s: (%s)", npy_filename.c_str(), e.what());
632     }
633 }
634 
635 /** Load the tensor with pre-trained data from a binary file
636  *
637  * @param[in] tensor   The tensor to be filled. Data type supported: F32.
638  * @param[in] filename Filename of the binary file to load from.
639  */
640 template <typename T>
load_trained_data(T & tensor,const std::string & filename)641 void load_trained_data(T &tensor, const std::string &filename)
642 {
643     ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32);
644 
645     std::ifstream fs;
646 
647     try
648     {
649         fs.exceptions(std::ofstream::failbit | std::ofstream::badbit | std::ofstream::eofbit);
650         // Open file
651         fs.open(filename, std::ios::in | std::ios::binary);
652 
653         if(!fs.good())
654         {
655             throw std::runtime_error("Could not load binary data: " + filename);
656         }
657 
658         // Map buffer if creating a CLTensor
659         map(tensor, true);
660 
661         Window window;
662 
663         window.set(arm_compute::Window::DimX, arm_compute::Window::Dimension(0, 1, 1));
664 
665         for(unsigned int d = 1; d < tensor.info()->num_dimensions(); ++d)
666         {
667             window.set(d, Window::Dimension(0, tensor.info()->tensor_shape()[d], 1));
668         }
669 
670         arm_compute::Iterator in(&tensor, window);
671 
672         execute_window_loop(window, [&](const Coordinates &)
673         {
674             fs.read(reinterpret_cast<std::fstream::char_type *>(in.ptr()), tensor.info()->tensor_shape()[0] * tensor.info()->element_size());
675         },
676         in);
677 
678         // Unmap buffer if creating a CLTensor
679         unmap(tensor);
680     }
681     catch(const std::ofstream::failure &e)
682     {
683         ARM_COMPUTE_ERROR_VAR("Writing %s: (%s)", filename.c_str(), e.what());
684     }
685 }
686 
687 template <typename T, typename TensorType>
fill_tensor_value(TensorType & tensor,T value)688 void fill_tensor_value(TensorType &tensor, T value)
689 {
690     map(tensor, true);
691 
692     Window window;
693     window.use_tensor_dimensions(tensor.info()->tensor_shape());
694 
695     Iterator it_tensor(&tensor, window);
696     execute_window_loop(window, [&](const Coordinates &)
697     {
698         *reinterpret_cast<T *>(it_tensor.ptr()) = value;
699     },
700     it_tensor);
701 
702     unmap(tensor);
703 }
704 
705 template <typename T, typename TensorType>
fill_tensor_zero(TensorType & tensor)706 void fill_tensor_zero(TensorType &tensor)
707 {
708     fill_tensor_value(tensor, T(0));
709 }
710 
711 template <typename T, typename TensorType>
fill_tensor_vector(TensorType & tensor,std::vector<T> vec)712 void fill_tensor_vector(TensorType &tensor, std::vector<T> vec)
713 {
714     ARM_COMPUTE_ERROR_ON(tensor.info()->tensor_shape().total_size() != vec.size());
715 
716     map(tensor, true);
717 
718     Window window;
719     window.use_tensor_dimensions(tensor.info()->tensor_shape());
720 
721     int      i = 0;
722     Iterator it_tensor(&tensor, window);
723     execute_window_loop(window, [&](const Coordinates &)
724     {
725         *reinterpret_cast<T *>(it_tensor.ptr()) = vec.at(i++);
726     },
727     it_tensor);
728 
729     unmap(tensor);
730 }
731 
732 template <typename T, typename TensorType>
733 void fill_random_tensor(TensorType &tensor, std::random_device::result_type seed, T lower_bound = std::numeric_limits<T>::lowest(), T upper_bound = std::numeric_limits<T>::max())
734 {
735     constexpr bool is_fp_16bit = std::is_same<T, half>::value || std::is_same<T, bfloat16>::value;
736     constexpr bool is_integral = std::is_integral<T>::value && !is_fp_16bit;
737 
738     using fp_dist_type = typename std::conditional<is_fp_16bit, arm_compute::utils::uniform_real_distribution_16bit<T>, std::uniform_real_distribution<T>>::type;
739     using dist_type    = typename std::conditional<is_integral, std::uniform_int_distribution<T>, fp_dist_type>::type;
740 
741     std::mt19937 gen(seed);
742     dist_type    dist(lower_bound, upper_bound);
743 
744     map(tensor, true);
745 
746     Window window;
747     window.use_tensor_dimensions(tensor.info()->tensor_shape());
748 
749     Iterator it(&tensor, window);
750     execute_window_loop(window, [&](const Coordinates &)
751     {
752         *reinterpret_cast<T *>(it.ptr()) = dist(gen);
753     },
754     it);
755 
756     unmap(tensor);
757 }
758 
759 template <typename T, typename TensorType>
760 void fill_random_tensor(TensorType &tensor, T lower_bound = std::numeric_limits<T>::lowest(), T upper_bound = std::numeric_limits<T>::max())
761 {
762     std::random_device rd;
763     fill_random_tensor(tensor, rd(), lower_bound, upper_bound);
764 }
765 
766 template <typename T>
init_sgemm_output(T & dst,T & src0,T & src1,arm_compute::DataType dt)767 void init_sgemm_output(T &dst, T &src0, T &src1, arm_compute::DataType dt)
768 {
769     dst.allocator()->init(TensorInfo(TensorShape(src1.info()->dimension(0), src0.info()->dimension(1), src0.info()->dimension(2)), 1, dt));
770 }
771 /** This function returns the amount of memory free reading from /proc/meminfo
772  *
773  * @return The free memory in kB
774  */
775 uint64_t get_mem_free_from_meminfo();
776 
777 /** Compare two tensors
778  *
779  * @param[in] tensor1   First tensor to be compared.
780  * @param[in] tensor2   Second tensor to be compared.
781  * @param[in] tolerance Tolerance used for the comparison.
782  *
783  * @return The number of mismatches
784  */
785 template <typename T>
compare_tensor(ITensor & tensor1,ITensor & tensor2,T tolerance)786 int compare_tensor(ITensor &tensor1, ITensor &tensor2, T tolerance)
787 {
788     ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(&tensor1, &tensor2);
789     ARM_COMPUTE_ERROR_ON_MISMATCHING_SHAPES(&tensor1, &tensor2);
790 
791     int    num_mismatches = 0;
792     Window window;
793     window.use_tensor_dimensions(tensor1.info()->tensor_shape());
794 
795     map(tensor1, true);
796     map(tensor2, true);
797 
798     Iterator itensor1(&tensor1, window);
799     Iterator itensor2(&tensor2, window);
800 
801     execute_window_loop(window, [&](const Coordinates &)
802     {
803         if(std::abs(*reinterpret_cast<T *>(itensor1.ptr()) - *reinterpret_cast<T *>(itensor2.ptr())) > tolerance)
804         {
805             ++num_mismatches;
806         }
807     },
808     itensor1, itensor2);
809 
810     unmap(itensor1);
811     unmap(itensor2);
812 
813     return num_mismatches;
814 }
815 } // namespace utils
816 } // namespace arm_compute
817 #endif /* __UTILS_UTILS_H__*/
818