1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the CodeGenDAGPatterns class, which is used to read and
11 // represent the patterns present in a .td file for instructions.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "CodeGenDAGPatterns.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/Twine.h"
20 #include "llvm/Support/Debug.h"
21 #include "llvm/Support/ErrorHandling.h"
22 #include "llvm/TableGen/Error.h"
23 #include "llvm/TableGen/Record.h"
24 #include <algorithm>
25 #include <cstdio>
26 #include <set>
27 using namespace llvm;
28
29 #define DEBUG_TYPE "dag-patterns"
30
31 //===----------------------------------------------------------------------===//
32 // EEVT::TypeSet Implementation
33 //===----------------------------------------------------------------------===//
34
isInteger(MVT::SimpleValueType VT)35 static inline bool isInteger(MVT::SimpleValueType VT) {
36 return MVT(VT).isInteger();
37 }
isFloatingPoint(MVT::SimpleValueType VT)38 static inline bool isFloatingPoint(MVT::SimpleValueType VT) {
39 return MVT(VT).isFloatingPoint();
40 }
isVector(MVT::SimpleValueType VT)41 static inline bool isVector(MVT::SimpleValueType VT) {
42 return MVT(VT).isVector();
43 }
isScalar(MVT::SimpleValueType VT)44 static inline bool isScalar(MVT::SimpleValueType VT) {
45 return !MVT(VT).isVector();
46 }
47
TypeSet(MVT::SimpleValueType VT,TreePattern & TP)48 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) {
49 if (VT == MVT::iAny)
50 EnforceInteger(TP);
51 else if (VT == MVT::fAny)
52 EnforceFloatingPoint(TP);
53 else if (VT == MVT::vAny)
54 EnforceVector(TP);
55 else {
56 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR ||
57 VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!");
58 TypeVec.push_back(VT);
59 }
60 }
61
62
TypeSet(ArrayRef<MVT::SimpleValueType> VTList)63 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) {
64 assert(!VTList.empty() && "empty list?");
65 TypeVec.append(VTList.begin(), VTList.end());
66
67 if (!VTList.empty())
68 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny &&
69 VTList[0] != MVT::fAny);
70
71 // Verify no duplicates.
72 array_pod_sort(TypeVec.begin(), TypeVec.end());
73 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end());
74 }
75
76 /// FillWithPossibleTypes - Set to all legal types and return true, only valid
77 /// on completely unknown type sets.
FillWithPossibleTypes(TreePattern & TP,bool (* Pred)(MVT::SimpleValueType),const char * PredicateName)78 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP,
79 bool (*Pred)(MVT::SimpleValueType),
80 const char *PredicateName) {
81 assert(isCompletelyUnknown());
82 ArrayRef<MVT::SimpleValueType> LegalTypes =
83 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes();
84
85 if (TP.hasError())
86 return false;
87
88 for (MVT::SimpleValueType VT : LegalTypes)
89 if (!Pred || Pred(VT))
90 TypeVec.push_back(VT);
91
92 // If we have nothing that matches the predicate, bail out.
93 if (TypeVec.empty()) {
94 TP.error("Type inference contradiction found, no " +
95 std::string(PredicateName) + " types found");
96 return false;
97 }
98 // No need to sort with one element.
99 if (TypeVec.size() == 1) return true;
100
101 // Remove duplicates.
102 array_pod_sort(TypeVec.begin(), TypeVec.end());
103 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end());
104
105 return true;
106 }
107
108 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an
109 /// integer value type.
hasIntegerTypes() const110 bool EEVT::TypeSet::hasIntegerTypes() const {
111 return std::any_of(TypeVec.begin(), TypeVec.end(), isInteger);
112 }
113
114 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or
115 /// a floating point value type.
hasFloatingPointTypes() const116 bool EEVT::TypeSet::hasFloatingPointTypes() const {
117 return std::any_of(TypeVec.begin(), TypeVec.end(), isFloatingPoint);
118 }
119
120 /// hasScalarTypes - Return true if this TypeSet contains a scalar value type.
hasScalarTypes() const121 bool EEVT::TypeSet::hasScalarTypes() const {
122 return std::any_of(TypeVec.begin(), TypeVec.end(), isScalar);
123 }
124
125 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector
126 /// value type.
hasVectorTypes() const127 bool EEVT::TypeSet::hasVectorTypes() const {
128 return std::any_of(TypeVec.begin(), TypeVec.end(), isVector);
129 }
130
131
getName() const132 std::string EEVT::TypeSet::getName() const {
133 if (TypeVec.empty()) return "<empty>";
134
135 std::string Result;
136
137 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) {
138 std::string VTName = llvm::getEnumName(TypeVec[i]);
139 // Strip off MVT:: prefix if present.
140 if (VTName.substr(0,5) == "MVT::")
141 VTName = VTName.substr(5);
142 if (i) Result += ':';
143 Result += VTName;
144 }
145
146 if (TypeVec.size() == 1)
147 return Result;
148 return "{" + Result + "}";
149 }
150
151 /// MergeInTypeInfo - This merges in type information from the specified
152 /// argument. If 'this' changes, it returns true. If the two types are
153 /// contradictory (e.g. merge f32 into i32) then this flags an error.
MergeInTypeInfo(const EEVT::TypeSet & InVT,TreePattern & TP)154 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){
155 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError())
156 return false;
157
158 if (isCompletelyUnknown()) {
159 *this = InVT;
160 return true;
161 }
162
163 assert(!TypeVec.empty() && !InVT.TypeVec.empty() && "No unknowns");
164
165 // Handle the abstract cases, seeing if we can resolve them better.
166 switch (TypeVec[0]) {
167 default: break;
168 case MVT::iPTR:
169 case MVT::iPTRAny:
170 if (InVT.hasIntegerTypes()) {
171 EEVT::TypeSet InCopy(InVT);
172 InCopy.EnforceInteger(TP);
173 InCopy.EnforceScalar(TP);
174
175 if (InCopy.isConcrete()) {
176 // If the RHS has one integer type, upgrade iPTR to i32.
177 TypeVec[0] = InVT.TypeVec[0];
178 return true;
179 }
180
181 // If the input has multiple scalar integers, this doesn't add any info.
182 if (!InCopy.isCompletelyUnknown())
183 return false;
184 }
185 break;
186 }
187
188 // If the input constraint is iAny/iPTR and this is an integer type list,
189 // remove non-integer types from the list.
190 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
191 hasIntegerTypes()) {
192 bool MadeChange = EnforceInteger(TP);
193
194 // If we're merging in iPTR/iPTRAny and the node currently has a list of
195 // multiple different integer types, replace them with a single iPTR.
196 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) &&
197 TypeVec.size() != 1) {
198 TypeVec.assign(1, InVT.TypeVec[0]);
199 MadeChange = true;
200 }
201
202 return MadeChange;
203 }
204
205 // If this is a type list and the RHS is a typelist as well, eliminate entries
206 // from this list that aren't in the other one.
207 TypeSet InputSet(*this);
208
209 TypeVec.clear();
210 std::set_intersection(InputSet.TypeVec.begin(), InputSet.TypeVec.end(),
211 InVT.TypeVec.begin(), InVT.TypeVec.end(),
212 std::back_inserter(TypeVec));
213
214 // If the intersection is the same size as the original set then we're done.
215 if (TypeVec.size() == InputSet.TypeVec.size())
216 return false;
217
218 // If we removed all of our types, we have a type contradiction.
219 if (!TypeVec.empty())
220 return true;
221
222 // FIXME: Really want an SMLoc here!
223 TP.error("Type inference contradiction found, merging '" +
224 InVT.getName() + "' into '" + InputSet.getName() + "'");
225 return false;
226 }
227
228 /// EnforceInteger - Remove all non-integer types from this set.
EnforceInteger(TreePattern & TP)229 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) {
230 if (TP.hasError())
231 return false;
232 // If we know nothing, then get the full set.
233 if (TypeVec.empty())
234 return FillWithPossibleTypes(TP, isInteger, "integer");
235
236 if (!hasFloatingPointTypes())
237 return false;
238
239 TypeSet InputSet(*this);
240
241 // Filter out all the fp types.
242 TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
243 std::not1(std::ptr_fun(isInteger))),
244 TypeVec.end());
245
246 if (TypeVec.empty()) {
247 TP.error("Type inference contradiction found, '" +
248 InputSet.getName() + "' needs to be integer");
249 return false;
250 }
251 return true;
252 }
253
254 /// EnforceFloatingPoint - Remove all integer types from this set.
EnforceFloatingPoint(TreePattern & TP)255 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) {
256 if (TP.hasError())
257 return false;
258 // If we know nothing, then get the full set.
259 if (TypeVec.empty())
260 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point");
261
262 if (!hasIntegerTypes())
263 return false;
264
265 TypeSet InputSet(*this);
266
267 // Filter out all the integer types.
268 TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
269 std::not1(std::ptr_fun(isFloatingPoint))),
270 TypeVec.end());
271
272 if (TypeVec.empty()) {
273 TP.error("Type inference contradiction found, '" +
274 InputSet.getName() + "' needs to be floating point");
275 return false;
276 }
277 return true;
278 }
279
280 /// EnforceScalar - Remove all vector types from this.
EnforceScalar(TreePattern & TP)281 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) {
282 if (TP.hasError())
283 return false;
284
285 // If we know nothing, then get the full set.
286 if (TypeVec.empty())
287 return FillWithPossibleTypes(TP, isScalar, "scalar");
288
289 if (!hasVectorTypes())
290 return false;
291
292 TypeSet InputSet(*this);
293
294 // Filter out all the vector types.
295 TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
296 std::not1(std::ptr_fun(isScalar))),
297 TypeVec.end());
298
299 if (TypeVec.empty()) {
300 TP.error("Type inference contradiction found, '" +
301 InputSet.getName() + "' needs to be scalar");
302 return false;
303 }
304 return true;
305 }
306
307 /// EnforceVector - Remove all vector types from this.
EnforceVector(TreePattern & TP)308 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) {
309 if (TP.hasError())
310 return false;
311
312 // If we know nothing, then get the full set.
313 if (TypeVec.empty())
314 return FillWithPossibleTypes(TP, isVector, "vector");
315
316 TypeSet InputSet(*this);
317 bool MadeChange = false;
318
319 // Filter out all the scalar types.
320 TypeVec.erase(std::remove_if(TypeVec.begin(), TypeVec.end(),
321 std::not1(std::ptr_fun(isVector))),
322 TypeVec.end());
323
324 if (TypeVec.empty()) {
325 TP.error("Type inference contradiction found, '" +
326 InputSet.getName() + "' needs to be a vector");
327 return false;
328 }
329 return MadeChange;
330 }
331
332
333
334 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors
335 /// this should be based on the element type. Update this and other based on
336 /// this information.
EnforceSmallerThan(EEVT::TypeSet & Other,TreePattern & TP)337 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) {
338 if (TP.hasError())
339 return false;
340
341 // Both operands must be integer or FP, but we don't care which.
342 bool MadeChange = false;
343
344 if (isCompletelyUnknown())
345 MadeChange = FillWithPossibleTypes(TP);
346
347 if (Other.isCompletelyUnknown())
348 MadeChange = Other.FillWithPossibleTypes(TP);
349
350 // If one side is known to be integer or known to be FP but the other side has
351 // no information, get at least the type integrality info in there.
352 if (!hasFloatingPointTypes())
353 MadeChange |= Other.EnforceInteger(TP);
354 else if (!hasIntegerTypes())
355 MadeChange |= Other.EnforceFloatingPoint(TP);
356 if (!Other.hasFloatingPointTypes())
357 MadeChange |= EnforceInteger(TP);
358 else if (!Other.hasIntegerTypes())
359 MadeChange |= EnforceFloatingPoint(TP);
360
361 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() &&
362 "Should have a type list now");
363
364 // If one contains vectors but the other doesn't pull vectors out.
365 if (!hasVectorTypes())
366 MadeChange |= Other.EnforceScalar(TP);
367 else if (!hasScalarTypes())
368 MadeChange |= Other.EnforceVector(TP);
369 if (!Other.hasVectorTypes())
370 MadeChange |= EnforceScalar(TP);
371 else if (!Other.hasScalarTypes())
372 MadeChange |= EnforceVector(TP);
373
374 // This code does not currently handle nodes which have multiple types,
375 // where some types are integer, and some are fp. Assert that this is not
376 // the case.
377 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) &&
378 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) &&
379 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!");
380
381 if (TP.hasError())
382 return false;
383
384 // Okay, find the smallest type from current set and remove anything the
385 // same or smaller from the other set. We need to ensure that the scalar
386 // type size is smaller than the scalar size of the smallest type. For
387 // vectors, we also need to make sure that the total size is no larger than
388 // the size of the smallest type.
389 {
390 TypeSet InputSet(Other);
391 MVT Smallest = *std::min_element(TypeVec.begin(), TypeVec.end(),
392 [](MVT A, MVT B) {
393 return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
394 (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
395 A.getSizeInBits() < B.getSizeInBits());
396 });
397
398 auto I = std::remove_if(Other.TypeVec.begin(), Other.TypeVec.end(),
399 [Smallest](MVT OtherVT) {
400 // Don't compare vector and non-vector types.
401 if (OtherVT.isVector() != Smallest.isVector())
402 return false;
403 // The getSizeInBits() check here is only needed for vectors, but is
404 // a subset of the scalar check for scalars so no need to qualify.
405 return OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits()||
406 OtherVT.getSizeInBits() < Smallest.getSizeInBits();
407 });
408 MadeChange |= I != Other.TypeVec.end(); // If we're about to remove types.
409 Other.TypeVec.erase(I, Other.TypeVec.end());
410
411 if (Other.TypeVec.empty()) {
412 TP.error("Type inference contradiction found, '" + InputSet.getName() +
413 "' has nothing larger than '" + getName() +"'!");
414 return false;
415 }
416 }
417
418 // Okay, find the largest type from the other set and remove anything the
419 // same or smaller from the current set. We need to ensure that the scalar
420 // type size is larger than the scalar size of the largest type. For
421 // vectors, we also need to make sure that the total size is no smaller than
422 // the size of the largest type.
423 {
424 TypeSet InputSet(*this);
425 MVT Largest = *std::max_element(Other.TypeVec.begin(), Other.TypeVec.end(),
426 [](MVT A, MVT B) {
427 return A.getScalarSizeInBits() < B.getScalarSizeInBits() ||
428 (A.getScalarSizeInBits() == B.getScalarSizeInBits() &&
429 A.getSizeInBits() < B.getSizeInBits());
430 });
431 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
432 [Largest](MVT OtherVT) {
433 // Don't compare vector and non-vector types.
434 if (OtherVT.isVector() != Largest.isVector())
435 return false;
436 return OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() ||
437 OtherVT.getSizeInBits() > Largest.getSizeInBits();
438 });
439 MadeChange |= I != TypeVec.end(); // If we're about to remove types.
440 TypeVec.erase(I, TypeVec.end());
441
442 if (TypeVec.empty()) {
443 TP.error("Type inference contradiction found, '" + InputSet.getName() +
444 "' has nothing smaller than '" + Other.getName() +"'!");
445 return false;
446 }
447 }
448
449 return MadeChange;
450 }
451
452 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
453 /// whose element is specified by VTOperand.
EnforceVectorEltTypeIs(MVT::SimpleValueType VT,TreePattern & TP)454 bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT,
455 TreePattern &TP) {
456 bool MadeChange = false;
457
458 MadeChange |= EnforceVector(TP);
459
460 TypeSet InputSet(*this);
461
462 // Filter out all the types which don't have the right element type.
463 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
464 [VT](MVT VVT) {
465 return VVT.getVectorElementType().SimpleTy != VT;
466 });
467 MadeChange |= I != TypeVec.end();
468 TypeVec.erase(I, TypeVec.end());
469
470 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
471 TP.error("Type inference contradiction found, forcing '" +
472 InputSet.getName() + "' to have a vector element of type " +
473 getEnumName(VT));
474 return false;
475 }
476
477 return MadeChange;
478 }
479
480 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type
481 /// whose element is specified by VTOperand.
EnforceVectorEltTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)482 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand,
483 TreePattern &TP) {
484 if (TP.hasError())
485 return false;
486
487 // "This" must be a vector and "VTOperand" must be a scalar.
488 bool MadeChange = false;
489 MadeChange |= EnforceVector(TP);
490 MadeChange |= VTOperand.EnforceScalar(TP);
491
492 // If we know the vector type, it forces the scalar to agree.
493 if (isConcrete()) {
494 MVT IVT = getConcrete();
495 IVT = IVT.getVectorElementType();
496 return MadeChange || VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP);
497 }
498
499 // If the scalar type is known, filter out vector types whose element types
500 // disagree.
501 if (!VTOperand.isConcrete())
502 return MadeChange;
503
504 MVT::SimpleValueType VT = VTOperand.getConcrete();
505
506 MadeChange |= EnforceVectorEltTypeIs(VT, TP);
507
508 return MadeChange;
509 }
510
511 /// EnforceVectorSubVectorTypeIs - 'this' is now constrained to be a
512 /// vector type specified by VTOperand.
EnforceVectorSubVectorTypeIs(EEVT::TypeSet & VTOperand,TreePattern & TP)513 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand,
514 TreePattern &TP) {
515 if (TP.hasError())
516 return false;
517
518 // "This" must be a vector and "VTOperand" must be a vector.
519 bool MadeChange = false;
520 MadeChange |= EnforceVector(TP);
521 MadeChange |= VTOperand.EnforceVector(TP);
522
523 // If one side is known to be integer or known to be FP but the other side has
524 // no information, get at least the type integrality info in there.
525 if (!hasFloatingPointTypes())
526 MadeChange |= VTOperand.EnforceInteger(TP);
527 else if (!hasIntegerTypes())
528 MadeChange |= VTOperand.EnforceFloatingPoint(TP);
529 if (!VTOperand.hasFloatingPointTypes())
530 MadeChange |= EnforceInteger(TP);
531 else if (!VTOperand.hasIntegerTypes())
532 MadeChange |= EnforceFloatingPoint(TP);
533
534 assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() &&
535 "Should have a type list now");
536
537 // If we know the vector type, it forces the scalar types to agree.
538 // Also force one vector to have more elements than the other.
539 if (isConcrete()) {
540 MVT IVT = getConcrete();
541 unsigned NumElems = IVT.getVectorNumElements();
542 IVT = IVT.getVectorElementType();
543
544 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
545 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP);
546
547 // Only keep types that have less elements than VTOperand.
548 TypeSet InputSet(VTOperand);
549
550 auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(),
551 [NumElems](MVT VVT) {
552 return VVT.getVectorNumElements() >= NumElems;
553 });
554 MadeChange |= I != VTOperand.TypeVec.end();
555 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
556
557 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here!
558 TP.error("Type inference contradiction found, forcing '" +
559 InputSet.getName() + "' to have less vector elements than '" +
560 getName() + "'");
561 return false;
562 }
563 } else if (VTOperand.isConcrete()) {
564 MVT IVT = VTOperand.getConcrete();
565 unsigned NumElems = IVT.getVectorNumElements();
566 IVT = IVT.getVectorElementType();
567
568 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP);
569 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP);
570
571 // Only keep types that have more elements than 'this'.
572 TypeSet InputSet(*this);
573
574 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
575 [NumElems](MVT VVT) {
576 return VVT.getVectorNumElements() <= NumElems;
577 });
578 MadeChange |= I != TypeVec.end();
579 TypeVec.erase(I, TypeVec.end());
580
581 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
582 TP.error("Type inference contradiction found, forcing '" +
583 InputSet.getName() + "' to have more vector elements than '" +
584 VTOperand.getName() + "'");
585 return false;
586 }
587 }
588
589 return MadeChange;
590 }
591
592 /// EnforceVectorSameNumElts - 'this' is now constrained to
593 /// be a vector with same num elements as VTOperand.
EnforceVectorSameNumElts(EEVT::TypeSet & VTOperand,TreePattern & TP)594 bool EEVT::TypeSet::EnforceVectorSameNumElts(EEVT::TypeSet &VTOperand,
595 TreePattern &TP) {
596 if (TP.hasError())
597 return false;
598
599 // "This" must be a vector and "VTOperand" must be a vector.
600 bool MadeChange = false;
601 MadeChange |= EnforceVector(TP);
602 MadeChange |= VTOperand.EnforceVector(TP);
603
604 // If we know one of the vector types, it forces the other type to agree.
605 if (isConcrete()) {
606 MVT IVT = getConcrete();
607 unsigned NumElems = IVT.getVectorNumElements();
608
609 // Only keep types that have same elements as 'this'.
610 TypeSet InputSet(VTOperand);
611
612 auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(),
613 [NumElems](MVT VVT) {
614 return VVT.getVectorNumElements() != NumElems;
615 });
616 MadeChange |= I != VTOperand.TypeVec.end();
617 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
618
619 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here!
620 TP.error("Type inference contradiction found, forcing '" +
621 InputSet.getName() + "' to have same number elements as '" +
622 getName() + "'");
623 return false;
624 }
625 } else if (VTOperand.isConcrete()) {
626 MVT IVT = VTOperand.getConcrete();
627 unsigned NumElems = IVT.getVectorNumElements();
628
629 // Only keep types that have same elements as VTOperand.
630 TypeSet InputSet(*this);
631
632 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
633 [NumElems](MVT VVT) {
634 return VVT.getVectorNumElements() != NumElems;
635 });
636 MadeChange |= I != TypeVec.end();
637 TypeVec.erase(I, TypeVec.end());
638
639 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
640 TP.error("Type inference contradiction found, forcing '" +
641 InputSet.getName() + "' to have same number elements than '" +
642 VTOperand.getName() + "'");
643 return false;
644 }
645 }
646
647 return MadeChange;
648 }
649
650 /// EnforceSameSize - 'this' is now constrained to be same size as VTOperand.
EnforceSameSize(EEVT::TypeSet & VTOperand,TreePattern & TP)651 bool EEVT::TypeSet::EnforceSameSize(EEVT::TypeSet &VTOperand,
652 TreePattern &TP) {
653 if (TP.hasError())
654 return false;
655
656 bool MadeChange = false;
657
658 // If we know one of the types, it forces the other type agree.
659 if (isConcrete()) {
660 MVT IVT = getConcrete();
661 unsigned Size = IVT.getSizeInBits();
662
663 // Only keep types that have the same size as 'this'.
664 TypeSet InputSet(VTOperand);
665
666 auto I = std::remove_if(VTOperand.TypeVec.begin(), VTOperand.TypeVec.end(),
667 [&](MVT VT) {
668 return VT.getSizeInBits() != Size;
669 });
670 MadeChange |= I != VTOperand.TypeVec.end();
671 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end());
672
673 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here!
674 TP.error("Type inference contradiction found, forcing '" +
675 InputSet.getName() + "' to have same size as '" +
676 getName() + "'");
677 return false;
678 }
679 } else if (VTOperand.isConcrete()) {
680 MVT IVT = VTOperand.getConcrete();
681 unsigned Size = IVT.getSizeInBits();
682
683 // Only keep types that have the same size as VTOperand.
684 TypeSet InputSet(*this);
685
686 auto I = std::remove_if(TypeVec.begin(), TypeVec.end(),
687 [&](MVT VT) {
688 return VT.getSizeInBits() != Size;
689 });
690 MadeChange |= I != TypeVec.end();
691 TypeVec.erase(I, TypeVec.end());
692
693 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here!
694 TP.error("Type inference contradiction found, forcing '" +
695 InputSet.getName() + "' to have same size as '" +
696 VTOperand.getName() + "'");
697 return false;
698 }
699 }
700
701 return MadeChange;
702 }
703
704 //===----------------------------------------------------------------------===//
705 // Helpers for working with extended types.
706
707 /// Dependent variable map for CodeGenDAGPattern variant generation
708 typedef std::map<std::string, int> DepVarMap;
709
FindDepVarsOf(TreePatternNode * N,DepVarMap & DepMap)710 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) {
711 if (N->isLeaf()) {
712 if (isa<DefInit>(N->getLeafValue()))
713 DepMap[N->getName()]++;
714 } else {
715 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i)
716 FindDepVarsOf(N->getChild(i), DepMap);
717 }
718 }
719
720 /// Find dependent variables within child patterns
FindDepVars(TreePatternNode * N,MultipleUseVarSet & DepVars)721 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) {
722 DepVarMap depcounts;
723 FindDepVarsOf(N, depcounts);
724 for (const std::pair<std::string, int> &Pair : depcounts) {
725 if (Pair.second > 1)
726 DepVars.insert(Pair.first);
727 }
728 }
729
730 #ifndef NDEBUG
731 /// Dump the dependent variable set:
DumpDepVars(MultipleUseVarSet & DepVars)732 static void DumpDepVars(MultipleUseVarSet &DepVars) {
733 if (DepVars.empty()) {
734 DEBUG(errs() << "<empty set>");
735 } else {
736 DEBUG(errs() << "[ ");
737 for (const std::string &DepVar : DepVars) {
738 DEBUG(errs() << DepVar << " ");
739 }
740 DEBUG(errs() << "]");
741 }
742 }
743 #endif
744
745
746 //===----------------------------------------------------------------------===//
747 // TreePredicateFn Implementation
748 //===----------------------------------------------------------------------===//
749
750 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag.
TreePredicateFn(TreePattern * N)751 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) {
752 assert((getPredCode().empty() || getImmCode().empty()) &&
753 ".td file corrupt: can't have a node predicate *and* an imm predicate");
754 }
755
getPredCode() const756 std::string TreePredicateFn::getPredCode() const {
757 return PatFragRec->getRecord()->getValueAsString("PredicateCode");
758 }
759
getImmCode() const760 std::string TreePredicateFn::getImmCode() const {
761 return PatFragRec->getRecord()->getValueAsString("ImmediateCode");
762 }
763
764
765 /// isAlwaysTrue - Return true if this is a noop predicate.
isAlwaysTrue() const766 bool TreePredicateFn::isAlwaysTrue() const {
767 return getPredCode().empty() && getImmCode().empty();
768 }
769
770 /// Return the name to use in the generated code to reference this, this is
771 /// "Predicate_foo" if from a pattern fragment "foo".
getFnName() const772 std::string TreePredicateFn::getFnName() const {
773 return "Predicate_" + PatFragRec->getRecord()->getName();
774 }
775
776 /// getCodeToRunOnSDNode - Return the code for the function body that
777 /// evaluates this predicate. The argument is expected to be in "Node",
778 /// not N. This handles casting and conversion to a concrete node type as
779 /// appropriate.
getCodeToRunOnSDNode() const780 std::string TreePredicateFn::getCodeToRunOnSDNode() const {
781 // Handle immediate predicates first.
782 std::string ImmCode = getImmCode();
783 if (!ImmCode.empty()) {
784 std::string Result =
785 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n";
786 return Result + ImmCode;
787 }
788
789 // Handle arbitrary node predicates.
790 assert(!getPredCode().empty() && "Don't have any predicate code!");
791 std::string ClassName;
792 if (PatFragRec->getOnlyTree()->isLeaf())
793 ClassName = "SDNode";
794 else {
795 Record *Op = PatFragRec->getOnlyTree()->getOperator();
796 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName();
797 }
798 std::string Result;
799 if (ClassName == "SDNode")
800 Result = " SDNode *N = Node;\n";
801 else
802 Result = " auto *N = cast<" + ClassName + ">(Node);\n";
803
804 return Result + getPredCode();
805 }
806
807 //===----------------------------------------------------------------------===//
808 // PatternToMatch implementation
809 //
810
811
812 /// getPatternSize - Return the 'size' of this pattern. We want to match large
813 /// patterns before small ones. This is used to determine the size of a
814 /// pattern.
getPatternSize(const TreePatternNode * P,const CodeGenDAGPatterns & CGP)815 static unsigned getPatternSize(const TreePatternNode *P,
816 const CodeGenDAGPatterns &CGP) {
817 unsigned Size = 3; // The node itself.
818 // If the root node is a ConstantSDNode, increases its size.
819 // e.g. (set R32:$dst, 0).
820 if (P->isLeaf() && isa<IntInit>(P->getLeafValue()))
821 Size += 2;
822
823 // FIXME: This is a hack to statically increase the priority of patterns
824 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD.
825 // Later we can allow complexity / cost for each pattern to be (optionally)
826 // specified. To get best possible pattern match we'll need to dynamically
827 // calculate the complexity of all patterns a dag can potentially map to.
828 const ComplexPattern *AM = P->getComplexPatternInfo(CGP);
829 if (AM) {
830 Size += AM->getNumOperands() * 3;
831
832 // We don't want to count any children twice, so return early.
833 return Size;
834 }
835
836 // If this node has some predicate function that must match, it adds to the
837 // complexity of this node.
838 if (!P->getPredicateFns().empty())
839 ++Size;
840
841 // Count children in the count if they are also nodes.
842 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) {
843 TreePatternNode *Child = P->getChild(i);
844 if (!Child->isLeaf() && Child->getNumTypes() &&
845 Child->getType(0) != MVT::Other)
846 Size += getPatternSize(Child, CGP);
847 else if (Child->isLeaf()) {
848 if (isa<IntInit>(Child->getLeafValue()))
849 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2).
850 else if (Child->getComplexPatternInfo(CGP))
851 Size += getPatternSize(Child, CGP);
852 else if (!Child->getPredicateFns().empty())
853 ++Size;
854 }
855 }
856
857 return Size;
858 }
859
860 /// Compute the complexity metric for the input pattern. This roughly
861 /// corresponds to the number of nodes that are covered.
862 int PatternToMatch::
getPatternComplexity(const CodeGenDAGPatterns & CGP) const863 getPatternComplexity(const CodeGenDAGPatterns &CGP) const {
864 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity();
865 }
866
867
868 /// getPredicateCheck - Return a single string containing all of this
869 /// pattern's predicates concatenated with "&&" operators.
870 ///
getPredicateCheck() const871 std::string PatternToMatch::getPredicateCheck() const {
872 SmallVector<Record *, 4> PredicateRecs;
873 for (Init *I : Predicates->getValues()) {
874 if (DefInit *Pred = dyn_cast<DefInit>(I)) {
875 Record *Def = Pred->getDef();
876 if (!Def->isSubClassOf("Predicate")) {
877 #ifndef NDEBUG
878 Def->dump();
879 #endif
880 llvm_unreachable("Unknown predicate type!");
881 }
882 PredicateRecs.push_back(Def);
883 }
884 }
885 // Sort so that different orders get canonicalized to the same string.
886 std::sort(PredicateRecs.begin(), PredicateRecs.end(), LessRecord());
887
888 SmallString<128> PredicateCheck;
889 for (Record *Pred : PredicateRecs) {
890 if (!PredicateCheck.empty())
891 PredicateCheck += " && ";
892 PredicateCheck += "(" + Pred->getValueAsString("CondString") + ")";
893 }
894
895 return PredicateCheck.str();
896 }
897
898 //===----------------------------------------------------------------------===//
899 // SDTypeConstraint implementation
900 //
901
SDTypeConstraint(Record * R)902 SDTypeConstraint::SDTypeConstraint(Record *R) {
903 OperandNo = R->getValueAsInt("OperandNum");
904
905 if (R->isSubClassOf("SDTCisVT")) {
906 ConstraintType = SDTCisVT;
907 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
908 if (x.SDTCisVT_Info.VT == MVT::isVoid)
909 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT");
910
911 } else if (R->isSubClassOf("SDTCisPtrTy")) {
912 ConstraintType = SDTCisPtrTy;
913 } else if (R->isSubClassOf("SDTCisInt")) {
914 ConstraintType = SDTCisInt;
915 } else if (R->isSubClassOf("SDTCisFP")) {
916 ConstraintType = SDTCisFP;
917 } else if (R->isSubClassOf("SDTCisVec")) {
918 ConstraintType = SDTCisVec;
919 } else if (R->isSubClassOf("SDTCisSameAs")) {
920 ConstraintType = SDTCisSameAs;
921 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum");
922 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) {
923 ConstraintType = SDTCisVTSmallerThanOp;
924 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum =
925 R->getValueAsInt("OtherOperandNum");
926 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) {
927 ConstraintType = SDTCisOpSmallerThanOp;
928 x.SDTCisOpSmallerThanOp_Info.BigOperandNum =
929 R->getValueAsInt("BigOperandNum");
930 } else if (R->isSubClassOf("SDTCisEltOfVec")) {
931 ConstraintType = SDTCisEltOfVec;
932 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum");
933 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) {
934 ConstraintType = SDTCisSubVecOfVec;
935 x.SDTCisSubVecOfVec_Info.OtherOperandNum =
936 R->getValueAsInt("OtherOpNum");
937 } else if (R->isSubClassOf("SDTCVecEltisVT")) {
938 ConstraintType = SDTCVecEltisVT;
939 x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT"));
940 if (MVT(x.SDTCVecEltisVT_Info.VT).isVector())
941 PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT");
942 if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() &&
943 !MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint())
944 PrintFatalError(R->getLoc(), "Must use integer or floating point type "
945 "as SDTCVecEltisVT");
946 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) {
947 ConstraintType = SDTCisSameNumEltsAs;
948 x.SDTCisSameNumEltsAs_Info.OtherOperandNum =
949 R->getValueAsInt("OtherOperandNum");
950 } else if (R->isSubClassOf("SDTCisSameSizeAs")) {
951 ConstraintType = SDTCisSameSizeAs;
952 x.SDTCisSameSizeAs_Info.OtherOperandNum =
953 R->getValueAsInt("OtherOperandNum");
954 } else {
955 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n");
956 }
957 }
958
959 /// getOperandNum - Return the node corresponding to operand #OpNo in tree
960 /// N, and the result number in ResNo.
getOperandNum(unsigned OpNo,TreePatternNode * N,const SDNodeInfo & NodeInfo,unsigned & ResNo)961 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N,
962 const SDNodeInfo &NodeInfo,
963 unsigned &ResNo) {
964 unsigned NumResults = NodeInfo.getNumResults();
965 if (OpNo < NumResults) {
966 ResNo = OpNo;
967 return N;
968 }
969
970 OpNo -= NumResults;
971
972 if (OpNo >= N->getNumChildren()) {
973 std::string S;
974 raw_string_ostream OS(S);
975 OS << "Invalid operand number in type constraint "
976 << (OpNo+NumResults) << " ";
977 N->print(OS);
978 PrintFatalError(OS.str());
979 }
980
981 return N->getChild(OpNo);
982 }
983
984 /// ApplyTypeConstraint - Given a node in a pattern, apply this type
985 /// constraint to the nodes operands. This returns true if it makes a
986 /// change, false otherwise. If a type contradiction is found, flag an error.
ApplyTypeConstraint(TreePatternNode * N,const SDNodeInfo & NodeInfo,TreePattern & TP) const987 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N,
988 const SDNodeInfo &NodeInfo,
989 TreePattern &TP) const {
990 if (TP.hasError())
991 return false;
992
993 unsigned ResNo = 0; // The result number being referenced.
994 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo);
995
996 switch (ConstraintType) {
997 case SDTCisVT:
998 // Operand must be a particular type.
999 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP);
1000 case SDTCisPtrTy:
1001 // Operand must be same as target pointer type.
1002 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP);
1003 case SDTCisInt:
1004 // Require it to be one of the legal integer VTs.
1005 return NodeToApply->getExtType(ResNo).EnforceInteger(TP);
1006 case SDTCisFP:
1007 // Require it to be one of the legal fp VTs.
1008 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP);
1009 case SDTCisVec:
1010 // Require it to be one of the legal vector VTs.
1011 return NodeToApply->getExtType(ResNo).EnforceVector(TP);
1012 case SDTCisSameAs: {
1013 unsigned OResNo = 0;
1014 TreePatternNode *OtherNode =
1015 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo);
1016 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)|
1017 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP);
1018 }
1019 case SDTCisVTSmallerThanOp: {
1020 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must
1021 // have an integer type that is smaller than the VT.
1022 if (!NodeToApply->isLeaf() ||
1023 !isa<DefInit>(NodeToApply->getLeafValue()) ||
1024 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()
1025 ->isSubClassOf("ValueType")) {
1026 TP.error(N->getOperator()->getName() + " expects a VT operand!");
1027 return false;
1028 }
1029 MVT::SimpleValueType VT =
1030 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef());
1031
1032 EEVT::TypeSet TypeListTmp(VT, TP);
1033
1034 unsigned OResNo = 0;
1035 TreePatternNode *OtherNode =
1036 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo,
1037 OResNo);
1038
1039 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP);
1040 }
1041 case SDTCisOpSmallerThanOp: {
1042 unsigned BResNo = 0;
1043 TreePatternNode *BigOperand =
1044 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo,
1045 BResNo);
1046 return NodeToApply->getExtType(ResNo).
1047 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP);
1048 }
1049 case SDTCisEltOfVec: {
1050 unsigned VResNo = 0;
1051 TreePatternNode *VecOperand =
1052 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo,
1053 VResNo);
1054
1055 // Filter vector types out of VecOperand that don't have the right element
1056 // type.
1057 return VecOperand->getExtType(VResNo).
1058 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP);
1059 }
1060 case SDTCisSubVecOfVec: {
1061 unsigned VResNo = 0;
1062 TreePatternNode *BigVecOperand =
1063 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo,
1064 VResNo);
1065
1066 // Filter vector types out of BigVecOperand that don't have the
1067 // right subvector type.
1068 return BigVecOperand->getExtType(VResNo).
1069 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP);
1070 }
1071 case SDTCVecEltisVT: {
1072 return NodeToApply->getExtType(ResNo).
1073 EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP);
1074 }
1075 case SDTCisSameNumEltsAs: {
1076 unsigned OResNo = 0;
1077 TreePatternNode *OtherNode =
1078 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum,
1079 N, NodeInfo, OResNo);
1080 return OtherNode->getExtType(OResNo).
1081 EnforceVectorSameNumElts(NodeToApply->getExtType(ResNo), TP);
1082 }
1083 case SDTCisSameSizeAs: {
1084 unsigned OResNo = 0;
1085 TreePatternNode *OtherNode =
1086 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum,
1087 N, NodeInfo, OResNo);
1088 return OtherNode->getExtType(OResNo).
1089 EnforceSameSize(NodeToApply->getExtType(ResNo), TP);
1090 }
1091 }
1092 llvm_unreachable("Invalid ConstraintType!");
1093 }
1094
1095 // Update the node type to match an instruction operand or result as specified
1096 // in the ins or outs lists on the instruction definition. Return true if the
1097 // type was actually changed.
UpdateNodeTypeFromInst(unsigned ResNo,Record * Operand,TreePattern & TP)1098 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo,
1099 Record *Operand,
1100 TreePattern &TP) {
1101 // The 'unknown' operand indicates that types should be inferred from the
1102 // context.
1103 if (Operand->isSubClassOf("unknown_class"))
1104 return false;
1105
1106 // The Operand class specifies a type directly.
1107 if (Operand->isSubClassOf("Operand"))
1108 return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")),
1109 TP);
1110
1111 // PointerLikeRegClass has a type that is determined at runtime.
1112 if (Operand->isSubClassOf("PointerLikeRegClass"))
1113 return UpdateNodeType(ResNo, MVT::iPTR, TP);
1114
1115 // Both RegisterClass and RegisterOperand operands derive their types from a
1116 // register class def.
1117 Record *RC = nullptr;
1118 if (Operand->isSubClassOf("RegisterClass"))
1119 RC = Operand;
1120 else if (Operand->isSubClassOf("RegisterOperand"))
1121 RC = Operand->getValueAsDef("RegClass");
1122
1123 assert(RC && "Unknown operand type");
1124 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo();
1125 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP);
1126 }
1127
1128
1129 //===----------------------------------------------------------------------===//
1130 // SDNodeInfo implementation
1131 //
SDNodeInfo(Record * R)1132 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) {
1133 EnumName = R->getValueAsString("Opcode");
1134 SDClassName = R->getValueAsString("SDClass");
1135 Record *TypeProfile = R->getValueAsDef("TypeProfile");
1136 NumResults = TypeProfile->getValueAsInt("NumResults");
1137 NumOperands = TypeProfile->getValueAsInt("NumOperands");
1138
1139 // Parse the properties.
1140 Properties = 0;
1141 for (Record *Property : R->getValueAsListOfDefs("Properties")) {
1142 if (Property->getName() == "SDNPCommutative") {
1143 Properties |= 1 << SDNPCommutative;
1144 } else if (Property->getName() == "SDNPAssociative") {
1145 Properties |= 1 << SDNPAssociative;
1146 } else if (Property->getName() == "SDNPHasChain") {
1147 Properties |= 1 << SDNPHasChain;
1148 } else if (Property->getName() == "SDNPOutGlue") {
1149 Properties |= 1 << SDNPOutGlue;
1150 } else if (Property->getName() == "SDNPInGlue") {
1151 Properties |= 1 << SDNPInGlue;
1152 } else if (Property->getName() == "SDNPOptInGlue") {
1153 Properties |= 1 << SDNPOptInGlue;
1154 } else if (Property->getName() == "SDNPMayStore") {
1155 Properties |= 1 << SDNPMayStore;
1156 } else if (Property->getName() == "SDNPMayLoad") {
1157 Properties |= 1 << SDNPMayLoad;
1158 } else if (Property->getName() == "SDNPSideEffect") {
1159 Properties |= 1 << SDNPSideEffect;
1160 } else if (Property->getName() == "SDNPMemOperand") {
1161 Properties |= 1 << SDNPMemOperand;
1162 } else if (Property->getName() == "SDNPVariadic") {
1163 Properties |= 1 << SDNPVariadic;
1164 } else {
1165 PrintFatalError("Unknown SD Node property '" +
1166 Property->getName() + "' on node '" +
1167 R->getName() + "'!");
1168 }
1169 }
1170
1171
1172 // Parse the type constraints.
1173 std::vector<Record*> ConstraintList =
1174 TypeProfile->getValueAsListOfDefs("Constraints");
1175 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end());
1176 }
1177
1178 /// getKnownType - If the type constraints on this node imply a fixed type
1179 /// (e.g. all stores return void, etc), then return it as an
1180 /// MVT::SimpleValueType. Otherwise, return EEVT::Other.
getKnownType(unsigned ResNo) const1181 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const {
1182 unsigned NumResults = getNumResults();
1183 assert(NumResults <= 1 &&
1184 "We only work with nodes with zero or one result so far!");
1185 assert(ResNo == 0 && "Only handles single result nodes so far");
1186
1187 for (const SDTypeConstraint &Constraint : TypeConstraints) {
1188 // Make sure that this applies to the correct node result.
1189 if (Constraint.OperandNo >= NumResults) // FIXME: need value #
1190 continue;
1191
1192 switch (Constraint.ConstraintType) {
1193 default: break;
1194 case SDTypeConstraint::SDTCisVT:
1195 return Constraint.x.SDTCisVT_Info.VT;
1196 case SDTypeConstraint::SDTCisPtrTy:
1197 return MVT::iPTR;
1198 }
1199 }
1200 return MVT::Other;
1201 }
1202
1203 //===----------------------------------------------------------------------===//
1204 // TreePatternNode implementation
1205 //
1206
~TreePatternNode()1207 TreePatternNode::~TreePatternNode() {
1208 #if 0 // FIXME: implement refcounted tree nodes!
1209 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1210 delete getChild(i);
1211 #endif
1212 }
1213
GetNumNodeResults(Record * Operator,CodeGenDAGPatterns & CDP)1214 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) {
1215 if (Operator->getName() == "set" ||
1216 Operator->getName() == "implicit")
1217 return 0; // All return nothing.
1218
1219 if (Operator->isSubClassOf("Intrinsic"))
1220 return CDP.getIntrinsic(Operator).IS.RetVTs.size();
1221
1222 if (Operator->isSubClassOf("SDNode"))
1223 return CDP.getSDNodeInfo(Operator).getNumResults();
1224
1225 if (Operator->isSubClassOf("PatFrag")) {
1226 // If we've already parsed this pattern fragment, get it. Otherwise, handle
1227 // the forward reference case where one pattern fragment references another
1228 // before it is processed.
1229 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator))
1230 return PFRec->getOnlyTree()->getNumTypes();
1231
1232 // Get the result tree.
1233 DagInit *Tree = Operator->getValueAsDag("Fragment");
1234 Record *Op = nullptr;
1235 if (Tree)
1236 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator()))
1237 Op = DI->getDef();
1238 assert(Op && "Invalid Fragment");
1239 return GetNumNodeResults(Op, CDP);
1240 }
1241
1242 if (Operator->isSubClassOf("Instruction")) {
1243 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator);
1244
1245 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs;
1246
1247 // Subtract any defaulted outputs.
1248 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) {
1249 Record *OperandNode = InstInfo.Operands[i].Rec;
1250
1251 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1252 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1253 --NumDefsToAdd;
1254 }
1255
1256 // Add on one implicit def if it has a resolvable type.
1257 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other)
1258 ++NumDefsToAdd;
1259 return NumDefsToAdd;
1260 }
1261
1262 if (Operator->isSubClassOf("SDNodeXForm"))
1263 return 1; // FIXME: Generalize SDNodeXForm
1264
1265 if (Operator->isSubClassOf("ValueType"))
1266 return 1; // A type-cast of one result.
1267
1268 if (Operator->isSubClassOf("ComplexPattern"))
1269 return 1;
1270
1271 Operator->dump();
1272 PrintFatalError("Unhandled node in GetNumNodeResults");
1273 }
1274
print(raw_ostream & OS) const1275 void TreePatternNode::print(raw_ostream &OS) const {
1276 if (isLeaf())
1277 OS << *getLeafValue();
1278 else
1279 OS << '(' << getOperator()->getName();
1280
1281 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1282 OS << ':' << getExtType(i).getName();
1283
1284 if (!isLeaf()) {
1285 if (getNumChildren() != 0) {
1286 OS << " ";
1287 getChild(0)->print(OS);
1288 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) {
1289 OS << ", ";
1290 getChild(i)->print(OS);
1291 }
1292 }
1293 OS << ")";
1294 }
1295
1296 for (const TreePredicateFn &Pred : PredicateFns)
1297 OS << "<<P:" << Pred.getFnName() << ">>";
1298 if (TransformFn)
1299 OS << "<<X:" << TransformFn->getName() << ">>";
1300 if (!getName().empty())
1301 OS << ":$" << getName();
1302
1303 }
dump() const1304 void TreePatternNode::dump() const {
1305 print(errs());
1306 }
1307
1308 /// isIsomorphicTo - Return true if this node is recursively
1309 /// isomorphic to the specified node. For this comparison, the node's
1310 /// entire state is considered. The assigned name is ignored, since
1311 /// nodes with differing names are considered isomorphic. However, if
1312 /// the assigned name is present in the dependent variable set, then
1313 /// the assigned name is considered significant and the node is
1314 /// isomorphic if the names match.
isIsomorphicTo(const TreePatternNode * N,const MultipleUseVarSet & DepVars) const1315 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N,
1316 const MultipleUseVarSet &DepVars) const {
1317 if (N == this) return true;
1318 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() ||
1319 getPredicateFns() != N->getPredicateFns() ||
1320 getTransformFn() != N->getTransformFn())
1321 return false;
1322
1323 if (isLeaf()) {
1324 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1325 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) {
1326 return ((DI->getDef() == NDI->getDef())
1327 && (DepVars.find(getName()) == DepVars.end()
1328 || getName() == N->getName()));
1329 }
1330 }
1331 return getLeafValue() == N->getLeafValue();
1332 }
1333
1334 if (N->getOperator() != getOperator() ||
1335 N->getNumChildren() != getNumChildren()) return false;
1336 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1337 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars))
1338 return false;
1339 return true;
1340 }
1341
1342 /// clone - Make a copy of this tree and all of its children.
1343 ///
clone() const1344 TreePatternNode *TreePatternNode::clone() const {
1345 TreePatternNode *New;
1346 if (isLeaf()) {
1347 New = new TreePatternNode(getLeafValue(), getNumTypes());
1348 } else {
1349 std::vector<TreePatternNode*> CChildren;
1350 CChildren.reserve(Children.size());
1351 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1352 CChildren.push_back(getChild(i)->clone());
1353 New = new TreePatternNode(getOperator(), CChildren, getNumTypes());
1354 }
1355 New->setName(getName());
1356 New->Types = Types;
1357 New->setPredicateFns(getPredicateFns());
1358 New->setTransformFn(getTransformFn());
1359 return New;
1360 }
1361
1362 /// RemoveAllTypes - Recursively strip all the types of this tree.
RemoveAllTypes()1363 void TreePatternNode::RemoveAllTypes() {
1364 // Reset to unknown type.
1365 std::fill(Types.begin(), Types.end(), EEVT::TypeSet());
1366 if (isLeaf()) return;
1367 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1368 getChild(i)->RemoveAllTypes();
1369 }
1370
1371
1372 /// SubstituteFormalArguments - Replace the formal arguments in this tree
1373 /// with actual values specified by ArgMap.
1374 void TreePatternNode::
SubstituteFormalArguments(std::map<std::string,TreePatternNode * > & ArgMap)1375 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) {
1376 if (isLeaf()) return;
1377
1378 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1379 TreePatternNode *Child = getChild(i);
1380 if (Child->isLeaf()) {
1381 Init *Val = Child->getLeafValue();
1382 // Note that, when substituting into an output pattern, Val might be an
1383 // UnsetInit.
1384 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) &&
1385 cast<DefInit>(Val)->getDef()->getName() == "node")) {
1386 // We found a use of a formal argument, replace it with its value.
1387 TreePatternNode *NewChild = ArgMap[Child->getName()];
1388 assert(NewChild && "Couldn't find formal argument!");
1389 assert((Child->getPredicateFns().empty() ||
1390 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1391 "Non-empty child predicate clobbered!");
1392 setChild(i, NewChild);
1393 }
1394 } else {
1395 getChild(i)->SubstituteFormalArguments(ArgMap);
1396 }
1397 }
1398 }
1399
1400
1401 /// InlinePatternFragments - If this pattern refers to any pattern
1402 /// fragments, inline them into place, giving us a pattern without any
1403 /// PatFrag references.
InlinePatternFragments(TreePattern & TP)1404 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) {
1405 if (TP.hasError())
1406 return nullptr;
1407
1408 if (isLeaf())
1409 return this; // nothing to do.
1410 Record *Op = getOperator();
1411
1412 if (!Op->isSubClassOf("PatFrag")) {
1413 // Just recursively inline children nodes.
1414 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) {
1415 TreePatternNode *Child = getChild(i);
1416 TreePatternNode *NewChild = Child->InlinePatternFragments(TP);
1417
1418 assert((Child->getPredicateFns().empty() ||
1419 NewChild->getPredicateFns() == Child->getPredicateFns()) &&
1420 "Non-empty child predicate clobbered!");
1421
1422 setChild(i, NewChild);
1423 }
1424 return this;
1425 }
1426
1427 // Otherwise, we found a reference to a fragment. First, look up its
1428 // TreePattern record.
1429 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op);
1430
1431 // Verify that we are passing the right number of operands.
1432 if (Frag->getNumArgs() != Children.size()) {
1433 TP.error("'" + Op->getName() + "' fragment requires " +
1434 utostr(Frag->getNumArgs()) + " operands!");
1435 return nullptr;
1436 }
1437
1438 TreePatternNode *FragTree = Frag->getOnlyTree()->clone();
1439
1440 TreePredicateFn PredFn(Frag);
1441 if (!PredFn.isAlwaysTrue())
1442 FragTree->addPredicateFn(PredFn);
1443
1444 // Resolve formal arguments to their actual value.
1445 if (Frag->getNumArgs()) {
1446 // Compute the map of formal to actual arguments.
1447 std::map<std::string, TreePatternNode*> ArgMap;
1448 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i)
1449 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP);
1450
1451 FragTree->SubstituteFormalArguments(ArgMap);
1452 }
1453
1454 FragTree->setName(getName());
1455 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1456 FragTree->UpdateNodeType(i, getExtType(i), TP);
1457
1458 // Transfer in the old predicates.
1459 for (const TreePredicateFn &Pred : getPredicateFns())
1460 FragTree->addPredicateFn(Pred);
1461
1462 // Get a new copy of this fragment to stitch into here.
1463 //delete this; // FIXME: implement refcounting!
1464
1465 // The fragment we inlined could have recursive inlining that is needed. See
1466 // if there are any pattern fragments in it and inline them as needed.
1467 return FragTree->InlinePatternFragments(TP);
1468 }
1469
1470 /// getImplicitType - Check to see if the specified record has an implicit
1471 /// type which should be applied to it. This will infer the type of register
1472 /// references from the register file information, for example.
1473 ///
1474 /// When Unnamed is set, return the type of a DAG operand with no name, such as
1475 /// the F8RC register class argument in:
1476 ///
1477 /// (COPY_TO_REGCLASS GPR:$src, F8RC)
1478 ///
1479 /// When Unnamed is false, return the type of a named DAG operand such as the
1480 /// GPR:$src operand above.
1481 ///
getImplicitType(Record * R,unsigned ResNo,bool NotRegisters,bool Unnamed,TreePattern & TP)1482 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo,
1483 bool NotRegisters,
1484 bool Unnamed,
1485 TreePattern &TP) {
1486 // Check to see if this is a register operand.
1487 if (R->isSubClassOf("RegisterOperand")) {
1488 assert(ResNo == 0 && "Regoperand ref only has one result!");
1489 if (NotRegisters)
1490 return EEVT::TypeSet(); // Unknown.
1491 Record *RegClass = R->getValueAsDef("RegClass");
1492 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1493 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes());
1494 }
1495
1496 // Check to see if this is a register or a register class.
1497 if (R->isSubClassOf("RegisterClass")) {
1498 assert(ResNo == 0 && "Regclass ref only has one result!");
1499 // An unnamed register class represents itself as an i32 immediate, for
1500 // example on a COPY_TO_REGCLASS instruction.
1501 if (Unnamed)
1502 return EEVT::TypeSet(MVT::i32, TP);
1503
1504 // In a named operand, the register class provides the possible set of
1505 // types.
1506 if (NotRegisters)
1507 return EEVT::TypeSet(); // Unknown.
1508 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1509 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes());
1510 }
1511
1512 if (R->isSubClassOf("PatFrag")) {
1513 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?");
1514 // Pattern fragment types will be resolved when they are inlined.
1515 return EEVT::TypeSet(); // Unknown.
1516 }
1517
1518 if (R->isSubClassOf("Register")) {
1519 assert(ResNo == 0 && "Registers only produce one result!");
1520 if (NotRegisters)
1521 return EEVT::TypeSet(); // Unknown.
1522 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo();
1523 return EEVT::TypeSet(T.getRegisterVTs(R));
1524 }
1525
1526 if (R->isSubClassOf("SubRegIndex")) {
1527 assert(ResNo == 0 && "SubRegisterIndices only produce one result!");
1528 return EEVT::TypeSet(MVT::i32, TP);
1529 }
1530
1531 if (R->isSubClassOf("ValueType")) {
1532 assert(ResNo == 0 && "This node only has one result!");
1533 // An unnamed VTSDNode represents itself as an MVT::Other immediate.
1534 //
1535 // (sext_inreg GPR:$src, i16)
1536 // ~~~
1537 if (Unnamed)
1538 return EEVT::TypeSet(MVT::Other, TP);
1539 // With a name, the ValueType simply provides the type of the named
1540 // variable.
1541 //
1542 // (sext_inreg i32:$src, i16)
1543 // ~~~~~~~~
1544 if (NotRegisters)
1545 return EEVT::TypeSet(); // Unknown.
1546 return EEVT::TypeSet(getValueType(R), TP);
1547 }
1548
1549 if (R->isSubClassOf("CondCode")) {
1550 assert(ResNo == 0 && "This node only has one result!");
1551 // Using a CondCodeSDNode.
1552 return EEVT::TypeSet(MVT::Other, TP);
1553 }
1554
1555 if (R->isSubClassOf("ComplexPattern")) {
1556 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?");
1557 if (NotRegisters)
1558 return EEVT::TypeSet(); // Unknown.
1559 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(),
1560 TP);
1561 }
1562 if (R->isSubClassOf("PointerLikeRegClass")) {
1563 assert(ResNo == 0 && "Regclass can only have one result!");
1564 return EEVT::TypeSet(MVT::iPTR, TP);
1565 }
1566
1567 if (R->getName() == "node" || R->getName() == "srcvalue" ||
1568 R->getName() == "zero_reg") {
1569 // Placeholder.
1570 return EEVT::TypeSet(); // Unknown.
1571 }
1572
1573 if (R->isSubClassOf("Operand"))
1574 return EEVT::TypeSet(getValueType(R->getValueAsDef("Type")));
1575
1576 TP.error("Unknown node flavor used in pattern: " + R->getName());
1577 return EEVT::TypeSet(MVT::Other, TP);
1578 }
1579
1580
1581 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the
1582 /// CodeGenIntrinsic information for it, otherwise return a null pointer.
1583 const CodeGenIntrinsic *TreePatternNode::
getIntrinsicInfo(const CodeGenDAGPatterns & CDP) const1584 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const {
1585 if (getOperator() != CDP.get_intrinsic_void_sdnode() &&
1586 getOperator() != CDP.get_intrinsic_w_chain_sdnode() &&
1587 getOperator() != CDP.get_intrinsic_wo_chain_sdnode())
1588 return nullptr;
1589
1590 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue();
1591 return &CDP.getIntrinsicInfo(IID);
1592 }
1593
1594 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern,
1595 /// return the ComplexPattern information, otherwise return null.
1596 const ComplexPattern *
getComplexPatternInfo(const CodeGenDAGPatterns & CGP) const1597 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const {
1598 Record *Rec;
1599 if (isLeaf()) {
1600 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1601 if (!DI)
1602 return nullptr;
1603 Rec = DI->getDef();
1604 } else
1605 Rec = getOperator();
1606
1607 if (!Rec->isSubClassOf("ComplexPattern"))
1608 return nullptr;
1609 return &CGP.getComplexPattern(Rec);
1610 }
1611
getNumMIResults(const CodeGenDAGPatterns & CGP) const1612 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const {
1613 // A ComplexPattern specifically declares how many results it fills in.
1614 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1615 return CP->getNumOperands();
1616
1617 // If MIOperandInfo is specified, that gives the count.
1618 if (isLeaf()) {
1619 DefInit *DI = dyn_cast<DefInit>(getLeafValue());
1620 if (DI && DI->getDef()->isSubClassOf("Operand")) {
1621 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo");
1622 if (MIOps->getNumArgs())
1623 return MIOps->getNumArgs();
1624 }
1625 }
1626
1627 // Otherwise there is just one result.
1628 return 1;
1629 }
1630
1631 /// NodeHasProperty - Return true if this node has the specified property.
NodeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1632 bool TreePatternNode::NodeHasProperty(SDNP Property,
1633 const CodeGenDAGPatterns &CGP) const {
1634 if (isLeaf()) {
1635 if (const ComplexPattern *CP = getComplexPatternInfo(CGP))
1636 return CP->hasProperty(Property);
1637 return false;
1638 }
1639
1640 Record *Operator = getOperator();
1641 if (!Operator->isSubClassOf("SDNode")) return false;
1642
1643 return CGP.getSDNodeInfo(Operator).hasProperty(Property);
1644 }
1645
1646
1647
1648
1649 /// TreeHasProperty - Return true if any node in this tree has the specified
1650 /// property.
TreeHasProperty(SDNP Property,const CodeGenDAGPatterns & CGP) const1651 bool TreePatternNode::TreeHasProperty(SDNP Property,
1652 const CodeGenDAGPatterns &CGP) const {
1653 if (NodeHasProperty(Property, CGP))
1654 return true;
1655 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1656 if (getChild(i)->TreeHasProperty(Property, CGP))
1657 return true;
1658 return false;
1659 }
1660
1661 /// isCommutativeIntrinsic - Return true if the node corresponds to a
1662 /// commutative intrinsic.
1663 bool
isCommutativeIntrinsic(const CodeGenDAGPatterns & CDP) const1664 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const {
1665 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP))
1666 return Int->isCommutative;
1667 return false;
1668 }
1669
isOperandClass(const TreePatternNode * N,StringRef Class)1670 static bool isOperandClass(const TreePatternNode *N, StringRef Class) {
1671 if (!N->isLeaf())
1672 return N->getOperator()->isSubClassOf(Class);
1673
1674 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue());
1675 if (DI && DI->getDef()->isSubClassOf(Class))
1676 return true;
1677
1678 return false;
1679 }
1680
emitTooManyOperandsError(TreePattern & TP,StringRef InstName,unsigned Expected,unsigned Actual)1681 static void emitTooManyOperandsError(TreePattern &TP,
1682 StringRef InstName,
1683 unsigned Expected,
1684 unsigned Actual) {
1685 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) +
1686 " operands but expected only " + Twine(Expected) + "!");
1687 }
1688
emitTooFewOperandsError(TreePattern & TP,StringRef InstName,unsigned Actual)1689 static void emitTooFewOperandsError(TreePattern &TP,
1690 StringRef InstName,
1691 unsigned Actual) {
1692 TP.error("Instruction '" + InstName +
1693 "' expects more than the provided " + Twine(Actual) + " operands!");
1694 }
1695
1696 /// ApplyTypeConstraints - Apply all of the type constraints relevant to
1697 /// this node and its children in the tree. This returns true if it makes a
1698 /// change, false otherwise. If a type contradiction is found, flag an error.
ApplyTypeConstraints(TreePattern & TP,bool NotRegisters)1699 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) {
1700 if (TP.hasError())
1701 return false;
1702
1703 CodeGenDAGPatterns &CDP = TP.getDAGPatterns();
1704 if (isLeaf()) {
1705 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) {
1706 // If it's a regclass or something else known, include the type.
1707 bool MadeChange = false;
1708 for (unsigned i = 0, e = Types.size(); i != e; ++i)
1709 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i,
1710 NotRegisters,
1711 !hasName(), TP), TP);
1712 return MadeChange;
1713 }
1714
1715 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) {
1716 assert(Types.size() == 1 && "Invalid IntInit");
1717
1718 // Int inits are always integers. :)
1719 bool MadeChange = Types[0].EnforceInteger(TP);
1720
1721 if (!Types[0].isConcrete())
1722 return MadeChange;
1723
1724 MVT::SimpleValueType VT = getType(0);
1725 if (VT == MVT::iPTR || VT == MVT::iPTRAny)
1726 return MadeChange;
1727
1728 unsigned Size = MVT(VT).getSizeInBits();
1729 // Make sure that the value is representable for this type.
1730 if (Size >= 32) return MadeChange;
1731
1732 // Check that the value doesn't use more bits than we have. It must either
1733 // be a sign- or zero-extended equivalent of the original.
1734 int64_t SignBitAndAbove = II->getValue() >> (Size - 1);
1735 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1)
1736 return MadeChange;
1737
1738 TP.error("Integer value '" + itostr(II->getValue()) +
1739 "' is out of range for type '" + getEnumName(getType(0)) + "'!");
1740 return false;
1741 }
1742 return false;
1743 }
1744
1745 // special handling for set, which isn't really an SDNode.
1746 if (getOperator()->getName() == "set") {
1747 assert(getNumTypes() == 0 && "Set doesn't produce a value");
1748 assert(getNumChildren() >= 2 && "Missing RHS of a set?");
1749 unsigned NC = getNumChildren();
1750
1751 TreePatternNode *SetVal = getChild(NC-1);
1752 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters);
1753
1754 for (unsigned i = 0; i < NC-1; ++i) {
1755 TreePatternNode *Child = getChild(i);
1756 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters);
1757
1758 // Types of operands must match.
1759 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP);
1760 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP);
1761 }
1762 return MadeChange;
1763 }
1764
1765 if (getOperator()->getName() == "implicit") {
1766 assert(getNumTypes() == 0 && "Node doesn't produce a value");
1767
1768 bool MadeChange = false;
1769 for (unsigned i = 0; i < getNumChildren(); ++i)
1770 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1771 return MadeChange;
1772 }
1773
1774 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) {
1775 bool MadeChange = false;
1776
1777 // Apply the result type to the node.
1778 unsigned NumRetVTs = Int->IS.RetVTs.size();
1779 unsigned NumParamVTs = Int->IS.ParamVTs.size();
1780
1781 for (unsigned i = 0, e = NumRetVTs; i != e; ++i)
1782 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP);
1783
1784 if (getNumChildren() != NumParamVTs + 1) {
1785 TP.error("Intrinsic '" + Int->Name + "' expects " +
1786 utostr(NumParamVTs) + " operands, not " +
1787 utostr(getNumChildren() - 1) + " operands!");
1788 return false;
1789 }
1790
1791 // Apply type info to the intrinsic ID.
1792 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP);
1793
1794 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) {
1795 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters);
1796
1797 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i];
1798 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case");
1799 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP);
1800 }
1801 return MadeChange;
1802 }
1803
1804 if (getOperator()->isSubClassOf("SDNode")) {
1805 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator());
1806
1807 // Check that the number of operands is sane. Negative operands -> varargs.
1808 if (NI.getNumOperands() >= 0 &&
1809 getNumChildren() != (unsigned)NI.getNumOperands()) {
1810 TP.error(getOperator()->getName() + " node requires exactly " +
1811 itostr(NI.getNumOperands()) + " operands!");
1812 return false;
1813 }
1814
1815 bool MadeChange = NI.ApplyTypeConstraints(this, TP);
1816 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1817 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1818 return MadeChange;
1819 }
1820
1821 if (getOperator()->isSubClassOf("Instruction")) {
1822 const DAGInstruction &Inst = CDP.getInstruction(getOperator());
1823 CodeGenInstruction &InstInfo =
1824 CDP.getTargetInfo().getInstruction(getOperator());
1825
1826 bool MadeChange = false;
1827
1828 // Apply the result types to the node, these come from the things in the
1829 // (outs) list of the instruction.
1830 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs,
1831 Inst.getNumResults());
1832 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo)
1833 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP);
1834
1835 // If the instruction has implicit defs, we apply the first one as a result.
1836 // FIXME: This sucks, it should apply all implicit defs.
1837 if (!InstInfo.ImplicitDefs.empty()) {
1838 unsigned ResNo = NumResultsToAdd;
1839
1840 // FIXME: Generalize to multiple possible types and multiple possible
1841 // ImplicitDefs.
1842 MVT::SimpleValueType VT =
1843 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo());
1844
1845 if (VT != MVT::Other)
1846 MadeChange |= UpdateNodeType(ResNo, VT, TP);
1847 }
1848
1849 // If this is an INSERT_SUBREG, constrain the source and destination VTs to
1850 // be the same.
1851 if (getOperator()->getName() == "INSERT_SUBREG") {
1852 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled");
1853 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP);
1854 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP);
1855 } else if (getOperator()->getName() == "REG_SEQUENCE") {
1856 // We need to do extra, custom typechecking for REG_SEQUENCE since it is
1857 // variadic.
1858
1859 unsigned NChild = getNumChildren();
1860 if (NChild < 3) {
1861 TP.error("REG_SEQUENCE requires at least 3 operands!");
1862 return false;
1863 }
1864
1865 if (NChild % 2 == 0) {
1866 TP.error("REG_SEQUENCE requires an odd number of operands!");
1867 return false;
1868 }
1869
1870 if (!isOperandClass(getChild(0), "RegisterClass")) {
1871 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!");
1872 return false;
1873 }
1874
1875 for (unsigned I = 1; I < NChild; I += 2) {
1876 TreePatternNode *SubIdxChild = getChild(I + 1);
1877 if (!isOperandClass(SubIdxChild, "SubRegIndex")) {
1878 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " +
1879 itostr(I + 1) + "!");
1880 return false;
1881 }
1882 }
1883 }
1884
1885 unsigned ChildNo = 0;
1886 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) {
1887 Record *OperandNode = Inst.getOperand(i);
1888
1889 // If the instruction expects a predicate or optional def operand, we
1890 // codegen this by setting the operand to it's default value if it has a
1891 // non-empty DefaultOps field.
1892 if (OperandNode->isSubClassOf("OperandWithDefaultOps") &&
1893 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty())
1894 continue;
1895
1896 // Verify that we didn't run out of provided operands.
1897 if (ChildNo >= getNumChildren()) {
1898 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren());
1899 return false;
1900 }
1901
1902 TreePatternNode *Child = getChild(ChildNo++);
1903 unsigned ChildResNo = 0; // Instructions always use res #0 of their op.
1904
1905 // If the operand has sub-operands, they may be provided by distinct
1906 // child patterns, so attempt to match each sub-operand separately.
1907 if (OperandNode->isSubClassOf("Operand")) {
1908 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo");
1909 if (unsigned NumArgs = MIOpInfo->getNumArgs()) {
1910 // But don't do that if the whole operand is being provided by
1911 // a single ComplexPattern-related Operand.
1912
1913 if (Child->getNumMIResults(CDP) < NumArgs) {
1914 // Match first sub-operand against the child we already have.
1915 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef();
1916 MadeChange |=
1917 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1918
1919 // And the remaining sub-operands against subsequent children.
1920 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) {
1921 if (ChildNo >= getNumChildren()) {
1922 emitTooFewOperandsError(TP, getOperator()->getName(),
1923 getNumChildren());
1924 return false;
1925 }
1926 Child = getChild(ChildNo++);
1927
1928 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef();
1929 MadeChange |=
1930 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP);
1931 }
1932 continue;
1933 }
1934 }
1935 }
1936
1937 // If we didn't match by pieces above, attempt to match the whole
1938 // operand now.
1939 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP);
1940 }
1941
1942 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) {
1943 emitTooManyOperandsError(TP, getOperator()->getName(),
1944 ChildNo, getNumChildren());
1945 return false;
1946 }
1947
1948 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
1949 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1950 return MadeChange;
1951 }
1952
1953 if (getOperator()->isSubClassOf("ComplexPattern")) {
1954 bool MadeChange = false;
1955
1956 for (unsigned i = 0; i < getNumChildren(); ++i)
1957 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters);
1958
1959 return MadeChange;
1960 }
1961
1962 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!");
1963
1964 // Node transforms always take one operand.
1965 if (getNumChildren() != 1) {
1966 TP.error("Node transform '" + getOperator()->getName() +
1967 "' requires one operand!");
1968 return false;
1969 }
1970
1971 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters);
1972
1973
1974 // If either the output or input of the xform does not have exact
1975 // type info. We assume they must be the same. Otherwise, it is perfectly
1976 // legal to transform from one type to a completely different type.
1977 #if 0
1978 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) {
1979 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP);
1980 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP);
1981 return MadeChange;
1982 }
1983 #endif
1984 return MadeChange;
1985 }
1986
1987 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the
1988 /// RHS of a commutative operation, not the on LHS.
OnlyOnRHSOfCommutative(TreePatternNode * N)1989 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) {
1990 if (!N->isLeaf() && N->getOperator()->getName() == "imm")
1991 return true;
1992 if (N->isLeaf() && isa<IntInit>(N->getLeafValue()))
1993 return true;
1994 return false;
1995 }
1996
1997
1998 /// canPatternMatch - If it is impossible for this pattern to match on this
1999 /// target, fill in Reason and return false. Otherwise, return true. This is
2000 /// used as a sanity check for .td files (to prevent people from writing stuff
2001 /// that can never possibly work), and to prevent the pattern permuter from
2002 /// generating stuff that is useless.
canPatternMatch(std::string & Reason,const CodeGenDAGPatterns & CDP)2003 bool TreePatternNode::canPatternMatch(std::string &Reason,
2004 const CodeGenDAGPatterns &CDP) {
2005 if (isLeaf()) return true;
2006
2007 for (unsigned i = 0, e = getNumChildren(); i != e; ++i)
2008 if (!getChild(i)->canPatternMatch(Reason, CDP))
2009 return false;
2010
2011 // If this is an intrinsic, handle cases that would make it not match. For
2012 // example, if an operand is required to be an immediate.
2013 if (getOperator()->isSubClassOf("Intrinsic")) {
2014 // TODO:
2015 return true;
2016 }
2017
2018 if (getOperator()->isSubClassOf("ComplexPattern"))
2019 return true;
2020
2021 // If this node is a commutative operator, check that the LHS isn't an
2022 // immediate.
2023 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator());
2024 bool isCommIntrinsic = isCommutativeIntrinsic(CDP);
2025 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
2026 // Scan all of the operands of the node and make sure that only the last one
2027 // is a constant node, unless the RHS also is.
2028 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) {
2029 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id.
2030 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i)
2031 if (OnlyOnRHSOfCommutative(getChild(i))) {
2032 Reason="Immediate value must be on the RHS of commutative operators!";
2033 return false;
2034 }
2035 }
2036 }
2037
2038 return true;
2039 }
2040
2041 //===----------------------------------------------------------------------===//
2042 // TreePattern implementation
2043 //
2044
TreePattern(Record * TheRec,ListInit * RawPat,bool isInput,CodeGenDAGPatterns & cdp)2045 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput,
2046 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2047 isInputPattern(isInput), HasError(false) {
2048 for (Init *I : RawPat->getValues())
2049 Trees.push_back(ParseTreePattern(I, ""));
2050 }
2051
TreePattern(Record * TheRec,DagInit * Pat,bool isInput,CodeGenDAGPatterns & cdp)2052 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput,
2053 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2054 isInputPattern(isInput), HasError(false) {
2055 Trees.push_back(ParseTreePattern(Pat, ""));
2056 }
2057
TreePattern(Record * TheRec,TreePatternNode * Pat,bool isInput,CodeGenDAGPatterns & cdp)2058 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput,
2059 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp),
2060 isInputPattern(isInput), HasError(false) {
2061 Trees.push_back(Pat);
2062 }
2063
error(const Twine & Msg)2064 void TreePattern::error(const Twine &Msg) {
2065 if (HasError)
2066 return;
2067 dump();
2068 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg);
2069 HasError = true;
2070 }
2071
ComputeNamedNodes()2072 void TreePattern::ComputeNamedNodes() {
2073 for (TreePatternNode *Tree : Trees)
2074 ComputeNamedNodes(Tree);
2075 }
2076
ComputeNamedNodes(TreePatternNode * N)2077 void TreePattern::ComputeNamedNodes(TreePatternNode *N) {
2078 if (!N->getName().empty())
2079 NamedNodes[N->getName()].push_back(N);
2080
2081 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2082 ComputeNamedNodes(N->getChild(i));
2083 }
2084
2085
ParseTreePattern(Init * TheInit,StringRef OpName)2086 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){
2087 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) {
2088 Record *R = DI->getDef();
2089
2090 // Direct reference to a leaf DagNode or PatFrag? Turn it into a
2091 // TreePatternNode of its own. For example:
2092 /// (foo GPR, imm) -> (foo GPR, (imm))
2093 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag"))
2094 return ParseTreePattern(
2095 DagInit::get(DI, "",
2096 std::vector<std::pair<Init*, std::string> >()),
2097 OpName);
2098
2099 // Input argument?
2100 TreePatternNode *Res = new TreePatternNode(DI, 1);
2101 if (R->getName() == "node" && !OpName.empty()) {
2102 if (OpName.empty())
2103 error("'node' argument requires a name to match with operand list");
2104 Args.push_back(OpName);
2105 }
2106
2107 Res->setName(OpName);
2108 return Res;
2109 }
2110
2111 // ?:$name or just $name.
2112 if (isa<UnsetInit>(TheInit)) {
2113 if (OpName.empty())
2114 error("'?' argument requires a name to match with operand list");
2115 TreePatternNode *Res = new TreePatternNode(TheInit, 1);
2116 Args.push_back(OpName);
2117 Res->setName(OpName);
2118 return Res;
2119 }
2120
2121 if (IntInit *II = dyn_cast<IntInit>(TheInit)) {
2122 if (!OpName.empty())
2123 error("Constant int argument should not have a name!");
2124 return new TreePatternNode(II, 1);
2125 }
2126
2127 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) {
2128 // Turn this into an IntInit.
2129 Init *II = BI->convertInitializerTo(IntRecTy::get());
2130 if (!II || !isa<IntInit>(II))
2131 error("Bits value must be constants!");
2132 return ParseTreePattern(II, OpName);
2133 }
2134
2135 DagInit *Dag = dyn_cast<DagInit>(TheInit);
2136 if (!Dag) {
2137 TheInit->dump();
2138 error("Pattern has unexpected init kind!");
2139 }
2140 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator());
2141 if (!OpDef) error("Pattern has unexpected operator type!");
2142 Record *Operator = OpDef->getDef();
2143
2144 if (Operator->isSubClassOf("ValueType")) {
2145 // If the operator is a ValueType, then this must be "type cast" of a leaf
2146 // node.
2147 if (Dag->getNumArgs() != 1)
2148 error("Type cast only takes one operand!");
2149
2150 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0));
2151
2152 // Apply the type cast.
2153 assert(New->getNumTypes() == 1 && "FIXME: Unhandled");
2154 New->UpdateNodeType(0, getValueType(Operator), *this);
2155
2156 if (!OpName.empty())
2157 error("ValueType cast should not have a name!");
2158 return New;
2159 }
2160
2161 // Verify that this is something that makes sense for an operator.
2162 if (!Operator->isSubClassOf("PatFrag") &&
2163 !Operator->isSubClassOf("SDNode") &&
2164 !Operator->isSubClassOf("Instruction") &&
2165 !Operator->isSubClassOf("SDNodeXForm") &&
2166 !Operator->isSubClassOf("Intrinsic") &&
2167 !Operator->isSubClassOf("ComplexPattern") &&
2168 Operator->getName() != "set" &&
2169 Operator->getName() != "implicit")
2170 error("Unrecognized node '" + Operator->getName() + "'!");
2171
2172 // Check to see if this is something that is illegal in an input pattern.
2173 if (isInputPattern) {
2174 if (Operator->isSubClassOf("Instruction") ||
2175 Operator->isSubClassOf("SDNodeXForm"))
2176 error("Cannot use '" + Operator->getName() + "' in an input pattern!");
2177 } else {
2178 if (Operator->isSubClassOf("Intrinsic"))
2179 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2180
2181 if (Operator->isSubClassOf("SDNode") &&
2182 Operator->getName() != "imm" &&
2183 Operator->getName() != "fpimm" &&
2184 Operator->getName() != "tglobaltlsaddr" &&
2185 Operator->getName() != "tconstpool" &&
2186 Operator->getName() != "tjumptable" &&
2187 Operator->getName() != "tframeindex" &&
2188 Operator->getName() != "texternalsym" &&
2189 Operator->getName() != "tblockaddress" &&
2190 Operator->getName() != "tglobaladdr" &&
2191 Operator->getName() != "bb" &&
2192 Operator->getName() != "vt" &&
2193 Operator->getName() != "mcsym")
2194 error("Cannot use '" + Operator->getName() + "' in an output pattern!");
2195 }
2196
2197 std::vector<TreePatternNode*> Children;
2198
2199 // Parse all the operands.
2200 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i)
2201 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i)));
2202
2203 // If the operator is an intrinsic, then this is just syntactic sugar for for
2204 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and
2205 // convert the intrinsic name to a number.
2206 if (Operator->isSubClassOf("Intrinsic")) {
2207 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator);
2208 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1;
2209
2210 // If this intrinsic returns void, it must have side-effects and thus a
2211 // chain.
2212 if (Int.IS.RetVTs.empty())
2213 Operator = getDAGPatterns().get_intrinsic_void_sdnode();
2214 else if (Int.ModRef != CodeGenIntrinsic::NoMem)
2215 // Has side-effects, requires chain.
2216 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode();
2217 else // Otherwise, no chain.
2218 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode();
2219
2220 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1);
2221 Children.insert(Children.begin(), IIDNode);
2222 }
2223
2224 if (Operator->isSubClassOf("ComplexPattern")) {
2225 for (unsigned i = 0; i < Children.size(); ++i) {
2226 TreePatternNode *Child = Children[i];
2227
2228 if (Child->getName().empty())
2229 error("All arguments to a ComplexPattern must be named");
2230
2231 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)"
2232 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern;
2233 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)".
2234 auto OperandId = std::make_pair(Operator, i);
2235 auto PrevOp = ComplexPatternOperands.find(Child->getName());
2236 if (PrevOp != ComplexPatternOperands.end()) {
2237 if (PrevOp->getValue() != OperandId)
2238 error("All ComplexPattern operands must appear consistently: "
2239 "in the same order in just one ComplexPattern instance.");
2240 } else
2241 ComplexPatternOperands[Child->getName()] = OperandId;
2242 }
2243 }
2244
2245 unsigned NumResults = GetNumNodeResults(Operator, CDP);
2246 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults);
2247 Result->setName(OpName);
2248
2249 if (!Dag->getName().empty()) {
2250 assert(Result->getName().empty());
2251 Result->setName(Dag->getName());
2252 }
2253 return Result;
2254 }
2255
2256 /// SimplifyTree - See if we can simplify this tree to eliminate something that
2257 /// will never match in favor of something obvious that will. This is here
2258 /// strictly as a convenience to target authors because it allows them to write
2259 /// more type generic things and have useless type casts fold away.
2260 ///
2261 /// This returns true if any change is made.
SimplifyTree(TreePatternNode * & N)2262 static bool SimplifyTree(TreePatternNode *&N) {
2263 if (N->isLeaf())
2264 return false;
2265
2266 // If we have a bitconvert with a resolved type and if the source and
2267 // destination types are the same, then the bitconvert is useless, remove it.
2268 if (N->getOperator()->getName() == "bitconvert" &&
2269 N->getExtType(0).isConcrete() &&
2270 N->getExtType(0) == N->getChild(0)->getExtType(0) &&
2271 N->getName().empty()) {
2272 N = N->getChild(0);
2273 SimplifyTree(N);
2274 return true;
2275 }
2276
2277 // Walk all children.
2278 bool MadeChange = false;
2279 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
2280 TreePatternNode *Child = N->getChild(i);
2281 MadeChange |= SimplifyTree(Child);
2282 N->setChild(i, Child);
2283 }
2284 return MadeChange;
2285 }
2286
2287
2288
2289 /// InferAllTypes - Infer/propagate as many types throughout the expression
2290 /// patterns as possible. Return true if all types are inferred, false
2291 /// otherwise. Flags an error if a type contradiction is found.
2292 bool TreePattern::
InferAllTypes(const StringMap<SmallVector<TreePatternNode *,1>> * InNamedTypes)2293 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) {
2294 if (NamedNodes.empty())
2295 ComputeNamedNodes();
2296
2297 bool MadeChange = true;
2298 while (MadeChange) {
2299 MadeChange = false;
2300 for (TreePatternNode *Tree : Trees) {
2301 MadeChange |= Tree->ApplyTypeConstraints(*this, false);
2302 MadeChange |= SimplifyTree(Tree);
2303 }
2304
2305 // If there are constraints on our named nodes, apply them.
2306 for (auto &Entry : NamedNodes) {
2307 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second;
2308
2309 // If we have input named node types, propagate their types to the named
2310 // values here.
2311 if (InNamedTypes) {
2312 if (!InNamedTypes->count(Entry.getKey())) {
2313 error("Node '" + std::string(Entry.getKey()) +
2314 "' in output pattern but not input pattern");
2315 return true;
2316 }
2317
2318 const SmallVectorImpl<TreePatternNode*> &InNodes =
2319 InNamedTypes->find(Entry.getKey())->second;
2320
2321 // The input types should be fully resolved by now.
2322 for (TreePatternNode *Node : Nodes) {
2323 // If this node is a register class, and it is the root of the pattern
2324 // then we're mapping something onto an input register. We allow
2325 // changing the type of the input register in this case. This allows
2326 // us to match things like:
2327 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>;
2328 if (Node == Trees[0] && Node->isLeaf()) {
2329 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue());
2330 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2331 DI->getDef()->isSubClassOf("RegisterOperand")))
2332 continue;
2333 }
2334
2335 assert(Node->getNumTypes() == 1 &&
2336 InNodes[0]->getNumTypes() == 1 &&
2337 "FIXME: cannot name multiple result nodes yet");
2338 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0),
2339 *this);
2340 }
2341 }
2342
2343 // If there are multiple nodes with the same name, they must all have the
2344 // same type.
2345 if (Entry.second.size() > 1) {
2346 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) {
2347 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1];
2348 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 &&
2349 "FIXME: cannot name multiple result nodes yet");
2350
2351 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this);
2352 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this);
2353 }
2354 }
2355 }
2356 }
2357
2358 bool HasUnresolvedTypes = false;
2359 for (const TreePatternNode *Tree : Trees)
2360 HasUnresolvedTypes |= Tree->ContainsUnresolvedType();
2361 return !HasUnresolvedTypes;
2362 }
2363
print(raw_ostream & OS) const2364 void TreePattern::print(raw_ostream &OS) const {
2365 OS << getRecord()->getName();
2366 if (!Args.empty()) {
2367 OS << "(" << Args[0];
2368 for (unsigned i = 1, e = Args.size(); i != e; ++i)
2369 OS << ", " << Args[i];
2370 OS << ")";
2371 }
2372 OS << ": ";
2373
2374 if (Trees.size() > 1)
2375 OS << "[\n";
2376 for (const TreePatternNode *Tree : Trees) {
2377 OS << "\t";
2378 Tree->print(OS);
2379 OS << "\n";
2380 }
2381
2382 if (Trees.size() > 1)
2383 OS << "]\n";
2384 }
2385
dump() const2386 void TreePattern::dump() const { print(errs()); }
2387
2388 //===----------------------------------------------------------------------===//
2389 // CodeGenDAGPatterns implementation
2390 //
2391
CodeGenDAGPatterns(RecordKeeper & R)2392 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) :
2393 Records(R), Target(R) {
2394
2395 Intrinsics = LoadIntrinsics(Records, false);
2396 TgtIntrinsics = LoadIntrinsics(Records, true);
2397 ParseNodeInfo();
2398 ParseNodeTransforms();
2399 ParseComplexPatterns();
2400 ParsePatternFragments();
2401 ParseDefaultOperands();
2402 ParseInstructions();
2403 ParsePatternFragments(/*OutFrags*/true);
2404 ParsePatterns();
2405
2406 // Generate variants. For example, commutative patterns can match
2407 // multiple ways. Add them to PatternsToMatch as well.
2408 GenerateVariants();
2409
2410 // Infer instruction flags. For example, we can detect loads,
2411 // stores, and side effects in many cases by examining an
2412 // instruction's pattern.
2413 InferInstructionFlags();
2414
2415 // Verify that instruction flags match the patterns.
2416 VerifyInstructionFlags();
2417 }
2418
getSDNodeNamed(const std::string & Name) const2419 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const {
2420 Record *N = Records.getDef(Name);
2421 if (!N || !N->isSubClassOf("SDNode"))
2422 PrintFatalError("Error getting SDNode '" + Name + "'!");
2423
2424 return N;
2425 }
2426
2427 // Parse all of the SDNode definitions for the target, populating SDNodes.
ParseNodeInfo()2428 void CodeGenDAGPatterns::ParseNodeInfo() {
2429 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode");
2430 while (!Nodes.empty()) {
2431 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back()));
2432 Nodes.pop_back();
2433 }
2434
2435 // Get the builtin intrinsic nodes.
2436 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void");
2437 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain");
2438 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain");
2439 }
2440
2441 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms
2442 /// map, and emit them to the file as functions.
ParseNodeTransforms()2443 void CodeGenDAGPatterns::ParseNodeTransforms() {
2444 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm");
2445 while (!Xforms.empty()) {
2446 Record *XFormNode = Xforms.back();
2447 Record *SDNode = XFormNode->getValueAsDef("Opcode");
2448 std::string Code = XFormNode->getValueAsString("XFormFunction");
2449 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code)));
2450
2451 Xforms.pop_back();
2452 }
2453 }
2454
ParseComplexPatterns()2455 void CodeGenDAGPatterns::ParseComplexPatterns() {
2456 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern");
2457 while (!AMs.empty()) {
2458 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back()));
2459 AMs.pop_back();
2460 }
2461 }
2462
2463
2464 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td
2465 /// file, building up the PatternFragments map. After we've collected them all,
2466 /// inline fragments together as necessary, so that there are no references left
2467 /// inside a pattern fragment to a pattern fragment.
2468 ///
ParsePatternFragments(bool OutFrags)2469 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) {
2470 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag");
2471
2472 // First step, parse all of the fragments.
2473 for (Record *Frag : Fragments) {
2474 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2475 continue;
2476
2477 DagInit *Tree = Frag->getValueAsDag("Fragment");
2478 TreePattern *P =
2479 (PatternFragments[Frag] = llvm::make_unique<TreePattern>(
2480 Frag, Tree, !Frag->isSubClassOf("OutPatFrag"),
2481 *this)).get();
2482
2483 // Validate the argument list, converting it to set, to discard duplicates.
2484 std::vector<std::string> &Args = P->getArgList();
2485 std::set<std::string> OperandsSet(Args.begin(), Args.end());
2486
2487 if (OperandsSet.count(""))
2488 P->error("Cannot have unnamed 'node' values in pattern fragment!");
2489
2490 // Parse the operands list.
2491 DagInit *OpsList = Frag->getValueAsDag("Operands");
2492 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator());
2493 // Special cases: ops == outs == ins. Different names are used to
2494 // improve readability.
2495 if (!OpsOp ||
2496 (OpsOp->getDef()->getName() != "ops" &&
2497 OpsOp->getDef()->getName() != "outs" &&
2498 OpsOp->getDef()->getName() != "ins"))
2499 P->error("Operands list should start with '(ops ... '!");
2500
2501 // Copy over the arguments.
2502 Args.clear();
2503 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) {
2504 if (!isa<DefInit>(OpsList->getArg(j)) ||
2505 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node")
2506 P->error("Operands list should all be 'node' values.");
2507 if (OpsList->getArgName(j).empty())
2508 P->error("Operands list should have names for each operand!");
2509 if (!OperandsSet.count(OpsList->getArgName(j)))
2510 P->error("'" + OpsList->getArgName(j) +
2511 "' does not occur in pattern or was multiply specified!");
2512 OperandsSet.erase(OpsList->getArgName(j));
2513 Args.push_back(OpsList->getArgName(j));
2514 }
2515
2516 if (!OperandsSet.empty())
2517 P->error("Operands list does not contain an entry for operand '" +
2518 *OperandsSet.begin() + "'!");
2519
2520 // If there is a code init for this fragment, keep track of the fact that
2521 // this fragment uses it.
2522 TreePredicateFn PredFn(P);
2523 if (!PredFn.isAlwaysTrue())
2524 P->getOnlyTree()->addPredicateFn(PredFn);
2525
2526 // If there is a node transformation corresponding to this, keep track of
2527 // it.
2528 Record *Transform = Frag->getValueAsDef("OperandTransform");
2529 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform?
2530 P->getOnlyTree()->setTransformFn(Transform);
2531 }
2532
2533 // Now that we've parsed all of the tree fragments, do a closure on them so
2534 // that there are not references to PatFrags left inside of them.
2535 for (Record *Frag : Fragments) {
2536 if (OutFrags != Frag->isSubClassOf("OutPatFrag"))
2537 continue;
2538
2539 TreePattern &ThePat = *PatternFragments[Frag];
2540 ThePat.InlinePatternFragments();
2541
2542 // Infer as many types as possible. Don't worry about it if we don't infer
2543 // all of them, some may depend on the inputs of the pattern.
2544 ThePat.InferAllTypes();
2545 ThePat.resetError();
2546
2547 // If debugging, print out the pattern fragment result.
2548 DEBUG(ThePat.dump());
2549 }
2550 }
2551
ParseDefaultOperands()2552 void CodeGenDAGPatterns::ParseDefaultOperands() {
2553 std::vector<Record*> DefaultOps;
2554 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps");
2555
2556 // Find some SDNode.
2557 assert(!SDNodes.empty() && "No SDNodes parsed?");
2558 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first);
2559
2560 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) {
2561 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps");
2562
2563 // Clone the DefaultInfo dag node, changing the operator from 'ops' to
2564 // SomeSDnode so that we can parse this.
2565 std::vector<std::pair<Init*, std::string> > Ops;
2566 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op)
2567 Ops.push_back(std::make_pair(DefaultInfo->getArg(op),
2568 DefaultInfo->getArgName(op)));
2569 DagInit *DI = DagInit::get(SomeSDNode, "", Ops);
2570
2571 // Create a TreePattern to parse this.
2572 TreePattern P(DefaultOps[i], DI, false, *this);
2573 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!");
2574
2575 // Copy the operands over into a DAGDefaultOperand.
2576 DAGDefaultOperand DefaultOpInfo;
2577
2578 TreePatternNode *T = P.getTree(0);
2579 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) {
2580 TreePatternNode *TPN = T->getChild(op);
2581 while (TPN->ApplyTypeConstraints(P, false))
2582 /* Resolve all types */;
2583
2584 if (TPN->ContainsUnresolvedType()) {
2585 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" +
2586 DefaultOps[i]->getName() +
2587 "' doesn't have a concrete type!");
2588 }
2589 DefaultOpInfo.DefaultOps.push_back(TPN);
2590 }
2591
2592 // Insert it into the DefaultOperands map so we can find it later.
2593 DefaultOperands[DefaultOps[i]] = DefaultOpInfo;
2594 }
2595 }
2596
2597 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an
2598 /// instruction input. Return true if this is a real use.
HandleUse(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs)2599 static bool HandleUse(TreePattern *I, TreePatternNode *Pat,
2600 std::map<std::string, TreePatternNode*> &InstInputs) {
2601 // No name -> not interesting.
2602 if (Pat->getName().empty()) {
2603 if (Pat->isLeaf()) {
2604 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2605 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") ||
2606 DI->getDef()->isSubClassOf("RegisterOperand")))
2607 I->error("Input " + DI->getDef()->getName() + " must be named!");
2608 }
2609 return false;
2610 }
2611
2612 Record *Rec;
2613 if (Pat->isLeaf()) {
2614 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue());
2615 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!");
2616 Rec = DI->getDef();
2617 } else {
2618 Rec = Pat->getOperator();
2619 }
2620
2621 // SRCVALUE nodes are ignored.
2622 if (Rec->getName() == "srcvalue")
2623 return false;
2624
2625 TreePatternNode *&Slot = InstInputs[Pat->getName()];
2626 if (!Slot) {
2627 Slot = Pat;
2628 return true;
2629 }
2630 Record *SlotRec;
2631 if (Slot->isLeaf()) {
2632 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef();
2633 } else {
2634 assert(Slot->getNumChildren() == 0 && "can't be a use with children!");
2635 SlotRec = Slot->getOperator();
2636 }
2637
2638 // Ensure that the inputs agree if we've already seen this input.
2639 if (Rec != SlotRec)
2640 I->error("All $" + Pat->getName() + " inputs must agree with each other");
2641 if (Slot->getExtTypes() != Pat->getExtTypes())
2642 I->error("All $" + Pat->getName() + " inputs must agree with each other");
2643 return true;
2644 }
2645
2646 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is
2647 /// part of "I", the instruction), computing the set of inputs and outputs of
2648 /// the pattern. Report errors if we see anything naughty.
2649 void CodeGenDAGPatterns::
FindPatternInputsAndOutputs(TreePattern * I,TreePatternNode * Pat,std::map<std::string,TreePatternNode * > & InstInputs,std::map<std::string,TreePatternNode * > & InstResults,std::vector<Record * > & InstImpResults)2650 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat,
2651 std::map<std::string, TreePatternNode*> &InstInputs,
2652 std::map<std::string, TreePatternNode*>&InstResults,
2653 std::vector<Record*> &InstImpResults) {
2654 if (Pat->isLeaf()) {
2655 bool isUse = HandleUse(I, Pat, InstInputs);
2656 if (!isUse && Pat->getTransformFn())
2657 I->error("Cannot specify a transform function for a non-input value!");
2658 return;
2659 }
2660
2661 if (Pat->getOperator()->getName() == "implicit") {
2662 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2663 TreePatternNode *Dest = Pat->getChild(i);
2664 if (!Dest->isLeaf())
2665 I->error("implicitly defined value should be a register!");
2666
2667 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2668 if (!Val || !Val->getDef()->isSubClassOf("Register"))
2669 I->error("implicitly defined value should be a register!");
2670 InstImpResults.push_back(Val->getDef());
2671 }
2672 return;
2673 }
2674
2675 if (Pat->getOperator()->getName() != "set") {
2676 // If this is not a set, verify that the children nodes are not void typed,
2677 // and recurse.
2678 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) {
2679 if (Pat->getChild(i)->getNumTypes() == 0)
2680 I->error("Cannot have void nodes inside of patterns!");
2681 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults,
2682 InstImpResults);
2683 }
2684
2685 // If this is a non-leaf node with no children, treat it basically as if
2686 // it were a leaf. This handles nodes like (imm).
2687 bool isUse = HandleUse(I, Pat, InstInputs);
2688
2689 if (!isUse && Pat->getTransformFn())
2690 I->error("Cannot specify a transform function for a non-input value!");
2691 return;
2692 }
2693
2694 // Otherwise, this is a set, validate and collect instruction results.
2695 if (Pat->getNumChildren() == 0)
2696 I->error("set requires operands!");
2697
2698 if (Pat->getTransformFn())
2699 I->error("Cannot specify a transform function on a set node!");
2700
2701 // Check the set destinations.
2702 unsigned NumDests = Pat->getNumChildren()-1;
2703 for (unsigned i = 0; i != NumDests; ++i) {
2704 TreePatternNode *Dest = Pat->getChild(i);
2705 if (!Dest->isLeaf())
2706 I->error("set destination should be a register!");
2707
2708 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue());
2709 if (!Val) {
2710 I->error("set destination should be a register!");
2711 continue;
2712 }
2713
2714 if (Val->getDef()->isSubClassOf("RegisterClass") ||
2715 Val->getDef()->isSubClassOf("ValueType") ||
2716 Val->getDef()->isSubClassOf("RegisterOperand") ||
2717 Val->getDef()->isSubClassOf("PointerLikeRegClass")) {
2718 if (Dest->getName().empty())
2719 I->error("set destination must have a name!");
2720 if (InstResults.count(Dest->getName()))
2721 I->error("cannot set '" + Dest->getName() +"' multiple times");
2722 InstResults[Dest->getName()] = Dest;
2723 } else if (Val->getDef()->isSubClassOf("Register")) {
2724 InstImpResults.push_back(Val->getDef());
2725 } else {
2726 I->error("set destination should be a register!");
2727 }
2728 }
2729
2730 // Verify and collect info from the computation.
2731 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests),
2732 InstInputs, InstResults, InstImpResults);
2733 }
2734
2735 //===----------------------------------------------------------------------===//
2736 // Instruction Analysis
2737 //===----------------------------------------------------------------------===//
2738
2739 class InstAnalyzer {
2740 const CodeGenDAGPatterns &CDP;
2741 public:
2742 bool hasSideEffects;
2743 bool mayStore;
2744 bool mayLoad;
2745 bool isBitcast;
2746 bool isVariadic;
2747
InstAnalyzer(const CodeGenDAGPatterns & cdp)2748 InstAnalyzer(const CodeGenDAGPatterns &cdp)
2749 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false),
2750 isBitcast(false), isVariadic(false) {}
2751
Analyze(const TreePattern * Pat)2752 void Analyze(const TreePattern *Pat) {
2753 // Assume only the first tree is the pattern. The others are clobber nodes.
2754 AnalyzeNode(Pat->getTree(0));
2755 }
2756
Analyze(const PatternToMatch * Pat)2757 void Analyze(const PatternToMatch *Pat) {
2758 AnalyzeNode(Pat->getSrcPattern());
2759 }
2760
2761 private:
IsNodeBitcast(const TreePatternNode * N) const2762 bool IsNodeBitcast(const TreePatternNode *N) const {
2763 if (hasSideEffects || mayLoad || mayStore || isVariadic)
2764 return false;
2765
2766 if (N->getNumChildren() != 2)
2767 return false;
2768
2769 const TreePatternNode *N0 = N->getChild(0);
2770 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue()))
2771 return false;
2772
2773 const TreePatternNode *N1 = N->getChild(1);
2774 if (N1->isLeaf())
2775 return false;
2776 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf())
2777 return false;
2778
2779 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator());
2780 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1)
2781 return false;
2782 return OpInfo.getEnumName() == "ISD::BITCAST";
2783 }
2784
2785 public:
AnalyzeNode(const TreePatternNode * N)2786 void AnalyzeNode(const TreePatternNode *N) {
2787 if (N->isLeaf()) {
2788 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) {
2789 Record *LeafRec = DI->getDef();
2790 // Handle ComplexPattern leaves.
2791 if (LeafRec->isSubClassOf("ComplexPattern")) {
2792 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec);
2793 if (CP.hasProperty(SDNPMayStore)) mayStore = true;
2794 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true;
2795 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true;
2796 }
2797 }
2798 return;
2799 }
2800
2801 // Analyze children.
2802 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
2803 AnalyzeNode(N->getChild(i));
2804
2805 // Ignore set nodes, which are not SDNodes.
2806 if (N->getOperator()->getName() == "set") {
2807 isBitcast = IsNodeBitcast(N);
2808 return;
2809 }
2810
2811 // Notice properties of the node.
2812 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true;
2813 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true;
2814 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true;
2815 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true;
2816
2817 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) {
2818 // If this is an intrinsic, analyze it.
2819 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref)
2820 mayLoad = true;// These may load memory.
2821
2822 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod)
2823 mayStore = true;// Intrinsics that can write to memory are 'mayStore'.
2824
2825 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem)
2826 // ReadWriteMem intrinsics can have other strange effects.
2827 hasSideEffects = true;
2828 }
2829 }
2830
2831 };
2832
InferFromPattern(CodeGenInstruction & InstInfo,const InstAnalyzer & PatInfo,Record * PatDef)2833 static bool InferFromPattern(CodeGenInstruction &InstInfo,
2834 const InstAnalyzer &PatInfo,
2835 Record *PatDef) {
2836 bool Error = false;
2837
2838 // Remember where InstInfo got its flags.
2839 if (InstInfo.hasUndefFlags())
2840 InstInfo.InferredFrom = PatDef;
2841
2842 // Check explicitly set flags for consistency.
2843 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects &&
2844 !InstInfo.hasSideEffects_Unset) {
2845 // Allow explicitly setting hasSideEffects = 1 on instructions, even when
2846 // the pattern has no side effects. That could be useful for div/rem
2847 // instructions that may trap.
2848 if (!InstInfo.hasSideEffects) {
2849 Error = true;
2850 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " +
2851 Twine(InstInfo.hasSideEffects));
2852 }
2853 }
2854
2855 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) {
2856 Error = true;
2857 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " +
2858 Twine(InstInfo.mayStore));
2859 }
2860
2861 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) {
2862 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads.
2863 // Some targets translate immediates to loads.
2864 if (!InstInfo.mayLoad) {
2865 Error = true;
2866 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " +
2867 Twine(InstInfo.mayLoad));
2868 }
2869 }
2870
2871 // Transfer inferred flags.
2872 InstInfo.hasSideEffects |= PatInfo.hasSideEffects;
2873 InstInfo.mayStore |= PatInfo.mayStore;
2874 InstInfo.mayLoad |= PatInfo.mayLoad;
2875
2876 // These flags are silently added without any verification.
2877 InstInfo.isBitcast |= PatInfo.isBitcast;
2878
2879 // Don't infer isVariadic. This flag means something different on SDNodes and
2880 // instructions. For example, a CALL SDNode is variadic because it has the
2881 // call arguments as operands, but a CALL instruction is not variadic - it
2882 // has argument registers as implicit, not explicit uses.
2883
2884 return Error;
2885 }
2886
2887 /// hasNullFragReference - Return true if the DAG has any reference to the
2888 /// null_frag operator.
hasNullFragReference(DagInit * DI)2889 static bool hasNullFragReference(DagInit *DI) {
2890 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator());
2891 if (!OpDef) return false;
2892 Record *Operator = OpDef->getDef();
2893
2894 // If this is the null fragment, return true.
2895 if (Operator->getName() == "null_frag") return true;
2896 // If any of the arguments reference the null fragment, return true.
2897 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) {
2898 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i));
2899 if (Arg && hasNullFragReference(Arg))
2900 return true;
2901 }
2902
2903 return false;
2904 }
2905
2906 /// hasNullFragReference - Return true if any DAG in the list references
2907 /// the null_frag operator.
hasNullFragReference(ListInit * LI)2908 static bool hasNullFragReference(ListInit *LI) {
2909 for (Init *I : LI->getValues()) {
2910 DagInit *DI = dyn_cast<DagInit>(I);
2911 assert(DI && "non-dag in an instruction Pattern list?!");
2912 if (hasNullFragReference(DI))
2913 return true;
2914 }
2915 return false;
2916 }
2917
2918 /// Get all the instructions in a tree.
2919 static void
getInstructionsInTree(TreePatternNode * Tree,SmallVectorImpl<Record * > & Instrs)2920 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) {
2921 if (Tree->isLeaf())
2922 return;
2923 if (Tree->getOperator()->isSubClassOf("Instruction"))
2924 Instrs.push_back(Tree->getOperator());
2925 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i)
2926 getInstructionsInTree(Tree->getChild(i), Instrs);
2927 }
2928
2929 /// Check the class of a pattern leaf node against the instruction operand it
2930 /// represents.
checkOperandClass(CGIOperandList::OperandInfo & OI,Record * Leaf)2931 static bool checkOperandClass(CGIOperandList::OperandInfo &OI,
2932 Record *Leaf) {
2933 if (OI.Rec == Leaf)
2934 return true;
2935
2936 // Allow direct value types to be used in instruction set patterns.
2937 // The type will be checked later.
2938 if (Leaf->isSubClassOf("ValueType"))
2939 return true;
2940
2941 // Patterns can also be ComplexPattern instances.
2942 if (Leaf->isSubClassOf("ComplexPattern"))
2943 return true;
2944
2945 return false;
2946 }
2947
parseInstructionPattern(CodeGenInstruction & CGI,ListInit * Pat,DAGInstMap & DAGInsts)2948 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern(
2949 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) {
2950
2951 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!");
2952
2953 // Parse the instruction.
2954 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this);
2955 // Inline pattern fragments into it.
2956 I->InlinePatternFragments();
2957
2958 // Infer as many types as possible. If we cannot infer all of them, we can
2959 // never do anything with this instruction pattern: report it to the user.
2960 if (!I->InferAllTypes())
2961 I->error("Could not infer all types in pattern!");
2962
2963 // InstInputs - Keep track of all of the inputs of the instruction, along
2964 // with the record they are declared as.
2965 std::map<std::string, TreePatternNode*> InstInputs;
2966
2967 // InstResults - Keep track of all the virtual registers that are 'set'
2968 // in the instruction, including what reg class they are.
2969 std::map<std::string, TreePatternNode*> InstResults;
2970
2971 std::vector<Record*> InstImpResults;
2972
2973 // Verify that the top-level forms in the instruction are of void type, and
2974 // fill in the InstResults map.
2975 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) {
2976 TreePatternNode *Pat = I->getTree(j);
2977 if (Pat->getNumTypes() != 0) {
2978 std::string Types;
2979 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) {
2980 if (k > 0)
2981 Types += ", ";
2982 Types += Pat->getExtType(k).getName();
2983 }
2984 I->error("Top-level forms in instruction pattern should have"
2985 " void types, has types " + Types);
2986 }
2987
2988 // Find inputs and outputs, and verify the structure of the uses/defs.
2989 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults,
2990 InstImpResults);
2991 }
2992
2993 // Now that we have inputs and outputs of the pattern, inspect the operands
2994 // list for the instruction. This determines the order that operands are
2995 // added to the machine instruction the node corresponds to.
2996 unsigned NumResults = InstResults.size();
2997
2998 // Parse the operands list from the (ops) list, validating it.
2999 assert(I->getArgList().empty() && "Args list should still be empty here!");
3000
3001 // Check that all of the results occur first in the list.
3002 std::vector<Record*> Results;
3003 SmallVector<TreePatternNode *, 2> ResNodes;
3004 for (unsigned i = 0; i != NumResults; ++i) {
3005 if (i == CGI.Operands.size())
3006 I->error("'" + InstResults.begin()->first +
3007 "' set but does not appear in operand list!");
3008 const std::string &OpName = CGI.Operands[i].Name;
3009
3010 // Check that it exists in InstResults.
3011 TreePatternNode *RNode = InstResults[OpName];
3012 if (!RNode)
3013 I->error("Operand $" + OpName + " does not exist in operand list!");
3014
3015 ResNodes.push_back(RNode);
3016
3017 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef();
3018 if (!R)
3019 I->error("Operand $" + OpName + " should be a set destination: all "
3020 "outputs must occur before inputs in operand list!");
3021
3022 if (!checkOperandClass(CGI.Operands[i], R))
3023 I->error("Operand $" + OpName + " class mismatch!");
3024
3025 // Remember the return type.
3026 Results.push_back(CGI.Operands[i].Rec);
3027
3028 // Okay, this one checks out.
3029 InstResults.erase(OpName);
3030 }
3031
3032 // Loop over the inputs next. Make a copy of InstInputs so we can destroy
3033 // the copy while we're checking the inputs.
3034 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs);
3035
3036 std::vector<TreePatternNode*> ResultNodeOperands;
3037 std::vector<Record*> Operands;
3038 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) {
3039 CGIOperandList::OperandInfo &Op = CGI.Operands[i];
3040 const std::string &OpName = Op.Name;
3041 if (OpName.empty())
3042 I->error("Operand #" + utostr(i) + " in operands list has no name!");
3043
3044 if (!InstInputsCheck.count(OpName)) {
3045 // If this is an operand with a DefaultOps set filled in, we can ignore
3046 // this. When we codegen it, we will do so as always executed.
3047 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) {
3048 // Does it have a non-empty DefaultOps field? If so, ignore this
3049 // operand.
3050 if (!getDefaultOperand(Op.Rec).DefaultOps.empty())
3051 continue;
3052 }
3053 I->error("Operand $" + OpName +
3054 " does not appear in the instruction pattern");
3055 }
3056 TreePatternNode *InVal = InstInputsCheck[OpName];
3057 InstInputsCheck.erase(OpName); // It occurred, remove from map.
3058
3059 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) {
3060 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef();
3061 if (!checkOperandClass(Op, InRec))
3062 I->error("Operand $" + OpName + "'s register class disagrees"
3063 " between the operand and pattern");
3064 }
3065 Operands.push_back(Op.Rec);
3066
3067 // Construct the result for the dest-pattern operand list.
3068 TreePatternNode *OpNode = InVal->clone();
3069
3070 // No predicate is useful on the result.
3071 OpNode->clearPredicateFns();
3072
3073 // Promote the xform function to be an explicit node if set.
3074 if (Record *Xform = OpNode->getTransformFn()) {
3075 OpNode->setTransformFn(nullptr);
3076 std::vector<TreePatternNode*> Children;
3077 Children.push_back(OpNode);
3078 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3079 }
3080
3081 ResultNodeOperands.push_back(OpNode);
3082 }
3083
3084 if (!InstInputsCheck.empty())
3085 I->error("Input operand $" + InstInputsCheck.begin()->first +
3086 " occurs in pattern but not in operands list!");
3087
3088 TreePatternNode *ResultPattern =
3089 new TreePatternNode(I->getRecord(), ResultNodeOperands,
3090 GetNumNodeResults(I->getRecord(), *this));
3091 // Copy fully inferred output node types to instruction result pattern.
3092 for (unsigned i = 0; i != NumResults; ++i) {
3093 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled");
3094 ResultPattern->setType(i, ResNodes[i]->getExtType(0));
3095 }
3096
3097 // Create and insert the instruction.
3098 // FIXME: InstImpResults should not be part of DAGInstruction.
3099 DAGInstruction TheInst(I, Results, Operands, InstImpResults);
3100 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst));
3101
3102 // Use a temporary tree pattern to infer all types and make sure that the
3103 // constructed result is correct. This depends on the instruction already
3104 // being inserted into the DAGInsts map.
3105 TreePattern Temp(I->getRecord(), ResultPattern, false, *this);
3106 Temp.InferAllTypes(&I->getNamedNodesMap());
3107
3108 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second;
3109 TheInsertedInst.setResultPattern(Temp.getOnlyTree());
3110
3111 return TheInsertedInst;
3112 }
3113
3114 /// ParseInstructions - Parse all of the instructions, inlining and resolving
3115 /// any fragments involved. This populates the Instructions list with fully
3116 /// resolved instructions.
ParseInstructions()3117 void CodeGenDAGPatterns::ParseInstructions() {
3118 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction");
3119
3120 for (Record *Instr : Instrs) {
3121 ListInit *LI = nullptr;
3122
3123 if (isa<ListInit>(Instr->getValueInit("Pattern")))
3124 LI = Instr->getValueAsListInit("Pattern");
3125
3126 // If there is no pattern, only collect minimal information about the
3127 // instruction for its operand list. We have to assume that there is one
3128 // result, as we have no detailed info. A pattern which references the
3129 // null_frag operator is as-if no pattern were specified. Normally this
3130 // is from a multiclass expansion w/ a SDPatternOperator passed in as
3131 // null_frag.
3132 if (!LI || LI->empty() || hasNullFragReference(LI)) {
3133 std::vector<Record*> Results;
3134 std::vector<Record*> Operands;
3135
3136 CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3137
3138 if (InstInfo.Operands.size() != 0) {
3139 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j)
3140 Results.push_back(InstInfo.Operands[j].Rec);
3141
3142 // The rest are inputs.
3143 for (unsigned j = InstInfo.Operands.NumDefs,
3144 e = InstInfo.Operands.size(); j < e; ++j)
3145 Operands.push_back(InstInfo.Operands[j].Rec);
3146 }
3147
3148 // Create and insert the instruction.
3149 std::vector<Record*> ImpResults;
3150 Instructions.insert(std::make_pair(Instr,
3151 DAGInstruction(nullptr, Results, Operands, ImpResults)));
3152 continue; // no pattern.
3153 }
3154
3155 CodeGenInstruction &CGI = Target.getInstruction(Instr);
3156 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions);
3157
3158 (void)DI;
3159 DEBUG(DI.getPattern()->dump());
3160 }
3161
3162 // If we can, convert the instructions to be patterns that are matched!
3163 for (auto &Entry : Instructions) {
3164 DAGInstruction &TheInst = Entry.second;
3165 TreePattern *I = TheInst.getPattern();
3166 if (!I) continue; // No pattern.
3167
3168 // FIXME: Assume only the first tree is the pattern. The others are clobber
3169 // nodes.
3170 TreePatternNode *Pattern = I->getTree(0);
3171 TreePatternNode *SrcPattern;
3172 if (Pattern->getOperator()->getName() == "set") {
3173 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone();
3174 } else{
3175 // Not a set (store or something?)
3176 SrcPattern = Pattern;
3177 }
3178
3179 Record *Instr = Entry.first;
3180 AddPatternToMatch(I,
3181 PatternToMatch(Instr,
3182 Instr->getValueAsListInit("Predicates"),
3183 SrcPattern,
3184 TheInst.getResultPattern(),
3185 TheInst.getImpResults(),
3186 Instr->getValueAsInt("AddedComplexity"),
3187 Instr->getID()));
3188 }
3189 }
3190
3191
3192 typedef std::pair<const TreePatternNode*, unsigned> NameRecord;
3193
FindNames(const TreePatternNode * P,std::map<std::string,NameRecord> & Names,TreePattern * PatternTop)3194 static void FindNames(const TreePatternNode *P,
3195 std::map<std::string, NameRecord> &Names,
3196 TreePattern *PatternTop) {
3197 if (!P->getName().empty()) {
3198 NameRecord &Rec = Names[P->getName()];
3199 // If this is the first instance of the name, remember the node.
3200 if (Rec.second++ == 0)
3201 Rec.first = P;
3202 else if (Rec.first->getExtTypes() != P->getExtTypes())
3203 PatternTop->error("repetition of value: $" + P->getName() +
3204 " where different uses have different types!");
3205 }
3206
3207 if (!P->isLeaf()) {
3208 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i)
3209 FindNames(P->getChild(i), Names, PatternTop);
3210 }
3211 }
3212
AddPatternToMatch(TreePattern * Pattern,const PatternToMatch & PTM)3213 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern,
3214 const PatternToMatch &PTM) {
3215 // Do some sanity checking on the pattern we're about to match.
3216 std::string Reason;
3217 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) {
3218 PrintWarning(Pattern->getRecord()->getLoc(),
3219 Twine("Pattern can never match: ") + Reason);
3220 return;
3221 }
3222
3223 // If the source pattern's root is a complex pattern, that complex pattern
3224 // must specify the nodes it can potentially match.
3225 if (const ComplexPattern *CP =
3226 PTM.getSrcPattern()->getComplexPatternInfo(*this))
3227 if (CP->getRootNodes().empty())
3228 Pattern->error("ComplexPattern at root must specify list of opcodes it"
3229 " could match");
3230
3231
3232 // Find all of the named values in the input and output, ensure they have the
3233 // same type.
3234 std::map<std::string, NameRecord> SrcNames, DstNames;
3235 FindNames(PTM.getSrcPattern(), SrcNames, Pattern);
3236 FindNames(PTM.getDstPattern(), DstNames, Pattern);
3237
3238 // Scan all of the named values in the destination pattern, rejecting them if
3239 // they don't exist in the input pattern.
3240 for (const auto &Entry : DstNames) {
3241 if (SrcNames[Entry.first].first == nullptr)
3242 Pattern->error("Pattern has input without matching name in output: $" +
3243 Entry.first);
3244 }
3245
3246 // Scan all of the named values in the source pattern, rejecting them if the
3247 // name isn't used in the dest, and isn't used to tie two values together.
3248 for (const auto &Entry : SrcNames)
3249 if (DstNames[Entry.first].first == nullptr &&
3250 SrcNames[Entry.first].second == 1)
3251 Pattern->error("Pattern has dead named input: $" + Entry.first);
3252
3253 PatternsToMatch.push_back(PTM);
3254 }
3255
3256
3257
InferInstructionFlags()3258 void CodeGenDAGPatterns::InferInstructionFlags() {
3259 ArrayRef<const CodeGenInstruction*> Instructions =
3260 Target.getInstructionsByEnumValue();
3261
3262 // First try to infer flags from the primary instruction pattern, if any.
3263 SmallVector<CodeGenInstruction*, 8> Revisit;
3264 unsigned Errors = 0;
3265 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) {
3266 CodeGenInstruction &InstInfo =
3267 const_cast<CodeGenInstruction &>(*Instructions[i]);
3268
3269 // Get the primary instruction pattern.
3270 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern();
3271 if (!Pattern) {
3272 if (InstInfo.hasUndefFlags())
3273 Revisit.push_back(&InstInfo);
3274 continue;
3275 }
3276 InstAnalyzer PatInfo(*this);
3277 PatInfo.Analyze(Pattern);
3278 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef);
3279 }
3280
3281 // Second, look for single-instruction patterns defined outside the
3282 // instruction.
3283 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3284 const PatternToMatch &PTM = *I;
3285
3286 // We can only infer from single-instruction patterns, otherwise we won't
3287 // know which instruction should get the flags.
3288 SmallVector<Record*, 8> PatInstrs;
3289 getInstructionsInTree(PTM.getDstPattern(), PatInstrs);
3290 if (PatInstrs.size() != 1)
3291 continue;
3292
3293 // Get the single instruction.
3294 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front());
3295
3296 // Only infer properties from the first pattern. We'll verify the others.
3297 if (InstInfo.InferredFrom)
3298 continue;
3299
3300 InstAnalyzer PatInfo(*this);
3301 PatInfo.Analyze(&PTM);
3302 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord());
3303 }
3304
3305 if (Errors)
3306 PrintFatalError("pattern conflicts");
3307
3308 // Revisit instructions with undefined flags and no pattern.
3309 if (Target.guessInstructionProperties()) {
3310 for (CodeGenInstruction *InstInfo : Revisit) {
3311 if (InstInfo->InferredFrom)
3312 continue;
3313 // The mayLoad and mayStore flags default to false.
3314 // Conservatively assume hasSideEffects if it wasn't explicit.
3315 if (InstInfo->hasSideEffects_Unset)
3316 InstInfo->hasSideEffects = true;
3317 }
3318 return;
3319 }
3320
3321 // Complain about any flags that are still undefined.
3322 for (CodeGenInstruction *InstInfo : Revisit) {
3323 if (InstInfo->InferredFrom)
3324 continue;
3325 if (InstInfo->hasSideEffects_Unset)
3326 PrintError(InstInfo->TheDef->getLoc(),
3327 "Can't infer hasSideEffects from patterns");
3328 if (InstInfo->mayStore_Unset)
3329 PrintError(InstInfo->TheDef->getLoc(),
3330 "Can't infer mayStore from patterns");
3331 if (InstInfo->mayLoad_Unset)
3332 PrintError(InstInfo->TheDef->getLoc(),
3333 "Can't infer mayLoad from patterns");
3334 }
3335 }
3336
3337
3338 /// Verify instruction flags against pattern node properties.
VerifyInstructionFlags()3339 void CodeGenDAGPatterns::VerifyInstructionFlags() {
3340 unsigned Errors = 0;
3341 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) {
3342 const PatternToMatch &PTM = *I;
3343 SmallVector<Record*, 8> Instrs;
3344 getInstructionsInTree(PTM.getDstPattern(), Instrs);
3345 if (Instrs.empty())
3346 continue;
3347
3348 // Count the number of instructions with each flag set.
3349 unsigned NumSideEffects = 0;
3350 unsigned NumStores = 0;
3351 unsigned NumLoads = 0;
3352 for (const Record *Instr : Instrs) {
3353 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3354 NumSideEffects += InstInfo.hasSideEffects;
3355 NumStores += InstInfo.mayStore;
3356 NumLoads += InstInfo.mayLoad;
3357 }
3358
3359 // Analyze the source pattern.
3360 InstAnalyzer PatInfo(*this);
3361 PatInfo.Analyze(&PTM);
3362
3363 // Collect error messages.
3364 SmallVector<std::string, 4> Msgs;
3365
3366 // Check for missing flags in the output.
3367 // Permit extra flags for now at least.
3368 if (PatInfo.hasSideEffects && !NumSideEffects)
3369 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set");
3370
3371 // Don't verify store flags on instructions with side effects. At least for
3372 // intrinsics, side effects implies mayStore.
3373 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores)
3374 Msgs.push_back("pattern may store, but mayStore isn't set");
3375
3376 // Similarly, mayStore implies mayLoad on intrinsics.
3377 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads)
3378 Msgs.push_back("pattern may load, but mayLoad isn't set");
3379
3380 // Print error messages.
3381 if (Msgs.empty())
3382 continue;
3383 ++Errors;
3384
3385 for (const std::string &Msg : Msgs)
3386 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " +
3387 (Instrs.size() == 1 ?
3388 "instruction" : "output instructions"));
3389 // Provide the location of the relevant instruction definitions.
3390 for (const Record *Instr : Instrs) {
3391 if (Instr != PTM.getSrcRecord())
3392 PrintError(Instr->getLoc(), "defined here");
3393 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr);
3394 if (InstInfo.InferredFrom &&
3395 InstInfo.InferredFrom != InstInfo.TheDef &&
3396 InstInfo.InferredFrom != PTM.getSrcRecord())
3397 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern");
3398 }
3399 }
3400 if (Errors)
3401 PrintFatalError("Errors in DAG patterns");
3402 }
3403
3404 /// Given a pattern result with an unresolved type, see if we can find one
3405 /// instruction with an unresolved result type. Force this result type to an
3406 /// arbitrary element if it's possible types to converge results.
ForceArbitraryInstResultType(TreePatternNode * N,TreePattern & TP)3407 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) {
3408 if (N->isLeaf())
3409 return false;
3410
3411 // Analyze children.
3412 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3413 if (ForceArbitraryInstResultType(N->getChild(i), TP))
3414 return true;
3415
3416 if (!N->getOperator()->isSubClassOf("Instruction"))
3417 return false;
3418
3419 // If this type is already concrete or completely unknown we can't do
3420 // anything.
3421 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) {
3422 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete())
3423 continue;
3424
3425 // Otherwise, force its type to the first possibility (an arbitrary choice).
3426 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP))
3427 return true;
3428 }
3429
3430 return false;
3431 }
3432
ParsePatterns()3433 void CodeGenDAGPatterns::ParsePatterns() {
3434 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern");
3435
3436 for (Record *CurPattern : Patterns) {
3437 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch");
3438
3439 // If the pattern references the null_frag, there's nothing to do.
3440 if (hasNullFragReference(Tree))
3441 continue;
3442
3443 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this);
3444
3445 // Inline pattern fragments into it.
3446 Pattern->InlinePatternFragments();
3447
3448 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs");
3449 if (LI->empty()) continue; // no pattern.
3450
3451 // Parse the instruction.
3452 TreePattern Result(CurPattern, LI, false, *this);
3453
3454 // Inline pattern fragments into it.
3455 Result.InlinePatternFragments();
3456
3457 if (Result.getNumTrees() != 1)
3458 Result.error("Cannot handle instructions producing instructions "
3459 "with temporaries yet!");
3460
3461 bool IterateInference;
3462 bool InferredAllPatternTypes, InferredAllResultTypes;
3463 do {
3464 // Infer as many types as possible. If we cannot infer all of them, we
3465 // can never do anything with this pattern: report it to the user.
3466 InferredAllPatternTypes =
3467 Pattern->InferAllTypes(&Pattern->getNamedNodesMap());
3468
3469 // Infer as many types as possible. If we cannot infer all of them, we
3470 // can never do anything with this pattern: report it to the user.
3471 InferredAllResultTypes =
3472 Result.InferAllTypes(&Pattern->getNamedNodesMap());
3473
3474 IterateInference = false;
3475
3476 // Apply the type of the result to the source pattern. This helps us
3477 // resolve cases where the input type is known to be a pointer type (which
3478 // is considered resolved), but the result knows it needs to be 32- or
3479 // 64-bits. Infer the other way for good measure.
3480 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(),
3481 Pattern->getTree(0)->getNumTypes());
3482 i != e; ++i) {
3483 IterateInference = Pattern->getTree(0)->UpdateNodeType(
3484 i, Result.getTree(0)->getExtType(i), Result);
3485 IterateInference |= Result.getTree(0)->UpdateNodeType(
3486 i, Pattern->getTree(0)->getExtType(i), Result);
3487 }
3488
3489 // If our iteration has converged and the input pattern's types are fully
3490 // resolved but the result pattern is not fully resolved, we may have a
3491 // situation where we have two instructions in the result pattern and
3492 // the instructions require a common register class, but don't care about
3493 // what actual MVT is used. This is actually a bug in our modelling:
3494 // output patterns should have register classes, not MVTs.
3495 //
3496 // In any case, to handle this, we just go through and disambiguate some
3497 // arbitrary types to the result pattern's nodes.
3498 if (!IterateInference && InferredAllPatternTypes &&
3499 !InferredAllResultTypes)
3500 IterateInference =
3501 ForceArbitraryInstResultType(Result.getTree(0), Result);
3502 } while (IterateInference);
3503
3504 // Verify that we inferred enough types that we can do something with the
3505 // pattern and result. If these fire the user has to add type casts.
3506 if (!InferredAllPatternTypes)
3507 Pattern->error("Could not infer all types in pattern!");
3508 if (!InferredAllResultTypes) {
3509 Pattern->dump();
3510 Result.error("Could not infer all types in pattern result!");
3511 }
3512
3513 // Validate that the input pattern is correct.
3514 std::map<std::string, TreePatternNode*> InstInputs;
3515 std::map<std::string, TreePatternNode*> InstResults;
3516 std::vector<Record*> InstImpResults;
3517 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j)
3518 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j),
3519 InstInputs, InstResults,
3520 InstImpResults);
3521
3522 // Promote the xform function to be an explicit node if set.
3523 TreePatternNode *DstPattern = Result.getOnlyTree();
3524 std::vector<TreePatternNode*> ResultNodeOperands;
3525 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) {
3526 TreePatternNode *OpNode = DstPattern->getChild(ii);
3527 if (Record *Xform = OpNode->getTransformFn()) {
3528 OpNode->setTransformFn(nullptr);
3529 std::vector<TreePatternNode*> Children;
3530 Children.push_back(OpNode);
3531 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes());
3532 }
3533 ResultNodeOperands.push_back(OpNode);
3534 }
3535 DstPattern = Result.getOnlyTree();
3536 if (!DstPattern->isLeaf())
3537 DstPattern = new TreePatternNode(DstPattern->getOperator(),
3538 ResultNodeOperands,
3539 DstPattern->getNumTypes());
3540
3541 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i)
3542 DstPattern->setType(i, Result.getOnlyTree()->getExtType(i));
3543
3544 TreePattern Temp(Result.getRecord(), DstPattern, false, *this);
3545 Temp.InferAllTypes();
3546
3547
3548 AddPatternToMatch(Pattern,
3549 PatternToMatch(CurPattern,
3550 CurPattern->getValueAsListInit("Predicates"),
3551 Pattern->getTree(0),
3552 Temp.getOnlyTree(), InstImpResults,
3553 CurPattern->getValueAsInt("AddedComplexity"),
3554 CurPattern->getID()));
3555 }
3556 }
3557
3558 /// CombineChildVariants - Given a bunch of permutations of each child of the
3559 /// 'operator' node, put them together in all possible ways.
CombineChildVariants(TreePatternNode * Orig,const std::vector<std::vector<TreePatternNode * >> & ChildVariants,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3560 static void CombineChildVariants(TreePatternNode *Orig,
3561 const std::vector<std::vector<TreePatternNode*> > &ChildVariants,
3562 std::vector<TreePatternNode*> &OutVariants,
3563 CodeGenDAGPatterns &CDP,
3564 const MultipleUseVarSet &DepVars) {
3565 // Make sure that each operand has at least one variant to choose from.
3566 for (const auto &Variants : ChildVariants)
3567 if (Variants.empty())
3568 return;
3569
3570 // The end result is an all-pairs construction of the resultant pattern.
3571 std::vector<unsigned> Idxs;
3572 Idxs.resize(ChildVariants.size());
3573 bool NotDone;
3574 do {
3575 #ifndef NDEBUG
3576 DEBUG(if (!Idxs.empty()) {
3577 errs() << Orig->getOperator()->getName() << ": Idxs = [ ";
3578 for (unsigned Idx : Idxs) {
3579 errs() << Idx << " ";
3580 }
3581 errs() << "]\n";
3582 });
3583 #endif
3584 // Create the variant and add it to the output list.
3585 std::vector<TreePatternNode*> NewChildren;
3586 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i)
3587 NewChildren.push_back(ChildVariants[i][Idxs[i]]);
3588 auto R = llvm::make_unique<TreePatternNode>(
3589 Orig->getOperator(), NewChildren, Orig->getNumTypes());
3590
3591 // Copy over properties.
3592 R->setName(Orig->getName());
3593 R->setPredicateFns(Orig->getPredicateFns());
3594 R->setTransformFn(Orig->getTransformFn());
3595 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i)
3596 R->setType(i, Orig->getExtType(i));
3597
3598 // If this pattern cannot match, do not include it as a variant.
3599 std::string ErrString;
3600 // Scan to see if this pattern has already been emitted. We can get
3601 // duplication due to things like commuting:
3602 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a)
3603 // which are the same pattern. Ignore the dups.
3604 if (R->canPatternMatch(ErrString, CDP) &&
3605 std::none_of(OutVariants.begin(), OutVariants.end(),
3606 [&](TreePatternNode *Variant) {
3607 return R->isIsomorphicTo(Variant, DepVars);
3608 }))
3609 OutVariants.push_back(R.release());
3610
3611 // Increment indices to the next permutation by incrementing the
3612 // indices from last index backward, e.g., generate the sequence
3613 // [0, 0], [0, 1], [1, 0], [1, 1].
3614 int IdxsIdx;
3615 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) {
3616 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size())
3617 Idxs[IdxsIdx] = 0;
3618 else
3619 break;
3620 }
3621 NotDone = (IdxsIdx >= 0);
3622 } while (NotDone);
3623 }
3624
3625 /// CombineChildVariants - A helper function for binary operators.
3626 ///
CombineChildVariants(TreePatternNode * Orig,const std::vector<TreePatternNode * > & LHS,const std::vector<TreePatternNode * > & RHS,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3627 static void CombineChildVariants(TreePatternNode *Orig,
3628 const std::vector<TreePatternNode*> &LHS,
3629 const std::vector<TreePatternNode*> &RHS,
3630 std::vector<TreePatternNode*> &OutVariants,
3631 CodeGenDAGPatterns &CDP,
3632 const MultipleUseVarSet &DepVars) {
3633 std::vector<std::vector<TreePatternNode*> > ChildVariants;
3634 ChildVariants.push_back(LHS);
3635 ChildVariants.push_back(RHS);
3636 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars);
3637 }
3638
3639
GatherChildrenOfAssociativeOpcode(TreePatternNode * N,std::vector<TreePatternNode * > & Children)3640 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N,
3641 std::vector<TreePatternNode *> &Children) {
3642 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!");
3643 Record *Operator = N->getOperator();
3644
3645 // Only permit raw nodes.
3646 if (!N->getName().empty() || !N->getPredicateFns().empty() ||
3647 N->getTransformFn()) {
3648 Children.push_back(N);
3649 return;
3650 }
3651
3652 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator)
3653 Children.push_back(N->getChild(0));
3654 else
3655 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children);
3656
3657 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator)
3658 Children.push_back(N->getChild(1));
3659 else
3660 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children);
3661 }
3662
3663 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of
3664 /// the (potentially recursive) pattern by using algebraic laws.
3665 ///
GenerateVariantsOf(TreePatternNode * N,std::vector<TreePatternNode * > & OutVariants,CodeGenDAGPatterns & CDP,const MultipleUseVarSet & DepVars)3666 static void GenerateVariantsOf(TreePatternNode *N,
3667 std::vector<TreePatternNode*> &OutVariants,
3668 CodeGenDAGPatterns &CDP,
3669 const MultipleUseVarSet &DepVars) {
3670 // We cannot permute leaves or ComplexPattern uses.
3671 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) {
3672 OutVariants.push_back(N);
3673 return;
3674 }
3675
3676 // Look up interesting info about the node.
3677 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator());
3678
3679 // If this node is associative, re-associate.
3680 if (NodeInfo.hasProperty(SDNPAssociative)) {
3681 // Re-associate by pulling together all of the linked operators
3682 std::vector<TreePatternNode*> MaximalChildren;
3683 GatherChildrenOfAssociativeOpcode(N, MaximalChildren);
3684
3685 // Only handle child sizes of 3. Otherwise we'll end up trying too many
3686 // permutations.
3687 if (MaximalChildren.size() == 3) {
3688 // Find the variants of all of our maximal children.
3689 std::vector<TreePatternNode*> AVariants, BVariants, CVariants;
3690 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars);
3691 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars);
3692 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars);
3693
3694 // There are only two ways we can permute the tree:
3695 // (A op B) op C and A op (B op C)
3696 // Within these forms, we can also permute A/B/C.
3697
3698 // Generate legal pair permutations of A/B/C.
3699 std::vector<TreePatternNode*> ABVariants;
3700 std::vector<TreePatternNode*> BAVariants;
3701 std::vector<TreePatternNode*> ACVariants;
3702 std::vector<TreePatternNode*> CAVariants;
3703 std::vector<TreePatternNode*> BCVariants;
3704 std::vector<TreePatternNode*> CBVariants;
3705 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars);
3706 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars);
3707 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars);
3708 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars);
3709 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars);
3710 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars);
3711
3712 // Combine those into the result: (x op x) op x
3713 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars);
3714 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars);
3715 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars);
3716 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars);
3717 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars);
3718 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars);
3719
3720 // Combine those into the result: x op (x op x)
3721 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars);
3722 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars);
3723 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars);
3724 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars);
3725 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars);
3726 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars);
3727 return;
3728 }
3729 }
3730
3731 // Compute permutations of all children.
3732 std::vector<std::vector<TreePatternNode*> > ChildVariants;
3733 ChildVariants.resize(N->getNumChildren());
3734 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i)
3735 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars);
3736
3737 // Build all permutations based on how the children were formed.
3738 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars);
3739
3740 // If this node is commutative, consider the commuted order.
3741 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP);
3742 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) {
3743 assert((N->getNumChildren()==2 || isCommIntrinsic) &&
3744 "Commutative but doesn't have 2 children!");
3745 // Don't count children which are actually register references.
3746 unsigned NC = 0;
3747 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) {
3748 TreePatternNode *Child = N->getChild(i);
3749 if (Child->isLeaf())
3750 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) {
3751 Record *RR = DI->getDef();
3752 if (RR->isSubClassOf("Register"))
3753 continue;
3754 }
3755 NC++;
3756 }
3757 // Consider the commuted order.
3758 if (isCommIntrinsic) {
3759 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd
3760 // operands are the commutative operands, and there might be more operands
3761 // after those.
3762 assert(NC >= 3 &&
3763 "Commutative intrinsic should have at least 3 children!");
3764 std::vector<std::vector<TreePatternNode*> > Variants;
3765 Variants.push_back(ChildVariants[0]); // Intrinsic id.
3766 Variants.push_back(ChildVariants[2]);
3767 Variants.push_back(ChildVariants[1]);
3768 for (unsigned i = 3; i != NC; ++i)
3769 Variants.push_back(ChildVariants[i]);
3770 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars);
3771 } else if (NC == 2)
3772 CombineChildVariants(N, ChildVariants[1], ChildVariants[0],
3773 OutVariants, CDP, DepVars);
3774 }
3775 }
3776
3777
3778 // GenerateVariants - Generate variants. For example, commutative patterns can
3779 // match multiple ways. Add them to PatternsToMatch as well.
GenerateVariants()3780 void CodeGenDAGPatterns::GenerateVariants() {
3781 DEBUG(errs() << "Generating instruction variants.\n");
3782
3783 // Loop over all of the patterns we've collected, checking to see if we can
3784 // generate variants of the instruction, through the exploitation of
3785 // identities. This permits the target to provide aggressive matching without
3786 // the .td file having to contain tons of variants of instructions.
3787 //
3788 // Note that this loop adds new patterns to the PatternsToMatch list, but we
3789 // intentionally do not reconsider these. Any variants of added patterns have
3790 // already been added.
3791 //
3792 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) {
3793 MultipleUseVarSet DepVars;
3794 std::vector<TreePatternNode*> Variants;
3795 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars);
3796 DEBUG(errs() << "Dependent/multiply used variables: ");
3797 DEBUG(DumpDepVars(DepVars));
3798 DEBUG(errs() << "\n");
3799 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this,
3800 DepVars);
3801
3802 assert(!Variants.empty() && "Must create at least original variant!");
3803 Variants.erase(Variants.begin()); // Remove the original pattern.
3804
3805 if (Variants.empty()) // No variants for this pattern.
3806 continue;
3807
3808 DEBUG(errs() << "FOUND VARIANTS OF: ";
3809 PatternsToMatch[i].getSrcPattern()->dump();
3810 errs() << "\n");
3811
3812 for (unsigned v = 0, e = Variants.size(); v != e; ++v) {
3813 TreePatternNode *Variant = Variants[v];
3814
3815 DEBUG(errs() << " VAR#" << v << ": ";
3816 Variant->dump();
3817 errs() << "\n");
3818
3819 // Scan to see if an instruction or explicit pattern already matches this.
3820 bool AlreadyExists = false;
3821 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) {
3822 // Skip if the top level predicates do not match.
3823 if (PatternsToMatch[i].getPredicates() !=
3824 PatternsToMatch[p].getPredicates())
3825 continue;
3826 // Check to see if this variant already exists.
3827 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(),
3828 DepVars)) {
3829 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n");
3830 AlreadyExists = true;
3831 break;
3832 }
3833 }
3834 // If we already have it, ignore the variant.
3835 if (AlreadyExists) continue;
3836
3837 // Otherwise, add it to the list of patterns we have.
3838 PatternsToMatch.emplace_back(
3839 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(),
3840 Variant, PatternsToMatch[i].getDstPattern(),
3841 PatternsToMatch[i].getDstRegs(),
3842 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID());
3843 }
3844
3845 DEBUG(errs() << "\n");
3846 }
3847 }
3848