1 /* Copyright (c) 2018-2019 The Khronos Group Inc.
2 * Copyright (c) 2018-2019 Valve Corporation
3 * Copyright (c) 2018-2019 LunarG, Inc.
4 * Copyright (C) 2018-2019 Google Inc.
5 *
6 * Licensed under the Apache License, Version 2.0 (the "License");
7 * you may not use this file except in compliance with the License.
8 * You may obtain a copy of the License at
9 *
10 * http://www.apache.org/licenses/LICENSE-2.0
11 *
12 * Unless required by applicable law or agreed to in writing, software
13 * distributed under the License is distributed on an "AS IS" BASIS,
14 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15 * See the License for the specific language governing permissions and
16 * limitations under the License.
17 *
18 */
19
20 // Allow use of STL min and max functions in Windows
21 #define NOMINMAX
22
23 #include "chassis.h"
24 #include "core_validation.h"
25 // This define indicates to build the VMA routines themselves
26 #define VMA_IMPLEMENTATION
27 // This define indicates that we will supply Vulkan function pointers at initialization
28 #define VMA_STATIC_VULKAN_FUNCTIONS 0
29 #include "gpu_validation.h"
30 #include "shader_validation.h"
31 #include "spirv-tools/libspirv.h"
32 #include "spirv-tools/optimizer.hpp"
33 #include "spirv-tools/instrument.hpp"
34 #include <SPIRV/spirv.hpp>
35 #include <algorithm>
36 #include <regex>
37
38 // This is the number of bindings in the debug descriptor set.
39 static const uint32_t kNumBindingsInSet = 2;
40
41 static const VkShaderStageFlags kShaderStageAllRayTracing =
42 VK_SHADER_STAGE_ANY_HIT_BIT_NV | VK_SHADER_STAGE_CALLABLE_BIT_NV | VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV |
43 VK_SHADER_STAGE_INTERSECTION_BIT_NV | VK_SHADER_STAGE_MISS_BIT_NV | VK_SHADER_STAGE_RAYGEN_BIT_NV;
44
45 // Implementation for Descriptor Set Manager class
GpuDescriptorSetManager(CoreChecks * dev_data)46 GpuDescriptorSetManager::GpuDescriptorSetManager(CoreChecks *dev_data) { dev_data_ = dev_data; }
47
~GpuDescriptorSetManager()48 GpuDescriptorSetManager::~GpuDescriptorSetManager() {
49 for (auto &pool : desc_pool_map_) {
50 DispatchDestroyDescriptorPool(dev_data_->device, pool.first, NULL);
51 }
52 desc_pool_map_.clear();
53 }
54
GetDescriptorSets(uint32_t count,VkDescriptorPool * pool,std::vector<VkDescriptorSet> * desc_sets)55 VkResult GpuDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool,
56 std::vector<VkDescriptorSet> *desc_sets) {
57 const uint32_t default_pool_size = kItemsPerChunk;
58 VkResult result = VK_SUCCESS;
59 VkDescriptorPool pool_to_use = VK_NULL_HANDLE;
60
61 if (0 == count) {
62 return result;
63 }
64 desc_sets->clear();
65 desc_sets->resize(count);
66
67 for (auto &pool : desc_pool_map_) {
68 if (pool.second.used + count < pool.second.size) {
69 pool_to_use = pool.first;
70 break;
71 }
72 }
73 if (VK_NULL_HANDLE == pool_to_use) {
74 uint32_t pool_count = default_pool_size;
75 if (count > default_pool_size) {
76 pool_count = count;
77 }
78 const VkDescriptorPoolSize size_counts = {
79 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
80 pool_count * kNumBindingsInSet,
81 };
82 VkDescriptorPoolCreateInfo desc_pool_info = {};
83 desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
84 desc_pool_info.pNext = NULL;
85 desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
86 desc_pool_info.maxSets = pool_count;
87 desc_pool_info.poolSizeCount = 1;
88 desc_pool_info.pPoolSizes = &size_counts;
89 result = DispatchCreateDescriptorPool(dev_data_->device, &desc_pool_info, NULL, &pool_to_use);
90 assert(result == VK_SUCCESS);
91 if (result != VK_SUCCESS) {
92 return result;
93 }
94 desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets;
95 desc_pool_map_[pool_to_use].used = 0;
96 }
97 std::vector<VkDescriptorSetLayout> desc_layouts(count, dev_data_->gpu_validation_state->debug_desc_layout);
98
99 VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count,
100 desc_layouts.data()};
101
102 result = DispatchAllocateDescriptorSets(dev_data_->device, &alloc_info, desc_sets->data());
103 assert(result == VK_SUCCESS);
104 if (result != VK_SUCCESS) {
105 return result;
106 }
107 *pool = pool_to_use;
108 desc_pool_map_[pool_to_use].used += count;
109 return result;
110 }
111
PutBackDescriptorSet(VkDescriptorPool desc_pool,VkDescriptorSet desc_set)112 void GpuDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
113 auto iter = desc_pool_map_.find(desc_pool);
114 if (iter != desc_pool_map_.end()) {
115 VkResult result = DispatchFreeDescriptorSets(dev_data_->device, desc_pool, 1, &desc_set);
116 assert(result == VK_SUCCESS);
117 if (result != VK_SUCCESS) {
118 return;
119 }
120 desc_pool_map_[desc_pool].used--;
121 if (0 == desc_pool_map_[desc_pool].used) {
122 DispatchDestroyDescriptorPool(dev_data_->device, desc_pool, NULL);
123 desc_pool_map_.erase(desc_pool);
124 }
125 }
126 return;
127 }
128
129 // Trampolines to make VMA call Dispatch for Vulkan calls
gpuVkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceProperties * pProperties)130 static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
131 VkPhysicalDeviceProperties *pProperties) {
132 DispatchGetPhysicalDeviceProperties(physicalDevice, pProperties);
133 }
gpuVkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceMemoryProperties * pMemoryProperties)134 static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,
135 VkPhysicalDeviceMemoryProperties *pMemoryProperties) {
136 DispatchGetPhysicalDeviceMemoryProperties(physicalDevice, pMemoryProperties);
137 }
gpuVkAllocateMemory(VkDevice device,const VkMemoryAllocateInfo * pAllocateInfo,const VkAllocationCallbacks * pAllocator,VkDeviceMemory * pMemory)138 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo,
139 const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) {
140 return DispatchAllocateMemory(device, pAllocateInfo, pAllocator, pMemory);
141 }
gpuVkFreeMemory(VkDevice device,VkDeviceMemory memory,const VkAllocationCallbacks * pAllocator)142 static VKAPI_ATTR void VKAPI_CALL gpuVkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks *pAllocator) {
143 DispatchFreeMemory(device, memory, pAllocator);
144 }
gpuVkMapMemory(VkDevice device,VkDeviceMemory memory,VkDeviceSize offset,VkDeviceSize size,VkMemoryMapFlags flags,void ** ppData)145 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size,
146 VkMemoryMapFlags flags, void **ppData) {
147 return DispatchMapMemory(device, memory, offset, size, flags, ppData);
148 }
gpuVkUnmapMemory(VkDevice device,VkDeviceMemory memory)149 static VKAPI_ATTR void VKAPI_CALL gpuVkUnmapMemory(VkDevice device, VkDeviceMemory memory) { DispatchUnmapMemory(device, memory); }
gpuVkFlushMappedMemoryRanges(VkDevice device,uint32_t memoryRangeCount,const VkMappedMemoryRange * pMemoryRanges)150 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
151 const VkMappedMemoryRange *pMemoryRanges) {
152 return DispatchFlushMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
153 }
gpuVkInvalidateMappedMemoryRanges(VkDevice device,uint32_t memoryRangeCount,const VkMappedMemoryRange * pMemoryRanges)154 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
155 const VkMappedMemoryRange *pMemoryRanges) {
156 return DispatchInvalidateMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
157 }
gpuVkBindBufferMemory(VkDevice device,VkBuffer buffer,VkDeviceMemory memory,VkDeviceSize memoryOffset)158 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory,
159 VkDeviceSize memoryOffset) {
160 return DispatchBindBufferMemory(device, buffer, memory, memoryOffset);
161 }
gpuVkBindImageMemory(VkDevice device,VkImage image,VkDeviceMemory memory,VkDeviceSize memoryOffset)162 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory,
163 VkDeviceSize memoryOffset) {
164 return DispatchBindImageMemory(device, image, memory, memoryOffset);
165 }
gpuVkGetBufferMemoryRequirements(VkDevice device,VkBuffer buffer,VkMemoryRequirements * pMemoryRequirements)166 static VKAPI_ATTR void VKAPI_CALL gpuVkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer,
167 VkMemoryRequirements *pMemoryRequirements) {
168 DispatchGetBufferMemoryRequirements(device, buffer, pMemoryRequirements);
169 }
gpuVkGetImageMemoryRequirements(VkDevice device,VkImage image,VkMemoryRequirements * pMemoryRequirements)170 static VKAPI_ATTR void VKAPI_CALL gpuVkGetImageMemoryRequirements(VkDevice device, VkImage image,
171 VkMemoryRequirements *pMemoryRequirements) {
172 DispatchGetImageMemoryRequirements(device, image, pMemoryRequirements);
173 }
gpuVkCreateBuffer(VkDevice device,const VkBufferCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBuffer * pBuffer)174 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo,
175 const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer) {
176 return DispatchCreateBuffer(device, pCreateInfo, pAllocator, pBuffer);
177 }
gpuVkDestroyBuffer(VkDevice device,VkBuffer buffer,const VkAllocationCallbacks * pAllocator)178 static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) {
179 return DispatchDestroyBuffer(device, buffer, pAllocator);
180 }
gpuVkCreateImage(VkDevice device,const VkImageCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImage * pImage)181 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo,
182 const VkAllocationCallbacks *pAllocator, VkImage *pImage) {
183 return DispatchCreateImage(device, pCreateInfo, pAllocator, pImage);
184 }
gpuVkDestroyImage(VkDevice device,VkImage image,const VkAllocationCallbacks * pAllocator)185 static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) {
186 DispatchDestroyImage(device, image, pAllocator);
187 }
gpuVkCmdCopyBuffer(VkCommandBuffer commandBuffer,VkBuffer srcBuffer,VkBuffer dstBuffer,uint32_t regionCount,const VkBufferCopy * pRegions)188 static VKAPI_ATTR void VKAPI_CALL gpuVkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
189 uint32_t regionCount, const VkBufferCopy *pRegions) {
190 DispatchCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions);
191 }
192
GpuInitializeVma()193 VkResult CoreChecks::GpuInitializeVma() {
194 VmaVulkanFunctions functions;
195 VmaAllocatorCreateInfo allocatorInfo = {};
196 allocatorInfo.device = device;
197 ValidationObject *device_object = GetLayerDataPtr(get_dispatch_key(allocatorInfo.device), layer_data_map);
198 ValidationObject *validation_data =
199 ValidationObject::GetValidationObject(device_object->object_dispatch, LayerObjectTypeCoreValidation);
200 CoreChecks *core_checks = static_cast<CoreChecks *>(validation_data);
201 allocatorInfo.physicalDevice = core_checks->physical_device;
202
203 functions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)gpuVkGetPhysicalDeviceProperties;
204 functions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)gpuVkGetPhysicalDeviceMemoryProperties;
205 functions.vkAllocateMemory = (PFN_vkAllocateMemory)gpuVkAllocateMemory;
206 functions.vkFreeMemory = (PFN_vkFreeMemory)gpuVkFreeMemory;
207 functions.vkMapMemory = (PFN_vkMapMemory)gpuVkMapMemory;
208 functions.vkUnmapMemory = (PFN_vkUnmapMemory)gpuVkUnmapMemory;
209 functions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)gpuVkFlushMappedMemoryRanges;
210 functions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)gpuVkInvalidateMappedMemoryRanges;
211 functions.vkBindBufferMemory = (PFN_vkBindBufferMemory)gpuVkBindBufferMemory;
212 functions.vkBindImageMemory = (PFN_vkBindImageMemory)gpuVkBindImageMemory;
213 functions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)gpuVkGetBufferMemoryRequirements;
214 functions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)gpuVkGetImageMemoryRequirements;
215 functions.vkCreateBuffer = (PFN_vkCreateBuffer)gpuVkCreateBuffer;
216 functions.vkDestroyBuffer = (PFN_vkDestroyBuffer)gpuVkDestroyBuffer;
217 functions.vkCreateImage = (PFN_vkCreateImage)gpuVkCreateImage;
218 functions.vkDestroyImage = (PFN_vkDestroyImage)gpuVkDestroyImage;
219 functions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)gpuVkCmdCopyBuffer;
220 allocatorInfo.pVulkanFunctions = &functions;
221
222 return vmaCreateAllocator(&allocatorInfo, &gpu_validation_state->vmaAllocator);
223 }
224
225 // Convenience function for reporting problems with setting up GPU Validation.
ReportSetupProblem(VkDebugReportObjectTypeEXT object_type,uint64_t object_handle,const char * const specific_message)226 void CoreChecks::ReportSetupProblem(VkDebugReportObjectTypeEXT object_type, uint64_t object_handle,
227 const char *const specific_message) {
228 log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, object_type, object_handle, "UNASSIGNED-GPU-Assisted Validation Error. ",
229 "Detail: (%s)", specific_message);
230 }
231
232 // Turn on necessary device features.
GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu,safe_VkDeviceCreateInfo * modified_create_info,VkPhysicalDeviceFeatures * supported_features)233 void CoreChecks::GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu, safe_VkDeviceCreateInfo *modified_create_info,
234 VkPhysicalDeviceFeatures *supported_features) {
235 if (supported_features->fragmentStoresAndAtomics || supported_features->vertexPipelineStoresAndAtomics) {
236 VkPhysicalDeviceFeatures *features = nullptr;
237 if (modified_create_info->pEnabledFeatures) {
238 // If pEnabledFeatures, VkPhysicalDeviceFeatures2 in pNext chain is not allowed
239 features = const_cast<VkPhysicalDeviceFeatures *>(modified_create_info->pEnabledFeatures);
240 } else {
241 VkPhysicalDeviceFeatures2 *features2 = nullptr;
242 features2 =
243 const_cast<VkPhysicalDeviceFeatures2 *>(lvl_find_in_chain<VkPhysicalDeviceFeatures2>(modified_create_info->pNext));
244 if (features2) features = &features2->features;
245 }
246 if (features) {
247 features->fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics;
248 features->vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics;
249 } else {
250 VkPhysicalDeviceFeatures new_features = {};
251 new_features.fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics;
252 new_features.vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics;
253 delete modified_create_info->pEnabledFeatures;
254 modified_create_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features);
255 }
256 }
257 }
258
259 // Perform initializations that can be done at Create Device time.
GpuPostCallRecordCreateDevice(const CHECK_ENABLED * enables,const VkDeviceCreateInfo * pCreateInfo)260 void CoreChecks::GpuPostCallRecordCreateDevice(const CHECK_ENABLED *enables, const VkDeviceCreateInfo *pCreateInfo) {
261 // Set instance-level enables in device-enable data structure if using legacy settings
262 enabled.gpu_validation = enables->gpu_validation;
263 enabled.gpu_validation_reserve_binding_slot = enables->gpu_validation_reserve_binding_slot;
264
265 gpu_validation_state = std::unique_ptr<GpuValidationState>(new GpuValidationState);
266 gpu_validation_state->reserve_binding_slot = enables->gpu_validation_reserve_binding_slot;
267
268 if (phys_dev_props.apiVersion < VK_API_VERSION_1_1) {
269 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
270 "GPU-Assisted validation requires Vulkan 1.1 or later. GPU-Assisted Validation disabled.");
271 gpu_validation_state->aborted = true;
272 return;
273 }
274
275 // If api version 1.1 or later, SetDeviceLoaderData will be in the loader
276 auto chain_info = get_chain_info(pCreateInfo, VK_LOADER_DATA_CALLBACK);
277 assert(chain_info->u.pfnSetDeviceLoaderData);
278 gpu_validation_state->vkSetDeviceLoaderData = chain_info->u.pfnSetDeviceLoaderData;
279
280 // Some devices have extremely high limits here, so set a reasonable max because we have to pad
281 // the pipeline layout with dummy descriptor set layouts.
282 gpu_validation_state->adjusted_max_desc_sets = phys_dev_props.limits.maxBoundDescriptorSets;
283 gpu_validation_state->adjusted_max_desc_sets = std::min(33U, gpu_validation_state->adjusted_max_desc_sets);
284
285 // We can't do anything if there is only one.
286 // Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
287 if (gpu_validation_state->adjusted_max_desc_sets == 1) {
288 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
289 "Device can bind only a single descriptor set. GPU-Assisted Validation disabled.");
290 gpu_validation_state->aborted = true;
291 return;
292 }
293 gpu_validation_state->desc_set_bind_index = gpu_validation_state->adjusted_max_desc_sets - 1;
294 log_msg(report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
295 "UNASSIGNED-GPU-Assisted Validation. ", "Shaders using descriptor set at index %d. ",
296 gpu_validation_state->desc_set_bind_index);
297
298 gpu_validation_state->output_buffer_size = sizeof(uint32_t) * (spvtools::kInstMaxOutCnt + 1);
299 VkResult result = GpuInitializeVma();
300 assert(result == VK_SUCCESS);
301 std::unique_ptr<GpuDescriptorSetManager> desc_set_manager(new GpuDescriptorSetManager(this));
302
303 // The descriptor indexing checks require only the first "output" binding.
304 const VkDescriptorSetLayoutBinding debug_desc_layout_bindings[kNumBindingsInSet] = {
305 {
306 0, // output
307 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
308 1,
309 VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT | kShaderStageAllRayTracing,
310 NULL,
311 },
312 {
313 1, // input
314 VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
315 1,
316 VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT | kShaderStageAllRayTracing,
317 NULL,
318 },
319 };
320
321 const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0,
322 kNumBindingsInSet, debug_desc_layout_bindings};
323
324 const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0,
325 NULL};
326
327 result = DispatchCreateDescriptorSetLayout(device, &debug_desc_layout_info, NULL, &gpu_validation_state->debug_desc_layout);
328
329 // This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index.
330 VkResult result2 =
331 DispatchCreateDescriptorSetLayout(device, &dummy_desc_layout_info, NULL, &gpu_validation_state->dummy_desc_layout);
332 assert((result == VK_SUCCESS) && (result2 == VK_SUCCESS));
333 if ((result != VK_SUCCESS) || (result2 != VK_SUCCESS)) {
334 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
335 "Unable to create descriptor set layout. GPU-Assisted Validation disabled.");
336 if (result == VK_SUCCESS) {
337 DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->debug_desc_layout, NULL);
338 }
339 if (result2 == VK_SUCCESS) {
340 DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->dummy_desc_layout, NULL);
341 }
342 gpu_validation_state->debug_desc_layout = VK_NULL_HANDLE;
343 gpu_validation_state->dummy_desc_layout = VK_NULL_HANDLE;
344 gpu_validation_state->aborted = true;
345 return;
346 }
347 gpu_validation_state->desc_set_manager = std::move(desc_set_manager);
348 }
349
350 // Clean up device-related resources
GpuPreCallRecordDestroyDevice()351 void CoreChecks::GpuPreCallRecordDestroyDevice() {
352 for (auto &queue_barrier_command_info_kv : gpu_validation_state->queue_barrier_command_infos) {
353 GpuQueueBarrierCommandInfo &queue_barrier_command_info = queue_barrier_command_info_kv.second;
354
355 DispatchFreeCommandBuffers(device, queue_barrier_command_info.barrier_command_pool, 1,
356 &queue_barrier_command_info.barrier_command_buffer);
357 queue_barrier_command_info.barrier_command_buffer = VK_NULL_HANDLE;
358
359 DispatchDestroyCommandPool(device, queue_barrier_command_info.barrier_command_pool, NULL);
360 queue_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
361 }
362 gpu_validation_state->queue_barrier_command_infos.clear();
363 if (gpu_validation_state->debug_desc_layout) {
364 DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->debug_desc_layout, NULL);
365 gpu_validation_state->debug_desc_layout = VK_NULL_HANDLE;
366 }
367 if (gpu_validation_state->dummy_desc_layout) {
368 DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->dummy_desc_layout, NULL);
369 gpu_validation_state->dummy_desc_layout = VK_NULL_HANDLE;
370 }
371 gpu_validation_state->desc_set_manager.reset();
372 if (gpu_validation_state->vmaAllocator) {
373 vmaDestroyAllocator(gpu_validation_state->vmaAllocator);
374 }
375 }
376
377 // Modify the pipeline layout to include our debug descriptor set and any needed padding with the dummy descriptor set.
GpuPreCallCreatePipelineLayout(const VkPipelineLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineLayout * pPipelineLayout,std::vector<VkDescriptorSetLayout> * new_layouts,VkPipelineLayoutCreateInfo * modified_create_info)378 bool CoreChecks::GpuPreCallCreatePipelineLayout(const VkPipelineLayoutCreateInfo *pCreateInfo,
379 const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
380 std::vector<VkDescriptorSetLayout> *new_layouts,
381 VkPipelineLayoutCreateInfo *modified_create_info) {
382 if (gpu_validation_state->aborted) {
383 return false;
384 }
385
386 if (modified_create_info->setLayoutCount >= gpu_validation_state->adjusted_max_desc_sets) {
387 std::ostringstream strm;
388 strm << "Pipeline Layout conflict with validation's descriptor set at slot " << gpu_validation_state->desc_set_bind_index
389 << ". "
390 << "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. "
391 << "Validation is not modifying the pipeline layout. "
392 << "Instrumented shaders are replaced with non-instrumented shaders.";
393 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), strm.str().c_str());
394 } else {
395 // Modify the pipeline layout by:
396 // 1. Copying the caller's descriptor set desc_layouts
397 // 2. Fill in dummy descriptor layouts up to the max binding
398 // 3. Fill in with the debug descriptor layout at the max binding slot
399 new_layouts->reserve(gpu_validation_state->adjusted_max_desc_sets);
400 new_layouts->insert(new_layouts->end(), &pCreateInfo->pSetLayouts[0],
401 &pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
402 for (uint32_t i = pCreateInfo->setLayoutCount; i < gpu_validation_state->adjusted_max_desc_sets - 1; ++i) {
403 new_layouts->push_back(gpu_validation_state->dummy_desc_layout);
404 }
405 new_layouts->push_back(gpu_validation_state->debug_desc_layout);
406 modified_create_info->pSetLayouts = new_layouts->data();
407 modified_create_info->setLayoutCount = gpu_validation_state->adjusted_max_desc_sets;
408 }
409 return true;
410 }
411
412 // Clean up GPU validation after the CreatePipelineLayout call is made
GpuPostCallCreatePipelineLayout(VkResult result)413 void CoreChecks::GpuPostCallCreatePipelineLayout(VkResult result) {
414 // Clean up GPU validation
415 if (result != VK_SUCCESS) {
416 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
417 "Unable to create pipeline layout. Device could become unstable.");
418 gpu_validation_state->aborted = true;
419 }
420 }
421
422 // Free the device memory and descriptor set associated with a command buffer.
GpuResetCommandBuffer(const VkCommandBuffer commandBuffer)423 void CoreChecks::GpuResetCommandBuffer(const VkCommandBuffer commandBuffer) {
424 if (gpu_validation_state->aborted) {
425 return;
426 }
427 auto gpu_buffer_list = gpu_validation_state->GetGpuBufferInfo(commandBuffer);
428 for (auto buffer_info : gpu_buffer_list) {
429 vmaDestroyBuffer(gpu_validation_state->vmaAllocator, buffer_info.output_mem_block.buffer,
430 buffer_info.output_mem_block.allocation);
431 if (buffer_info.input_mem_block.buffer) {
432 vmaDestroyBuffer(gpu_validation_state->vmaAllocator, buffer_info.input_mem_block.buffer,
433 buffer_info.input_mem_block.allocation);
434 }
435 if (buffer_info.desc_set != VK_NULL_HANDLE) {
436 gpu_validation_state->desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set);
437 }
438 }
439 gpu_validation_state->command_buffer_map.erase(commandBuffer);
440 }
441
442 // Just gives a warning about a possible deadlock.
GpuPreCallValidateCmdWaitEvents(VkPipelineStageFlags sourceStageMask)443 void CoreChecks::GpuPreCallValidateCmdWaitEvents(VkPipelineStageFlags sourceStageMask) {
444 if (sourceStageMask & VK_PIPELINE_STAGE_HOST_BIT) {
445 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
446 "CmdWaitEvents recorded with VK_PIPELINE_STAGE_HOST_BIT set. "
447 "GPU_Assisted validation waits on queue completion. "
448 "This wait could block the host's signaling of this event, resulting in deadlock.");
449 }
450 }
451
GpuPreCallRecordCreateGraphicsPipelines(VkPipelineCache pipelineCache,uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines,std::vector<std::unique_ptr<PIPELINE_STATE>> & pipe_state)452 std::vector<safe_VkGraphicsPipelineCreateInfo> CoreChecks::GpuPreCallRecordCreateGraphicsPipelines(
453 VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos,
454 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
455 std::vector<safe_VkGraphicsPipelineCreateInfo> new_pipeline_create_infos;
456 GpuPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, pipe_state, &new_pipeline_create_infos,
457 VK_PIPELINE_BIND_POINT_GRAPHICS);
458 return new_pipeline_create_infos;
459 }
GpuPreCallRecordCreateComputePipelines(VkPipelineCache pipelineCache,uint32_t count,const VkComputePipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines,std::vector<std::unique_ptr<PIPELINE_STATE>> & pipe_state)460 std::vector<safe_VkComputePipelineCreateInfo> CoreChecks::GpuPreCallRecordCreateComputePipelines(
461 VkPipelineCache pipelineCache, uint32_t count, const VkComputePipelineCreateInfo *pCreateInfos,
462 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
463 std::vector<safe_VkComputePipelineCreateInfo> new_pipeline_create_infos;
464 GpuPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, pipe_state, &new_pipeline_create_infos,
465 VK_PIPELINE_BIND_POINT_COMPUTE);
466 return new_pipeline_create_infos;
467 }
GpuPreCallRecordCreateRayTracingPipelinesNV(VkPipelineCache pipelineCache,uint32_t count,const VkRayTracingPipelineCreateInfoNV * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines,std::vector<std::unique_ptr<PIPELINE_STATE>> & pipe_state)468 std::vector<safe_VkRayTracingPipelineCreateInfoNV> CoreChecks::GpuPreCallRecordCreateRayTracingPipelinesNV(
469 VkPipelineCache pipelineCache, uint32_t count, const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
470 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
471 std::vector<safe_VkRayTracingPipelineCreateInfoNV> new_pipeline_create_infos;
472 GpuPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, pipe_state, &new_pipeline_create_infos,
473 VK_PIPELINE_BIND_POINT_RAY_TRACING_NV);
474 return new_pipeline_create_infos;
475 }
476 template <typename CreateInfo>
477 struct CreatePipelineTraits {};
478 template <>
479 struct CreatePipelineTraits<VkGraphicsPipelineCreateInfo> {
480 using SafeType = safe_VkGraphicsPipelineCreateInfo;
GetPipelineCICreatePipelineTraits481 static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->graphicsPipelineCI; }
GetStageCountCreatePipelineTraits482 static uint32_t GetStageCount(const VkGraphicsPipelineCreateInfo &createInfo) { return createInfo.stageCount; }
GetShaderModuleCreatePipelineTraits483 static VkShaderModule GetShaderModule(const VkGraphicsPipelineCreateInfo &createInfo, uint32_t stage) {
484 return createInfo.pStages[stage].module;
485 }
SetShaderModuleCreatePipelineTraits486 static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
487 createInfo->pStages[stage].module = shader_module;
488 }
489 };
490
491 template <>
492 struct CreatePipelineTraits<VkComputePipelineCreateInfo> {
493 using SafeType = safe_VkComputePipelineCreateInfo;
GetPipelineCICreatePipelineTraits494 static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->computePipelineCI; }
GetStageCountCreatePipelineTraits495 static uint32_t GetStageCount(const VkComputePipelineCreateInfo &createInfo) { return 1; }
GetShaderModuleCreatePipelineTraits496 static VkShaderModule GetShaderModule(const VkComputePipelineCreateInfo &createInfo, uint32_t stage) {
497 return createInfo.stage.module;
498 }
SetShaderModuleCreatePipelineTraits499 static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
500 assert(stage == 0);
501 createInfo->stage.module = shader_module;
502 }
503 };
504 template <>
505 struct CreatePipelineTraits<VkRayTracingPipelineCreateInfoNV> {
506 using SafeType = safe_VkRayTracingPipelineCreateInfoNV;
GetPipelineCICreatePipelineTraits507 static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->raytracingPipelineCI; }
GetStageCountCreatePipelineTraits508 static uint32_t GetStageCount(const VkRayTracingPipelineCreateInfoNV &createInfo) { return createInfo.stageCount; }
GetShaderModuleCreatePipelineTraits509 static VkShaderModule GetShaderModule(const VkRayTracingPipelineCreateInfoNV &createInfo, uint32_t stage) {
510 return createInfo.pStages[stage].module;
511 }
SetShaderModuleCreatePipelineTraits512 static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
513 createInfo->pStages[stage].module = shader_module;
514 }
515 };
516
517 // Examine the pipelines to see if they use the debug descriptor set binding index.
518 // If any do, create new non-instrumented shader modules and use them to replace the instrumented
519 // shaders in the pipeline. Return the (possibly) modified create infos to the caller.
520 template <typename CreateInfo, typename SafeCreateInfo>
GpuPreCallRecordPipelineCreations(uint32_t count,const CreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines,std::vector<std::unique_ptr<PIPELINE_STATE>> & pipe_state,std::vector<SafeCreateInfo> * new_pipeline_create_infos,const VkPipelineBindPoint bind_point)521 void CoreChecks::GpuPreCallRecordPipelineCreations(uint32_t count, const CreateInfo *pCreateInfos,
522 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
523 std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state,
524 std::vector<SafeCreateInfo> *new_pipeline_create_infos,
525 const VkPipelineBindPoint bind_point) {
526 using Accessor = CreatePipelineTraits<CreateInfo>;
527 if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
528 bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
529 return;
530 }
531
532 // Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug
533 // descriptor set index.
534 for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
535 uint32_t stageCount = Accessor::GetStageCount(pCreateInfos[pipeline]);
536 new_pipeline_create_infos->push_back(Accessor::GetPipelineCI(pipe_state[pipeline].get()));
537
538 bool replace_shaders = false;
539 if (pipe_state[pipeline]->active_slots.find(gpu_validation_state->desc_set_bind_index) !=
540 pipe_state[pipeline]->active_slots.end()) {
541 replace_shaders = true;
542 }
543 // If the app requests all available sets, the pipeline layout was not modified at pipeline layout creation and the already
544 // instrumented shaders need to be replaced with uninstrumented shaders
545 if (pipe_state[pipeline]->pipeline_layout.set_layouts.size() >= gpu_validation_state->adjusted_max_desc_sets) {
546 replace_shaders = true;
547 }
548
549 if (replace_shaders) {
550 for (uint32_t stage = 0; stage < stageCount; ++stage) {
551 const SHADER_MODULE_STATE *shader = GetShaderModuleState(Accessor::GetShaderModule(pCreateInfos[pipeline], stage));
552
553 VkShaderModuleCreateInfo create_info = {};
554 VkShaderModule shader_module;
555 create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
556 create_info.pCode = shader->words.data();
557 create_info.codeSize = shader->words.size() * sizeof(uint32_t);
558 VkResult result = DispatchCreateShaderModule(device, &create_info, pAllocator, &shader_module);
559 if (result == VK_SUCCESS) {
560 Accessor::SetShaderModule(new_pipeline_create_infos[pipeline].data(), shader_module, stage);
561 } else {
562 uint64_t moduleHandle = HandleToUint64(Accessor::GetShaderModule(pCreateInfos[pipeline], stage));
563 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, moduleHandle,
564 "Unable to replace instrumented shader with non-instrumented one. "
565 "Device could become unstable.");
566 }
567 }
568 }
569 }
570 }
571
GpuPostCallRecordCreateGraphicsPipelines(const uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)572 void CoreChecks::GpuPostCallRecordCreateGraphicsPipelines(const uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos,
573 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
574 GpuPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_GRAPHICS);
575 }
GpuPostCallRecordCreateComputePipelines(const uint32_t count,const VkComputePipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)576 void CoreChecks::GpuPostCallRecordCreateComputePipelines(const uint32_t count, const VkComputePipelineCreateInfo *pCreateInfos,
577 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
578 GpuPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_COMPUTE);
579 }
GpuPostCallRecordCreateRayTracingPipelinesNV(const uint32_t count,const VkRayTracingPipelineCreateInfoNV * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)580 void CoreChecks::GpuPostCallRecordCreateRayTracingPipelinesNV(const uint32_t count,
581 const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
582 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
583 GpuPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV);
584 }
585
586 // For every pipeline:
587 // - For every shader in a pipeline:
588 // - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index):
589 // - Destroy it since it has been bound into the pipeline by now. This is our only chance to delete it.
590 // - Track the shader in the shader_map
591 // - Save the shader binary if it contains debug code
592 template <typename CreateInfo>
GpuPostCallRecordPipelineCreations(const uint32_t count,const CreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines,const VkPipelineBindPoint bind_point)593 void CoreChecks::GpuPostCallRecordPipelineCreations(const uint32_t count, const CreateInfo *pCreateInfos,
594 const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
595 const VkPipelineBindPoint bind_point) {
596 using Accessor = CreatePipelineTraits<CreateInfo>;
597 if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
598 bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
599 return;
600 }
601 for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
602 auto pipeline_state = ValidationStateTracker::GetPipelineState(pPipelines[pipeline]);
603 if (nullptr == pipeline_state) continue;
604
605 uint32_t stageCount = 0;
606 if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
607 stageCount = pipeline_state->graphicsPipelineCI.stageCount;
608 } else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
609 stageCount = 1;
610 } else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
611 stageCount = pipeline_state->raytracingPipelineCI.stageCount;
612 } else {
613 assert(false);
614 }
615
616 for (uint32_t stage = 0; stage < stageCount; ++stage) {
617 if (pipeline_state->active_slots.find(gpu_validation_state->desc_set_bind_index) !=
618 pipeline_state->active_slots.end()) {
619 DispatchDestroyShaderModule(device, Accessor::GetShaderModule(pCreateInfos[pipeline], stage), pAllocator);
620 }
621
622 const SHADER_MODULE_STATE *shader_state = nullptr;
623 if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
624 shader_state = GetShaderModuleState(pipeline_state->graphicsPipelineCI.pStages[stage].module);
625 } else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
626 assert(stage == 0);
627 shader_state = GetShaderModuleState(pipeline_state->computePipelineCI.stage.module);
628 } else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
629 shader_state = GetShaderModuleState(pipeline_state->raytracingPipelineCI.pStages[stage].module);
630 } else {
631 assert(false);
632 }
633
634 std::vector<unsigned int> code;
635 // Save the shader binary if debug info is present.
636 // The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule
637 // is destroyed. Applications may destroy ShaderModules after they are placed in a pipeline and before
638 // the pipeline is used, so we have to keep another copy.
639 if (shader_state && shader_state->has_valid_spirv) { // really checking for presense of SPIR-V code.
640 for (auto insn : *shader_state) {
641 if (insn.opcode() == spv::OpLine) {
642 code = shader_state->words;
643 break;
644 }
645 }
646 }
647 gpu_validation_state->shader_map[shader_state->gpu_validation_shader_id].pipeline = pipeline_state->pipeline;
648 // Be careful to use the originally bound (instrumented) shader here, even if PreCallRecord had to back it
649 // out with a non-instrumented shader. The non-instrumented shader (found in pCreateInfo) was destroyed above.
650 VkShaderModule shader_module = VK_NULL_HANDLE;
651 if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
652 shader_module = pipeline_state->graphicsPipelineCI.pStages[stage].module;
653 } else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
654 assert(stage == 0);
655 shader_module = pipeline_state->computePipelineCI.stage.module;
656 } else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
657 shader_module = pipeline_state->raytracingPipelineCI.pStages[stage].module;
658 } else {
659 assert(false);
660 }
661 gpu_validation_state->shader_map[shader_state->gpu_validation_shader_id].shader_module = shader_module;
662 gpu_validation_state->shader_map[shader_state->gpu_validation_shader_id].pgm = std::move(code);
663 }
664 }
665 }
666
667 // Remove all the shader trackers associated with this destroyed pipeline.
GpuPreCallRecordDestroyPipeline(const VkPipeline pipeline)668 void CoreChecks::GpuPreCallRecordDestroyPipeline(const VkPipeline pipeline) {
669 for (auto it = gpu_validation_state->shader_map.begin(); it != gpu_validation_state->shader_map.end();) {
670 if (it->second.pipeline == pipeline) {
671 it = gpu_validation_state->shader_map.erase(it);
672 } else {
673 ++it;
674 }
675 }
676 }
677
678 // Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
GpuInstrumentShader(const VkShaderModuleCreateInfo * pCreateInfo,std::vector<unsigned int> & new_pgm,uint32_t * unique_shader_id)679 bool CoreChecks::GpuInstrumentShader(const VkShaderModuleCreateInfo *pCreateInfo, std::vector<unsigned int> &new_pgm,
680 uint32_t *unique_shader_id) {
681 if (gpu_validation_state->aborted) return false;
682 if (pCreateInfo->pCode[0] != spv::MagicNumber) return false;
683
684 // Load original shader SPIR-V
685 uint32_t num_words = static_cast<uint32_t>(pCreateInfo->codeSize / 4);
686 new_pgm.clear();
687 new_pgm.reserve(num_words);
688 new_pgm.insert(new_pgm.end(), &pCreateInfo->pCode[0], &pCreateInfo->pCode[num_words]);
689
690 // Call the optimizer to instrument the shader.
691 // Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
692 // If descriptor indexing is enabled, enable length checks and updated descriptor checks
693 const bool descriptor_indexing = device_extensions.vk_ext_descriptor_indexing;
694 using namespace spvtools;
695 spv_target_env target_env = SPV_ENV_VULKAN_1_1;
696 Optimizer optimizer(target_env);
697 optimizer.RegisterPass(CreateInstBindlessCheckPass(gpu_validation_state->desc_set_bind_index,
698 gpu_validation_state->unique_shader_module_id, descriptor_indexing,
699 descriptor_indexing));
700 optimizer.RegisterPass(CreateAggressiveDCEPass());
701 bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm);
702 if (!pass) {
703 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, VK_NULL_HANDLE,
704 "Failure to instrument shader. Proceeding with non-instrumented shader.");
705 }
706 *unique_shader_id = gpu_validation_state->unique_shader_module_id++;
707 return pass;
708 }
709
710 // Create the instrumented shader data to provide to the driver.
GpuPreCallCreateShaderModule(const VkShaderModuleCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkShaderModule * pShaderModule,uint32_t * unique_shader_id,VkShaderModuleCreateInfo * instrumented_create_info,std::vector<unsigned int> * instrumented_pgm)711 bool CoreChecks::GpuPreCallCreateShaderModule(const VkShaderModuleCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator,
712 VkShaderModule *pShaderModule, uint32_t *unique_shader_id,
713 VkShaderModuleCreateInfo *instrumented_create_info,
714 std::vector<unsigned int> *instrumented_pgm) {
715 bool pass = GpuInstrumentShader(pCreateInfo, *instrumented_pgm, unique_shader_id);
716 if (pass) {
717 instrumented_create_info->pCode = instrumented_pgm->data();
718 instrumented_create_info->codeSize = instrumented_pgm->size() * sizeof(unsigned int);
719 }
720 return pass;
721 }
722
723 // Generate the stage-specific part of the message.
GenerateStageMessage(const uint32_t * debug_record,std::string & msg)724 static void GenerateStageMessage(const uint32_t *debug_record, std::string &msg) {
725 using namespace spvtools;
726 std::ostringstream strm;
727 switch (debug_record[kInstCommonOutStageIdx]) {
728 case spv::ExecutionModelVertex: {
729 strm << "Stage = Vertex. Vertex Index = " << debug_record[kInstVertOutVertexIndex]
730 << " Instance Index = " << debug_record[kInstVertOutInstanceIndex] << ". ";
731 } break;
732 case spv::ExecutionModelTessellationControl: {
733 strm << "Stage = Tessellation Control. Invocation ID = " << debug_record[kInstTessCtlOutInvocationId] << ". ";
734 } break;
735 case spv::ExecutionModelTessellationEvaluation: {
736 strm << "Stage = Tessellation Eval. Invocation ID = " << debug_record[kInstTessCtlOutInvocationId] << ". ";
737 } break;
738 case spv::ExecutionModelGeometry: {
739 strm << "Stage = Geometry. Primitive ID = " << debug_record[kInstGeomOutPrimitiveId]
740 << " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". ";
741 } break;
742 case spv::ExecutionModelFragment: {
743 strm << "Stage = Fragment. Fragment coord (x,y) = ("
744 << *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordX]) << ", "
745 << *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordY]) << "). ";
746 } break;
747 case spv::ExecutionModelGLCompute: {
748 strm << "Stage = Compute. Global invocation ID = " << debug_record[kInstCompOutGlobalInvocationIdX] << ". ";
749 } break;
750 case spv::ExecutionModelRayGenerationNV: {
751 strm << "Stage = Ray Generation. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
752 << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
753 } break;
754 case spv::ExecutionModelIntersectionNV: {
755 strm << "Stage = Intersection. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
756 << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
757 } break;
758 case spv::ExecutionModelAnyHitNV: {
759 strm << "Stage = Any Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
760 << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
761 } break;
762 case spv::ExecutionModelClosestHitNV: {
763 strm << "Stage = Closest Hit. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
764 << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
765 } break;
766 case spv::ExecutionModelMissNV: {
767 strm << "Stage = Miss. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
768 << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
769 } break;
770 case spv::ExecutionModelCallableNV: {
771 strm << "Stage = Callable. Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
772 << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
773 } break;
774 default: {
775 strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). ";
776 assert(false);
777 } break;
778 }
779 msg = strm.str();
780 }
781
782 // Generate the part of the message describing the violation.
GenerateValidationMessage(const uint32_t * debug_record,std::string & msg,std::string & vuid_msg)783 static void GenerateValidationMessage(const uint32_t *debug_record, std::string &msg, std::string &vuid_msg) {
784 using namespace spvtools;
785 std::ostringstream strm;
786 switch (debug_record[kInstValidationOutError]) {
787 case 0: {
788 strm << "Index of " << debug_record[kInstBindlessBoundsOutDescIndex] << " used to index descriptor array of length "
789 << debug_record[kInstBindlessBoundsOutDescBound] << ". ";
790 vuid_msg = "UNASSIGNED-Descriptor index out of bounds";
791 } break;
792 case 1: {
793 strm << "Descriptor index " << debug_record[kInstBindlessBoundsOutDescIndex] << " is uninitialized. ";
794 vuid_msg = "UNASSIGNED-Descriptor uninitialized";
795 } break;
796 default: {
797 strm << "Internal Error (unexpected error type = " << debug_record[kInstValidationOutError] << "). ";
798 vuid_msg = "UNASSIGNED-Internal Error";
799 assert(false);
800 } break;
801 }
802 msg = strm.str();
803 }
804
LookupDebugUtilsName(const debug_report_data * report_data,const uint64_t object)805 static std::string LookupDebugUtilsName(const debug_report_data *report_data, const uint64_t object) {
806 auto object_label = report_data->DebugReportGetUtilsObjectName(object);
807 if (object_label != "") {
808 object_label = "(" + object_label + ")";
809 }
810 return object_label;
811 }
812
813 // Generate message from the common portion of the debug report record.
GenerateCommonMessage(const debug_report_data * report_data,const CMD_BUFFER_STATE * cb_node,const uint32_t * debug_record,const VkShaderModule shader_module_handle,const VkPipeline pipeline_handle,const VkPipelineBindPoint pipeline_bind_point,const uint32_t operation_index,std::string & msg)814 static void GenerateCommonMessage(const debug_report_data *report_data, const CMD_BUFFER_STATE *cb_node,
815 const uint32_t *debug_record, const VkShaderModule shader_module_handle,
816 const VkPipeline pipeline_handle, const VkPipelineBindPoint pipeline_bind_point,
817 const uint32_t operation_index, std::string &msg) {
818 using namespace spvtools;
819 std::ostringstream strm;
820 if (shader_module_handle == VK_NULL_HANDLE) {
821 strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer "
822 << LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
823 << HandleToUint64(cb_node->commandBuffer) << "). ";
824 assert(true);
825 } else {
826 strm << std::hex << std::showbase << "Command buffer "
827 << LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
828 << HandleToUint64(cb_node->commandBuffer) << "). ";
829 if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
830 strm << "Draw ";
831 } else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
832 strm << "Compute ";
833 } else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
834 strm << "Ray Trace ";
835 } else {
836 assert(false);
837 strm << "Unknown Pipeline Operation ";
838 }
839 strm << "Index " << operation_index << ". "
840 << "Pipeline " << LookupDebugUtilsName(report_data, HandleToUint64(pipeline_handle)) << "("
841 << HandleToUint64(pipeline_handle) << "). "
842 << "Shader Module " << LookupDebugUtilsName(report_data, HandleToUint64(shader_module_handle)) << "("
843 << HandleToUint64(shader_module_handle) << "). ";
844 }
845 strm << std::dec << std::noshowbase;
846 strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". ";
847 msg = strm.str();
848 }
849
850 // Read the contents of the SPIR-V OpSource instruction and any following continuation instructions.
851 // Split the single string into a vector of strings, one for each line, for easier processing.
ReadOpSource(const SHADER_MODULE_STATE & shader,const uint32_t reported_file_id,std::vector<std::string> & opsource_lines)852 static void ReadOpSource(const SHADER_MODULE_STATE &shader, const uint32_t reported_file_id,
853 std::vector<std::string> &opsource_lines) {
854 for (auto insn : shader) {
855 if ((insn.opcode() == spv::OpSource) && (insn.len() >= 5) && (insn.word(3) == reported_file_id)) {
856 std::istringstream in_stream;
857 std::string cur_line;
858 in_stream.str((char *)&insn.word(4));
859 while (std::getline(in_stream, cur_line)) {
860 opsource_lines.push_back(cur_line);
861 }
862 while ((++insn).opcode() == spv::OpSourceContinued) {
863 in_stream.str((char *)&insn.word(1));
864 while (std::getline(in_stream, cur_line)) {
865 opsource_lines.push_back(cur_line);
866 }
867 }
868 break;
869 }
870 }
871 }
872
873 // The task here is to search the OpSource content to find the #line directive with the
874 // line number that is closest to, but still prior to the reported error line number and
875 // still within the reported filename.
876 // From this known position in the OpSource content we can add the difference between
877 // the #line line number and the reported error line number to determine the location
878 // in the OpSource content of the reported error line.
879 //
880 // Considerations:
881 // - Look only at #line directives that specify the reported_filename since
882 // the reported error line number refers to its location in the reported filename.
883 // - If a #line directive does not have a filename, the file is the reported filename, or
884 // the filename found in a prior #line directive. (This is C-preprocessor behavior)
885 // - It is possible (e.g., inlining) for blocks of code to get shuffled out of their
886 // original order and the #line directives are used to keep the numbering correct. This
887 // is why we need to examine the entire contents of the source, instead of leaving early
888 // when finding a #line line number larger than the reported error line number.
889 //
890
891 // GCC 4.8 has a problem with std::regex that is fixed in GCC 4.9. Provide fallback code for 4.8
892 #define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
893
894 #if defined(__GNUC__) && GCC_VERSION < 40900
GetLineAndFilename(const std::string string,uint32_t * linenumber,std::string & filename)895 static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
896 // # line <linenumber> "<filename>" or
897 // #line <linenumber> "<filename>"
898 std::vector<std::string> tokens;
899 std::stringstream stream(string);
900 std::string temp;
901 uint32_t line_index = 0;
902
903 while (stream >> temp) tokens.push_back(temp);
904 auto size = tokens.size();
905 if (size > 1) {
906 if (tokens[0] == "#" && tokens[1] == "line") {
907 line_index = 2;
908 } else if (tokens[0] == "#line") {
909 line_index = 1;
910 }
911 }
912 if (0 == line_index) return false;
913 *linenumber = std::stoul(tokens[line_index]);
914 uint32_t filename_index = line_index + 1;
915 // Remove enclosing double quotes around filename
916 if (size > filename_index) filename = tokens[filename_index].substr(1, tokens[filename_index].size() - 2);
917 return true;
918 }
919 #else
GetLineAndFilename(const std::string string,uint32_t * linenumber,std::string & filename)920 static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
921 static const std::regex line_regex( // matches #line directives
922 "^" // beginning of line
923 "\\s*" // optional whitespace
924 "#" // required text
925 "\\s*" // optional whitespace
926 "line" // required text
927 "\\s+" // required whitespace
928 "([0-9]+)" // required first capture - line number
929 "(\\s+)?" // optional second capture - whitespace
930 "(\".+\")?" // optional third capture - quoted filename with at least one char inside
931 ".*"); // rest of line (needed when using std::regex_match since the entire line is tested)
932
933 std::smatch captures;
934
935 bool found_line = std::regex_match(string, captures, line_regex);
936 if (!found_line) return false;
937
938 // filename is optional and considered found only if the whitespace and the filename are captured
939 if (captures[2].matched && captures[3].matched) {
940 // Remove enclosing double quotes. The regex guarantees the quotes and at least one char.
941 filename = captures[3].str().substr(1, captures[3].str().size() - 2);
942 }
943 *linenumber = std::stoul(captures[1]);
944 return true;
945 }
946 #endif // GCC_VERSION
947
948 // Extract the filename, line number, and column number from the correct OpLine and build a message string from it.
949 // Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string.
GenerateSourceMessages(const std::vector<unsigned int> & pgm,const uint32_t * debug_record,std::string & filename_msg,std::string & source_msg)950 static void GenerateSourceMessages(const std::vector<unsigned int> &pgm, const uint32_t *debug_record, std::string &filename_msg,
951 std::string &source_msg) {
952 using namespace spvtools;
953 std::ostringstream filename_stream;
954 std::ostringstream source_stream;
955 SHADER_MODULE_STATE shader;
956 shader.words = pgm;
957 // Find the OpLine just before the failing instruction indicated by the debug info.
958 // SPIR-V can only be iterated in the forward direction due to its opcode/length encoding.
959 uint32_t instruction_index = 0;
960 uint32_t reported_file_id = 0;
961 uint32_t reported_line_number = 0;
962 uint32_t reported_column_number = 0;
963 if (shader.words.size() > 0) {
964 for (auto insn : shader) {
965 if (insn.opcode() == spv::OpLine) {
966 reported_file_id = insn.word(1);
967 reported_line_number = insn.word(2);
968 reported_column_number = insn.word(3);
969 }
970 if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) {
971 break;
972 }
973 instruction_index++;
974 }
975 }
976 // Create message with file information obtained from the OpString pointed to by the discovered OpLine.
977 std::string reported_filename;
978 if (reported_file_id == 0) {
979 filename_stream
980 << "Unable to find SPIR-V OpLine for source information. Build shader with debug info to get source information.";
981 } else {
982 bool found_opstring = false;
983 for (auto insn : shader) {
984 if ((insn.opcode() == spv::OpString) && (insn.len() >= 3) && (insn.word(1) == reported_file_id)) {
985 found_opstring = true;
986 reported_filename = (char *)&insn.word(2);
987 if (reported_filename.empty()) {
988 filename_stream << "Shader validation error occurred at line " << reported_line_number;
989 } else {
990 filename_stream << "Shader validation error occurred in file: " << reported_filename << " at line "
991 << reported_line_number;
992 }
993 if (reported_column_number > 0) {
994 filename_stream << ", column " << reported_column_number;
995 }
996 filename_stream << ".";
997 break;
998 }
999 }
1000 if (!found_opstring) {
1001 filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction.";
1002 }
1003 }
1004 filename_msg = filename_stream.str();
1005
1006 // Create message to display source code line containing error.
1007 if ((reported_file_id != 0)) {
1008 // Read the source code and split it up into separate lines.
1009 std::vector<std::string> opsource_lines;
1010 ReadOpSource(shader, reported_file_id, opsource_lines);
1011 // Find the line in the OpSource content that corresponds to the reported error file and line.
1012 if (!opsource_lines.empty()) {
1013 uint32_t saved_line_number = 0;
1014 std::string current_filename = reported_filename; // current "preprocessor" filename state.
1015 std::vector<std::string>::size_type saved_opsource_offset = 0;
1016 bool found_best_line = false;
1017 for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) {
1018 uint32_t parsed_line_number;
1019 std::string parsed_filename;
1020 bool found_line = GetLineAndFilename(*it, &parsed_line_number, parsed_filename);
1021 if (!found_line) continue;
1022
1023 bool found_filename = parsed_filename.size() > 0;
1024 if (found_filename) {
1025 current_filename = parsed_filename;
1026 }
1027 if ((!found_filename) || (current_filename == reported_filename)) {
1028 // Update the candidate best line directive, if the current one is prior and closer to the reported line
1029 if (reported_line_number >= parsed_line_number) {
1030 if (!found_best_line ||
1031 (reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) {
1032 saved_line_number = parsed_line_number;
1033 saved_opsource_offset = std::distance(opsource_lines.begin(), it);
1034 found_best_line = true;
1035 }
1036 }
1037 }
1038 }
1039 if (found_best_line) {
1040 assert(reported_line_number >= saved_line_number);
1041 std::vector<std::string>::size_type opsource_index =
1042 (reported_line_number - saved_line_number) + 1 + saved_opsource_offset;
1043 if (opsource_index < opsource_lines.size()) {
1044 source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str();
1045 } else {
1046 source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of "
1047 << opsource_lines.size() << " lines.";
1048 }
1049 } else {
1050 source_stream << "Unable to find suitable #line directive in SPIR-V OpSource.";
1051 }
1052 } else {
1053 source_stream << "Unable to find SPIR-V OpSource.";
1054 }
1055 }
1056 source_msg = source_stream.str();
1057 }
1058
1059 // Pull together all the information from the debug record to build the error message strings,
1060 // and then assemble them into a single message string.
1061 // Retrieve the shader program referenced by the unique shader ID provided in the debug record.
1062 // We had to keep a copy of the shader program with the same lifecycle as the pipeline to make
1063 // sure it is available when the pipeline is submitted. (The ShaderModule tracking object also
1064 // keeps a copy, but it can be destroyed after the pipeline is created and before it is submitted.)
1065 //
AnalyzeAndReportError(CMD_BUFFER_STATE * cb_node,VkQueue queue,VkPipelineBindPoint pipeline_bind_point,uint32_t operation_index,uint32_t * const debug_output_buffer)1066 void CoreChecks::AnalyzeAndReportError(CMD_BUFFER_STATE *cb_node, VkQueue queue, VkPipelineBindPoint pipeline_bind_point,
1067 uint32_t operation_index, uint32_t *const debug_output_buffer) {
1068 using namespace spvtools;
1069 const uint32_t total_words = debug_output_buffer[0];
1070 // A zero here means that the shader instrumentation didn't write anything.
1071 // If you have nothing to say, don't say it here.
1072 if (0 == total_words) {
1073 return;
1074 }
1075 // The first word in the debug output buffer is the number of words that would have
1076 // been written by the shader instrumentation, if there was enough room in the buffer we provided.
1077 // The number of words actually written by the shaders is determined by the size of the buffer
1078 // we provide via the descriptor. So, we process only the number of words that can fit in the
1079 // buffer.
1080 // Each "report" written by the shader instrumentation is considered a "record". This function
1081 // is hard-coded to process only one record because it expects the buffer to be large enough to
1082 // hold only one record. If there is a desire to process more than one record, this function needs
1083 // to be modified to loop over records and the buffer size increased.
1084 std::string validation_message;
1085 std::string stage_message;
1086 std::string common_message;
1087 std::string filename_message;
1088 std::string source_message;
1089 std::string vuid_msg;
1090 VkShaderModule shader_module_handle = VK_NULL_HANDLE;
1091 VkPipeline pipeline_handle = VK_NULL_HANDLE;
1092 std::vector<unsigned int> pgm;
1093 // The first record starts at this offset after the total_words.
1094 const uint32_t *debug_record = &debug_output_buffer[kDebugOutputDataOffset];
1095 // Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
1096 // by the instrumented shader.
1097 auto it = gpu_validation_state->shader_map.find(debug_record[kInstCommonOutShaderId]);
1098 if (it != gpu_validation_state->shader_map.end()) {
1099 shader_module_handle = it->second.shader_module;
1100 pipeline_handle = it->second.pipeline;
1101 pgm = it->second.pgm;
1102 }
1103 GenerateValidationMessage(debug_record, validation_message, vuid_msg);
1104 GenerateStageMessage(debug_record, stage_message);
1105 GenerateCommonMessage(report_data, cb_node, debug_record, shader_module_handle, pipeline_handle, pipeline_bind_point,
1106 operation_index, common_message);
1107 GenerateSourceMessages(pgm, debug_record, filename_message, source_message);
1108 log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, HandleToUint64(queue),
1109 vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(), stage_message.c_str(),
1110 filename_message.c_str(), source_message.c_str());
1111 // The debug record at word kInstCommonOutSize is the number of words in the record
1112 // written by the shader. Clear the entire record plus the total_words word at the start.
1113 const uint32_t words_to_clear = 1 + std::min(debug_record[kInstCommonOutSize], (uint32_t)kInstMaxOutCnt);
1114 memset(debug_output_buffer, 0, sizeof(uint32_t) * words_to_clear);
1115 }
1116
1117 // For the given command buffer, map its debug data buffers and read their contents for analysis.
ProcessInstrumentationBuffer(VkQueue queue,CMD_BUFFER_STATE * cb_node)1118 void CoreChecks::ProcessInstrumentationBuffer(VkQueue queue, CMD_BUFFER_STATE *cb_node) {
1119 auto gpu_buffer_list = gpu_validation_state->GetGpuBufferInfo(cb_node->commandBuffer);
1120 if (cb_node && (cb_node->hasDrawCmd || cb_node->hasTraceRaysCmd || cb_node->hasDispatchCmd) && gpu_buffer_list.size() > 0) {
1121 VkResult result;
1122 char *pData;
1123 uint32_t draw_index = 0;
1124 uint32_t compute_index = 0;
1125 uint32_t ray_trace_index = 0;
1126
1127 for (auto &buffer_info : gpu_buffer_list) {
1128 result = vmaMapMemory(gpu_validation_state->vmaAllocator, buffer_info.output_mem_block.allocation, (void **)&pData);
1129 // Analyze debug output buffer
1130 if (result == VK_SUCCESS) {
1131 uint32_t operation_index = 0;
1132 if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1133 operation_index = draw_index;
1134 } else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
1135 operation_index = compute_index;
1136 } else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
1137 operation_index = ray_trace_index;
1138 } else {
1139 assert(false);
1140 }
1141
1142 AnalyzeAndReportError(cb_node, queue, buffer_info.pipeline_bind_point, operation_index, (uint32_t *)pData);
1143 vmaUnmapMemory(gpu_validation_state->vmaAllocator, buffer_info.output_mem_block.allocation);
1144 }
1145
1146 if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1147 draw_index++;
1148 } else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
1149 compute_index++;
1150 } else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
1151 ray_trace_index++;
1152 } else {
1153 assert(false);
1154 }
1155 }
1156 }
1157 }
1158
1159 // For the given command buffer, map its debug data buffers and update the status of any update after bind descriptors
UpdateInstrumentationBuffer(CMD_BUFFER_STATE * cb_node)1160 void CoreChecks::UpdateInstrumentationBuffer(CMD_BUFFER_STATE *cb_node) {
1161 auto gpu_buffer_list = gpu_validation_state->GetGpuBufferInfo(cb_node->commandBuffer);
1162 uint32_t *pData;
1163 for (auto &buffer_info : gpu_buffer_list) {
1164 if (buffer_info.input_mem_block.update_at_submit.size() > 0) {
1165 VkResult result =
1166 vmaMapMemory(gpu_validation_state->vmaAllocator, buffer_info.input_mem_block.allocation, (void **)&pData);
1167 if (result == VK_SUCCESS) {
1168 for (auto update : buffer_info.input_mem_block.update_at_submit) {
1169 if (update.second->updated) pData[update.first] = 1;
1170 }
1171 vmaUnmapMemory(gpu_validation_state->vmaAllocator, buffer_info.input_mem_block.allocation);
1172 }
1173 }
1174 }
1175 }
1176
1177 // Submit a memory barrier on graphics queues.
1178 // Lazy-create and record the needed command buffer.
SubmitBarrier(VkQueue queue)1179 void CoreChecks::SubmitBarrier(VkQueue queue) {
1180 auto queue_barrier_command_info_it =
1181 gpu_validation_state->queue_barrier_command_infos.emplace(queue, GpuQueueBarrierCommandInfo{});
1182 if (queue_barrier_command_info_it.second) {
1183 GpuQueueBarrierCommandInfo &quere_barrier_command_info = queue_barrier_command_info_it.first->second;
1184
1185 uint32_t queue_family_index = 0;
1186
1187 auto queue_state_it = queueMap.find(queue);
1188 if (queue_state_it != queueMap.end()) {
1189 queue_family_index = queue_state_it->second.queueFamilyIndex;
1190 }
1191
1192 VkResult result = VK_SUCCESS;
1193
1194 VkCommandPoolCreateInfo pool_create_info = {};
1195 pool_create_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
1196 pool_create_info.queueFamilyIndex = queue_family_index;
1197 result = DispatchCreateCommandPool(device, &pool_create_info, nullptr, &quere_barrier_command_info.barrier_command_pool);
1198 if (result != VK_SUCCESS) {
1199 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
1200 "Unable to create command pool for barrier CB.");
1201 quere_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
1202 return;
1203 }
1204
1205 VkCommandBufferAllocateInfo buffer_alloc_info = {};
1206 buffer_alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
1207 buffer_alloc_info.commandPool = quere_barrier_command_info.barrier_command_pool;
1208 buffer_alloc_info.commandBufferCount = 1;
1209 buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
1210 result = DispatchAllocateCommandBuffers(device, &buffer_alloc_info, &quere_barrier_command_info.barrier_command_buffer);
1211 if (result != VK_SUCCESS) {
1212 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
1213 "Unable to create barrier command buffer.");
1214 DispatchDestroyCommandPool(device, quere_barrier_command_info.barrier_command_pool, nullptr);
1215 quere_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
1216 quere_barrier_command_info.barrier_command_buffer = VK_NULL_HANDLE;
1217 return;
1218 }
1219
1220 // Hook up command buffer dispatch
1221 gpu_validation_state->vkSetDeviceLoaderData(device, quere_barrier_command_info.barrier_command_buffer);
1222
1223 // Record a global memory barrier to force availability of device memory operations to the host domain.
1224 VkCommandBufferBeginInfo command_buffer_begin_info = {};
1225 command_buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
1226 result = DispatchBeginCommandBuffer(quere_barrier_command_info.barrier_command_buffer, &command_buffer_begin_info);
1227 if (result == VK_SUCCESS) {
1228 VkMemoryBarrier memory_barrier = {};
1229 memory_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
1230 memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
1231 memory_barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT;
1232
1233 DispatchCmdPipelineBarrier(quere_barrier_command_info.barrier_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
1234 VK_PIPELINE_STAGE_HOST_BIT, 0, 1, &memory_barrier, 0, nullptr, 0, nullptr);
1235 DispatchEndCommandBuffer(quere_barrier_command_info.barrier_command_buffer);
1236 }
1237 }
1238
1239 GpuQueueBarrierCommandInfo &quere_barrier_command_info = queue_barrier_command_info_it.first->second;
1240 if (quere_barrier_command_info.barrier_command_buffer != VK_NULL_HANDLE) {
1241 VkSubmitInfo submit_info = {};
1242 submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
1243 submit_info.commandBufferCount = 1;
1244 submit_info.pCommandBuffers = &quere_barrier_command_info.barrier_command_buffer;
1245 DispatchQueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
1246 }
1247 }
1248
GpuPreCallRecordQueueSubmit(VkQueue queue,uint32_t submitCount,const VkSubmitInfo * pSubmits,VkFence fence)1249 void CoreChecks::GpuPreCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) {
1250 for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
1251 const VkSubmitInfo *submit = &pSubmits[submit_idx];
1252 for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
1253 auto cb_node = GetCBState(submit->pCommandBuffers[i]);
1254 UpdateInstrumentationBuffer(cb_node);
1255 for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
1256 UpdateInstrumentationBuffer(secondaryCmdBuffer);
1257 }
1258 }
1259 }
1260 }
1261
1262 // Issue a memory barrier to make GPU-written data available to host.
1263 // Wait for the queue to complete execution.
1264 // Check the debug buffers for all the command buffers that were submitted.
GpuPostCallQueueSubmit(VkQueue queue,uint32_t submitCount,const VkSubmitInfo * pSubmits,VkFence fence)1265 void CoreChecks::GpuPostCallQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) {
1266 if (gpu_validation_state->aborted) return;
1267
1268 SubmitBarrier(queue);
1269
1270 DispatchQueueWaitIdle(queue);
1271
1272 for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
1273 const VkSubmitInfo *submit = &pSubmits[submit_idx];
1274 for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
1275 auto cb_node = GetCBState(submit->pCommandBuffers[i]);
1276 ProcessInstrumentationBuffer(queue, cb_node);
1277 for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
1278 ProcessInstrumentationBuffer(queue, secondaryCmdBuffer);
1279 }
1280 }
1281 }
1282 }
1283
GpuAllocateValidationResources(const VkCommandBuffer cmd_buffer,const VkPipelineBindPoint bind_point)1284 void CoreChecks::GpuAllocateValidationResources(const VkCommandBuffer cmd_buffer, const VkPipelineBindPoint bind_point) {
1285 if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
1286 bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
1287 return;
1288 }
1289 VkResult result;
1290
1291 if (!(enabled.gpu_validation)) return;
1292
1293 if (gpu_validation_state->aborted) return;
1294
1295 std::vector<VkDescriptorSet> desc_sets;
1296 VkDescriptorPool desc_pool = VK_NULL_HANDLE;
1297 result = gpu_validation_state->desc_set_manager->GetDescriptorSets(1, &desc_pool, &desc_sets);
1298 assert(result == VK_SUCCESS);
1299 if (result != VK_SUCCESS) {
1300 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
1301 "Unable to allocate descriptor sets. Device could become unstable.");
1302 gpu_validation_state->aborted = true;
1303 return;
1304 }
1305
1306 VkDescriptorBufferInfo output_desc_buffer_info = {};
1307 output_desc_buffer_info.range = gpu_validation_state->output_buffer_size;
1308
1309 auto cb_node = GetCBState(cmd_buffer);
1310 if (!cb_node) {
1311 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unrecognized command buffer");
1312 gpu_validation_state->aborted = true;
1313 return;
1314 }
1315
1316 // Allocate memory for the output block that the gpu will use to return any error information
1317 GpuDeviceMemoryBlock output_block = {};
1318 VkBufferCreateInfo bufferInfo = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO};
1319 bufferInfo.size = gpu_validation_state->output_buffer_size;
1320 bufferInfo.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
1321 VmaAllocationCreateInfo allocInfo = {};
1322 allocInfo.usage = VMA_MEMORY_USAGE_GPU_TO_CPU;
1323 result = vmaCreateBuffer(gpu_validation_state->vmaAllocator, &bufferInfo, &allocInfo, &output_block.buffer,
1324 &output_block.allocation, nullptr);
1325 if (result != VK_SUCCESS) {
1326 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
1327 "Unable to allocate device memory. Device could become unstable.");
1328 gpu_validation_state->aborted = true;
1329 return;
1330 }
1331
1332 // Clear the output block to zeros so that only error information from the gpu will be present
1333 uint32_t *pData;
1334 result = vmaMapMemory(gpu_validation_state->vmaAllocator, output_block.allocation, (void **)&pData);
1335 if (result == VK_SUCCESS) {
1336 memset(pData, 0, gpu_validation_state->output_buffer_size);
1337 vmaUnmapMemory(gpu_validation_state->vmaAllocator, output_block.allocation);
1338 }
1339
1340 GpuDeviceMemoryBlock input_block = {};
1341 VkWriteDescriptorSet desc_writes[2] = {};
1342 uint32_t desc_count = 1;
1343 auto const &state = cb_node->lastBound[bind_point];
1344 uint32_t number_of_sets = (uint32_t)state.per_set.size();
1345
1346 // Figure out how much memory we need for the input block based on how many sets and bindings there are
1347 // and how big each of the bindings is
1348 if (number_of_sets > 0 && device_extensions.vk_ext_descriptor_indexing) {
1349 uint32_t descriptor_count = 0; // Number of descriptors, including all array elements
1350 uint32_t binding_count = 0; // Number of bindings based on the max binding number used
1351 for (auto s : state.per_set) {
1352 auto desc = s.bound_descriptor_set;
1353 auto bindings = desc->GetLayout()->GetSortedBindingSet();
1354 if (bindings.size() > 0) {
1355 binding_count += desc->GetLayout()->GetMaxBinding() + 1;
1356 for (auto binding : bindings) {
1357 // Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
1358 // blocks
1359 if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) {
1360 descriptor_count++;
1361 log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
1362 VK_NULL_HANDLE, "UNASSIGNED-GPU-Assisted Validation Warning",
1363 "VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT descriptors will not be validated by GPU assisted "
1364 "validation");
1365 } else if (binding == desc->GetLayout()->GetMaxBinding() && desc->IsVariableDescriptorCount(binding)) {
1366 descriptor_count += desc->GetVariableDescriptorCount();
1367 } else {
1368 descriptor_count += desc->GetDescriptorCountFromBinding(binding);
1369 }
1370 }
1371 }
1372 }
1373
1374 // Note that the size of the input buffer is dependent on the maximum binding number, which
1375 // can be very large. This is because for (set = s, binding = b, index = i), the validation
1376 // code is going to dereference Input[ i + Input[ b + Input[ s + Input[ Input[0] ] ] ] ] to
1377 // see if descriptors have been written. In gpu_validation.md, we note this and advise
1378 // using densely packed bindings as a best practice when using gpu-av with descriptor indexing
1379 uint32_t words_needed = 1 + (number_of_sets * 2) + (binding_count * 2) + descriptor_count;
1380 allocInfo.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
1381 bufferInfo.size = words_needed * 4;
1382 result = vmaCreateBuffer(gpu_validation_state->vmaAllocator, &bufferInfo, &allocInfo, &input_block.buffer,
1383 &input_block.allocation, nullptr);
1384 if (result != VK_SUCCESS) {
1385 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
1386 "Unable to allocate device memory. Device could become unstable.");
1387 gpu_validation_state->aborted = true;
1388 return;
1389 }
1390
1391 // Populate input buffer first with the sizes of every descriptor in every set, then with whether
1392 // each element of each descriptor has been written or not. See gpu_validation.md for a more thourough
1393 // outline of the input buffer format
1394 result = vmaMapMemory(gpu_validation_state->vmaAllocator, input_block.allocation, (void **)&pData);
1395 memset(pData, 0, static_cast<size_t>(bufferInfo.size));
1396 // Pointer to a sets array that points into the sizes array
1397 uint32_t *sets_to_sizes = pData + 1;
1398 // Pointer to the sizes array that contains the array size of the descriptor at each binding
1399 uint32_t *sizes = sets_to_sizes + number_of_sets;
1400 // Pointer to another sets array that points into the bindings array that points into the written array
1401 uint32_t *sets_to_bindings = sizes + binding_count;
1402 // Pointer to the bindings array that points at the start of the writes in the writes array for each binding
1403 uint32_t *bindings_to_written = sets_to_bindings + number_of_sets;
1404 // Index of the next entry in the written array to be updated
1405 uint32_t written_index = 1 + (number_of_sets * 2) + (binding_count * 2);
1406 uint32_t bindCounter = number_of_sets + 1;
1407 // Index of the start of the sets_to_bindings array
1408 pData[0] = number_of_sets + binding_count + 1;
1409
1410 for (auto s : state.per_set) {
1411 auto desc = s.bound_descriptor_set;
1412 auto layout = desc->GetLayout();
1413 auto bindings = layout->GetSortedBindingSet();
1414 if (bindings.size() > 0) {
1415 // For each set, fill in index of its bindings sizes in the sizes array
1416 *sets_to_sizes++ = bindCounter;
1417 // For each set, fill in the index of its bindings in the bindings_to_written array
1418 *sets_to_bindings++ = bindCounter + number_of_sets + binding_count;
1419 for (auto binding : bindings) {
1420 // For each binding, fill in its size in the sizes array
1421 // Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
1422 // blocks
1423 if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) {
1424 sizes[binding] = 1;
1425 } else if (binding == layout->GetMaxBinding() && desc->IsVariableDescriptorCount(binding)) {
1426 sizes[binding] = desc->GetVariableDescriptorCount();
1427 } else {
1428 sizes[binding] = desc->GetDescriptorCountFromBinding(binding);
1429 }
1430 // Fill in the starting index for this binding in the written array in the bindings_to_written array
1431 bindings_to_written[binding] = written_index;
1432
1433 // Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
1434 // blocks
1435 if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) {
1436 pData[written_index++] = 1;
1437 continue;
1438 }
1439
1440 auto index_range = desc->GetGlobalIndexRangeFromBinding(binding, true);
1441 // For each array element in the binding, update the written array with whether it has been written
1442 for (uint32_t i = index_range.start; i < index_range.end; ++i) {
1443 auto *descriptor = desc->GetDescriptorFromGlobalIndex(i);
1444 if (descriptor->updated) {
1445 pData[written_index] = 1;
1446 } else if (desc->IsUpdateAfterBind(binding)) {
1447 // If it hasn't been written now and it's update after bind, put it in a list to check at QueueSubmit
1448 input_block.update_at_submit[written_index] = descriptor;
1449 }
1450 written_index++;
1451 }
1452 }
1453 auto last = desc->GetLayout()->GetMaxBinding();
1454 bindings_to_written += last + 1;
1455 bindCounter += last + 1;
1456 sizes += last + 1;
1457 } else {
1458 *sets_to_sizes++ = 0;
1459 *sets_to_bindings++ = 0;
1460 }
1461 }
1462 vmaUnmapMemory(gpu_validation_state->vmaAllocator, input_block.allocation);
1463
1464 VkDescriptorBufferInfo input_desc_buffer_info = {};
1465 input_desc_buffer_info.range = (words_needed * 4);
1466 input_desc_buffer_info.buffer = input_block.buffer;
1467 input_desc_buffer_info.offset = 0;
1468
1469 desc_writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
1470 desc_writes[1].dstBinding = 1;
1471 desc_writes[1].descriptorCount = 1;
1472 desc_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
1473 desc_writes[1].pBufferInfo = &input_desc_buffer_info;
1474 desc_writes[1].dstSet = desc_sets[0];
1475
1476 desc_count = 2;
1477 }
1478
1479 // Write the descriptor
1480 output_desc_buffer_info.buffer = output_block.buffer;
1481 output_desc_buffer_info.offset = 0;
1482
1483 desc_writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
1484 desc_writes[0].descriptorCount = 1;
1485 desc_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
1486 desc_writes[0].pBufferInfo = &output_desc_buffer_info;
1487 desc_writes[0].dstSet = desc_sets[0];
1488 DispatchUpdateDescriptorSets(device, desc_count, desc_writes, 0, NULL);
1489
1490 auto iter = cb_node->lastBound.find(bind_point); // find() allows read-only access to cb_state
1491 if (iter != cb_node->lastBound.end()) {
1492 auto pipeline_state = iter->second.pipeline_state;
1493 if (pipeline_state && (pipeline_state->pipeline_layout.set_layouts.size() <= gpu_validation_state->desc_set_bind_index)) {
1494 DispatchCmdBindDescriptorSets(cmd_buffer, bind_point, pipeline_state->pipeline_layout.layout,
1495 gpu_validation_state->desc_set_bind_index, 1, desc_sets.data(), 0, nullptr);
1496 }
1497 // Record buffer and memory info in CB state tracking
1498 gpu_validation_state->GetGpuBufferInfo(cmd_buffer)
1499 .emplace_back(output_block, input_block, desc_sets[0], desc_pool, bind_point);
1500 } else {
1501 ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unable to find pipeline state");
1502 vmaDestroyBuffer(gpu_validation_state->vmaAllocator, input_block.buffer, input_block.allocation);
1503 vmaDestroyBuffer(gpu_validation_state->vmaAllocator, output_block.buffer, output_block.allocation);
1504 gpu_validation_state->aborted = true;
1505 return;
1506 }
1507 }
1508