• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
3  *
4  *  Use of this source code is governed by a BSD-style license
5  *  that can be found in the LICENSE file in the root of the source
6  *  tree. An additional intellectual property rights grant can be found
7  *  in the file PATENTS.  All contributing project authors may
8  *  be found in the AUTHORS file in the root of the source tree.
9  */
10 
11 #include "video/encoder_bitrate_adjuster.h"
12 
13 #include <algorithm>
14 #include <memory>
15 #include <vector>
16 
17 #include "rtc_base/experiments/rate_control_settings.h"
18 #include "rtc_base/logging.h"
19 #include "rtc_base/time_utils.h"
20 
21 namespace webrtc {
22 namespace {
23 // Helper struct with metadata for a single spatial layer.
24 struct LayerRateInfo {
25   double link_utilization_factor = 0.0;
26   double media_utilization_factor = 0.0;
27   DataRate target_rate = DataRate::Zero();
28 
WantedOvershootwebrtc::__anonf3d500d10111::LayerRateInfo29   DataRate WantedOvershoot() const {
30     // If there is headroom, allow bitrate to go up to media rate limit.
31     // Still limit media utilization to 1.0, so we don't overshoot over long
32     // runs even if we have headroom.
33     const double max_media_utilization =
34         std::max(1.0, media_utilization_factor);
35     if (link_utilization_factor > max_media_utilization) {
36       return (link_utilization_factor - max_media_utilization) * target_rate;
37     }
38     return DataRate::Zero();
39   }
40 };
41 }  // namespace
42 constexpr int64_t EncoderBitrateAdjuster::kWindowSizeMs;
43 constexpr size_t EncoderBitrateAdjuster::kMinFramesSinceLayoutChange;
44 constexpr double EncoderBitrateAdjuster::kDefaultUtilizationFactor;
45 
EncoderBitrateAdjuster(const VideoCodec & codec_settings)46 EncoderBitrateAdjuster::EncoderBitrateAdjuster(const VideoCodec& codec_settings)
47     : utilize_bandwidth_headroom_(RateControlSettings::ParseFromFieldTrials()
48                                       .BitrateAdjusterCanUseNetworkHeadroom()),
49       frames_since_layout_change_(0),
50       min_bitrates_bps_{} {
51   if (codec_settings.codecType == VideoCodecType::kVideoCodecVP9) {
52     for (size_t si = 0; si < codec_settings.VP9().numberOfSpatialLayers; ++si) {
53       if (codec_settings.spatialLayers[si].active) {
54         min_bitrates_bps_[si] =
55             std::max(codec_settings.minBitrate * 1000,
56                      codec_settings.spatialLayers[si].minBitrate * 1000);
57       }
58     }
59   } else {
60     for (size_t si = 0; si < codec_settings.numberOfSimulcastStreams; ++si) {
61       if (codec_settings.simulcastStream[si].active) {
62         min_bitrates_bps_[si] =
63             std::max(codec_settings.minBitrate * 1000,
64                      codec_settings.simulcastStream[si].minBitrate * 1000);
65       }
66     }
67   }
68 }
69 
70 EncoderBitrateAdjuster::~EncoderBitrateAdjuster() = default;
71 
AdjustRateAllocation(const VideoEncoder::RateControlParameters & rates)72 VideoBitrateAllocation EncoderBitrateAdjuster::AdjustRateAllocation(
73     const VideoEncoder::RateControlParameters& rates) {
74   current_rate_control_parameters_ = rates;
75 
76   // First check that overshoot detectors exist, and store per spatial layer
77   // how many active temporal layers we have.
78   size_t active_tls_[kMaxSpatialLayers] = {};
79   for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
80     active_tls_[si] = 0;
81     for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
82       // Layer is enabled iff it has both positive bitrate and framerate target.
83       if (rates.bitrate.GetBitrate(si, ti) > 0 &&
84           current_fps_allocation_[si].size() > ti &&
85           current_fps_allocation_[si][ti] > 0) {
86         ++active_tls_[si];
87         if (!overshoot_detectors_[si][ti]) {
88           overshoot_detectors_[si][ti] =
89               std::make_unique<EncoderOvershootDetector>(kWindowSizeMs);
90           frames_since_layout_change_ = 0;
91         }
92       } else if (overshoot_detectors_[si][ti]) {
93         // Layer removed, destroy overshoot detector.
94         overshoot_detectors_[si][ti].reset();
95         frames_since_layout_change_ = 0;
96       }
97     }
98   }
99 
100   // Next poll the overshoot detectors and populate the adjusted allocation.
101   const int64_t now_ms = rtc::TimeMillis();
102   VideoBitrateAllocation adjusted_allocation;
103   std::vector<LayerRateInfo> layer_infos;
104   DataRate wanted_overshoot_sum = DataRate::Zero();
105 
106   for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
107     layer_infos.emplace_back();
108     LayerRateInfo& layer_info = layer_infos.back();
109 
110     layer_info.target_rate =
111         DataRate::BitsPerSec(rates.bitrate.GetSpatialLayerSum(si));
112 
113     // Adjustment is done per spatial layer only (not per temporal layer).
114     if (frames_since_layout_change_ < kMinFramesSinceLayoutChange) {
115       layer_info.link_utilization_factor = kDefaultUtilizationFactor;
116       layer_info.media_utilization_factor = kDefaultUtilizationFactor;
117     } else if (active_tls_[si] == 0 ||
118                layer_info.target_rate == DataRate::Zero()) {
119       // No signaled temporal layers, or no bitrate set. Could either be unused
120       // spatial layer or bitrate dynamic mode; pass bitrate through without any
121       // change.
122       layer_info.link_utilization_factor = 1.0;
123       layer_info.media_utilization_factor = 1.0;
124     } else if (active_tls_[si] == 1) {
125       // A single active temporal layer, this might mean single layer or that
126       // encoder does not support temporal layers. Merge target bitrates for
127       // this spatial layer.
128       RTC_DCHECK(overshoot_detectors_[si][0]);
129       layer_info.link_utilization_factor =
130           overshoot_detectors_[si][0]
131               ->GetNetworkRateUtilizationFactor(now_ms)
132               .value_or(kDefaultUtilizationFactor);
133       layer_info.media_utilization_factor =
134           overshoot_detectors_[si][0]
135               ->GetMediaRateUtilizationFactor(now_ms)
136               .value_or(kDefaultUtilizationFactor);
137     } else if (layer_info.target_rate > DataRate::Zero()) {
138       // Multiple temporal layers enabled for this spatial layer. Update rate
139       // for each of them and make a weighted average of utilization factors,
140       // with bitrate fraction used as weight.
141       // If any layer is missing a utilization factor, fall back to default.
142       layer_info.link_utilization_factor = 0.0;
143       layer_info.media_utilization_factor = 0.0;
144       for (size_t ti = 0; ti < active_tls_[si]; ++ti) {
145         RTC_DCHECK(overshoot_detectors_[si][ti]);
146         const absl::optional<double> ti_link_utilization_factor =
147             overshoot_detectors_[si][ti]->GetNetworkRateUtilizationFactor(
148                 now_ms);
149         const absl::optional<double> ti_media_utilization_factor =
150             overshoot_detectors_[si][ti]->GetMediaRateUtilizationFactor(now_ms);
151         if (!ti_link_utilization_factor || !ti_media_utilization_factor) {
152           layer_info.link_utilization_factor = kDefaultUtilizationFactor;
153           layer_info.media_utilization_factor = kDefaultUtilizationFactor;
154           break;
155         }
156         const double weight =
157             static_cast<double>(rates.bitrate.GetBitrate(si, ti)) /
158             layer_info.target_rate.bps();
159         layer_info.link_utilization_factor +=
160             weight * ti_link_utilization_factor.value();
161         layer_info.media_utilization_factor +=
162             weight * ti_media_utilization_factor.value();
163       }
164     } else {
165       RTC_DCHECK_NOTREACHED();
166     }
167 
168     if (layer_info.link_utilization_factor < 1.0) {
169       // TODO(sprang): Consider checking underuse and allowing it to cancel some
170       // potential overuse by other streams.
171 
172       // Don't boost target bitrate if encoder is under-using.
173       layer_info.link_utilization_factor = 1.0;
174     } else {
175       // Don't reduce encoder target below 50%, in which case the frame dropper
176       // should kick in instead.
177       layer_info.link_utilization_factor =
178           std::min(layer_info.link_utilization_factor, 2.0);
179 
180       // Keep track of sum of desired overshoot bitrate.
181       wanted_overshoot_sum += layer_info.WantedOvershoot();
182     }
183   }
184 
185   // Available link headroom that can be used to fill wanted overshoot.
186   DataRate available_headroom = DataRate::Zero();
187   if (utilize_bandwidth_headroom_) {
188     available_headroom = rates.bandwidth_allocation -
189                          DataRate::BitsPerSec(rates.bitrate.get_sum_bps());
190   }
191 
192   // All wanted overshoots are satisfied in the same proportion based on
193   // available headroom.
194   const double granted_overshoot_ratio =
195       wanted_overshoot_sum == DataRate::Zero()
196           ? 0.0
197           : std::min(1.0, available_headroom.bps<double>() /
198                               wanted_overshoot_sum.bps());
199 
200   for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
201     LayerRateInfo& layer_info = layer_infos[si];
202     double utilization_factor = layer_info.link_utilization_factor;
203     DataRate allowed_overshoot =
204         granted_overshoot_ratio * layer_info.WantedOvershoot();
205     if (allowed_overshoot > DataRate::Zero()) {
206       // Pretend the target bitrate is higher by the allowed overshoot.
207       // Since utilization_factor = actual_bitrate / target_bitrate, it can be
208       // done by multiplying by old_target_bitrate / new_target_bitrate.
209       utilization_factor *= layer_info.target_rate.bps<double>() /
210                             (allowed_overshoot.bps<double>() +
211                              layer_info.target_rate.bps<double>());
212     }
213 
214     if (min_bitrates_bps_[si] > 0 &&
215         layer_info.target_rate > DataRate::Zero() &&
216         DataRate::BitsPerSec(min_bitrates_bps_[si]) < layer_info.target_rate) {
217       // Make sure rate adjuster doesn't push target bitrate below minimum.
218       utilization_factor =
219           std::min(utilization_factor, layer_info.target_rate.bps<double>() /
220                                            min_bitrates_bps_[si]);
221     }
222 
223     if (layer_info.target_rate > DataRate::Zero()) {
224       RTC_LOG(LS_VERBOSE) << "Utilization factors for spatial index " << si
225                           << ": link = " << layer_info.link_utilization_factor
226                           << ", media = " << layer_info.media_utilization_factor
227                           << ", wanted overshoot = "
228                           << layer_info.WantedOvershoot().bps()
229                           << " bps, available headroom = "
230                           << available_headroom.bps()
231                           << " bps, total utilization factor = "
232                           << utilization_factor;
233     }
234 
235     // Populate the adjusted allocation with determined utilization factor.
236     if (active_tls_[si] == 1 &&
237         layer_info.target_rate >
238             DataRate::BitsPerSec(rates.bitrate.GetBitrate(si, 0))) {
239       // Bitrate allocation indicates temporal layer usage, but encoder
240       // does not seem to support it. Pipe all bitrate into a single
241       // overshoot detector.
242       uint32_t adjusted_layer_bitrate_bps =
243           std::min(static_cast<uint32_t>(
244                        layer_info.target_rate.bps() / utilization_factor + 0.5),
245                    layer_info.target_rate.bps<uint32_t>());
246       adjusted_allocation.SetBitrate(si, 0, adjusted_layer_bitrate_bps);
247     } else {
248       for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
249         if (rates.bitrate.HasBitrate(si, ti)) {
250           uint32_t adjusted_layer_bitrate_bps = std::min(
251               static_cast<uint32_t>(
252                   rates.bitrate.GetBitrate(si, ti) / utilization_factor + 0.5),
253               rates.bitrate.GetBitrate(si, ti));
254           adjusted_allocation.SetBitrate(si, ti, adjusted_layer_bitrate_bps);
255         }
256       }
257     }
258 
259     // In case of rounding errors, add bitrate to TL0 until min bitrate
260     // constraint has been met.
261     const uint32_t adjusted_spatial_layer_sum =
262         adjusted_allocation.GetSpatialLayerSum(si);
263     if (layer_info.target_rate > DataRate::Zero() &&
264         adjusted_spatial_layer_sum < min_bitrates_bps_[si]) {
265       adjusted_allocation.SetBitrate(si, 0,
266                                      adjusted_allocation.GetBitrate(si, 0) +
267                                          min_bitrates_bps_[si] -
268                                          adjusted_spatial_layer_sum);
269     }
270 
271     // Update all detectors with the new adjusted bitrate targets.
272     for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
273       const uint32_t layer_bitrate_bps = adjusted_allocation.GetBitrate(si, ti);
274       // Overshoot detector may not exist, eg for ScreenshareLayers case.
275       if (layer_bitrate_bps > 0 && overshoot_detectors_[si][ti]) {
276         // Number of frames in this layer alone is not cumulative, so
277         // subtract fps from any low temporal layer.
278         const double fps_fraction =
279             static_cast<double>(
280                 current_fps_allocation_[si][ti] -
281                 (ti == 0 ? 0 : current_fps_allocation_[si][ti - 1])) /
282             VideoEncoder::EncoderInfo::kMaxFramerateFraction;
283 
284         if (fps_fraction <= 0.0) {
285           RTC_LOG(LS_WARNING)
286               << "Encoder config has temporal layer with non-zero bitrate "
287                  "allocation but zero framerate allocation.";
288           continue;
289         }
290 
291         overshoot_detectors_[si][ti]->SetTargetRate(
292             DataRate::BitsPerSec(layer_bitrate_bps),
293             fps_fraction * rates.framerate_fps, now_ms);
294       }
295     }
296   }
297 
298   // Since no spatial layers or streams are toggled by the adjustment
299   // bw-limited flag stays the same.
300   adjusted_allocation.set_bw_limited(rates.bitrate.is_bw_limited());
301 
302   return adjusted_allocation;
303 }
304 
OnEncoderInfo(const VideoEncoder::EncoderInfo & encoder_info)305 void EncoderBitrateAdjuster::OnEncoderInfo(
306     const VideoEncoder::EncoderInfo& encoder_info) {
307   // Copy allocation into current state and re-allocate.
308   for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
309     current_fps_allocation_[si] = encoder_info.fps_allocation[si];
310   }
311 
312   // Trigger re-allocation so that overshoot detectors have correct targets.
313   AdjustRateAllocation(current_rate_control_parameters_);
314 }
315 
OnEncodedFrame(DataSize size,int spatial_index,int temporal_index)316 void EncoderBitrateAdjuster::OnEncodedFrame(DataSize size,
317                                             int spatial_index,
318                                             int temporal_index) {
319   ++frames_since_layout_change_;
320   // Detectors may not exist, for instance if ScreenshareLayers is used.
321   auto& detector = overshoot_detectors_[spatial_index][temporal_index];
322   if (detector) {
323     detector->OnEncodedFrame(size.bytes(), rtc::TimeMillis());
324   }
325 }
326 
Reset()327 void EncoderBitrateAdjuster::Reset() {
328   for (size_t si = 0; si < kMaxSpatialLayers; ++si) {
329     for (size_t ti = 0; ti < kMaxTemporalStreams; ++ti) {
330       overshoot_detectors_[si][ti].reset();
331     }
332   }
333   // Call AdjustRateAllocation() with the last know bitrate allocation, so that
334   // the appropriate overuse detectors are immediately re-created.
335   AdjustRateAllocation(current_rate_control_parameters_);
336 }
337 
338 }  // namespace webrtc
339