• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2015 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "profile_compilation_info.h"
18 
19 #include <fcntl.h>
20 #include <sys/file.h>
21 #include <sys/stat.h>
22 #include <sys/types.h>
23 #include <unistd.h>
24 #include <zlib.h>
25 
26 #include <algorithm>
27 #include <cerrno>
28 #include <climits>
29 #include <cstdio>
30 #include <cstdlib>
31 #include <iostream>
32 #include <numeric>
33 #include <random>
34 #include <string>
35 #include <vector>
36 
37 #include "android-base/file.h"
38 #include "android-base/properties.h"
39 #include "android-base/scopeguard.h"
40 #include "android-base/unique_fd.h"
41 #include "base/arena_allocator.h"
42 #include "base/bit_utils.h"
43 #include "base/dumpable.h"
44 #include "base/file_utils.h"
45 #include "base/globals.h"
46 #include "base/logging.h"  // For VLOG.
47 #include "base/malloc_arena_pool.h"
48 #include "base/os.h"
49 #include "base/safe_map.h"
50 #include "base/scoped_flock.h"
51 #include "base/stl_util.h"
52 #include "base/systrace.h"
53 #include "base/time_utils.h"
54 #include "base/unix_file/fd_file.h"
55 #include "base/utils.h"
56 #include "base/zip_archive.h"
57 #include "dex/descriptors_names.h"
58 #include "dex/dex_file_loader.h"
59 
60 #ifdef ART_TARGET_ANDROID
61 #include "android-modules-utils/sdk_level.h"
62 #endif
63 
64 namespace art {
65 
66 const uint8_t ProfileCompilationInfo::kProfileMagic[] = { 'p', 'r', 'o', '\0' };
67 // Last profile version: New extensible profile format.
68 const uint8_t ProfileCompilationInfo::kProfileVersion[] = { '0', '1', '5', '\0' };
69 const uint8_t ProfileCompilationInfo::kProfileVersionForBootImage[] = { '0', '1', '6', '\0' };
70 
71 static_assert(sizeof(ProfileCompilationInfo::kProfileVersion) == 4,
72               "Invalid profile version size");
73 static_assert(sizeof(ProfileCompilationInfo::kProfileVersionForBootImage) == 4,
74               "Invalid profile version size");
75 
76 // The name of the profile entry in the dex metadata file.
77 // DO NOT CHANGE THIS! (it's similar to classes.dex in the apk files).
78 const char ProfileCompilationInfo::kDexMetadataProfileEntry[] = "primary.prof";
79 
80 // A synthetic annotations that can be used to denote that no annotation should
81 // be associated with the profile samples. We use the empty string for the package name
82 // because that's an invalid package name and should never occur in practice.
83 const ProfileCompilationInfo::ProfileSampleAnnotation
84   ProfileCompilationInfo::ProfileSampleAnnotation::kNone =
85       ProfileCompilationInfo::ProfileSampleAnnotation("");
86 
87 static constexpr char kSampleMetadataSeparator = ':';
88 
89 // Note: This used to be PATH_MAX (usually 4096) but that seems excessive
90 // and we do not want to rely on that external constant anyway.
91 static constexpr uint16_t kMaxDexFileKeyLength = 1024;
92 
93 // Extra descriptors are serialized with a `uint16_t` prefix. This defines the length limit.
94 static constexpr size_t kMaxExtraDescriptorLength = std::numeric_limits<uint16_t>::max();
95 
96 // According to dex file specification, there can be more than 2^16 valid method indexes
97 // but bytecode uses only 16 bits, so higher method indexes are not very useful (though
98 // such methods could be reached through virtual or interface dispatch). Consequently,
99 // dex files with more than 2^16 method indexes are not really used and the profile file
100 // format does not support higher method indexes.
101 static constexpr uint32_t kMaxSupportedMethodIndex = 0xffffu;
102 
103 // Debug flag to ignore checksums when testing if a method or a class is present in the profile.
104 // Used to facilitate testing profile guided compilation across a large number of apps
105 // using the same test profile.
106 static constexpr bool kDebugIgnoreChecksum = false;
107 
108 static constexpr uint8_t kIsMissingTypesEncoding = 6;
109 static constexpr uint8_t kIsMegamorphicEncoding = 7;
110 
111 static_assert(sizeof(ProfileCompilationInfo::kIndividualInlineCacheSize) == sizeof(uint8_t),
112               "InlineCache::kIndividualInlineCacheSize does not have the expect type size");
113 static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize < kIsMegamorphicEncoding,
114               "InlineCache::kIndividualInlineCacheSize is larger than expected");
115 static_assert(ProfileCompilationInfo::kIndividualInlineCacheSize < kIsMissingTypesEncoding,
116               "InlineCache::kIndividualInlineCacheSize is larger than expected");
117 
118 static constexpr uint32_t kSizeWarningThresholdBytes = 500000U;
119 static constexpr uint32_t kSizeErrorThresholdBytes = 1500000U;
120 
121 static constexpr uint32_t kSizeWarningThresholdBootBytes = 25000000U;
122 static constexpr uint32_t kSizeErrorThresholdBootBytes = 100000000U;
123 
ChecksumMatch(uint32_t dex_file_checksum,uint32_t checksum)124 static bool ChecksumMatch(uint32_t dex_file_checksum, uint32_t checksum) {
125   return kDebugIgnoreChecksum || dex_file_checksum == checksum;
126 }
127 
128 namespace {
129 
130 // Deflate the input buffer `in_buffer`. It returns a buffer of
131 // compressed data for the input buffer of `*compressed_data_size` size.
DeflateBuffer(ArrayRef<const uint8_t> in_buffer,uint32_t * compressed_data_size)132 std::unique_ptr<uint8_t[]> DeflateBuffer(ArrayRef<const uint8_t> in_buffer,
133                                          /*out*/ uint32_t* compressed_data_size) {
134   z_stream strm;
135   strm.zalloc = Z_NULL;
136   strm.zfree = Z_NULL;
137   strm.opaque = Z_NULL;
138   int init_ret = deflateInit(&strm, 1);
139   if (init_ret != Z_OK) {
140     return nullptr;
141   }
142 
143   uint32_t out_size = dchecked_integral_cast<uint32_t>(deflateBound(&strm, in_buffer.size()));
144 
145   std::unique_ptr<uint8_t[]> compressed_buffer(new uint8_t[out_size]);
146   strm.avail_in = in_buffer.size();
147   strm.next_in = const_cast<uint8_t*>(in_buffer.data());
148   strm.avail_out = out_size;
149   strm.next_out = &compressed_buffer[0];
150   int ret = deflate(&strm, Z_FINISH);
151   if (ret == Z_STREAM_ERROR) {
152     return nullptr;
153   }
154   *compressed_data_size = out_size - strm.avail_out;
155 
156   int end_ret = deflateEnd(&strm);
157   if (end_ret != Z_OK) {
158     return nullptr;
159   }
160 
161   return compressed_buffer;
162 }
163 
164 // Inflate the data from `in_buffer` into `out_buffer`. The `out_buffer.size()`
165 // is the expected output size of the buffer. It returns Z_STREAM_END on success.
166 // On error, it returns Z_STREAM_ERROR if the compressed data is inconsistent
167 // and Z_DATA_ERROR if the stream ended prematurely or the stream has extra data.
InflateBuffer(ArrayRef<const uint8_t> in_buffer,ArrayRef<uint8_t> out_buffer)168 int InflateBuffer(ArrayRef<const uint8_t> in_buffer, /*out*/ ArrayRef<uint8_t> out_buffer) {
169   /* allocate inflate state */
170   z_stream strm;
171   strm.zalloc = Z_NULL;
172   strm.zfree = Z_NULL;
173   strm.opaque = Z_NULL;
174   strm.avail_in = in_buffer.size();
175   strm.next_in = const_cast<uint8_t*>(in_buffer.data());
176   strm.avail_out = out_buffer.size();
177   strm.next_out = out_buffer.data();
178 
179   int init_ret = inflateInit(&strm);
180   if (init_ret != Z_OK) {
181     return init_ret;
182   }
183 
184   int ret = inflate(&strm, Z_NO_FLUSH);
185   if (strm.avail_in != 0 || strm.avail_out != 0) {
186     return Z_DATA_ERROR;
187   }
188 
189   int end_ret = inflateEnd(&strm);
190   if (end_ret != Z_OK) {
191     return end_ret;
192   }
193 
194   return ret;
195 }
196 
197 }  // anonymous namespace
198 
199 enum class ProfileCompilationInfo::ProfileLoadStatus : uint32_t {
200   kSuccess,
201   kIOError,
202   kBadMagic,
203   kVersionMismatch,
204   kBadData,
205   kMergeError,  // Merging failed. There are too many extra descriptors
206                 // or classes without TypeId referenced by a dex file.
207 };
208 
209 enum class ProfileCompilationInfo::FileSectionType : uint32_t {
210   // The values of section enumerators and data format for individual sections
211   // must not be changed without changing the profile file version. New sections
212   // can be added at the end and they shall be ignored by old versions of ART.
213 
214   // The list of the dex files included in the profile.
215   // There must be exactly one dex file section and it must be first.
216   kDexFiles = 0,
217 
218   // Extra descriptors for referencing classes that do not have a `dex::TypeId`
219   // in the referencing dex file, such as classes from a different dex file
220   // (even outside of the dex files in the profile) or array classes that were
221   // used from other dex files or created through reflection.
222   kExtraDescriptors = 1,
223 
224   // Classes included in the profile.
225   kClasses = 2,
226 
227   // Methods included in the profile, their hotness flags and inline caches.
228   kMethods = 3,
229 
230   // The aggregation counts of the profile, classes and methods. This section is
231   // an optional reserved section not implemented on client yet.
232   kAggregationCounts = 4,
233 
234   // The number of known sections.
235   kNumberOfSections = 5
236 };
237 
238 class ProfileCompilationInfo::FileSectionInfo {
239  public:
240   // Constructor for reading from a `ProfileSource`. Data shall be filled from the source.
FileSectionInfo()241   FileSectionInfo() {}
242 
243   // Constructor for writing to a file.
FileSectionInfo(FileSectionType type,uint32_t file_offset,uint32_t file_size,uint32_t inflated_size)244   FileSectionInfo(FileSectionType type,
245                   uint32_t file_offset,
246                   uint32_t file_size,
247                   uint32_t inflated_size)
248       : type_(type),
249         file_offset_(file_offset),
250         file_size_(file_size),
251         inflated_size_(inflated_size) {}
252 
SetFileOffset(uint32_t file_offset)253   void SetFileOffset(uint32_t file_offset) {
254     DCHECK_EQ(file_offset_, 0u);
255     DCHECK_NE(file_offset, 0u);
256     file_offset_ = file_offset;
257   }
258 
GetType() const259   FileSectionType GetType() const {
260     return type_;
261   }
262 
GetFileOffset() const263   uint32_t GetFileOffset() const {
264     return file_offset_;
265   }
266 
GetFileSize() const267   uint32_t GetFileSize() const {
268     return file_size_;
269   }
270 
GetInflatedSize() const271   uint32_t GetInflatedSize() const {
272     return inflated_size_;
273   }
274 
GetMemSize() const275   uint32_t GetMemSize() const {
276     return inflated_size_ != 0u ? inflated_size_ : file_size_;
277   }
278 
279  private:
280   FileSectionType type_;
281   uint32_t file_offset_;
282   uint32_t file_size_;
283   uint32_t inflated_size_;  // If 0, do not inflate and use data from file directly.
284 };
285 
286 // The file header.
287 class ProfileCompilationInfo::FileHeader {
288  public:
289   // Constructor for reading from a `ProfileSource`. Data shall be filled from the source.
FileHeader()290   FileHeader() {
291     DCHECK(!IsValid());
292   }
293 
294   // Constructor for writing to a file.
FileHeader(const uint8_t * version,uint32_t file_section_count)295   FileHeader(const uint8_t* version, uint32_t file_section_count)
296       : file_section_count_(file_section_count) {
297     static_assert(sizeof(magic_) == sizeof(kProfileMagic));
298     static_assert(sizeof(version_) == sizeof(kProfileVersion));
299     static_assert(sizeof(version_) == sizeof(kProfileVersionForBootImage));
300     memcpy(magic_, kProfileMagic, sizeof(kProfileMagic));
301     memcpy(version_, version, sizeof(version_));
302     DCHECK_LE(file_section_count, kMaxFileSectionCount);
303     DCHECK(IsValid());
304   }
305 
IsValid() const306   bool IsValid() const {
307     return memcmp(magic_, kProfileMagic, sizeof(kProfileMagic)) == 0 &&
308            (memcmp(version_, kProfileVersion, kProfileVersionSize) == 0 ||
309             memcmp(version_, kProfileVersionForBootImage, kProfileVersionSize) == 0) &&
310            file_section_count_ != 0u &&  // The dex files section is mandatory.
311            file_section_count_ <= kMaxFileSectionCount;
312   }
313 
GetVersion() const314   const uint8_t* GetVersion() const {
315     DCHECK(IsValid());
316     return version_;
317   }
318 
319   ProfileLoadStatus InvalidHeaderMessage(/*out*/ std::string* error_msg) const;
320 
GetFileSectionCount() const321   uint32_t GetFileSectionCount() const {
322     DCHECK(IsValid());
323     return file_section_count_;
324   }
325 
326  private:
327   // The upper bound for file section count is used to ensure that there
328   // shall be no arithmetic overflow when calculating size of the header
329   // with section information.
330   static const uint32_t kMaxFileSectionCount;
331 
332   uint8_t magic_[4] = {0, 0, 0, 0};
333   uint8_t version_[4] = {0, 0, 0, 0};
334   uint32_t file_section_count_ = 0u;
335 };
336 
337 const uint32_t ProfileCompilationInfo::FileHeader::kMaxFileSectionCount =
338     (std::numeric_limits<uint32_t>::max() - sizeof(FileHeader)) / sizeof(FileSectionInfo);
339 
340 ProfileCompilationInfo::ProfileLoadStatus
InvalidHeaderMessage(std::string * error_msg) const341 ProfileCompilationInfo::FileHeader::InvalidHeaderMessage(/*out*/ std::string* error_msg) const {
342   if (memcmp(magic_, kProfileMagic, sizeof(kProfileMagic)) != 0) {
343     *error_msg = "Profile missing magic.";
344     return ProfileLoadStatus::kBadMagic;
345   }
346   if (memcmp(version_, kProfileVersion, sizeof(kProfileVersion)) != 0 &&
347       memcmp(version_, kProfileVersion, sizeof(kProfileVersionForBootImage)) != 0) {
348     *error_msg = "Profile version mismatch.";
349     return ProfileLoadStatus::kVersionMismatch;
350   }
351   if (file_section_count_ == 0u) {
352     *error_msg = "Missing mandatory dex files section.";
353     return ProfileLoadStatus::kBadData;
354   }
355   DCHECK_GT(file_section_count_, kMaxFileSectionCount);
356   *error_msg ="Too many sections.";
357   return ProfileLoadStatus::kBadData;
358 }
359 
360 /**
361  * Encapsulate the source of profile data for loading.
362  * The source can be either a plain file or a zip file.
363  * For zip files, the profile entry will be extracted to
364  * the memory map.
365  */
366 class ProfileCompilationInfo::ProfileSource {
367  public:
368   /**
369    * Create a profile source for the given fd. The ownership of the fd
370    * remains to the caller; as this class will not attempt to close it at any
371    * point.
372    */
Create(int32_t fd)373   static ProfileSource* Create(int32_t fd) {
374     DCHECK_GT(fd, -1);
375     return new ProfileSource(fd, MemMap::Invalid());
376   }
377 
378   /**
379    * Create a profile source backed by a memory map. The map can be null in
380    * which case it will the treated as an empty source.
381    */
Create(MemMap && mem_map)382   static ProfileSource* Create(MemMap&& mem_map) {
383     return new ProfileSource(/*fd*/ -1, std::move(mem_map));
384   }
385 
386   // Seek to the given offset in the source.
387   bool Seek(off_t offset);
388 
389   /**
390    * Read bytes from this source.
391    * Reading will advance the current source position so subsequent
392    * invocations will read from the las position.
393    */
394   ProfileLoadStatus Read(void* buffer,
395                          size_t byte_count,
396                          const std::string& debug_stage,
397                          std::string* error);
398 
399   /** Return true if the source has 0 data. */
400   bool HasEmptyContent() const;
401 
402  private:
ProfileSource(int32_t fd,MemMap && mem_map)403   ProfileSource(int32_t fd, MemMap&& mem_map)
404       : fd_(fd), mem_map_(std::move(mem_map)), mem_map_cur_(0) {}
405 
IsMemMap() const406   bool IsMemMap() const {
407     return fd_ == -1;
408   }
409 
410   int32_t fd_;  // The fd is not owned by this class.
411   MemMap mem_map_;
412   size_t mem_map_cur_;  // Current position in the map to read from.
413 };
414 
415 // A helper structure to make sure we don't read past our buffers in the loops.
416 // Also used for writing but the buffer should be pre-sized correctly for that, so we
417 // DCHECK() we do not write beyond the end, rather than returning `false` on failure.
418 class ProfileCompilationInfo::SafeBuffer {
419  public:
SafeBuffer()420   SafeBuffer()
421       : storage_(nullptr),
422         ptr_current_(nullptr),
423         ptr_end_(nullptr) {}
424 
SafeBuffer(size_t size)425   explicit SafeBuffer(size_t size)
426       : storage_(new uint8_t[size]),
427         ptr_current_(storage_.get()),
428         ptr_end_(ptr_current_ + size) {}
429 
430   // Reads an uint value and advances the current pointer.
431   template <typename T>
ReadUintAndAdvance(T * value)432   bool ReadUintAndAdvance(/*out*/ T* value) {
433     static_assert(std::is_unsigned<T>::value, "Type is not unsigned");
434     if (sizeof(T) > GetAvailableBytes()) {
435       return false;
436     }
437     *value = 0;
438     for (size_t i = 0; i < sizeof(T); i++) {
439       *value += ptr_current_[i] << (i * kBitsPerByte);
440     }
441     ptr_current_ += sizeof(T);
442     return true;
443   }
444 
445   // Reads a length-prefixed string as `std::string_view` and advances the current pointer.
446   // The length is `uint16_t`.
ReadStringAndAdvance(std::string_view * value)447   bool ReadStringAndAdvance(/*out*/ std::string_view* value) {
448     uint16_t length;
449     if (!ReadUintAndAdvance(&length)) {
450       return false;
451     }
452     if (length > GetAvailableBytes()) {
453       return false;
454     }
455     const void* null_char = memchr(GetCurrentPtr(), 0, length);
456     if (null_char != nullptr) {
457       // Embedded nulls are invalid.
458       return false;
459     }
460     *value = std::string_view(reinterpret_cast<const char*>(GetCurrentPtr()), length);
461     Advance(length);
462     return true;
463   }
464 
465   // Compares the given data with the content at the current pointer.
466   // If the contents are equal it advances the current pointer by data_size.
CompareAndAdvance(const uint8_t * data,size_t data_size)467   bool CompareAndAdvance(const uint8_t* data, size_t data_size) {
468     if (data_size > GetAvailableBytes()) {
469       return false;
470     }
471     if (memcmp(ptr_current_, data, data_size) == 0) {
472       ptr_current_ += data_size;
473       return true;
474     }
475     return false;
476   }
477 
WriteAndAdvance(const void * data,size_t data_size)478   void WriteAndAdvance(const void* data, size_t data_size) {
479     DCHECK_LE(data_size, GetAvailableBytes());
480     memcpy(ptr_current_, data, data_size);
481     ptr_current_ += data_size;
482   }
483 
484   template <typename T>
WriteUintAndAdvance(T value)485   void WriteUintAndAdvance(T value) {
486     static_assert(std::is_integral_v<T>);
487     WriteAndAdvance(&value, sizeof(value));
488   }
489 
490   // Deflate a filled buffer. Replaces the internal buffer with a new one, also filled.
Deflate()491   bool Deflate() {
492     DCHECK_EQ(GetAvailableBytes(), 0u);
493     DCHECK_NE(Size(), 0u);
494     ArrayRef<const uint8_t> in_buffer(Get(), Size());
495     uint32_t output_size = 0;
496     std::unique_ptr<uint8_t[]> compressed_buffer = DeflateBuffer(in_buffer, &output_size);
497     if (compressed_buffer == nullptr) {
498       return false;
499     }
500     storage_ = std::move(compressed_buffer);
501     ptr_current_ = storage_.get() + output_size;
502     ptr_end_ = ptr_current_;
503     return true;
504   }
505 
506   // Inflate an unread buffer. Replaces the internal buffer with a new one, also unread.
Inflate(size_t uncompressed_data_size)507   bool Inflate(size_t uncompressed_data_size) {
508     DCHECK(ptr_current_ == storage_.get());
509     DCHECK_NE(Size(), 0u);
510     ArrayRef<const uint8_t> in_buffer(Get(), Size());
511     SafeBuffer uncompressed_buffer(uncompressed_data_size);
512     ArrayRef<uint8_t> out_buffer(uncompressed_buffer.Get(), uncompressed_data_size);
513     int ret = InflateBuffer(in_buffer, out_buffer);
514     if (ret != Z_STREAM_END) {
515       return false;
516     }
517     Swap(uncompressed_buffer);
518     DCHECK(ptr_current_ == storage_.get());
519     return true;
520   }
521 
522   // Advances current pointer by data_size.
Advance(size_t data_size)523   void Advance(size_t data_size) {
524     DCHECK_LE(data_size, GetAvailableBytes());
525     ptr_current_ += data_size;
526   }
527 
528   // Returns the count of unread bytes.
GetAvailableBytes() const529   size_t GetAvailableBytes() const {
530     DCHECK_LE(static_cast<void*>(ptr_current_), static_cast<void*>(ptr_end_));
531     return (ptr_end_ - ptr_current_) * sizeof(*ptr_current_);
532   }
533 
534   // Returns the current pointer.
GetCurrentPtr()535   uint8_t* GetCurrentPtr() {
536     return ptr_current_;
537   }
538 
539   // Get the underlying raw buffer.
Get()540   uint8_t* Get() {
541     return storage_.get();
542   }
543 
544   // Get the size of the raw buffer.
Size() const545   size_t Size() const {
546     return ptr_end_ - storage_.get();
547   }
548 
Swap(SafeBuffer & other)549   void Swap(SafeBuffer& other) {
550     std::swap(storage_, other.storage_);
551     std::swap(ptr_current_, other.ptr_current_);
552     std::swap(ptr_end_, other.ptr_end_);
553   }
554 
555  private:
556   std::unique_ptr<uint8_t[]> storage_;
557   uint8_t* ptr_current_;
558   uint8_t* ptr_end_;
559 };
560 
ProfileCompilationInfo(ArenaPool * custom_arena_pool,bool for_boot_image)561 ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool, bool for_boot_image)
562     : default_arena_pool_(),
563       allocator_(custom_arena_pool),
564       info_(allocator_.Adapter(kArenaAllocProfile)),
565       profile_key_map_(std::less<const std::string_view>(), allocator_.Adapter(kArenaAllocProfile)),
566       extra_descriptors_(),
567       extra_descriptors_indexes_(ExtraDescriptorHash(&extra_descriptors_),
568                                  ExtraDescriptorEquals(&extra_descriptors_)) {
569   memcpy(version_,
570          for_boot_image ? kProfileVersionForBootImage : kProfileVersion,
571          kProfileVersionSize);
572 }
573 
ProfileCompilationInfo(ArenaPool * custom_arena_pool)574 ProfileCompilationInfo::ProfileCompilationInfo(ArenaPool* custom_arena_pool)
575     : ProfileCompilationInfo(custom_arena_pool, /*for_boot_image=*/ false) { }
576 
ProfileCompilationInfo()577 ProfileCompilationInfo::ProfileCompilationInfo()
578     : ProfileCompilationInfo(/*for_boot_image=*/ false) { }
579 
ProfileCompilationInfo(bool for_boot_image)580 ProfileCompilationInfo::ProfileCompilationInfo(bool for_boot_image)
581     : ProfileCompilationInfo(&default_arena_pool_, for_boot_image) { }
582 
~ProfileCompilationInfo()583 ProfileCompilationInfo::~ProfileCompilationInfo() {
584   VLOG(profiler) << Dumpable<MemStats>(allocator_.GetMemStats());
585 }
586 
AddClass(const dex::TypeIndex & type_idx)587 void ProfileCompilationInfo::DexPcData::AddClass(const dex::TypeIndex& type_idx) {
588   if (is_megamorphic || is_missing_types) {
589     return;
590   }
591 
592   // Perform an explicit lookup for the type instead of directly emplacing the
593   // element. We do this because emplace() allocates the node before doing the
594   // lookup and if it then finds an identical element, it shall deallocate the
595   // node. For Arena allocations, that's essentially a leak.
596   auto lb = classes.lower_bound(type_idx);
597   if (lb != classes.end() && *lb == type_idx) {
598     // The type index exists.
599     return;
600   }
601 
602   // Check if the adding the type will cause the cache to become megamorphic.
603   if (classes.size() + 1 >= ProfileCompilationInfo::kIndividualInlineCacheSize) {
604     is_megamorphic = true;
605     classes.clear();
606     return;
607   }
608 
609   // The type does not exist and the inline cache will not be megamorphic.
610   classes.emplace_hint(lb, type_idx);
611 }
612 
613 // Transform the actual dex location into a key used to index the dex file in the profile.
614 // See ProfileCompilationInfo#GetProfileDexFileBaseKey as well.
GetProfileDexFileAugmentedKey(const std::string & dex_location,const ProfileSampleAnnotation & annotation)615 std::string ProfileCompilationInfo::GetProfileDexFileAugmentedKey(
616       const std::string& dex_location,
617       const ProfileSampleAnnotation& annotation) {
618   std::string base_key = GetProfileDexFileBaseKey(dex_location);
619   return annotation == ProfileSampleAnnotation::kNone
620       ? base_key
621       : base_key + kSampleMetadataSeparator + annotation.GetOriginPackageName();;
622 }
623 
624 // Transform the actual dex location into a base profile key (represented as relative paths).
625 // Note: this is OK because we don't store profiles of different apps into the same file.
626 // Apps with split apks don't cause trouble because each split has a different name and will not
627 // collide with other entries.
GetProfileDexFileBaseKeyView(std::string_view dex_location)628 std::string_view ProfileCompilationInfo::GetProfileDexFileBaseKeyView(
629     std::string_view dex_location) {
630   DCHECK(!dex_location.empty());
631   size_t last_sep_index = dex_location.find_last_of('/');
632   if (last_sep_index == std::string::npos) {
633     return dex_location;
634   } else {
635     DCHECK(last_sep_index < dex_location.size());
636     return dex_location.substr(last_sep_index + 1);
637   }
638 }
639 
GetProfileDexFileBaseKey(const std::string & dex_location)640 std::string ProfileCompilationInfo::GetProfileDexFileBaseKey(const std::string& dex_location) {
641   // Note: Conversions between std::string and std::string_view.
642   return std::string(GetProfileDexFileBaseKeyView(dex_location));
643 }
644 
GetBaseKeyViewFromAugmentedKey(std::string_view profile_key)645 std::string_view ProfileCompilationInfo::GetBaseKeyViewFromAugmentedKey(
646     std::string_view profile_key) {
647   size_t pos = profile_key.rfind(kSampleMetadataSeparator);
648   return (pos == std::string::npos) ? profile_key : profile_key.substr(0, pos);
649 }
650 
GetBaseKeyFromAugmentedKey(const std::string & profile_key)651 std::string ProfileCompilationInfo::GetBaseKeyFromAugmentedKey(
652     const std::string& profile_key) {
653   // Note: Conversions between std::string and std::string_view.
654   return std::string(GetBaseKeyViewFromAugmentedKey(profile_key));
655 }
656 
MigrateAnnotationInfo(const std::string & base_key,const std::string & augmented_key)657 std::string ProfileCompilationInfo::MigrateAnnotationInfo(
658     const std::string& base_key,
659     const std::string& augmented_key) {
660   size_t pos = augmented_key.rfind(kSampleMetadataSeparator);
661   return (pos == std::string::npos)
662       ? base_key
663       : base_key + augmented_key.substr(pos);
664 }
665 
GetAnnotationFromKey(const std::string & augmented_key)666 ProfileCompilationInfo::ProfileSampleAnnotation ProfileCompilationInfo::GetAnnotationFromKey(
667      const std::string& augmented_key) {
668   size_t pos = augmented_key.rfind(kSampleMetadataSeparator);
669   return (pos == std::string::npos)
670       ? ProfileSampleAnnotation::kNone
671       : ProfileSampleAnnotation(augmented_key.substr(pos + 1));
672 }
673 
AddMethods(const std::vector<ProfileMethodInfo> & methods,MethodHotness::Flag flags,const ProfileSampleAnnotation & annotation)674 bool ProfileCompilationInfo::AddMethods(const std::vector<ProfileMethodInfo>& methods,
675                                         MethodHotness::Flag flags,
676                                         const ProfileSampleAnnotation& annotation) {
677   for (const ProfileMethodInfo& method : methods) {
678     if (!AddMethod(method, flags, annotation)) {
679       return false;
680     }
681   }
682   return true;
683 }
684 
FindOrCreateTypeIndex(const DexFile & dex_file,TypeReference class_ref)685 dex::TypeIndex ProfileCompilationInfo::FindOrCreateTypeIndex(const DexFile& dex_file,
686                                                              TypeReference class_ref) {
687   DCHECK(class_ref.dex_file != nullptr);
688   DCHECK_LT(class_ref.TypeIndex().index_, class_ref.dex_file->NumTypeIds());
689   if (class_ref.dex_file == &dex_file) {
690     // We can use the type index from the `class_ref` as it's a valid index in the `dex_file`.
691     return class_ref.TypeIndex();
692   }
693   // Try to find a `TypeId` in the method's dex file.
694   const char* descriptor = class_ref.dex_file->StringByTypeIdx(class_ref.TypeIndex());
695   return FindOrCreateTypeIndex(dex_file, descriptor);
696 }
697 
FindOrCreateTypeIndex(const DexFile & dex_file,const char * descriptor)698 dex::TypeIndex ProfileCompilationInfo::FindOrCreateTypeIndex(const DexFile& dex_file,
699                                                              const char* descriptor) {
700   const dex::TypeId* type_id = dex_file.FindTypeId(descriptor);
701   if (type_id != nullptr) {
702     return dex_file.GetIndexForTypeId(*type_id);
703   }
704   // Try to find an existing extra descriptor.
705   uint32_t num_type_ids = dex_file.NumTypeIds();
706   uint32_t max_artificial_ids = DexFile::kDexNoIndex16 - num_type_ids;
707   std::string_view descriptor_view(descriptor);
708   // Check descriptor length for "extra descriptor". We are using `uint16_t` as prefix.
709   if (UNLIKELY(descriptor_view.size() > kMaxExtraDescriptorLength)) {
710     return dex::TypeIndex();  // Invalid.
711   }
712   auto it = extra_descriptors_indexes_.find(descriptor_view);
713   if (it != extra_descriptors_indexes_.end()) {
714     return (*it < max_artificial_ids) ? dex::TypeIndex(num_type_ids + *it) : dex::TypeIndex();
715   }
716   // Check if inserting the extra descriptor yields a valid artificial type index.
717   if (UNLIKELY(extra_descriptors_.size() >= max_artificial_ids)) {
718     return dex::TypeIndex();  // Invalid.
719   }
720   // Add the descriptor to extra descriptors and return the artificial type index.
721   ExtraDescriptorIndex new_extra_descriptor_index = AddExtraDescriptor(descriptor_view);
722   DCHECK_LT(new_extra_descriptor_index, max_artificial_ids);
723   return dex::TypeIndex(num_type_ids + new_extra_descriptor_index);
724 }
725 
AddClass(const DexFile & dex_file,const char * descriptor,const ProfileSampleAnnotation & annotation)726 bool ProfileCompilationInfo::AddClass(const DexFile& dex_file,
727                                       const char* descriptor,
728                                       const ProfileSampleAnnotation& annotation) {
729   DexFileData* const data = GetOrAddDexFileData(&dex_file, annotation);
730   if (data == nullptr) {  // checksum mismatch
731     return false;
732   }
733   dex::TypeIndex type_index = FindOrCreateTypeIndex(dex_file, descriptor);
734   if (!type_index.IsValid()) {
735     return false;
736   }
737   data->class_set.insert(type_index);
738   return true;
739 }
740 
MergeWith(const std::string & filename)741 bool ProfileCompilationInfo::MergeWith(const std::string& filename) {
742   std::string error;
743 #ifdef _WIN32
744   int flags = O_RDONLY;
745 #else
746   int flags = O_RDONLY | O_NOFOLLOW | O_CLOEXEC;
747 #endif
748   ScopedFlock profile_file =
749       LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error);
750 
751   if (profile_file.get() == nullptr) {
752     LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
753     return false;
754   }
755 
756   int fd = profile_file->Fd();
757 
758   ProfileLoadStatus status = LoadInternal(fd, &error);
759   if (status == ProfileLoadStatus::kSuccess) {
760     return true;
761   }
762 
763   LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error;
764   return false;
765 }
766 
Load(const std::string & filename,bool clear_if_invalid)767 bool ProfileCompilationInfo::Load(const std::string& filename, bool clear_if_invalid) {
768   ScopedTrace trace(__PRETTY_FUNCTION__);
769   std::string error;
770 
771   if (!IsEmpty()) {
772     return false;
773   }
774 
775 #ifdef _WIN32
776   int flags = O_RDWR;
777 #else
778   int flags = O_RDWR | O_NOFOLLOW | O_CLOEXEC;
779 #endif
780   // There's no need to fsync profile data right away. We get many chances
781   // to write it again in case something goes wrong. We can rely on a simple
782   // close(), no sync, and let to the kernel decide when to write to disk.
783   ScopedFlock profile_file =
784       LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error);
785 
786   if (profile_file.get() == nullptr) {
787     if (clear_if_invalid && errno == ENOENT) {
788       return true;
789     }
790     LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
791     return false;
792   }
793 
794   int fd = profile_file->Fd();
795 
796   ProfileLoadStatus status = LoadInternal(fd, &error);
797   if (status == ProfileLoadStatus::kSuccess) {
798     return true;
799   }
800 
801   if (clear_if_invalid &&
802       ((status == ProfileLoadStatus::kBadMagic) ||
803        (status == ProfileLoadStatus::kVersionMismatch) ||
804        (status == ProfileLoadStatus::kBadData))) {
805     LOG(WARNING) << "Clearing bad or obsolete profile data from file "
806                  << filename << ": " << error;
807     // When ART Service is enabled, this is the only place where we mutate a profile in place.
808     // TODO(jiakaiz): Get rid of this.
809     if (profile_file->ClearContent()) {
810       return true;
811     } else {
812       PLOG(WARNING) << "Could not clear profile file: " << filename;
813       return false;
814     }
815   }
816 
817   LOG(WARNING) << "Could not load profile data from file " << filename << ": " << error;
818   return false;
819 }
820 
Save(const std::string & filename,uint64_t * bytes_written)821 bool ProfileCompilationInfo::Save(const std::string& filename, uint64_t* bytes_written) {
822   ScopedTrace trace(__PRETTY_FUNCTION__);
823 
824 #ifndef ART_TARGET_ANDROID
825   return SaveFallback(filename, bytes_written);
826 #else
827   // Prior to U, SELinux policy doesn't allow apps to create profile files.
828   // Additionally, when installd is being used for dexopt, it acquires a flock when working on a
829   // profile. It's unclear to us whether the flock means that the file at the fd shouldn't change or
830   // that the file at the path shouldn't change, especially when the installd code is modified by
831   // partners. Therefore, we fall back to using a flock as well just to be safe.
832   if (!android::modules::sdklevel::IsAtLeastU() ||
833       !android::base::GetBoolProperty("dalvik.vm.useartservice", /*default_value=*/false)) {
834     return SaveFallback(filename, bytes_written);
835   }
836 
837   std::string tmp_filename = filename + ".XXXXXX.tmp";
838   // mkstemps creates the file with permissions 0600, which is the desired permissions, so there's
839   // no need to chmod.
840   android::base::unique_fd fd(mkostemps(tmp_filename.data(), /*suffixlen=*/4, O_CLOEXEC));
841   if (fd.get() < 0) {
842     PLOG(WARNING) << "Failed to create temp profile file for " << filename;
843     return false;
844   }
845 
846   // In case anything goes wrong.
847   auto remove_tmp_file = android::base::make_scope_guard([&]() {
848     if (unlink(tmp_filename.c_str()) != 0) {
849       PLOG(WARNING) << "Failed to remove temp profile file " << tmp_filename;
850     }
851   });
852 
853   bool result = Save(fd.get());
854   if (!result) {
855     VLOG(profiler) << "Failed to save profile info to temp profile file " << tmp_filename;
856     return false;
857   }
858 
859   fd.reset();
860 
861   // Move the temp profile file to the final location.
862   if (rename(tmp_filename.c_str(), filename.c_str()) != 0) {
863     PLOG(WARNING) << "Failed to commit profile file " << filename;
864     return false;
865   }
866 
867   remove_tmp_file.Disable();
868 
869   int64_t size = OS::GetFileSizeBytes(filename.c_str());
870   if (size != -1) {
871     VLOG(profiler) << "Successfully saved profile info to " << filename << " Size: " << size;
872     if (bytes_written != nullptr) {
873       *bytes_written = static_cast<uint64_t>(size);
874     }
875   } else {
876     VLOG(profiler) << "Saved profile info to " << filename
877                    << " but failed to get size: " << strerror(errno);
878   }
879 
880   return true;
881 #endif
882 }
883 
SaveFallback(const std::string & filename,uint64_t * bytes_written)884 bool ProfileCompilationInfo::SaveFallback(const std::string& filename, uint64_t* bytes_written) {
885   std::string error;
886 #ifdef _WIN32
887   int flags = O_WRONLY | O_CREAT;
888 #else
889   int flags = O_WRONLY | O_NOFOLLOW | O_CLOEXEC | O_CREAT;
890 #endif
891   // There's no need to fsync profile data right away. We get many chances
892   // to write it again in case something goes wrong. We can rely on a simple
893   // close(), no sync, and let to the kernel decide when to write to disk.
894   ScopedFlock profile_file =
895       LockedFile::Open(filename.c_str(), flags, /*block=*/false, &error);
896   if (profile_file.get() == nullptr) {
897     LOG(WARNING) << "Couldn't lock the profile file " << filename << ": " << error;
898     return false;
899   }
900 
901   int fd = profile_file->Fd();
902 
903   // We need to clear the data because we don't support appending to the profiles yet.
904   if (!profile_file->ClearContent()) {
905     PLOG(WARNING) << "Could not clear profile file: " << filename;
906     return false;
907   }
908 
909   // This doesn't need locking because we are trying to lock the file for exclusive
910   // access and fail immediately if we can't.
911   bool result = Save(fd);
912   if (result) {
913     int64_t size = OS::GetFileSizeBytes(filename.c_str());
914     if (size != -1) {
915       VLOG(profiler)
916         << "Successfully saved profile info to " << filename << " Size: "
917         << size;
918       if (bytes_written != nullptr) {
919         *bytes_written = static_cast<uint64_t>(size);
920       }
921     } else {
922       VLOG(profiler) << "Saved profile info to " << filename
923                      << " but failed to get size: " << strerror(errno);
924     }
925   } else {
926     VLOG(profiler) << "Failed to save profile info to " << filename;
927   }
928   return result;
929 }
930 
931 // Returns true if all the bytes were successfully written to the file descriptor.
WriteBuffer(int fd,const void * buffer,size_t byte_count)932 static bool WriteBuffer(int fd, const void* buffer, size_t byte_count) {
933   while (byte_count > 0) {
934     int bytes_written = TEMP_FAILURE_RETRY(write(fd, buffer, byte_count));
935     if (bytes_written == -1) {
936       return false;
937     }
938     byte_count -= bytes_written;  // Reduce the number of remaining bytes.
939     reinterpret_cast<const uint8_t*&>(buffer) += bytes_written;  // Move the buffer forward.
940   }
941   return true;
942 }
943 
944 /**
945  * Serialization format:
946  *
947  * The file starts with a header and section information:
948  *   FileHeader
949  *   FileSectionInfo[]
950  * The first FileSectionInfo must be for the DexFiles section.
951  *
952  * The rest of the file is allowed to contain different sections in any order,
953  * at arbitrary offsets, with any gaps betweeen them and each section can be
954  * either plaintext or separately zipped. However, we're writing sections
955  * without any gaps with the following order and compression:
956  *   DexFiles - mandatory, plaintext
957  *   ExtraDescriptors - optional, zipped
958  *   Classes - optional, zipped
959  *   Methods - optional, zipped
960  *   AggregationCounts - optional, zipped, server-side
961  *
962  * DexFiles:
963  *    number_of_dex_files
964  *    (checksum,num_type_ids,num_method_ids,profile_key)[number_of_dex_files]
965  * where `profile_key` is a length-prefixed string, the length is `uint16_t`.
966  *
967  * ExtraDescriptors:
968  *    number_of_extra_descriptors
969  *    (extra_descriptor)[number_of_extra_descriptors]
970  * where `extra_descriptor` is a length-prefixed string, the length is `uint16_t`.
971  *
972  * Classes contains records for any number of dex files, each consisting of:
973  *    profile_index  // Index of the dex file in DexFiles section.
974  *    number_of_classes
975  *    type_index_diff[number_of_classes]
976  * where instead of storing plain sorted type indexes, we store their differences
977  * as smaller numbers are likely to compress better.
978  *
979  * Methods contains records for any number of dex files, each consisting of:
980  *    profile_index  // Index of the dex file in DexFiles section.
981  *    following_data_size  // For easy skipping of remaining data when dex file is filtered out.
982  *    method_flags
983  *    bitmap_data
984  *    method_encoding[]  // Until the size indicated by `following_data_size`.
985  * where `method_flags` is a union of flags recorded for methods in the referenced dex file,
986  * `bitmap_data` contains `num_method_ids` bits for each bit set in `method_flags` other
987  * than "hot" (the size of `bitmap_data` is rounded up to whole bytes) and `method_encoding[]`
988  * contains data for hot methods. The `method_encoding` is:
989  *    method_index_diff
990  *    number_of_inline_caches
991  *    inline_cache_encoding[number_of_inline_caches]
992  * where differences in method indexes are used for better compression,
993  * and the `inline_cache_encoding` is
994  *    dex_pc
995  *    (M|dex_map_size)
996  *    type_index_diff[dex_map_size]
997  * where `M` stands for special encodings indicating missing types (kIsMissingTypesEncoding)
998  * or memamorphic call (kIsMegamorphicEncoding) which both imply `dex_map_size == 0`.
999  **/
Save(int fd)1000 bool ProfileCompilationInfo::Save(int fd) {
1001   uint64_t start = NanoTime();
1002   ScopedTrace trace(__PRETTY_FUNCTION__);
1003   DCHECK_GE(fd, 0);
1004 
1005   // Collect uncompressed section sizes.
1006   // Use `uint64_t` and assume this cannot overflow as we would have run out of memory.
1007   uint64_t extra_descriptors_section_size = 0u;
1008   if (!extra_descriptors_.empty()) {
1009     extra_descriptors_section_size += sizeof(uint16_t);  // Number of descriptors.
1010     for (const std::string& descriptor : extra_descriptors_) {
1011       // Length-prefixed string, the length is `uint16_t`.
1012       extra_descriptors_section_size += sizeof(uint16_t) + descriptor.size();
1013     }
1014   }
1015   uint64_t dex_files_section_size = sizeof(ProfileIndexType);  // Number of dex files.
1016   uint64_t classes_section_size = 0u;
1017   uint64_t methods_section_size = 0u;
1018   DCHECK_LE(info_.size(), MaxProfileIndex());
1019   for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1020     if (dex_data->profile_key.size() > kMaxDexFileKeyLength) {
1021       LOG(WARNING) << "DexFileKey exceeds allocated limit";
1022       return false;
1023     }
1024     dex_files_section_size +=
1025         3 * sizeof(uint32_t) +  // Checksum, num_type_ids, num_method_ids.
1026         // Length-prefixed string, the length is `uint16_t`.
1027         sizeof(uint16_t) + dex_data->profile_key.size();
1028     classes_section_size += dex_data->ClassesDataSize();
1029     methods_section_size += dex_data->MethodsDataSize();
1030   }
1031 
1032   const uint32_t file_section_count =
1033       /* dex files */ 1u +
1034       /* extra descriptors */ (extra_descriptors_section_size != 0u ? 1u : 0u) +
1035       /* classes */ (classes_section_size != 0u ? 1u : 0u) +
1036       /* methods */ (methods_section_size != 0u ? 1u : 0u);
1037   uint64_t header_and_infos_size =
1038       sizeof(FileHeader) + file_section_count * sizeof(FileSectionInfo);
1039 
1040   // Check size limit. Allow large profiles for non target builds for the case
1041   // where we are merging many profiles to generate a boot image profile.
1042   uint64_t total_uncompressed_size =
1043       header_and_infos_size +
1044       dex_files_section_size +
1045       extra_descriptors_section_size +
1046       classes_section_size +
1047       methods_section_size;
1048   VLOG(profiler) << "Required capacity: " << total_uncompressed_size << " bytes.";
1049   if (total_uncompressed_size > GetSizeErrorThresholdBytes()) {
1050     LOG(WARNING) << "Profile data size exceeds "
1051                  << GetSizeErrorThresholdBytes()
1052                  << " bytes. Profile will not be written to disk."
1053                  << " It requires " << total_uncompressed_size << " bytes.";
1054     return false;
1055   }
1056 
1057   // Start with an invalid file header and section infos.
1058   DCHECK_EQ(lseek(fd, 0, SEEK_CUR), 0);
1059   constexpr uint32_t kMaxNumberOfSections = enum_cast<uint32_t>(FileSectionType::kNumberOfSections);
1060   constexpr uint64_t kMaxHeaderAndInfosSize =
1061       sizeof(FileHeader) + kMaxNumberOfSections * sizeof(FileSectionInfo);
1062   DCHECK_LE(header_and_infos_size, kMaxHeaderAndInfosSize);
1063   std::array<uint8_t, kMaxHeaderAndInfosSize> placeholder;
1064   memset(placeholder.data(), 0, header_and_infos_size);
1065   if (!WriteBuffer(fd, placeholder.data(), header_and_infos_size)) {
1066     return false;
1067   }
1068 
1069   std::array<FileSectionInfo, kMaxNumberOfSections> section_infos;
1070   size_t section_index = 0u;
1071   uint32_t file_offset = header_and_infos_size;
1072   auto add_section_info = [&](FileSectionType type, uint32_t file_size, uint32_t inflated_size) {
1073     DCHECK_LT(section_index, section_infos.size());
1074     section_infos[section_index] = FileSectionInfo(type, file_offset, file_size, inflated_size);
1075     file_offset += file_size;
1076     section_index += 1u;
1077   };
1078 
1079   // Write the dex files section.
1080   {
1081     SafeBuffer buffer(dex_files_section_size);
1082     buffer.WriteUintAndAdvance(dchecked_integral_cast<ProfileIndexType>(info_.size()));
1083     for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1084       buffer.WriteUintAndAdvance(dex_data->checksum);
1085       buffer.WriteUintAndAdvance(dex_data->num_type_ids);
1086       buffer.WriteUintAndAdvance(dex_data->num_method_ids);
1087       buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(dex_data->profile_key.size()));
1088       buffer.WriteAndAdvance(dex_data->profile_key.c_str(), dex_data->profile_key.size());
1089     }
1090     DCHECK_EQ(buffer.GetAvailableBytes(), 0u);
1091     // Write the dex files section uncompressed.
1092     if (!WriteBuffer(fd, buffer.Get(), dex_files_section_size)) {
1093       return false;
1094     }
1095     add_section_info(FileSectionType::kDexFiles, dex_files_section_size, /*inflated_size=*/ 0u);
1096   }
1097 
1098   // Write the extra descriptors section.
1099   if (extra_descriptors_section_size != 0u) {
1100     SafeBuffer buffer(extra_descriptors_section_size);
1101     buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(extra_descriptors_.size()));
1102     for (const std::string& descriptor : extra_descriptors_) {
1103       buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(descriptor.size()));
1104       buffer.WriteAndAdvance(descriptor.c_str(), descriptor.size());
1105     }
1106     if (!buffer.Deflate()) {
1107       return false;
1108     }
1109     if (!WriteBuffer(fd, buffer.Get(), buffer.Size())) {
1110       return false;
1111     }
1112     add_section_info(
1113         FileSectionType::kExtraDescriptors, buffer.Size(), extra_descriptors_section_size);
1114   }
1115 
1116   // Write the classes section.
1117   if (classes_section_size != 0u) {
1118     SafeBuffer buffer(classes_section_size);
1119     for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1120       dex_data->WriteClasses(buffer);
1121     }
1122     if (!buffer.Deflate()) {
1123       return false;
1124     }
1125     if (!WriteBuffer(fd, buffer.Get(), buffer.Size())) {
1126       return false;
1127     }
1128     add_section_info(FileSectionType::kClasses, buffer.Size(), classes_section_size);
1129   }
1130 
1131   // Write the methods section.
1132   if (methods_section_size != 0u) {
1133     SafeBuffer buffer(methods_section_size);
1134     for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1135       dex_data->WriteMethods(buffer);
1136     }
1137     if (!buffer.Deflate()) {
1138       return false;
1139     }
1140     if (!WriteBuffer(fd, buffer.Get(), buffer.Size())) {
1141       return false;
1142     }
1143     add_section_info(FileSectionType::kMethods, buffer.Size(), methods_section_size);
1144   }
1145 
1146   if (file_offset > GetSizeWarningThresholdBytes()) {
1147     LOG(WARNING) << "Profile data size exceeds "
1148         << GetSizeWarningThresholdBytes()
1149         << " It has " << file_offset << " bytes";
1150   }
1151 
1152   // Write section infos.
1153   if (lseek64(fd, sizeof(FileHeader), SEEK_SET) != sizeof(FileHeader)) {
1154     return false;
1155   }
1156   SafeBuffer section_infos_buffer(section_index * 4u * sizeof(uint32_t));
1157   for (size_t i = 0; i != section_index; ++i) {
1158     const FileSectionInfo& info = section_infos[i];
1159     section_infos_buffer.WriteUintAndAdvance(enum_cast<uint32_t>(info.GetType()));
1160     section_infos_buffer.WriteUintAndAdvance(info.GetFileOffset());
1161     section_infos_buffer.WriteUintAndAdvance(info.GetFileSize());
1162     section_infos_buffer.WriteUintAndAdvance(info.GetInflatedSize());
1163   }
1164   DCHECK_EQ(section_infos_buffer.GetAvailableBytes(), 0u);
1165   if (!WriteBuffer(fd, section_infos_buffer.Get(), section_infos_buffer.Size())) {
1166     return false;
1167   }
1168 
1169   // Write header.
1170   FileHeader header(version_, section_index);
1171   if (lseek(fd, 0, SEEK_SET) != 0) {
1172     return false;
1173   }
1174   if (!WriteBuffer(fd, &header, sizeof(FileHeader))) {
1175     return false;
1176   }
1177 
1178   uint64_t total_time = NanoTime() - start;
1179   VLOG(profiler) << "Compressed from "
1180                  << std::to_string(total_uncompressed_size)
1181                  << " to "
1182                  << std::to_string(file_offset);
1183   VLOG(profiler) << "Time to save profile: " << std::to_string(total_time);
1184   return true;
1185 }
1186 
GetOrAddDexFileData(const std::string & profile_key,uint32_t checksum,uint32_t num_type_ids,uint32_t num_method_ids)1187 ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::GetOrAddDexFileData(
1188     const std::string& profile_key,
1189     uint32_t checksum,
1190     uint32_t num_type_ids,
1191     uint32_t num_method_ids) {
1192   DCHECK_EQ(profile_key_map_.size(), info_.size());
1193   auto profile_index_it = profile_key_map_.lower_bound(profile_key);
1194   if (profile_index_it == profile_key_map_.end() || profile_index_it->first != profile_key) {
1195     // We did not find the key. Create a new DexFileData if we did not reach the limit.
1196     DCHECK_LE(profile_key_map_.size(), MaxProfileIndex());
1197     if (profile_key_map_.size() == MaxProfileIndex()) {
1198       // Allow only a limited number dex files to be profiled. This allows us to save bytes
1199       // when encoding. For regular profiles this 2^8, and for boot profiles is 2^16
1200       // (well above what we expect for normal applications).
1201       LOG(ERROR) << "Exceeded the maximum number of dex file. Something went wrong";
1202       return nullptr;
1203     }
1204     ProfileIndexType new_profile_index = dchecked_integral_cast<ProfileIndexType>(info_.size());
1205     std::unique_ptr<DexFileData> dex_file_data(new (&allocator_) DexFileData(
1206         &allocator_,
1207         profile_key,
1208         checksum,
1209         new_profile_index,
1210         num_type_ids,
1211         num_method_ids,
1212         IsForBootImage()));
1213     // Record the new data in `profile_key_map_` and `info_`.
1214     std::string_view new_key(dex_file_data->profile_key);
1215     profile_index_it = profile_key_map_.PutBefore(profile_index_it, new_key, new_profile_index);
1216     info_.push_back(std::move(dex_file_data));
1217     DCHECK_EQ(profile_key_map_.size(), info_.size());
1218   }
1219 
1220   ProfileIndexType profile_index = profile_index_it->second;
1221   DexFileData* result = info_[profile_index].get();
1222 
1223   // Check that the checksum matches.
1224   // This may different if for example the dex file was updated and we had a record of the old one.
1225   if (result->checksum != checksum) {
1226     LOG(WARNING) << "Checksum mismatch for dex " << profile_key;
1227     return nullptr;
1228   }
1229 
1230   // DCHECK that profile info map key is consistent with the one stored in the dex file data.
1231   // This should always be the case since since the cache map is managed by ProfileCompilationInfo.
1232   DCHECK_EQ(profile_key, result->profile_key);
1233   DCHECK_EQ(profile_index, result->profile_index);
1234 
1235   if (num_type_ids != result->num_type_ids || num_method_ids != result->num_method_ids) {
1236     // This should not happen... added to help investigating b/65812889.
1237     LOG(ERROR) << "num_type_ids or num_method_ids mismatch for dex " << profile_key
1238         << ", types: expected=" << num_type_ids << " v. actual=" << result->num_type_ids
1239         << ", methods: expected=" << num_method_ids << " actual=" << result->num_method_ids;
1240     return nullptr;
1241   }
1242 
1243   return result;
1244 }
1245 
FindDexData(const std::string & profile_key,uint32_t checksum,bool verify_checksum) const1246 const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexData(
1247       const std::string& profile_key,
1248       uint32_t checksum,
1249       bool verify_checksum) const {
1250   const auto profile_index_it = profile_key_map_.find(profile_key);
1251   if (profile_index_it == profile_key_map_.end()) {
1252     return nullptr;
1253   }
1254 
1255   ProfileIndexType profile_index = profile_index_it->second;
1256   const DexFileData* result = info_[profile_index].get();
1257   if (verify_checksum && !ChecksumMatch(result->checksum, checksum)) {
1258     return nullptr;
1259   }
1260   DCHECK_EQ(profile_key, result->profile_key);
1261   DCHECK_EQ(profile_index, result->profile_index);
1262   return result;
1263 }
1264 
FindDexDataUsingAnnotations(const DexFile * dex_file,const ProfileSampleAnnotation & annotation) const1265 const ProfileCompilationInfo::DexFileData* ProfileCompilationInfo::FindDexDataUsingAnnotations(
1266       const DexFile* dex_file,
1267       const ProfileSampleAnnotation& annotation) const {
1268   if (annotation == ProfileSampleAnnotation::kNone) {
1269     std::string_view profile_key = GetProfileDexFileBaseKeyView(dex_file->GetLocation());
1270     for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1271       if (profile_key == GetBaseKeyViewFromAugmentedKey(dex_data->profile_key)) {
1272         if (!ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) {
1273           return nullptr;
1274         }
1275         return dex_data.get();
1276       }
1277     }
1278   } else {
1279     std::string profile_key = GetProfileDexFileAugmentedKey(dex_file->GetLocation(), annotation);
1280     return FindDexData(profile_key, dex_file->GetLocationChecksum());
1281   }
1282 
1283   return nullptr;
1284 }
1285 
FindAllDexData(const DexFile * dex_file,std::vector<const ProfileCompilationInfo::DexFileData * > * result) const1286 void ProfileCompilationInfo::FindAllDexData(
1287     const DexFile* dex_file,
1288     /*out*/ std::vector<const ProfileCompilationInfo::DexFileData*>* result) const {
1289   std::string_view profile_key = GetProfileDexFileBaseKeyView(dex_file->GetLocation());
1290   for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1291     if (profile_key == GetBaseKeyViewFromAugmentedKey(dex_data->profile_key)) {
1292       if (ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) {
1293         result->push_back(dex_data.get());
1294       }
1295     }
1296   }
1297 }
1298 
AddExtraDescriptor(std::string_view extra_descriptor)1299 ProfileCompilationInfo::ExtraDescriptorIndex ProfileCompilationInfo::AddExtraDescriptor(
1300     std::string_view extra_descriptor) {
1301   DCHECK_LE(extra_descriptor.size(), kMaxExtraDescriptorLength);
1302   DCHECK(extra_descriptors_indexes_.find(extra_descriptor) == extra_descriptors_indexes_.end());
1303   ExtraDescriptorIndex new_extra_descriptor_index = extra_descriptors_.size();
1304   DCHECK_LE(new_extra_descriptor_index, kMaxExtraDescriptors);
1305   if (UNLIKELY(new_extra_descriptor_index == kMaxExtraDescriptors)) {
1306     return kMaxExtraDescriptors;  // Cannot add another extra descriptor.
1307   }
1308   // Add the extra descriptor and record the new index.
1309   extra_descriptors_.emplace_back(extra_descriptor);
1310   extra_descriptors_indexes_.insert(new_extra_descriptor_index);
1311   return new_extra_descriptor_index;
1312 }
1313 
AddMethod(const ProfileMethodInfo & pmi,MethodHotness::Flag flags,const ProfileSampleAnnotation & annotation)1314 bool ProfileCompilationInfo::AddMethod(const ProfileMethodInfo& pmi,
1315                                        MethodHotness::Flag flags,
1316                                        const ProfileSampleAnnotation& annotation) {
1317   DexFileData* const data = GetOrAddDexFileData(pmi.ref.dex_file, annotation);
1318   if (data == nullptr) {  // checksum mismatch
1319     return false;
1320   }
1321   if (!data->AddMethod(flags, pmi.ref.index)) {
1322     return false;
1323   }
1324   if ((flags & MethodHotness::kFlagHot) == 0) {
1325     // The method is not hot, do not add inline caches.
1326     return true;
1327   }
1328 
1329   // Add inline caches.
1330   InlineCacheMap* inline_cache = data->FindOrAddHotMethod(pmi.ref.index);
1331   DCHECK(inline_cache != nullptr);
1332 
1333   for (const ProfileMethodInfo::ProfileInlineCache& cache : pmi.inline_caches) {
1334     if (cache.is_missing_types) {
1335       FindOrAddDexPc(inline_cache, cache.dex_pc)->SetIsMissingTypes();
1336       continue;
1337     }
1338     if  (cache.is_megamorphic) {
1339       FindOrAddDexPc(inline_cache, cache.dex_pc)->SetIsMegamorphic();
1340       continue;
1341     }
1342     for (const TypeReference& class_ref : cache.classes) {
1343       DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, cache.dex_pc);
1344       if (dex_pc_data->is_missing_types || dex_pc_data->is_megamorphic) {
1345         // Don't bother adding classes if we are missing types or already megamorphic.
1346         break;
1347       }
1348       dex::TypeIndex type_index = FindOrCreateTypeIndex(*pmi.ref.dex_file, class_ref);
1349       if (type_index.IsValid()) {
1350         dex_pc_data->AddClass(type_index);
1351       } else {
1352         // Could not create artificial type index.
1353         dex_pc_data->SetIsMissingTypes();
1354       }
1355     }
1356   }
1357   return true;
1358 }
1359 
1360 // TODO(calin): Fix this API. ProfileCompilationInfo::Load should be static and
1361 // return a unique pointer to a ProfileCompilationInfo upon success.
Load(int fd,bool merge_classes,const ProfileLoadFilterFn & filter_fn)1362 bool ProfileCompilationInfo::Load(
1363     int fd, bool merge_classes, const ProfileLoadFilterFn& filter_fn) {
1364   std::string error;
1365 
1366   ProfileLoadStatus status = LoadInternal(fd, &error, merge_classes, filter_fn);
1367 
1368   if (status == ProfileLoadStatus::kSuccess) {
1369     return true;
1370   } else {
1371     LOG(WARNING) << "Error when reading profile: " << error;
1372     return false;
1373   }
1374 }
1375 
VerifyProfileData(const std::vector<const DexFile * > & dex_files)1376 bool ProfileCompilationInfo::VerifyProfileData(const std::vector<const DexFile*>& dex_files) {
1377   std::unordered_map<std::string_view, const DexFile*> key_to_dex_file;
1378   for (const DexFile* dex_file : dex_files) {
1379     key_to_dex_file.emplace(GetProfileDexFileBaseKeyView(dex_file->GetLocation()), dex_file);
1380   }
1381   for (const std::unique_ptr<DexFileData>& dex_data : info_) {
1382     // We need to remove any annotation from the key during verification.
1383     const auto it = key_to_dex_file.find(GetBaseKeyViewFromAugmentedKey(dex_data->profile_key));
1384     if (it == key_to_dex_file.end()) {
1385       // It is okay if profile contains data for additional dex files.
1386       continue;
1387     }
1388     const DexFile* dex_file = it->second;
1389     const std::string& dex_location = dex_file->GetLocation();
1390     if (!ChecksumMatch(dex_data->checksum, dex_file->GetLocationChecksum())) {
1391       LOG(ERROR) << "Dex checksum mismatch while verifying profile "
1392                  << "dex location " << dex_location << " (checksum="
1393                  << dex_file->GetLocationChecksum() << ", profile checksum="
1394                  << dex_data->checksum;
1395       return false;
1396     }
1397 
1398     if (dex_data->num_method_ids != dex_file->NumMethodIds() ||
1399         dex_data->num_type_ids != dex_file->NumTypeIds()) {
1400       LOG(ERROR) << "Number of type or method ids in dex file and profile don't match."
1401                  << "dex location " << dex_location
1402                  << " dex_file.NumTypeIds=" << dex_file->NumTypeIds()
1403                  << " .v dex_data.num_type_ids=" << dex_data->num_type_ids
1404                  << ", dex_file.NumMethodIds=" << dex_file->NumMethodIds()
1405                  << " v. dex_data.num_method_ids=" << dex_data->num_method_ids;
1406       return false;
1407     }
1408 
1409     // Class and method data should be valid. Verify only in debug builds.
1410     if (kIsDebugBuild) {
1411       // Verify method_encoding.
1412       for (const auto& method_it : dex_data->method_map) {
1413         CHECK_LT(method_it.first, dex_data->num_method_ids);
1414 
1415         // Verify class indices of inline caches.
1416         const InlineCacheMap &inline_cache_map = method_it.second;
1417         for (const auto& inline_cache_it : inline_cache_map) {
1418           const DexPcData& dex_pc_data = inline_cache_it.second;
1419           if (dex_pc_data.is_missing_types || dex_pc_data.is_megamorphic) {
1420             // No class indices to verify.
1421             CHECK(dex_pc_data.classes.empty());
1422             continue;
1423           }
1424 
1425           for (const dex::TypeIndex& type_index : dex_pc_data.classes) {
1426             if (type_index.index_ >= dex_data->num_type_ids) {
1427               CHECK_LT(type_index.index_ - dex_data->num_type_ids, extra_descriptors_.size());
1428             }
1429           }
1430         }
1431       }
1432       // Verify class_ids.
1433       for (const dex::TypeIndex& type_index : dex_data->class_set) {
1434         if (type_index.index_ >= dex_data->num_type_ids) {
1435           CHECK_LT(type_index.index_ - dex_data->num_type_ids, extra_descriptors_.size());
1436         }
1437       }
1438     }
1439   }
1440   return true;
1441 }
1442 
OpenSource(int32_t fd,std::unique_ptr<ProfileSource> * source,std::string * error)1443 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::OpenSource(
1444     int32_t fd,
1445     /*out*/ std::unique_ptr<ProfileSource>* source,
1446     /*out*/ std::string* error) {
1447   if (IsProfileFile(fd)) {
1448     source->reset(ProfileSource::Create(fd));
1449     return ProfileLoadStatus::kSuccess;
1450   } else {
1451     std::unique_ptr<ZipArchive> zip_archive(
1452         ZipArchive::OpenFromFd(DupCloexec(fd), "profile", error));
1453     if (zip_archive.get() == nullptr) {
1454       *error = "Could not open the profile zip archive";
1455       return ProfileLoadStatus::kBadData;
1456     }
1457     std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(kDexMetadataProfileEntry, error));
1458     if (zip_entry == nullptr) {
1459       // Allow archives without the profile entry. In this case, create an empty profile.
1460       // This gives more flexible when ure-using archives that may miss the entry.
1461       // (e.g. dex metadata files)
1462       LOG(WARNING) << "Could not find entry " << kDexMetadataProfileEntry
1463           << " in the zip archive. Creating an empty profile.";
1464       source->reset(ProfileSource::Create(MemMap::Invalid()));
1465       return ProfileLoadStatus::kSuccess;
1466     }
1467     if (zip_entry->GetUncompressedLength() == 0) {
1468       *error = "Empty profile entry in the zip archive.";
1469       return ProfileLoadStatus::kBadData;
1470     }
1471 
1472     // TODO(calin) pass along file names to assist with debugging.
1473     MemMap map = zip_entry->MapDirectlyOrExtract(
1474         kDexMetadataProfileEntry, "profile file", error, alignof(ProfileSource));
1475 
1476     if (map.IsValid()) {
1477       source->reset(ProfileSource::Create(std::move(map)));
1478       return ProfileLoadStatus::kSuccess;
1479     } else {
1480       return ProfileLoadStatus::kBadData;
1481     }
1482   }
1483 }
1484 
Seek(off_t offset)1485 bool ProfileCompilationInfo::ProfileSource::Seek(off_t offset) {
1486   DCHECK_GE(offset, 0);
1487   if (IsMemMap()) {
1488     if (offset > static_cast<int64_t>(mem_map_.Size())) {
1489       return false;
1490     }
1491     mem_map_cur_ = offset;
1492     return true;
1493   } else {
1494     if (lseek64(fd_, offset, SEEK_SET) != offset) {
1495       return false;
1496     }
1497     return true;
1498   }
1499 }
1500 
Read(void * buffer,size_t byte_count,const std::string & debug_stage,std::string * error)1501 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ProfileSource::Read(
1502     void* buffer,
1503     size_t byte_count,
1504     const std::string& debug_stage,
1505     std::string* error) {
1506   if (IsMemMap()) {
1507     DCHECK_LE(mem_map_cur_, mem_map_.Size());
1508     if (byte_count > mem_map_.Size() - mem_map_cur_) {
1509       return ProfileLoadStatus::kBadData;
1510     }
1511     memcpy(buffer, mem_map_.Begin() + mem_map_cur_, byte_count);
1512     mem_map_cur_ += byte_count;
1513   } else {
1514     while (byte_count > 0) {
1515       int bytes_read = TEMP_FAILURE_RETRY(read(fd_, buffer, byte_count));;
1516       if (bytes_read == 0) {
1517         *error += "Profile EOF reached prematurely for " + debug_stage;
1518         return ProfileLoadStatus::kBadData;
1519       } else if (bytes_read < 0) {
1520         *error += "Profile IO error for " + debug_stage + strerror(errno);
1521         return ProfileLoadStatus::kIOError;
1522       }
1523       byte_count -= bytes_read;
1524       reinterpret_cast<uint8_t*&>(buffer) += bytes_read;
1525     }
1526   }
1527   return ProfileLoadStatus::kSuccess;
1528 }
1529 
1530 
HasEmptyContent() const1531 bool ProfileCompilationInfo::ProfileSource::HasEmptyContent() const {
1532   if (IsMemMap()) {
1533     return !mem_map_.IsValid() || mem_map_.Size() == 0;
1534   } else {
1535     struct stat stat_buffer;
1536     if (fstat(fd_, &stat_buffer) != 0) {
1537       return false;
1538     }
1539     return stat_buffer.st_size == 0;
1540   }
1541 }
1542 
ReadSectionData(ProfileSource & source,const FileSectionInfo & section_info,SafeBuffer * buffer,std::string * error)1543 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadSectionData(
1544     ProfileSource& source,
1545     const FileSectionInfo& section_info,
1546     /*out*/ SafeBuffer* buffer,
1547     /*out*/ std::string* error) {
1548   DCHECK_EQ(buffer->Size(), 0u);
1549   if (!source.Seek(section_info.GetFileOffset())) {
1550     *error = "Failed to seek to section data.";
1551     return ProfileLoadStatus::kIOError;
1552   }
1553   SafeBuffer temp_buffer(section_info.GetFileSize());
1554   ProfileLoadStatus status = source.Read(
1555       temp_buffer.GetCurrentPtr(), temp_buffer.GetAvailableBytes(), "ReadSectionData", error);
1556   if (status != ProfileLoadStatus::kSuccess) {
1557     return status;
1558   }
1559   if (section_info.GetInflatedSize() != 0u &&
1560       !temp_buffer.Inflate(section_info.GetInflatedSize())) {
1561     *error += "Error uncompressing section data.";
1562     return ProfileLoadStatus::kBadData;
1563   }
1564   buffer->Swap(temp_buffer);
1565   return ProfileLoadStatus::kSuccess;
1566 }
1567 
ReadDexFilesSection(ProfileSource & source,const FileSectionInfo & section_info,const ProfileLoadFilterFn & filter_fn,dchecked_vector<ProfileIndexType> * dex_profile_index_remap,std::string * error)1568 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadDexFilesSection(
1569     ProfileSource& source,
1570     const FileSectionInfo& section_info,
1571     const ProfileLoadFilterFn& filter_fn,
1572     /*out*/ dchecked_vector<ProfileIndexType>* dex_profile_index_remap,
1573     /*out*/ std::string* error) {
1574   DCHECK(section_info.GetType() == FileSectionType::kDexFiles);
1575   SafeBuffer buffer;
1576   ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error);
1577   if (status != ProfileLoadStatus::kSuccess) {
1578     return status;
1579   }
1580 
1581   ProfileIndexType num_dex_files;
1582   if (!buffer.ReadUintAndAdvance(&num_dex_files)) {
1583     *error = "Error reading number of dex files.";
1584     return ProfileLoadStatus::kBadData;
1585   }
1586   if (num_dex_files >= MaxProfileIndex()) {
1587     *error = "Too many dex files.";
1588     return ProfileLoadStatus::kBadData;
1589   }
1590 
1591   DCHECK(dex_profile_index_remap->empty());
1592   for (ProfileIndexType i = 0u; i != num_dex_files; ++i) {
1593     uint32_t checksum, num_type_ids, num_method_ids;
1594     if (!buffer.ReadUintAndAdvance(&checksum) ||
1595         !buffer.ReadUintAndAdvance(&num_type_ids) ||
1596         !buffer.ReadUintAndAdvance(&num_method_ids)) {
1597       *error = "Error reading dex file data.";
1598       return ProfileLoadStatus::kBadData;
1599     }
1600     std::string_view profile_key_view;
1601     if (!buffer.ReadStringAndAdvance(&profile_key_view)) {
1602       *error += "Missing terminating null character for profile key.";
1603       return ProfileLoadStatus::kBadData;
1604     }
1605     if (profile_key_view.size() == 0u || profile_key_view.size() > kMaxDexFileKeyLength) {
1606       *error = "ProfileKey has an invalid size: " + std::to_string(profile_key_view.size());
1607       return ProfileLoadStatus::kBadData;
1608     }
1609     std::string profile_key(profile_key_view);
1610     if (!filter_fn(profile_key, checksum)) {
1611       // Do not load data for this key. Store invalid index to `dex_profile_index_remap`.
1612       VLOG(compiler) << "Profile: Filtered out " << profile_key << " 0x" << std::hex << checksum;
1613       dex_profile_index_remap->push_back(MaxProfileIndex());
1614       continue;
1615     }
1616     DexFileData* data = GetOrAddDexFileData(profile_key, checksum, num_type_ids, num_method_ids);
1617     if (data == nullptr) {
1618       if (UNLIKELY(profile_key_map_.size() == MaxProfileIndex()) &&
1619           profile_key_map_.find(profile_key) == profile_key_map_.end()) {
1620         *error = "Too many dex files.";
1621       } else {
1622         *error = "Checksum, NumTypeIds, or NumMethodIds mismatch for " + profile_key;
1623       }
1624       return ProfileLoadStatus::kBadData;
1625     }
1626     dex_profile_index_remap->push_back(data->profile_index);
1627   }
1628   if (buffer.GetAvailableBytes() != 0u) {
1629     *error = "Unexpected data at end of dex files section.";
1630     return ProfileLoadStatus::kBadData;
1631   }
1632   return ProfileLoadStatus::kSuccess;
1633 }
1634 
ReadExtraDescriptorsSection(ProfileSource & source,const FileSectionInfo & section_info,dchecked_vector<ExtraDescriptorIndex> * extra_descriptors_remap,std::string * error)1635 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadExtraDescriptorsSection(
1636     ProfileSource& source,
1637     const FileSectionInfo& section_info,
1638     /*out*/ dchecked_vector<ExtraDescriptorIndex>* extra_descriptors_remap,
1639     /*out*/ std::string* error) {
1640   DCHECK(section_info.GetType() == FileSectionType::kExtraDescriptors);
1641   SafeBuffer buffer;
1642   ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error);
1643   if (status != ProfileLoadStatus::kSuccess) {
1644     return status;
1645   }
1646 
1647   uint16_t num_extra_descriptors;
1648   if (!buffer.ReadUintAndAdvance(&num_extra_descriptors)) {
1649     *error = "Error reading number of extra descriptors.";
1650     return ProfileLoadStatus::kBadData;
1651   }
1652 
1653   // Note: We allow multiple extra descriptors sections in a single profile file
1654   // but that can lead to `kMergeError` if there are too many extra descriptors.
1655   // Other sections can reference only extra descriptors from preceding sections.
1656   extra_descriptors_remap->reserve(
1657       std::min<size_t>(extra_descriptors_remap->size() + num_extra_descriptors,
1658                        std::numeric_limits<uint16_t>::max()));
1659   for (uint16_t i = 0; i != num_extra_descriptors; ++i) {
1660     std::string_view extra_descriptor;
1661     if (!buffer.ReadStringAndAdvance(&extra_descriptor)) {
1662       *error += "Missing terminating null character for extra descriptor.";
1663       return ProfileLoadStatus::kBadData;
1664     }
1665     if (!IsValidDescriptor(std::string(extra_descriptor).c_str())) {
1666       *error += "Invalid extra descriptor.";
1667       return ProfileLoadStatus::kBadData;
1668     }
1669     // Try to match an existing extra descriptor.
1670     auto it = extra_descriptors_indexes_.find(extra_descriptor);
1671     if (it != extra_descriptors_indexes_.end()) {
1672       extra_descriptors_remap->push_back(*it);
1673       continue;
1674     }
1675     // Try to insert a new extra descriptor.
1676     ExtraDescriptorIndex extra_descriptor_index = AddExtraDescriptor(extra_descriptor);
1677     if (extra_descriptor_index == kMaxExtraDescriptors) {
1678       *error = "Too many extra descriptors.";
1679       return ProfileLoadStatus::kMergeError;
1680     }
1681     extra_descriptors_remap->push_back(extra_descriptor_index);
1682   }
1683   return ProfileLoadStatus::kSuccess;
1684 }
1685 
ReadClassesSection(ProfileSource & source,const FileSectionInfo & section_info,const dchecked_vector<ProfileIndexType> & dex_profile_index_remap,const dchecked_vector<ExtraDescriptorIndex> & extra_descriptors_remap,std::string * error)1686 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadClassesSection(
1687     ProfileSource& source,
1688     const FileSectionInfo& section_info,
1689     const dchecked_vector<ProfileIndexType>& dex_profile_index_remap,
1690     const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap,
1691     /*out*/ std::string* error) {
1692   DCHECK(section_info.GetType() == FileSectionType::kClasses);
1693   SafeBuffer buffer;
1694   ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error);
1695   if (status != ProfileLoadStatus::kSuccess) {
1696     return status;
1697   }
1698 
1699   while (buffer.GetAvailableBytes() != 0u) {
1700     ProfileIndexType profile_index;
1701     if (!buffer.ReadUintAndAdvance(&profile_index)) {
1702       *error = "Error profile index in classes section.";
1703       return ProfileLoadStatus::kBadData;
1704     }
1705     if (profile_index >= dex_profile_index_remap.size()) {
1706       *error = "Invalid profile index in classes section.";
1707       return ProfileLoadStatus::kBadData;
1708     }
1709     profile_index = dex_profile_index_remap[profile_index];
1710     if (profile_index == MaxProfileIndex()) {
1711       status = DexFileData::SkipClasses(buffer, error);
1712     } else {
1713       status = info_[profile_index]->ReadClasses(buffer, extra_descriptors_remap, error);
1714     }
1715     if (status != ProfileLoadStatus::kSuccess) {
1716       return status;
1717     }
1718   }
1719   return ProfileLoadStatus::kSuccess;
1720 }
1721 
ReadMethodsSection(ProfileSource & source,const FileSectionInfo & section_info,const dchecked_vector<ProfileIndexType> & dex_profile_index_remap,const dchecked_vector<ExtraDescriptorIndex> & extra_descriptors_remap,std::string * error)1722 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::ReadMethodsSection(
1723     ProfileSource& source,
1724     const FileSectionInfo& section_info,
1725     const dchecked_vector<ProfileIndexType>& dex_profile_index_remap,
1726     const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap,
1727     /*out*/ std::string* error) {
1728   DCHECK(section_info.GetType() == FileSectionType::kMethods);
1729   SafeBuffer buffer;
1730   ProfileLoadStatus status = ReadSectionData(source, section_info, &buffer, error);
1731   if (status != ProfileLoadStatus::kSuccess) {
1732     return status;
1733   }
1734 
1735   while (buffer.GetAvailableBytes() != 0u) {
1736     ProfileIndexType profile_index;
1737     if (!buffer.ReadUintAndAdvance(&profile_index)) {
1738       *error = "Error profile index in methods section.";
1739       return ProfileLoadStatus::kBadData;
1740     }
1741     if (profile_index >= dex_profile_index_remap.size()) {
1742       *error = "Invalid profile index in methods section.";
1743       return ProfileLoadStatus::kBadData;
1744     }
1745     profile_index = dex_profile_index_remap[profile_index];
1746     if (profile_index == MaxProfileIndex()) {
1747       status = DexFileData::SkipMethods(buffer, error);
1748     } else {
1749       status = info_[profile_index]->ReadMethods(buffer, extra_descriptors_remap, error);
1750     }
1751     if (status != ProfileLoadStatus::kSuccess) {
1752       return status;
1753     }
1754   }
1755   return ProfileLoadStatus::kSuccess;
1756 }
1757 
1758 // TODO(calin): fail fast if the dex checksums don't match.
LoadInternal(int32_t fd,std::string * error,bool merge_classes,const ProfileLoadFilterFn & filter_fn)1759 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::LoadInternal(
1760     int32_t fd,
1761     std::string* error,
1762     bool merge_classes,
1763     const ProfileLoadFilterFn& filter_fn) {
1764   ScopedTrace trace(__PRETTY_FUNCTION__);
1765   DCHECK_GE(fd, 0);
1766 
1767   std::unique_ptr<ProfileSource> source;
1768   ProfileLoadStatus status = OpenSource(fd, &source, error);
1769   if (status != ProfileLoadStatus::kSuccess) {
1770     return status;
1771   }
1772 
1773   // We allow empty profile files.
1774   // Profiles may be created by ActivityManager or installd before we manage to
1775   // process them in the runtime or profman.
1776   if (source->HasEmptyContent()) {
1777     return ProfileLoadStatus::kSuccess;
1778   }
1779 
1780   // Read file header.
1781   FileHeader header;
1782   status = source->Read(&header, sizeof(FileHeader), "ReadProfileHeader", error);
1783   if (status != ProfileLoadStatus::kSuccess) {
1784     return status;
1785   }
1786   if (!header.IsValid()) {
1787     return header.InvalidHeaderMessage(error);
1788   }
1789   if (memcmp(header.GetVersion(), version_, kProfileVersionSize) != 0) {
1790     *error = IsForBootImage() ? "Expected boot profile, got app profile."
1791                               : "Expected app profile, got boot profile.";
1792     return ProfileLoadStatus::kVersionMismatch;
1793   }
1794 
1795   // Check if there are too many section infos.
1796   uint32_t section_count = header.GetFileSectionCount();
1797   uint32_t uncompressed_data_size = sizeof(FileHeader) + section_count * sizeof(FileSectionInfo);
1798   if (uncompressed_data_size > GetSizeErrorThresholdBytes()) {
1799     LOG(WARNING) << "Profile data size exceeds " << GetSizeErrorThresholdBytes()
1800                << " bytes. It has " << uncompressed_data_size << " bytes.";
1801     return ProfileLoadStatus::kBadData;
1802   }
1803 
1804   // Read section infos.
1805   dchecked_vector<FileSectionInfo> section_infos(section_count);
1806   status = source->Read(
1807       section_infos.data(), section_count * sizeof(FileSectionInfo), "ReadSectionInfos", error);
1808   if (status != ProfileLoadStatus::kSuccess) {
1809     return status;
1810   }
1811 
1812   // Finish uncompressed data size calculation.
1813   for (const FileSectionInfo& section_info : section_infos) {
1814     uint32_t mem_size = section_info.GetMemSize();
1815     if (UNLIKELY(mem_size > std::numeric_limits<uint32_t>::max() - uncompressed_data_size)) {
1816       *error = "Total memory size overflow.";
1817       return ProfileLoadStatus::kBadData;
1818     }
1819     uncompressed_data_size += mem_size;
1820   }
1821 
1822   // Allow large profiles for non target builds for the case where we are merging many profiles
1823   // to generate a boot image profile.
1824   if (uncompressed_data_size > GetSizeErrorThresholdBytes()) {
1825     LOG(WARNING) << "Profile data size exceeds "
1826                << GetSizeErrorThresholdBytes()
1827                << " bytes. It has " << uncompressed_data_size << " bytes.";
1828     return ProfileLoadStatus::kBadData;
1829   }
1830   if (uncompressed_data_size > GetSizeWarningThresholdBytes()) {
1831     LOG(WARNING) << "Profile data size exceeds "
1832                  << GetSizeWarningThresholdBytes()
1833                  << " bytes. It has " << uncompressed_data_size << " bytes.";
1834   }
1835 
1836   // Process the mandatory dex files section.
1837   DCHECK_NE(section_count, 0u);  // Checked by `header.IsValid()` above.
1838   const FileSectionInfo& dex_files_section_info = section_infos[0];
1839   if (dex_files_section_info.GetType() != FileSectionType::kDexFiles) {
1840     *error = "First section is not dex files section.";
1841     return ProfileLoadStatus::kBadData;
1842   }
1843   dchecked_vector<ProfileIndexType> dex_profile_index_remap;
1844   status = ReadDexFilesSection(
1845       *source, dex_files_section_info, filter_fn, &dex_profile_index_remap, error);
1846   if (status != ProfileLoadStatus::kSuccess) {
1847     DCHECK(!error->empty());
1848     return status;
1849   }
1850 
1851   // Process all other sections.
1852   dchecked_vector<ExtraDescriptorIndex> extra_descriptors_remap;
1853   for (uint32_t i = 1u; i != section_count; ++i) {
1854     const FileSectionInfo& section_info = section_infos[i];
1855     DCHECK(status == ProfileLoadStatus::kSuccess);
1856     switch (section_info.GetType()) {
1857       case FileSectionType::kDexFiles:
1858         *error = "Unsupported additional dex files section.";
1859         status = ProfileLoadStatus::kBadData;
1860         break;
1861       case FileSectionType::kExtraDescriptors:
1862         status = ReadExtraDescriptorsSection(
1863             *source, section_info, &extra_descriptors_remap, error);
1864         break;
1865       case FileSectionType::kClasses:
1866         // Skip if all dex files were filtered out.
1867         if (!info_.empty() && merge_classes) {
1868           status = ReadClassesSection(
1869               *source, section_info, dex_profile_index_remap, extra_descriptors_remap, error);
1870         }
1871         break;
1872       case FileSectionType::kMethods:
1873         // Skip if all dex files were filtered out.
1874         if (!info_.empty()) {
1875           status = ReadMethodsSection(
1876               *source, section_info, dex_profile_index_remap, extra_descriptors_remap, error);
1877         }
1878         break;
1879       case FileSectionType::kAggregationCounts:
1880         // This section is only used on server side.
1881         break;
1882       default:
1883         // Unknown section. Skip it. New versions of ART are allowed
1884         // to add sections that shall be ignored by old versions.
1885         break;
1886     }
1887     if (status != ProfileLoadStatus::kSuccess) {
1888       DCHECK(!error->empty());
1889       return status;
1890     }
1891   }
1892 
1893   return ProfileLoadStatus::kSuccess;
1894 }
1895 
MergeWith(const ProfileCompilationInfo & other,bool merge_classes)1896 bool ProfileCompilationInfo::MergeWith(const ProfileCompilationInfo& other,
1897                                        bool merge_classes) {
1898   if (!SameVersion(other)) {
1899     LOG(WARNING) << "Cannot merge different profile versions";
1900     return false;
1901   }
1902 
1903   // First verify that all checksums match. This will avoid adding garbage to
1904   // the current profile info.
1905   // Note that the number of elements should be very small, so this should not
1906   // be a performance issue.
1907   for (const std::unique_ptr<DexFileData>& other_dex_data : other.info_) {
1908     // verify_checksum is false because we want to differentiate between a missing dex data and
1909     // a mismatched checksum.
1910     const DexFileData* dex_data = FindDexData(other_dex_data->profile_key,
1911                                               /* checksum= */ 0u,
1912                                               /* verify_checksum= */ false);
1913     if ((dex_data != nullptr) && (dex_data->checksum != other_dex_data->checksum)) {
1914       LOG(WARNING) << "Checksum mismatch for dex " << other_dex_data->profile_key;
1915       return false;
1916     }
1917   }
1918   // All checksums match. Import the data.
1919 
1920   // The other profile might have a different indexing of dex files.
1921   // That is because each dex files gets a 'dex_profile_index' on a first come first served basis.
1922   // That means that the order in with the methods are added to the profile matters for the
1923   // actual indices.
1924   // The reason we cannot rely on the actual multidex index is that a single profile may store
1925   // data from multiple splits. This means that a profile may contain a classes2.dex from split-A
1926   // and one from split-B.
1927 
1928   // First, build a mapping from other_dex_profile_index to this_dex_profile_index.
1929   dchecked_vector<ProfileIndexType> dex_profile_index_remap;
1930   dex_profile_index_remap.reserve(other.info_.size());
1931   for (const std::unique_ptr<DexFileData>& other_dex_data : other.info_) {
1932     const DexFileData* dex_data = GetOrAddDexFileData(other_dex_data->profile_key,
1933                                                       other_dex_data->checksum,
1934                                                       other_dex_data->num_type_ids,
1935                                                       other_dex_data->num_method_ids);
1936     if (dex_data == nullptr) {
1937       // Could happen if we exceed the number of allowed dex files or there is
1938       // a mismatch in `num_type_ids` or `num_method_ids`.
1939       return false;
1940     }
1941     DCHECK_EQ(other_dex_data->profile_index, dex_profile_index_remap.size());
1942     dex_profile_index_remap.push_back(dex_data->profile_index);
1943   }
1944 
1945   // Then merge extra descriptors.
1946   dchecked_vector<ExtraDescriptorIndex> extra_descriptors_remap;
1947   extra_descriptors_remap.reserve(other.extra_descriptors_.size());
1948   for (const std::string& other_extra_descriptor : other.extra_descriptors_) {
1949     auto it = extra_descriptors_indexes_.find(std::string_view(other_extra_descriptor));
1950     if (it != extra_descriptors_indexes_.end()) {
1951       extra_descriptors_remap.push_back(*it);
1952     } else {
1953       ExtraDescriptorIndex extra_descriptor_index = AddExtraDescriptor(other_extra_descriptor);
1954       if (extra_descriptor_index == kMaxExtraDescriptors) {
1955         // Too many extra descriptors.
1956         return false;
1957       }
1958       extra_descriptors_remap.push_back(extra_descriptor_index);
1959     }
1960   }
1961 
1962   // Merge the actual profile data.
1963   for (const std::unique_ptr<DexFileData>& other_dex_data : other.info_) {
1964     DexFileData* dex_data = info_[dex_profile_index_remap[other_dex_data->profile_index]].get();
1965     DCHECK_EQ(dex_data, FindDexData(other_dex_data->profile_key, other_dex_data->checksum));
1966 
1967     // Merge the classes.
1968     uint32_t num_type_ids = dex_data->num_type_ids;
1969     DCHECK_EQ(num_type_ids, other_dex_data->num_type_ids);
1970     if (merge_classes) {
1971       // Classes are ordered by the `TypeIndex`, so we have the classes with a `TypeId`
1972       // in the dex file first, followed by classes using extra descriptors.
1973       auto it = other_dex_data->class_set.lower_bound(dex::TypeIndex(num_type_ids));
1974       dex_data->class_set.insert(other_dex_data->class_set.begin(), it);
1975       for (auto end = other_dex_data->class_set.end(); it != end; ++it) {
1976         ExtraDescriptorIndex new_extra_descriptor_index =
1977             extra_descriptors_remap[it->index_ - num_type_ids];
1978         if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) {
1979           // Cannot represent the type with new extra descriptor index.
1980           return false;
1981         }
1982         dex_data->class_set.insert(dex::TypeIndex(num_type_ids + new_extra_descriptor_index));
1983       }
1984     }
1985 
1986     // Merge the methods and the inline caches.
1987     for (const auto& other_method_it : other_dex_data->method_map) {
1988       uint16_t other_method_index = other_method_it.first;
1989       InlineCacheMap* inline_cache = dex_data->FindOrAddHotMethod(other_method_index);
1990       if (inline_cache == nullptr) {
1991         return false;
1992       }
1993       const auto& other_inline_cache = other_method_it.second;
1994       for (const auto& other_ic_it : other_inline_cache) {
1995         uint16_t other_dex_pc = other_ic_it.first;
1996         const ArenaSet<dex::TypeIndex>& other_class_set = other_ic_it.second.classes;
1997         DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, other_dex_pc);
1998         if (other_ic_it.second.is_missing_types) {
1999           dex_pc_data->SetIsMissingTypes();
2000         } else if (other_ic_it.second.is_megamorphic) {
2001           dex_pc_data->SetIsMegamorphic();
2002         } else {
2003           for (dex::TypeIndex type_index : other_class_set) {
2004             if (type_index.index_ >= num_type_ids) {
2005               ExtraDescriptorIndex new_extra_descriptor_index =
2006                   extra_descriptors_remap[type_index.index_ - num_type_ids];
2007               if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) {
2008                 // Cannot represent the type with new extra descriptor index.
2009                 return false;
2010               }
2011               type_index = dex::TypeIndex(num_type_ids + new_extra_descriptor_index);
2012             }
2013             dex_pc_data->AddClass(type_index);
2014           }
2015         }
2016       }
2017     }
2018 
2019     // Merge the method bitmaps.
2020     dex_data->MergeBitmap(*other_dex_data);
2021   }
2022 
2023   return true;
2024 }
2025 
GetMethodHotness(const MethodReference & method_ref,const ProfileSampleAnnotation & annotation) const2026 ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::GetMethodHotness(
2027     const MethodReference& method_ref,
2028     const ProfileSampleAnnotation& annotation) const {
2029   const DexFileData* dex_data = FindDexDataUsingAnnotations(method_ref.dex_file, annotation);
2030   return dex_data != nullptr
2031       ? dex_data->GetHotnessInfo(method_ref.index)
2032       : MethodHotness();
2033 }
2034 
ContainsClass(const DexFile & dex_file,dex::TypeIndex type_idx,const ProfileSampleAnnotation & annotation) const2035 bool ProfileCompilationInfo::ContainsClass(const DexFile& dex_file,
2036                                            dex::TypeIndex type_idx,
2037                                            const ProfileSampleAnnotation& annotation) const {
2038   const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation);
2039   return (dex_data != nullptr) && dex_data->ContainsClass(type_idx);
2040 }
2041 
GetNumberOfMethods() const2042 uint32_t ProfileCompilationInfo::GetNumberOfMethods() const {
2043   uint32_t total = 0;
2044   for (const std::unique_ptr<DexFileData>& dex_data : info_) {
2045     total += dex_data->method_map.size();
2046   }
2047   return total;
2048 }
2049 
GetNumberOfResolvedClasses() const2050 uint32_t ProfileCompilationInfo::GetNumberOfResolvedClasses() const {
2051   uint32_t total = 0;
2052   for (const std::unique_ptr<DexFileData>& dex_data : info_) {
2053     total += dex_data->class_set.size();
2054   }
2055   return total;
2056 }
2057 
DumpInfo(const std::vector<const DexFile * > & dex_files,bool print_full_dex_location) const2058 std::string ProfileCompilationInfo::DumpInfo(const std::vector<const DexFile*>& dex_files,
2059                                              bool print_full_dex_location) const {
2060   std::ostringstream os;
2061 
2062   os << "ProfileInfo [";
2063 
2064   for (size_t k = 0; k <  kProfileVersionSize - 1; k++) {
2065     // Iterate to 'kProfileVersionSize - 1' because the version_ ends with '\0'
2066     // which we don't want to print.
2067     os << static_cast<char>(version_[k]);
2068   }
2069   os << "]\n";
2070 
2071   if (info_.empty()) {
2072     os << "-empty-";
2073     return os.str();
2074   }
2075 
2076   if (!extra_descriptors_.empty()) {
2077     os << "\nextra descriptors:";
2078     for (const std::string& str : extra_descriptors_) {
2079       os << "\n\t" << str;
2080     }
2081     os << "\n";
2082   }
2083 
2084   const std::string kFirstDexFileKeySubstitute = "!classes.dex";
2085 
2086   for (const std::unique_ptr<DexFileData>& dex_data : info_) {
2087     os << "\n";
2088     if (print_full_dex_location) {
2089       os << dex_data->profile_key;
2090     } else {
2091       // Replace the (empty) multidex suffix of the first key with a substitute for easier reading.
2092       std::string multidex_suffix = DexFileLoader::GetMultiDexSuffix(
2093           GetBaseKeyFromAugmentedKey(dex_data->profile_key));
2094       os << (multidex_suffix.empty() ? kFirstDexFileKeySubstitute : multidex_suffix);
2095     }
2096     os << " [index=" << static_cast<uint32_t>(dex_data->profile_index) << "]";
2097     os << " [checksum=" << std::hex << dex_data->checksum << "]" << std::dec;
2098     os << " [num_type_ids=" << dex_data->num_type_ids << "]";
2099     os << " [num_method_ids=" << dex_data->num_method_ids << "]";
2100     const DexFile* dex_file = nullptr;
2101     for (const DexFile* current : dex_files) {
2102       if (GetBaseKeyViewFromAugmentedKey(dex_data->profile_key) ==
2103           GetProfileDexFileBaseKeyView(current->GetLocation()) &&
2104           ChecksumMatch(dex_data->checksum, current->GetLocationChecksum())) {
2105         dex_file = current;
2106         break;
2107       }
2108     }
2109     os << "\n\thot methods: ";
2110     for (const auto& method_it : dex_data->method_map) {
2111       if (dex_file != nullptr) {
2112         os << "\n\t\t" << dex_file->PrettyMethod(method_it.first, true);
2113       } else {
2114         os << method_it.first;
2115       }
2116 
2117       os << "[";
2118       for (const auto& inline_cache_it : method_it.second) {
2119         os << "{" << std::hex << inline_cache_it.first << std::dec << ":";
2120         if (inline_cache_it.second.is_missing_types) {
2121           os << "MT";
2122         } else if (inline_cache_it.second.is_megamorphic) {
2123           os << "MM";
2124         } else {
2125           const char* separator = "";
2126           for (dex::TypeIndex type_index : inline_cache_it.second.classes) {
2127             os << separator << type_index.index_;
2128             separator = ",";
2129           }
2130         }
2131         os << "}";
2132       }
2133       os << "], ";
2134     }
2135     bool startup = true;
2136     while (true) {
2137       os << "\n\t" << (startup ? "startup methods: " : "post startup methods: ");
2138       for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
2139         MethodHotness hotness_info(dex_data->GetHotnessInfo(method_idx));
2140         if (startup ? hotness_info.IsStartup() : hotness_info.IsPostStartup()) {
2141           if (dex_file != nullptr) {
2142             os << "\n\t\t" << dex_file->PrettyMethod(method_idx, true);
2143           } else {
2144             os << method_idx << ", ";
2145           }
2146         }
2147       }
2148       if (startup == false) {
2149         break;
2150       }
2151       startup = false;
2152     }
2153     os << "\n\tclasses: ";
2154     for (dex::TypeIndex type_index : dex_data->class_set) {
2155       if (dex_file != nullptr) {
2156         os << "\n\t\t" << PrettyDescriptor(GetTypeDescriptor(dex_file, type_index));
2157       } else {
2158         os << type_index.index_ << ",";
2159       }
2160     }
2161   }
2162   return os.str();
2163 }
2164 
GetClassesAndMethods(const DexFile & dex_file,std::set<dex::TypeIndex> * class_set,std::set<uint16_t> * hot_method_set,std::set<uint16_t> * startup_method_set,std::set<uint16_t> * post_startup_method_method_set,const ProfileSampleAnnotation & annotation) const2165 bool ProfileCompilationInfo::GetClassesAndMethods(
2166     const DexFile& dex_file,
2167     /*out*/std::set<dex::TypeIndex>* class_set,
2168     /*out*/std::set<uint16_t>* hot_method_set,
2169     /*out*/std::set<uint16_t>* startup_method_set,
2170     /*out*/std::set<uint16_t>* post_startup_method_method_set,
2171     const ProfileSampleAnnotation& annotation) const {
2172   std::set<std::string> ret;
2173   const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation);
2174   if (dex_data == nullptr) {
2175     return false;
2176   }
2177   for (const auto& it : dex_data->method_map) {
2178     hot_method_set->insert(it.first);
2179   }
2180   for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
2181     MethodHotness hotness = dex_data->GetHotnessInfo(method_idx);
2182     if (hotness.IsStartup()) {
2183       startup_method_set->insert(method_idx);
2184     }
2185     if (hotness.IsPostStartup()) {
2186       post_startup_method_method_set->insert(method_idx);
2187     }
2188   }
2189   for (const dex::TypeIndex& type_index : dex_data->class_set) {
2190     class_set->insert(type_index);
2191   }
2192   return true;
2193 }
2194 
GetClasses(const DexFile & dex_file,const ProfileSampleAnnotation & annotation) const2195 const ArenaSet<dex::TypeIndex>* ProfileCompilationInfo::GetClasses(
2196     const DexFile& dex_file,
2197     const ProfileSampleAnnotation& annotation) const {
2198   const DexFileData* dex_data = FindDexDataUsingAnnotations(&dex_file, annotation);
2199   if (dex_data == nullptr) {
2200     return nullptr;
2201   }
2202   return &dex_data->class_set;
2203 }
2204 
SameVersion(const ProfileCompilationInfo & other) const2205 bool ProfileCompilationInfo::SameVersion(const ProfileCompilationInfo& other) const {
2206   return memcmp(version_, other.version_, kProfileVersionSize) == 0;
2207 }
2208 
Equals(const ProfileCompilationInfo & other)2209 bool ProfileCompilationInfo::Equals(const ProfileCompilationInfo& other) {
2210   // No need to compare profile_key_map_. That's only a cache for fast search.
2211   // All the information is already in the info_ vector.
2212   if (!SameVersion(other)) {
2213     return false;
2214   }
2215   if (info_.size() != other.info_.size()) {
2216     return false;
2217   }
2218   for (size_t i = 0; i < info_.size(); i++) {
2219     const DexFileData& dex_data = *info_[i];
2220     const DexFileData& other_dex_data = *other.info_[i];
2221     if (!(dex_data == other_dex_data)) {
2222       return false;
2223     }
2224   }
2225 
2226   return true;
2227 }
2228 
2229 // Naive implementation to generate a random profile file suitable for testing.
GenerateTestProfile(int fd,uint16_t number_of_dex_files,uint16_t method_percentage,uint16_t class_percentage,uint32_t random_seed)2230 bool ProfileCompilationInfo::GenerateTestProfile(int fd,
2231                                                  uint16_t number_of_dex_files,
2232                                                  uint16_t method_percentage,
2233                                                  uint16_t class_percentage,
2234                                                  uint32_t random_seed) {
2235   const std::string base_dex_location = "base.apk";
2236   ProfileCompilationInfo info;
2237   // The limits are defined by the dex specification.
2238   const uint16_t max_methods = std::numeric_limits<uint16_t>::max();
2239   const uint16_t max_classes = std::numeric_limits<uint16_t>::max();
2240   uint16_t number_of_methods = max_methods * method_percentage / 100;
2241   uint16_t number_of_classes = max_classes * class_percentage / 100;
2242 
2243   std::srand(random_seed);
2244 
2245   // Make sure we generate more samples with a low index value.
2246   // This makes it more likely to hit valid method/class indices in small apps.
2247   const uint16_t kFavorFirstN = 10000;
2248   const uint16_t kFavorSplit = 2;
2249 
2250   for (uint16_t i = 0; i < number_of_dex_files; i++) {
2251     std::string dex_location = DexFileLoader::GetMultiDexLocation(i, base_dex_location.c_str());
2252     std::string profile_key = info.GetProfileDexFileBaseKey(dex_location);
2253 
2254     DexFileData* const data =
2255         info.GetOrAddDexFileData(profile_key, /*checksum=*/ 0, max_classes, max_methods);
2256     for (uint16_t m = 0; m < number_of_methods; m++) {
2257       uint16_t method_idx = rand() % max_methods;
2258       if (m < (number_of_methods / kFavorSplit)) {
2259         method_idx %= kFavorFirstN;
2260       }
2261       // Alternate between startup and post startup.
2262       uint32_t flags = MethodHotness::kFlagHot;
2263       flags |= ((m & 1) != 0) ? MethodHotness::kFlagPostStartup : MethodHotness::kFlagStartup;
2264       data->AddMethod(static_cast<MethodHotness::Flag>(flags), method_idx);
2265     }
2266 
2267     for (uint16_t c = 0; c < number_of_classes; c++) {
2268       uint16_t type_idx = rand() % max_classes;
2269       if (c < (number_of_classes / kFavorSplit)) {
2270         type_idx %= kFavorFirstN;
2271       }
2272       data->class_set.insert(dex::TypeIndex(type_idx));
2273     }
2274   }
2275   return info.Save(fd);
2276 }
2277 
2278 // Naive implementation to generate a random profile file suitable for testing.
2279 // Description of random selection:
2280 // * Select a random starting point S.
2281 // * For every index i, add (S+i) % (N - total number of methods/classes) to profile with the
2282 //   probably of 1/(N - i - number of methods/classes needed to add in profile).
GenerateTestProfile(int fd,std::vector<std::unique_ptr<const DexFile>> & dex_files,uint16_t method_percentage,uint16_t class_percentage,uint32_t random_seed)2283 bool ProfileCompilationInfo::GenerateTestProfile(
2284     int fd,
2285     std::vector<std::unique_ptr<const DexFile>>& dex_files,
2286     uint16_t method_percentage,
2287     uint16_t class_percentage,
2288     uint32_t random_seed) {
2289   ProfileCompilationInfo info;
2290   std::default_random_engine rng(random_seed);
2291   auto create_shuffled_range = [&rng](uint32_t take, uint32_t out_of) {
2292     CHECK_LE(take, out_of);
2293     std::vector<uint32_t> vec(out_of);
2294     std::iota(vec.begin(), vec.end(), 0u);
2295     std::shuffle(vec.begin(), vec.end(), rng);
2296     vec.erase(vec.begin() + take, vec.end());
2297     std::sort(vec.begin(), vec.end());
2298     return vec;
2299   };
2300   for (std::unique_ptr<const DexFile>& dex_file : dex_files) {
2301     const std::string& dex_location = dex_file->GetLocation();
2302     std::string profile_key = info.GetProfileDexFileBaseKey(dex_location);
2303     uint32_t checksum = dex_file->GetLocationChecksum();
2304 
2305     uint32_t number_of_classes = dex_file->NumClassDefs();
2306     uint32_t classes_required_in_profile = (number_of_classes * class_percentage) / 100;
2307 
2308     DexFileData* const data = info.GetOrAddDexFileData(
2309           profile_key, checksum, dex_file->NumTypeIds(), dex_file->NumMethodIds());
2310     for (uint32_t class_index : create_shuffled_range(classes_required_in_profile,
2311                                                       number_of_classes)) {
2312       data->class_set.insert(dex_file->GetClassDef(class_index).class_idx_);
2313     }
2314 
2315     uint32_t number_of_methods = dex_file->NumMethodIds();
2316     uint32_t methods_required_in_profile = (number_of_methods * method_percentage) / 100;
2317     for (uint32_t method_index : create_shuffled_range(methods_required_in_profile,
2318                                                        number_of_methods)) {
2319       // Alternate between startup and post startup.
2320       uint32_t flags = MethodHotness::kFlagHot;
2321       flags |= ((method_index & 1) != 0)
2322                    ? MethodHotness::kFlagPostStartup
2323                    : MethodHotness::kFlagStartup;
2324       data->AddMethod(static_cast<MethodHotness::Flag>(flags), method_index);
2325     }
2326   }
2327   return info.Save(fd);
2328 }
2329 
IsEmpty() const2330 bool ProfileCompilationInfo::IsEmpty() const {
2331   DCHECK_EQ(info_.size(), profile_key_map_.size());
2332   // Note that this doesn't look at the bitmap region, so we will return true
2333   // when the profile contains only non-hot methods. This is generally ok
2334   // as for speed-profile to be useful we do need hot methods and resolved classes.
2335   return GetNumberOfMethods() == 0 && GetNumberOfResolvedClasses() == 0;
2336 }
2337 
2338 ProfileCompilationInfo::InlineCacheMap*
FindOrAddHotMethod(uint16_t method_index)2339 ProfileCompilationInfo::DexFileData::FindOrAddHotMethod(uint16_t method_index) {
2340   if (method_index >= num_method_ids) {
2341     LOG(ERROR) << "Invalid method index " << method_index << ". num_method_ids=" << num_method_ids;
2342     return nullptr;
2343   }
2344   return &(method_map.FindOrAdd(
2345       method_index,
2346       InlineCacheMap(std::less<uint16_t>(), allocator_->Adapter(kArenaAllocProfile)))->second);
2347 }
2348 
2349 // Mark a method as executed at least once.
AddMethod(MethodHotness::Flag flags,size_t index)2350 bool ProfileCompilationInfo::DexFileData::AddMethod(MethodHotness::Flag flags, size_t index) {
2351   if (index >= num_method_ids || index > kMaxSupportedMethodIndex) {
2352     LOG(ERROR) << "Invalid method index " << index << ". num_method_ids=" << num_method_ids
2353         << ", max: " << kMaxSupportedMethodIndex;
2354     return false;
2355   }
2356 
2357   SetMethodHotness(index, flags);
2358 
2359   if ((flags & MethodHotness::kFlagHot) != 0) {
2360     ProfileCompilationInfo::InlineCacheMap* result = FindOrAddHotMethod(index);
2361     DCHECK(result != nullptr);
2362   }
2363   return true;
2364 }
2365 
SetMethodHotness(size_t index,MethodHotness::Flag flags)2366 void ProfileCompilationInfo::DexFileData::SetMethodHotness(size_t index,
2367                                                            MethodHotness::Flag flags) {
2368   DCHECK_LT(index, num_method_ids);
2369   ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
2370     if ((flags & flag) != 0) {
2371       method_bitmap.StoreBit(MethodFlagBitmapIndex(
2372           static_cast<MethodHotness::Flag>(flag), index), /*value=*/ true);
2373     }
2374     return true;
2375   });
2376 }
2377 
GetHotnessInfo(uint32_t dex_method_index) const2378 ProfileCompilationInfo::MethodHotness ProfileCompilationInfo::DexFileData::GetHotnessInfo(
2379     uint32_t dex_method_index) const {
2380   MethodHotness ret;
2381   ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
2382     if (method_bitmap.LoadBit(MethodFlagBitmapIndex(
2383             static_cast<MethodHotness::Flag>(flag), dex_method_index))) {
2384       ret.AddFlag(static_cast<MethodHotness::Flag>(flag));
2385     }
2386     return true;
2387   });
2388   auto it = method_map.find(dex_method_index);
2389   if (it != method_map.end()) {
2390     ret.SetInlineCacheMap(&it->second);
2391     ret.AddFlag(MethodHotness::kFlagHot);
2392   }
2393   return ret;
2394 }
2395 
2396 // To simplify the implementation we use the MethodHotness flag values as indexes into the internal
2397 // bitmap representation. As such, they should never change unless the profile version is updated
2398 // and the implementation changed accordingly.
2399 static_assert(ProfileCompilationInfo::MethodHotness::kFlagFirst == 1 << 0);
2400 static_assert(ProfileCompilationInfo::MethodHotness::kFlagHot == 1 << 0);
2401 static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartup == 1 << 1);
2402 static_assert(ProfileCompilationInfo::MethodHotness::kFlagPostStartup == 1 << 2);
2403 static_assert(ProfileCompilationInfo::MethodHotness::kFlagLastRegular == 1 << 2);
2404 static_assert(ProfileCompilationInfo::MethodHotness::kFlag32bit == 1 << 3);
2405 static_assert(ProfileCompilationInfo::MethodHotness::kFlag64bit == 1 << 4);
2406 static_assert(ProfileCompilationInfo::MethodHotness::kFlagSensitiveThread == 1 << 5);
2407 static_assert(ProfileCompilationInfo::MethodHotness::kFlagAmStartup == 1 << 6);
2408 static_assert(ProfileCompilationInfo::MethodHotness::kFlagAmPostStartup == 1 << 7);
2409 static_assert(ProfileCompilationInfo::MethodHotness::kFlagBoot == 1 << 8);
2410 static_assert(ProfileCompilationInfo::MethodHotness::kFlagPostBoot == 1 << 9);
2411 static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartupBin == 1 << 10);
2412 static_assert(ProfileCompilationInfo::MethodHotness::kFlagStartupMaxBin == 1 << 15);
2413 static_assert(ProfileCompilationInfo::MethodHotness::kFlagLastBoot == 1 << 15);
2414 
GetUsedBitmapFlags() const2415 uint16_t ProfileCompilationInfo::DexFileData::GetUsedBitmapFlags() const {
2416   uint32_t used_flags = 0u;
2417   ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
2418     size_t index = FlagBitmapIndex(static_cast<MethodHotness::Flag>(flag));
2419     if (method_bitmap.HasSomeBitSet(index * num_method_ids, num_method_ids)) {
2420       used_flags |= flag;
2421     }
2422     return true;
2423   });
2424   return dchecked_integral_cast<uint16_t>(used_flags);
2425 }
2426 
2427 ProfileCompilationInfo::DexPcData*
FindOrAddDexPc(InlineCacheMap * inline_cache,uint32_t dex_pc)2428 ProfileCompilationInfo::FindOrAddDexPc(InlineCacheMap* inline_cache, uint32_t dex_pc) {
2429   return &(inline_cache->FindOrAdd(dex_pc, DexPcData(inline_cache->get_allocator()))->second);
2430 }
2431 
GetClassDescriptors(const std::vector<const DexFile * > & dex_files,const ProfileSampleAnnotation & annotation)2432 HashSet<std::string> ProfileCompilationInfo::GetClassDescriptors(
2433     const std::vector<const DexFile*>& dex_files,
2434     const ProfileSampleAnnotation& annotation) {
2435   HashSet<std::string> ret;
2436   for (const DexFile* dex_file : dex_files) {
2437     const DexFileData* data = FindDexDataUsingAnnotations(dex_file, annotation);
2438     if (data != nullptr) {
2439       for (dex::TypeIndex type_idx : data->class_set) {
2440         ret.insert(GetTypeDescriptor(dex_file, type_idx));
2441       }
2442     } else {
2443       VLOG(compiler) << "Failed to find profile data for " << dex_file->GetLocation();
2444     }
2445   }
2446   return ret;
2447 }
2448 
IsProfileFile(int fd)2449 bool ProfileCompilationInfo::IsProfileFile(int fd) {
2450   // First check if it's an empty file as we allow empty profile files.
2451   // Profiles may be created by ActivityManager or installd before we manage to
2452   // process them in the runtime or profman.
2453   struct stat stat_buffer;
2454   if (fstat(fd, &stat_buffer) != 0) {
2455     return false;
2456   }
2457 
2458   if (stat_buffer.st_size == 0) {
2459     return true;
2460   }
2461 
2462   // The files is not empty. Check if it contains the profile magic.
2463   size_t byte_count = sizeof(kProfileMagic);
2464   uint8_t buffer[sizeof(kProfileMagic)];
2465   if (!android::base::ReadFullyAtOffset(fd, buffer, byte_count, /*offset=*/ 0)) {
2466     return false;
2467   }
2468 
2469   // Reset the offset to prepare the file for reading.
2470   off_t rc =  TEMP_FAILURE_RETRY(lseek(fd, 0, SEEK_SET));
2471   if (rc == static_cast<off_t>(-1)) {
2472     PLOG(ERROR) << "Failed to reset the offset";
2473     return false;
2474   }
2475 
2476   return memcmp(buffer, kProfileMagic, byte_count) == 0;
2477 }
2478 
UpdateProfileKeys(const std::vector<std::unique_ptr<const DexFile>> & dex_files,bool * matched)2479 bool ProfileCompilationInfo::UpdateProfileKeys(
2480     const std::vector<std::unique_ptr<const DexFile>>& dex_files, /*out*/ bool* matched) {
2481   *matched = false;
2482   for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
2483     for (const std::unique_ptr<DexFileData>& dex_data : info_) {
2484       if (dex_data->checksum == dex_file->GetLocationChecksum() &&
2485           dex_data->num_type_ids == dex_file->NumTypeIds() &&
2486           dex_data->num_method_ids == dex_file->NumMethodIds()) {
2487         std::string new_profile_key = GetProfileDexFileBaseKey(dex_file->GetLocation());
2488         std::string dex_data_base_key = GetBaseKeyFromAugmentedKey(dex_data->profile_key);
2489         if (dex_data_base_key != new_profile_key) {
2490           if (profile_key_map_.find(new_profile_key) != profile_key_map_.end()) {
2491             // We can't update the key if the new key belongs to a different dex file.
2492             LOG(ERROR) << "Cannot update profile key to " << new_profile_key
2493                 << " because the new key belongs to another dex file.";
2494             return false;
2495           }
2496           profile_key_map_.erase(dex_data->profile_key);
2497           // Retain the annotation (if any) during the renaming by re-attaching the info
2498           // form the old key.
2499           dex_data->profile_key = MigrateAnnotationInfo(new_profile_key, dex_data->profile_key);
2500           profile_key_map_.Put(dex_data->profile_key, dex_data->profile_index);
2501         }
2502         *matched = true;
2503       }
2504     }
2505   }
2506   return true;
2507 }
2508 
ProfileFilterFnAcceptAll(const std::string & dex_location ATTRIBUTE_UNUSED,uint32_t checksum ATTRIBUTE_UNUSED)2509 bool ProfileCompilationInfo::ProfileFilterFnAcceptAll(
2510     const std::string& dex_location ATTRIBUTE_UNUSED,
2511     uint32_t checksum ATTRIBUTE_UNUSED) {
2512   return true;
2513 }
2514 
ClearData()2515 void ProfileCompilationInfo::ClearData() {
2516   profile_key_map_.clear();
2517   info_.clear();
2518   extra_descriptors_indexes_.clear();
2519   extra_descriptors_.clear();
2520 }
2521 
ClearDataAndAdjustVersion(bool for_boot_image)2522 void ProfileCompilationInfo::ClearDataAndAdjustVersion(bool for_boot_image) {
2523   ClearData();
2524   memcpy(version_,
2525          for_boot_image ? kProfileVersionForBootImage : kProfileVersion,
2526          kProfileVersionSize);
2527 }
2528 
IsForBootImage() const2529 bool ProfileCompilationInfo::IsForBootImage() const {
2530   return memcmp(version_, kProfileVersionForBootImage, sizeof(kProfileVersionForBootImage)) == 0;
2531 }
2532 
GetVersion() const2533 const uint8_t* ProfileCompilationInfo::GetVersion() const {
2534   return version_;
2535 }
2536 
ContainsClass(dex::TypeIndex type_index) const2537 bool ProfileCompilationInfo::DexFileData::ContainsClass(dex::TypeIndex type_index) const {
2538   return class_set.find(type_index) != class_set.end();
2539 }
2540 
ClassesDataSize() const2541 uint32_t ProfileCompilationInfo::DexFileData::ClassesDataSize() const {
2542   return class_set.empty()
2543       ? 0u
2544       : sizeof(ProfileIndexType) +            // Which dex file.
2545         sizeof(uint16_t) +                    // Number of classes.
2546         sizeof(uint16_t) * class_set.size();  // Type index diffs.
2547 }
2548 
WriteClasses(SafeBuffer & buffer) const2549 void ProfileCompilationInfo::DexFileData::WriteClasses(SafeBuffer& buffer) const {
2550   if (class_set.empty()) {
2551     return;
2552   }
2553   buffer.WriteUintAndAdvance(profile_index);
2554   buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(class_set.size()));
2555   WriteClassSet(buffer, class_set);
2556 }
2557 
ReadClasses(SafeBuffer & buffer,const dchecked_vector<ExtraDescriptorIndex> & extra_descriptors_remap,std::string * error)2558 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::ReadClasses(
2559     SafeBuffer& buffer,
2560     const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap,
2561     std::string* error) {
2562   uint16_t classes_size;
2563   if (!buffer.ReadUintAndAdvance(&classes_size)) {
2564     *error = "Error reading classes size.";
2565     return ProfileLoadStatus::kBadData;
2566   }
2567   uint16_t num_valid_type_indexes = dchecked_integral_cast<uint16_t>(
2568       std::min<size_t>(num_type_ids + extra_descriptors_remap.size(), DexFile::kDexNoIndex16));
2569   uint16_t type_index = 0u;
2570   for (size_t i = 0; i != classes_size; ++i) {
2571     uint16_t type_index_diff;
2572     if (!buffer.ReadUintAndAdvance(&type_index_diff)) {
2573       *error = "Error reading class type index diff.";
2574       return ProfileLoadStatus::kBadData;
2575     }
2576     if (type_index_diff == 0u && i != 0u) {
2577       *error = "Duplicate type index.";
2578       return ProfileLoadStatus::kBadData;
2579     }
2580     if (type_index_diff >= num_valid_type_indexes - type_index) {
2581       *error = "Invalid type index.";
2582       return ProfileLoadStatus::kBadData;
2583     }
2584     type_index += type_index_diff;
2585     if (type_index >= num_type_ids) {
2586       uint32_t new_extra_descriptor_index = extra_descriptors_remap[type_index - num_type_ids];
2587       if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) {
2588         *error = "Remapped type index out of range.";
2589         return ProfileLoadStatus::kMergeError;
2590       }
2591       class_set.insert(dex::TypeIndex(num_type_ids + new_extra_descriptor_index));
2592     } else {
2593       class_set.insert(dex::TypeIndex(type_index));
2594     }
2595   }
2596   return ProfileLoadStatus::kSuccess;
2597 }
2598 
SkipClasses(SafeBuffer & buffer,std::string * error)2599 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::SkipClasses(
2600     SafeBuffer& buffer,
2601     std::string* error) {
2602   uint16_t classes_size;
2603   if (!buffer.ReadUintAndAdvance(&classes_size)) {
2604     *error = "Error reading classes size to skip.";
2605     return ProfileLoadStatus::kBadData;
2606   }
2607   size_t following_data_size = static_cast<size_t>(classes_size) * sizeof(uint16_t);
2608   if (following_data_size > buffer.GetAvailableBytes()) {
2609     *error = "Classes data size to skip exceeds remaining data.";
2610     return ProfileLoadStatus::kBadData;
2611   }
2612   buffer.Advance(following_data_size);
2613   return ProfileLoadStatus::kSuccess;
2614 }
2615 
MethodsDataSize(uint16_t * method_flags,size_t * saved_bitmap_bit_size) const2616 uint32_t ProfileCompilationInfo::DexFileData::MethodsDataSize(
2617     /*out*/ uint16_t* method_flags,
2618     /*out*/ size_t* saved_bitmap_bit_size) const {
2619   uint16_t local_method_flags = GetUsedBitmapFlags();
2620   size_t local_saved_bitmap_bit_size = POPCOUNT(local_method_flags) * num_method_ids;
2621   if (!method_map.empty()) {
2622     local_method_flags |= enum_cast<uint16_t>(MethodHotness::kFlagHot);
2623   }
2624   size_t size = 0u;
2625   if (local_method_flags != 0u) {
2626     size_t num_hot_methods = method_map.size();
2627     size_t num_dex_pc_entries = 0u;
2628     size_t num_class_entries = 0u;
2629     for (const auto& method_entry : method_map) {
2630       const InlineCacheMap& inline_cache_map = method_entry.second;
2631       num_dex_pc_entries += inline_cache_map.size();
2632       for (const auto& inline_cache_entry : inline_cache_map) {
2633         const DexPcData& dex_pc_data = inline_cache_entry.second;
2634         num_class_entries += dex_pc_data.classes.size();
2635       }
2636     }
2637 
2638     constexpr size_t kPerHotMethodSize =
2639         sizeof(uint16_t) +  // Method index diff.
2640         sizeof(uint16_t);   // Inline cache size.
2641     constexpr size_t kPerDexPcEntrySize =
2642         sizeof(uint16_t) +  // Dex PC.
2643         sizeof(uint8_t);    // Number of inline cache classes.
2644     constexpr size_t kPerClassEntrySize =
2645         sizeof(uint16_t);   // Type index diff.
2646 
2647     size_t saved_bitmap_byte_size = BitsToBytesRoundUp(local_saved_bitmap_bit_size);
2648     size = sizeof(ProfileIndexType) +                 // Which dex file.
2649            sizeof(uint32_t) +                         // Total size of following data.
2650            sizeof(uint16_t) +                         // Method flags.
2651            saved_bitmap_byte_size +                   // Bitmap data.
2652            num_hot_methods * kPerHotMethodSize +      // Data for hot methods.
2653            num_dex_pc_entries * kPerDexPcEntrySize +  // Data for dex pc entries.
2654            num_class_entries * kPerClassEntrySize;    // Data for inline cache class entries.
2655   }
2656   if (method_flags != nullptr) {
2657     *method_flags = local_method_flags;
2658   }
2659   if (saved_bitmap_bit_size != nullptr) {
2660     *saved_bitmap_bit_size = local_saved_bitmap_bit_size;
2661   }
2662   return size;
2663 }
2664 
WriteMethods(SafeBuffer & buffer) const2665 void ProfileCompilationInfo::DexFileData::WriteMethods(SafeBuffer& buffer) const {
2666   uint16_t method_flags;
2667   size_t saved_bitmap_bit_size;
2668   uint32_t methods_data_size = MethodsDataSize(&method_flags, &saved_bitmap_bit_size);
2669   if (methods_data_size == 0u) {
2670     return;  // No data to write.
2671   }
2672   DCHECK_GE(buffer.GetAvailableBytes(), methods_data_size);
2673   uint32_t expected_available_bytes_at_end = buffer.GetAvailableBytes() - methods_data_size;
2674 
2675   // Write the profile index.
2676   buffer.WriteUintAndAdvance(profile_index);
2677   // Write the total size of the following methods data (without the profile index
2678   // and the total size itself) for easy skipping when the dex file is filtered out.
2679   uint32_t following_data_size = methods_data_size - sizeof(ProfileIndexType) - sizeof(uint32_t);
2680   buffer.WriteUintAndAdvance(following_data_size);
2681   // Write the used method flags.
2682   buffer.WriteUintAndAdvance(method_flags);
2683 
2684   // Write the bitmap data.
2685   size_t saved_bitmap_byte_size = BitsToBytesRoundUp(saved_bitmap_bit_size);
2686   DCHECK_LE(saved_bitmap_byte_size, buffer.GetAvailableBytes());
2687   BitMemoryRegion saved_bitmap(buffer.GetCurrentPtr(), /*bit_start=*/ 0, saved_bitmap_bit_size);
2688   size_t saved_bitmap_index = 0u;
2689   ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
2690     if ((method_flags & flag) != 0u) {
2691       size_t index = FlagBitmapIndex(static_cast<MethodHotness::Flag>(flag));
2692       BitMemoryRegion src = method_bitmap.Subregion(index * num_method_ids, num_method_ids);
2693       saved_bitmap.Subregion(saved_bitmap_index * num_method_ids, num_method_ids).CopyBits(src);
2694       ++saved_bitmap_index;
2695     }
2696     return true;
2697   });
2698   DCHECK_EQ(saved_bitmap_index * num_method_ids, saved_bitmap_bit_size);
2699   // Clear the padding bits.
2700   size_t padding_bit_size = saved_bitmap_byte_size * kBitsPerByte - saved_bitmap_bit_size;
2701   BitMemoryRegion padding_region(buffer.GetCurrentPtr(), saved_bitmap_bit_size, padding_bit_size);
2702   padding_region.StoreBits(/*bit_offset=*/ 0u, /*value=*/ 0u, /*bit_length=*/ padding_bit_size);
2703   buffer.Advance(saved_bitmap_byte_size);
2704 
2705   uint16_t last_method_index = 0;
2706   for (const auto& method_entry : method_map) {
2707     uint16_t method_index = method_entry.first;
2708     const InlineCacheMap& inline_cache_map = method_entry.second;
2709 
2710     // Store the difference between the method indices for better compression.
2711     // The SafeMap is ordered by method_id, so the difference will always be non negative.
2712     DCHECK_GE(method_index, last_method_index);
2713     uint16_t diff_with_last_method_index = method_index - last_method_index;
2714     last_method_index = method_index;
2715     buffer.WriteUintAndAdvance(diff_with_last_method_index);
2716 
2717     // Add inline cache map size.
2718     buffer.WriteUintAndAdvance(dchecked_integral_cast<uint16_t>(inline_cache_map.size()));
2719 
2720     // Add inline cache entries.
2721     for (const auto& inline_cache_entry : inline_cache_map) {
2722       uint16_t dex_pc = inline_cache_entry.first;
2723       const DexPcData& dex_pc_data = inline_cache_entry.second;
2724       const ArenaSet<dex::TypeIndex>& classes = dex_pc_data.classes;
2725 
2726       // Add the dex pc.
2727       buffer.WriteUintAndAdvance(dex_pc);
2728 
2729       // Add the megamorphic/missing_types encoding if needed and continue.
2730       // In either cases we don't add any classes to the profiles and so there's
2731       // no point to continue.
2732       // TODO: in case we miss types there is still value to add the rest of the
2733       // classes. (This requires changing profile version or using a new section type.)
2734       if (dex_pc_data.is_missing_types) {
2735         // At this point the megamorphic flag should not be set.
2736         DCHECK(!dex_pc_data.is_megamorphic);
2737         DCHECK_EQ(classes.size(), 0u);
2738         buffer.WriteUintAndAdvance(kIsMissingTypesEncoding);
2739         continue;
2740       } else if (dex_pc_data.is_megamorphic) {
2741         DCHECK_EQ(classes.size(), 0u);
2742         buffer.WriteUintAndAdvance(kIsMegamorphicEncoding);
2743         continue;
2744       }
2745 
2746       DCHECK_LT(classes.size(), ProfileCompilationInfo::kIndividualInlineCacheSize);
2747       DCHECK_NE(classes.size(), 0u) << "InlineCache contains a dex_pc with 0 classes";
2748 
2749       // Add the number of classes for the dex PC.
2750       buffer.WriteUintAndAdvance(dchecked_integral_cast<uint8_t>(classes.size()));
2751       // Store the class set.
2752       WriteClassSet(buffer, classes);
2753     }
2754   }
2755 
2756   // Check if we've written the right number of bytes.
2757   DCHECK_EQ(buffer.GetAvailableBytes(), expected_available_bytes_at_end);
2758 }
2759 
ReadMethods(SafeBuffer & buffer,const dchecked_vector<ExtraDescriptorIndex> & extra_descriptors_remap,std::string * error)2760 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::ReadMethods(
2761     SafeBuffer& buffer,
2762     const dchecked_vector<ExtraDescriptorIndex>& extra_descriptors_remap,
2763     std::string* error) {
2764   uint32_t following_data_size;
2765   if (!buffer.ReadUintAndAdvance(&following_data_size)) {
2766     *error = "Error reading methods data size.";
2767     return ProfileLoadStatus::kBadData;
2768   }
2769   if (following_data_size > buffer.GetAvailableBytes()) {
2770     *error = "Methods data size exceeds available data size.";
2771     return ProfileLoadStatus::kBadData;
2772   }
2773   uint32_t expected_available_bytes_at_end = buffer.GetAvailableBytes() - following_data_size;
2774 
2775   // Read method flags.
2776   uint16_t method_flags;
2777   if (!buffer.ReadUintAndAdvance(&method_flags)) {
2778     *error = "Error reading method flags.";
2779     return ProfileLoadStatus::kBadData;
2780   }
2781   if (!is_for_boot_image && method_flags >= (MethodHotness::kFlagLastRegular << 1)) {
2782     // The profile we're loading contains data for boot image.
2783     *error = "Method flags contain boot image profile flags for non-boot image profile.";
2784     return ProfileLoadStatus::kBadData;
2785   }
2786 
2787   // Read method bitmap.
2788   size_t saved_bitmap_bit_size = POPCOUNT(method_flags & ~MethodHotness::kFlagHot) * num_method_ids;
2789   size_t saved_bitmap_byte_size = BitsToBytesRoundUp(saved_bitmap_bit_size);
2790   if (sizeof(uint16_t) + saved_bitmap_byte_size > following_data_size) {
2791     *error = "Insufficient available data for method bitmap.";
2792     return ProfileLoadStatus::kBadData;
2793   }
2794   BitMemoryRegion saved_bitmap(buffer.GetCurrentPtr(), /*bit_start=*/ 0, saved_bitmap_bit_size);
2795   size_t saved_bitmap_index = 0u;
2796   ForMethodBitmapHotnessFlags([&](MethodHotness::Flag flag) {
2797     if ((method_flags & flag) != 0u) {
2798       size_t index = FlagBitmapIndex(static_cast<MethodHotness::Flag>(flag));
2799       BitMemoryRegion src =
2800           saved_bitmap.Subregion(saved_bitmap_index * num_method_ids, num_method_ids);
2801       method_bitmap.Subregion(index * num_method_ids, num_method_ids).OrBits(src);
2802       ++saved_bitmap_index;
2803     }
2804     return true;
2805   });
2806   buffer.Advance(saved_bitmap_byte_size);
2807 
2808   // Load hot methods.
2809   if ((method_flags & MethodHotness::kFlagHot) != 0u) {
2810     uint32_t num_valid_method_indexes =
2811         std::min<uint32_t>(kMaxSupportedMethodIndex + 1u, num_method_ids);
2812     uint16_t num_valid_type_indexes = dchecked_integral_cast<uint16_t>(
2813         std::min<size_t>(num_type_ids + extra_descriptors_remap.size(), DexFile::kDexNoIndex16));
2814     uint16_t method_index = 0;
2815     bool first_diff = true;
2816     while (buffer.GetAvailableBytes() > expected_available_bytes_at_end) {
2817       uint16_t diff_with_last_method_index;
2818       if (!buffer.ReadUintAndAdvance(&diff_with_last_method_index)) {
2819         *error = "Error reading method index diff.";
2820         return ProfileLoadStatus::kBadData;
2821       }
2822       if (diff_with_last_method_index == 0u && !first_diff) {
2823         *error = "Duplicate method index.";
2824         return ProfileLoadStatus::kBadData;
2825       }
2826       first_diff = false;
2827       if (diff_with_last_method_index >= num_valid_method_indexes - method_index) {
2828         *error = "Invalid method index.";
2829         return ProfileLoadStatus::kBadData;
2830       }
2831       method_index += diff_with_last_method_index;
2832       InlineCacheMap* inline_cache = FindOrAddHotMethod(method_index);
2833       DCHECK(inline_cache != nullptr);
2834 
2835       // Load inline cache map size.
2836       uint16_t inline_cache_size;
2837       if (!buffer.ReadUintAndAdvance(&inline_cache_size)) {
2838         *error = "Error reading inline cache size.";
2839         return ProfileLoadStatus::kBadData;
2840       }
2841       for (uint16_t ic_index = 0; ic_index != inline_cache_size; ++ic_index) {
2842         // Load dex pc.
2843         uint16_t dex_pc;
2844         if (!buffer.ReadUintAndAdvance(&dex_pc)) {
2845           *error = "Error reading inline cache dex pc.";
2846           return ProfileLoadStatus::kBadData;
2847         }
2848         DexPcData* dex_pc_data = FindOrAddDexPc(inline_cache, dex_pc);
2849         DCHECK(dex_pc_data != nullptr);
2850 
2851         // Load inline cache classes.
2852         uint8_t inline_cache_classes_size;
2853         if (!buffer.ReadUintAndAdvance(&inline_cache_classes_size)) {
2854           *error = "Error reading inline cache classes size.";
2855           return ProfileLoadStatus::kBadData;
2856         }
2857         if (inline_cache_classes_size == kIsMissingTypesEncoding) {
2858           dex_pc_data->SetIsMissingTypes();
2859         } else if (inline_cache_classes_size == kIsMegamorphicEncoding) {
2860           dex_pc_data->SetIsMegamorphic();
2861         } else if (inline_cache_classes_size >= kIndividualInlineCacheSize) {
2862           *error = "Inline cache size too large.";
2863           return ProfileLoadStatus::kBadData;
2864         } else {
2865           uint16_t type_index = 0u;
2866           for (size_t i = 0; i != inline_cache_classes_size; ++i) {
2867             uint16_t type_index_diff;
2868             if (!buffer.ReadUintAndAdvance(&type_index_diff)) {
2869               *error = "Error reading inline cache type index diff.";
2870               return ProfileLoadStatus::kBadData;
2871             }
2872             if (type_index_diff == 0u && i != 0u) {
2873               *error = "Duplicate inline cache type index.";
2874               return ProfileLoadStatus::kBadData;
2875             }
2876             if (type_index_diff >= num_valid_type_indexes - type_index) {
2877               *error = "Invalid inline cache type index.";
2878               return ProfileLoadStatus::kBadData;
2879             }
2880             type_index += type_index_diff;
2881             if (type_index >= num_type_ids) {
2882               ExtraDescriptorIndex new_extra_descriptor_index =
2883                   extra_descriptors_remap[type_index - num_type_ids];
2884               if (new_extra_descriptor_index >= DexFile::kDexNoIndex16 - num_type_ids) {
2885                 *error = "Remapped inline cache type index out of range.";
2886                 return ProfileLoadStatus::kMergeError;
2887               }
2888               dex_pc_data->AddClass(dex::TypeIndex(num_type_ids + new_extra_descriptor_index));
2889             } else {
2890               dex_pc_data->AddClass(dex::TypeIndex(type_index));
2891             }
2892           }
2893         }
2894       }
2895     }
2896   }
2897 
2898   if (buffer.GetAvailableBytes() != expected_available_bytes_at_end) {
2899     *error = "Methods data did not end at expected position.";
2900     return ProfileLoadStatus::kBadData;
2901   }
2902 
2903   return ProfileLoadStatus::kSuccess;
2904 }
2905 
SkipMethods(SafeBuffer & buffer,std::string * error)2906 ProfileCompilationInfo::ProfileLoadStatus ProfileCompilationInfo::DexFileData::SkipMethods(
2907     SafeBuffer& buffer,
2908     std::string* error) {
2909   uint32_t following_data_size;
2910   if (!buffer.ReadUintAndAdvance(&following_data_size)) {
2911     *error = "Error reading methods data size to skip.";
2912     return ProfileLoadStatus::kBadData;
2913   }
2914   if (following_data_size > buffer.GetAvailableBytes()) {
2915     *error = "Methods data size to skip exceeds remaining data.";
2916     return ProfileLoadStatus::kBadData;
2917   }
2918   buffer.Advance(following_data_size);
2919   return ProfileLoadStatus::kSuccess;
2920 }
2921 
WriteClassSet(SafeBuffer & buffer,const ArenaSet<dex::TypeIndex> & class_set)2922 void ProfileCompilationInfo::DexFileData::WriteClassSet(
2923     SafeBuffer& buffer,
2924     const ArenaSet<dex::TypeIndex>& class_set) {
2925   // Store the difference between the type indexes for better compression.
2926   uint16_t last_type_index = 0u;
2927   for (const dex::TypeIndex& type_index : class_set) {
2928     DCHECK_GE(type_index.index_, last_type_index);
2929     uint16_t diff_with_last_type_index = type_index.index_ - last_type_index;
2930     last_type_index = type_index.index_;
2931     buffer.WriteUintAndAdvance(diff_with_last_type_index);
2932   }
2933 }
2934 
GetSizeWarningThresholdBytes() const2935 size_t ProfileCompilationInfo::GetSizeWarningThresholdBytes() const {
2936   return IsForBootImage() ?  kSizeWarningThresholdBootBytes : kSizeWarningThresholdBytes;
2937 }
2938 
GetSizeErrorThresholdBytes() const2939 size_t ProfileCompilationInfo::GetSizeErrorThresholdBytes() const {
2940   return IsForBootImage() ?  kSizeErrorThresholdBootBytes : kSizeErrorThresholdBytes;
2941 }
2942 
operator <<(std::ostream & stream,ProfileCompilationInfo::DexReferenceDumper dumper)2943 std::ostream& operator<<(std::ostream& stream,
2944                          ProfileCompilationInfo::DexReferenceDumper dumper) {
2945   stream << "[profile_key=" << dumper.GetProfileKey()
2946          << ",dex_checksum=" << std::hex << dumper.GetDexChecksum() << std::dec
2947          << ",num_type_ids=" << dumper.GetNumTypeIds()
2948          << ",num_method_ids=" << dumper.GetNumMethodIds()
2949          << "]";
2950   return stream;
2951 }
2952 
FlattenProfileData()2953 FlattenProfileData::FlattenProfileData() :
2954     max_aggregation_for_methods_(0),
2955     max_aggregation_for_classes_(0) {
2956 }
2957 
ItemMetadata()2958 FlattenProfileData::ItemMetadata::ItemMetadata() :
2959     flags_(0) {
2960 }
2961 
ItemMetadata(const ItemMetadata & other)2962 FlattenProfileData::ItemMetadata::ItemMetadata(const ItemMetadata& other) :
2963     flags_(other.flags_),
2964     annotations_(other.annotations_) {
2965 }
2966 
ExtractProfileData(const std::vector<std::unique_ptr<const DexFile>> & dex_files) const2967 std::unique_ptr<FlattenProfileData> ProfileCompilationInfo::ExtractProfileData(
2968     const std::vector<std::unique_ptr<const DexFile>>& dex_files) const {
2969 
2970   std::unique_ptr<FlattenProfileData> result(new FlattenProfileData());
2971 
2972   auto create_metadata_fn = []() { return FlattenProfileData::ItemMetadata(); };
2973 
2974   // Iterate through all the dex files, find the methods/classes associated with each of them,
2975   // and add them to the flatten result.
2976   for (const std::unique_ptr<const DexFile>& dex_file : dex_files) {
2977     // Find all the dex data for the given dex file.
2978     // We may have multiple dex data if the methods or classes were added using
2979     // different annotations.
2980     std::vector<const DexFileData*> all_dex_data;
2981     FindAllDexData(dex_file.get(), &all_dex_data);
2982     for (const DexFileData* dex_data : all_dex_data) {
2983       // Extract the annotation from the key as we want to store it in the flatten result.
2984       ProfileSampleAnnotation annotation = GetAnnotationFromKey(dex_data->profile_key);
2985 
2986       // Check which methods from the current dex files are in the profile.
2987       for (uint32_t method_idx = 0; method_idx < dex_data->num_method_ids; ++method_idx) {
2988         MethodHotness hotness = dex_data->GetHotnessInfo(method_idx);
2989         if (!hotness.IsInProfile()) {
2990           // Not in the profile, continue.
2991           continue;
2992         }
2993         // The method is in the profile, create metadata item for it and added to the result.
2994         MethodReference ref(dex_file.get(), method_idx);
2995         FlattenProfileData::ItemMetadata& metadata =
2996             result->method_metadata_.GetOrCreate(ref, create_metadata_fn);
2997         metadata.flags_ |= hotness.flags_;
2998         metadata.annotations_.push_back(annotation);
2999         // Update the max aggregation counter for methods.
3000         // This is essentially a cache, to avoid traversing all the methods just to find out
3001         // this value.
3002         result->max_aggregation_for_methods_ = std::max(
3003             result->max_aggregation_for_methods_,
3004             static_cast<uint32_t>(metadata.annotations_.size()));
3005       }
3006 
3007       // Check which classes from the current dex files are in the profile.
3008       for (const dex::TypeIndex& type_index : dex_data->class_set) {
3009         if (type_index.index_ >= dex_file->NumTypeIds()) {
3010           // Not a valid `dex::TypeIndex` for `TypeReference`.
3011           // TODO: Rewrite the API to use descriptors or the `ProfileCompilationInfo` directly
3012           // instead of the `FlattenProfileData` helper class.
3013           continue;
3014         }
3015         TypeReference ref(dex_file.get(), type_index);
3016         FlattenProfileData::ItemMetadata& metadata =
3017             result->class_metadata_.GetOrCreate(ref, create_metadata_fn);
3018         metadata.annotations_.push_back(annotation);
3019         // Update the max aggregation counter for classes.
3020         result->max_aggregation_for_classes_ = std::max(
3021             result->max_aggregation_for_classes_,
3022             static_cast<uint32_t>(metadata.annotations_.size()));
3023       }
3024     }
3025   }
3026 
3027   return result;
3028 }
3029 
MergeData(const FlattenProfileData & other)3030 void FlattenProfileData::MergeData(const FlattenProfileData& other) {
3031   auto create_metadata_fn = []() { return FlattenProfileData::ItemMetadata(); };
3032   for (const auto& it : other.method_metadata_) {
3033     const MethodReference& otherRef = it.first;
3034     const FlattenProfileData::ItemMetadata otherData = it.second;
3035     const std::list<ProfileCompilationInfo::ProfileSampleAnnotation>& other_annotations =
3036         otherData.GetAnnotations();
3037 
3038     FlattenProfileData::ItemMetadata& metadata =
3039         method_metadata_.GetOrCreate(otherRef, create_metadata_fn);
3040     metadata.flags_ |= otherData.GetFlags();
3041     metadata.annotations_.insert(
3042         metadata.annotations_.end(), other_annotations.begin(), other_annotations.end());
3043 
3044     max_aggregation_for_methods_ = std::max(
3045           max_aggregation_for_methods_,
3046           static_cast<uint32_t>(metadata.annotations_.size()));
3047   }
3048   for (const auto& it : other.class_metadata_) {
3049     const TypeReference& otherRef = it.first;
3050     const FlattenProfileData::ItemMetadata otherData = it.second;
3051     const std::list<ProfileCompilationInfo::ProfileSampleAnnotation>& other_annotations =
3052         otherData.GetAnnotations();
3053 
3054     FlattenProfileData::ItemMetadata& metadata =
3055         class_metadata_.GetOrCreate(otherRef, create_metadata_fn);
3056     metadata.flags_ |= otherData.GetFlags();
3057     metadata.annotations_.insert(
3058         metadata.annotations_.end(), other_annotations.begin(), other_annotations.end());
3059 
3060     max_aggregation_for_classes_ = std::max(
3061           max_aggregation_for_classes_,
3062           static_cast<uint32_t>(metadata.annotations_.size()));
3063   }
3064 }
3065 
3066 }  // namespace art
3067