• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2018-2019 The Khronos Group Inc.
2  * Copyright (c) 2018-2019 Valve Corporation
3  * Copyright (c) 2018-2019 LunarG, Inc.
4  * Copyright (C) 2018-2019 Google Inc.
5  *
6  * Licensed under the Apache License, Version 2.0 (the "License");
7  * you may not use this file except in compliance with the License.
8  * You may obtain a copy of the License at
9  *
10  *     http://www.apache.org/licenses/LICENSE-2.0
11  *
12  * Unless required by applicable law or agreed to in writing, software
13  * distributed under the License is distributed on an "AS IS" BASIS,
14  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
15  * See the License for the specific language governing permissions and
16  * limitations under the License.
17  *
18  */
19 
20 // Allow use of STL min and max functions in Windows
21 #define NOMINMAX
22 
23 #include "chassis.h"
24 #include "core_validation.h"
25 // This define indicates to build the VMA routines themselves
26 #define VMA_IMPLEMENTATION
27 // This define indicates that we will supply Vulkan function pointers at initialization
28 #define VMA_STATIC_VULKAN_FUNCTIONS 0
29 #include "gpu_validation.h"
30 #include "shader_validation.h"
31 #include "spirv-tools/libspirv.h"
32 #include "spirv-tools/optimizer.hpp"
33 #include "spirv-tools/instrument.hpp"
34 #include <SPIRV/spirv.hpp>
35 #include <algorithm>
36 #include <regex>
37 
38 // This is the number of bindings in the debug descriptor set.
39 static const uint32_t kNumBindingsInSet = 2;
40 
41 static const VkShaderStageFlags kShaderStageAllRayTracing =
42     VK_SHADER_STAGE_ANY_HIT_BIT_NV | VK_SHADER_STAGE_CALLABLE_BIT_NV | VK_SHADER_STAGE_CLOSEST_HIT_BIT_NV |
43     VK_SHADER_STAGE_INTERSECTION_BIT_NV | VK_SHADER_STAGE_MISS_BIT_NV | VK_SHADER_STAGE_RAYGEN_BIT_NV;
44 
45 // Implementation for Descriptor Set Manager class
GpuDescriptorSetManager(CoreChecks * dev_data)46 GpuDescriptorSetManager::GpuDescriptorSetManager(CoreChecks *dev_data) { dev_data_ = dev_data; }
47 
~GpuDescriptorSetManager()48 GpuDescriptorSetManager::~GpuDescriptorSetManager() {
49     for (auto &pool : desc_pool_map_) {
50         DispatchDestroyDescriptorPool(dev_data_->device, pool.first, NULL);
51     }
52     desc_pool_map_.clear();
53 }
54 
GetDescriptorSets(uint32_t count,VkDescriptorPool * pool,std::vector<VkDescriptorSet> * desc_sets)55 VkResult GpuDescriptorSetManager::GetDescriptorSets(uint32_t count, VkDescriptorPool *pool,
56                                                     std::vector<VkDescriptorSet> *desc_sets) {
57     const uint32_t default_pool_size = kItemsPerChunk;
58     VkResult result = VK_SUCCESS;
59     VkDescriptorPool pool_to_use = VK_NULL_HANDLE;
60 
61     if (0 == count) {
62         return result;
63     }
64     desc_sets->clear();
65     desc_sets->resize(count);
66 
67     for (auto &pool : desc_pool_map_) {
68         if (pool.second.used + count < pool.second.size) {
69             pool_to_use = pool.first;
70             break;
71         }
72     }
73     if (VK_NULL_HANDLE == pool_to_use) {
74         uint32_t pool_count = default_pool_size;
75         if (count > default_pool_size) {
76             pool_count = count;
77         }
78         const VkDescriptorPoolSize size_counts = {
79             VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
80             pool_count * kNumBindingsInSet,
81         };
82         VkDescriptorPoolCreateInfo desc_pool_info = {};
83         desc_pool_info.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
84         desc_pool_info.pNext = NULL;
85         desc_pool_info.flags = VK_DESCRIPTOR_POOL_CREATE_FREE_DESCRIPTOR_SET_BIT;
86         desc_pool_info.maxSets = pool_count;
87         desc_pool_info.poolSizeCount = 1;
88         desc_pool_info.pPoolSizes = &size_counts;
89         result = DispatchCreateDescriptorPool(dev_data_->device, &desc_pool_info, NULL, &pool_to_use);
90         assert(result == VK_SUCCESS);
91         if (result != VK_SUCCESS) {
92             return result;
93         }
94         desc_pool_map_[pool_to_use].size = desc_pool_info.maxSets;
95         desc_pool_map_[pool_to_use].used = 0;
96     }
97     std::vector<VkDescriptorSetLayout> desc_layouts(count, dev_data_->gpu_validation_state->debug_desc_layout);
98 
99     VkDescriptorSetAllocateInfo alloc_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO, NULL, pool_to_use, count,
100                                               desc_layouts.data()};
101 
102     result = DispatchAllocateDescriptorSets(dev_data_->device, &alloc_info, desc_sets->data());
103     assert(result == VK_SUCCESS);
104     if (result != VK_SUCCESS) {
105         return result;
106     }
107     *pool = pool_to_use;
108     desc_pool_map_[pool_to_use].used += count;
109     return result;
110 }
111 
PutBackDescriptorSet(VkDescriptorPool desc_pool,VkDescriptorSet desc_set)112 void GpuDescriptorSetManager::PutBackDescriptorSet(VkDescriptorPool desc_pool, VkDescriptorSet desc_set) {
113     auto iter = desc_pool_map_.find(desc_pool);
114     if (iter != desc_pool_map_.end()) {
115         VkResult result = DispatchFreeDescriptorSets(dev_data_->device, desc_pool, 1, &desc_set);
116         assert(result == VK_SUCCESS);
117         if (result != VK_SUCCESS) {
118             return;
119         }
120         desc_pool_map_[desc_pool].used--;
121         if (0 == desc_pool_map_[desc_pool].used) {
122             DispatchDestroyDescriptorPool(dev_data_->device, desc_pool, NULL);
123             desc_pool_map_.erase(desc_pool);
124         }
125     }
126     return;
127 }
128 
129 // Trampolines to make VMA call Dispatch for Vulkan calls
gpuVkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceProperties * pProperties)130 static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceProperties(VkPhysicalDevice physicalDevice,
131                                                                    VkPhysicalDeviceProperties *pProperties) {
132     DispatchGetPhysicalDeviceProperties(physicalDevice, pProperties);
133 }
gpuVkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,VkPhysicalDeviceMemoryProperties * pMemoryProperties)134 static VKAPI_ATTR void VKAPI_CALL gpuVkGetPhysicalDeviceMemoryProperties(VkPhysicalDevice physicalDevice,
135                                                                          VkPhysicalDeviceMemoryProperties *pMemoryProperties) {
136     DispatchGetPhysicalDeviceMemoryProperties(physicalDevice, pMemoryProperties);
137 }
gpuVkAllocateMemory(VkDevice device,const VkMemoryAllocateInfo * pAllocateInfo,const VkAllocationCallbacks * pAllocator,VkDeviceMemory * pMemory)138 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkAllocateMemory(VkDevice device, const VkMemoryAllocateInfo *pAllocateInfo,
139                                                           const VkAllocationCallbacks *pAllocator, VkDeviceMemory *pMemory) {
140     return DispatchAllocateMemory(device, pAllocateInfo, pAllocator, pMemory);
141 }
gpuVkFreeMemory(VkDevice device,VkDeviceMemory memory,const VkAllocationCallbacks * pAllocator)142 static VKAPI_ATTR void VKAPI_CALL gpuVkFreeMemory(VkDevice device, VkDeviceMemory memory, const VkAllocationCallbacks *pAllocator) {
143     DispatchFreeMemory(device, memory, pAllocator);
144 }
gpuVkMapMemory(VkDevice device,VkDeviceMemory memory,VkDeviceSize offset,VkDeviceSize size,VkMemoryMapFlags flags,void ** ppData)145 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkMapMemory(VkDevice device, VkDeviceMemory memory, VkDeviceSize offset, VkDeviceSize size,
146                                                      VkMemoryMapFlags flags, void **ppData) {
147     return DispatchMapMemory(device, memory, offset, size, flags, ppData);
148 }
gpuVkUnmapMemory(VkDevice device,VkDeviceMemory memory)149 static VKAPI_ATTR void VKAPI_CALL gpuVkUnmapMemory(VkDevice device, VkDeviceMemory memory) { DispatchUnmapMemory(device, memory); }
gpuVkFlushMappedMemoryRanges(VkDevice device,uint32_t memoryRangeCount,const VkMappedMemoryRange * pMemoryRanges)150 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkFlushMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
151                                                                    const VkMappedMemoryRange *pMemoryRanges) {
152     return DispatchFlushMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
153 }
gpuVkInvalidateMappedMemoryRanges(VkDevice device,uint32_t memoryRangeCount,const VkMappedMemoryRange * pMemoryRanges)154 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkInvalidateMappedMemoryRanges(VkDevice device, uint32_t memoryRangeCount,
155                                                                         const VkMappedMemoryRange *pMemoryRanges) {
156     return DispatchInvalidateMappedMemoryRanges(device, memoryRangeCount, pMemoryRanges);
157 }
gpuVkBindBufferMemory(VkDevice device,VkBuffer buffer,VkDeviceMemory memory,VkDeviceSize memoryOffset)158 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindBufferMemory(VkDevice device, VkBuffer buffer, VkDeviceMemory memory,
159                                                             VkDeviceSize memoryOffset) {
160     return DispatchBindBufferMemory(device, buffer, memory, memoryOffset);
161 }
gpuVkBindImageMemory(VkDevice device,VkImage image,VkDeviceMemory memory,VkDeviceSize memoryOffset)162 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkBindImageMemory(VkDevice device, VkImage image, VkDeviceMemory memory,
163                                                            VkDeviceSize memoryOffset) {
164     return DispatchBindImageMemory(device, image, memory, memoryOffset);
165 }
gpuVkGetBufferMemoryRequirements(VkDevice device,VkBuffer buffer,VkMemoryRequirements * pMemoryRequirements)166 static VKAPI_ATTR void VKAPI_CALL gpuVkGetBufferMemoryRequirements(VkDevice device, VkBuffer buffer,
167                                                                    VkMemoryRequirements *pMemoryRequirements) {
168     DispatchGetBufferMemoryRequirements(device, buffer, pMemoryRequirements);
169 }
gpuVkGetImageMemoryRequirements(VkDevice device,VkImage image,VkMemoryRequirements * pMemoryRequirements)170 static VKAPI_ATTR void VKAPI_CALL gpuVkGetImageMemoryRequirements(VkDevice device, VkImage image,
171                                                                   VkMemoryRequirements *pMemoryRequirements) {
172     DispatchGetImageMemoryRequirements(device, image, pMemoryRequirements);
173 }
gpuVkCreateBuffer(VkDevice device,const VkBufferCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkBuffer * pBuffer)174 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateBuffer(VkDevice device, const VkBufferCreateInfo *pCreateInfo,
175                                                         const VkAllocationCallbacks *pAllocator, VkBuffer *pBuffer) {
176     return DispatchCreateBuffer(device, pCreateInfo, pAllocator, pBuffer);
177 }
gpuVkDestroyBuffer(VkDevice device,VkBuffer buffer,const VkAllocationCallbacks * pAllocator)178 static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyBuffer(VkDevice device, VkBuffer buffer, const VkAllocationCallbacks *pAllocator) {
179     return DispatchDestroyBuffer(device, buffer, pAllocator);
180 }
gpuVkCreateImage(VkDevice device,const VkImageCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkImage * pImage)181 static VKAPI_ATTR VkResult VKAPI_CALL gpuVkCreateImage(VkDevice device, const VkImageCreateInfo *pCreateInfo,
182                                                        const VkAllocationCallbacks *pAllocator, VkImage *pImage) {
183     return DispatchCreateImage(device, pCreateInfo, pAllocator, pImage);
184 }
gpuVkDestroyImage(VkDevice device,VkImage image,const VkAllocationCallbacks * pAllocator)185 static VKAPI_ATTR void VKAPI_CALL gpuVkDestroyImage(VkDevice device, VkImage image, const VkAllocationCallbacks *pAllocator) {
186     DispatchDestroyImage(device, image, pAllocator);
187 }
gpuVkCmdCopyBuffer(VkCommandBuffer commandBuffer,VkBuffer srcBuffer,VkBuffer dstBuffer,uint32_t regionCount,const VkBufferCopy * pRegions)188 static VKAPI_ATTR void VKAPI_CALL gpuVkCmdCopyBuffer(VkCommandBuffer commandBuffer, VkBuffer srcBuffer, VkBuffer dstBuffer,
189                                                      uint32_t regionCount, const VkBufferCopy *pRegions) {
190     DispatchCmdCopyBuffer(commandBuffer, srcBuffer, dstBuffer, regionCount, pRegions);
191 }
192 
GpuInitializeVma()193 VkResult CoreChecks::GpuInitializeVma() {
194     VmaVulkanFunctions functions;
195     VmaAllocatorCreateInfo allocatorInfo = {};
196     allocatorInfo.device = device;
197     ValidationObject *device_object = GetLayerDataPtr(get_dispatch_key(allocatorInfo.device), layer_data_map);
198     ValidationObject *validation_data =
199         ValidationObject::GetValidationObject(device_object->object_dispatch, LayerObjectTypeCoreValidation);
200     CoreChecks *core_checks = static_cast<CoreChecks *>(validation_data);
201     allocatorInfo.physicalDevice = core_checks->physical_device;
202 
203     functions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)gpuVkGetPhysicalDeviceProperties;
204     functions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)gpuVkGetPhysicalDeviceMemoryProperties;
205     functions.vkAllocateMemory = (PFN_vkAllocateMemory)gpuVkAllocateMemory;
206     functions.vkFreeMemory = (PFN_vkFreeMemory)gpuVkFreeMemory;
207     functions.vkMapMemory = (PFN_vkMapMemory)gpuVkMapMemory;
208     functions.vkUnmapMemory = (PFN_vkUnmapMemory)gpuVkUnmapMemory;
209     functions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)gpuVkFlushMappedMemoryRanges;
210     functions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)gpuVkInvalidateMappedMemoryRanges;
211     functions.vkBindBufferMemory = (PFN_vkBindBufferMemory)gpuVkBindBufferMemory;
212     functions.vkBindImageMemory = (PFN_vkBindImageMemory)gpuVkBindImageMemory;
213     functions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)gpuVkGetBufferMemoryRequirements;
214     functions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)gpuVkGetImageMemoryRequirements;
215     functions.vkCreateBuffer = (PFN_vkCreateBuffer)gpuVkCreateBuffer;
216     functions.vkDestroyBuffer = (PFN_vkDestroyBuffer)gpuVkDestroyBuffer;
217     functions.vkCreateImage = (PFN_vkCreateImage)gpuVkCreateImage;
218     functions.vkDestroyImage = (PFN_vkDestroyImage)gpuVkDestroyImage;
219     functions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)gpuVkCmdCopyBuffer;
220     allocatorInfo.pVulkanFunctions = &functions;
221 
222     return vmaCreateAllocator(&allocatorInfo, &gpu_validation_state->vmaAllocator);
223 }
224 
225 // Convenience function for reporting problems with setting up GPU Validation.
ReportSetupProblem(VkDebugReportObjectTypeEXT object_type,uint64_t object_handle,const char * const specific_message)226 void CoreChecks::ReportSetupProblem(VkDebugReportObjectTypeEXT object_type, uint64_t object_handle,
227                                     const char *const specific_message) {
228     log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, object_type, object_handle, "UNASSIGNED-GPU-Assisted Validation Error. ",
229             "Detail: (%s)", specific_message);
230 }
231 
232 // Turn on necessary device features.
GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu,safe_VkDeviceCreateInfo * modified_create_info,VkPhysicalDeviceFeatures * supported_features)233 void CoreChecks::GpuPreCallRecordCreateDevice(VkPhysicalDevice gpu, safe_VkDeviceCreateInfo *modified_create_info,
234                                               VkPhysicalDeviceFeatures *supported_features) {
235     if (supported_features->fragmentStoresAndAtomics || supported_features->vertexPipelineStoresAndAtomics) {
236         VkPhysicalDeviceFeatures *features = nullptr;
237         if (modified_create_info->pEnabledFeatures) {
238             // If pEnabledFeatures, VkPhysicalDeviceFeatures2 in pNext chain is not allowed
239             features = const_cast<VkPhysicalDeviceFeatures *>(modified_create_info->pEnabledFeatures);
240         } else {
241             VkPhysicalDeviceFeatures2 *features2 = nullptr;
242             features2 =
243                 const_cast<VkPhysicalDeviceFeatures2 *>(lvl_find_in_chain<VkPhysicalDeviceFeatures2>(modified_create_info->pNext));
244             if (features2) features = &features2->features;
245         }
246         if (features) {
247             features->fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics;
248             features->vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics;
249         } else {
250             VkPhysicalDeviceFeatures new_features = {};
251             new_features.fragmentStoresAndAtomics = supported_features->fragmentStoresAndAtomics;
252             new_features.vertexPipelineStoresAndAtomics = supported_features->vertexPipelineStoresAndAtomics;
253             delete modified_create_info->pEnabledFeatures;
254             modified_create_info->pEnabledFeatures = new VkPhysicalDeviceFeatures(new_features);
255         }
256     }
257 }
258 
259 // Perform initializations that can be done at Create Device time.
GpuPostCallRecordCreateDevice(const CHECK_ENABLED * enables,const VkDeviceCreateInfo * pCreateInfo)260 void CoreChecks::GpuPostCallRecordCreateDevice(const CHECK_ENABLED *enables, const VkDeviceCreateInfo *pCreateInfo) {
261     // Set instance-level enables in device-enable data structure if using legacy settings
262     enabled.gpu_validation = enables->gpu_validation;
263     enabled.gpu_validation_reserve_binding_slot = enables->gpu_validation_reserve_binding_slot;
264 
265     gpu_validation_state = std::unique_ptr<GpuValidationState>(new GpuValidationState);
266     gpu_validation_state->reserve_binding_slot = enables->gpu_validation_reserve_binding_slot;
267 
268     if (phys_dev_props.apiVersion < VK_API_VERSION_1_1) {
269         ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
270                            "GPU-Assisted validation requires Vulkan 1.1 or later.  GPU-Assisted Validation disabled.");
271         gpu_validation_state->aborted = true;
272         return;
273     }
274 
275     // If api version 1.1 or later, SetDeviceLoaderData will be in the loader
276     auto chain_info = get_chain_info(pCreateInfo, VK_LOADER_DATA_CALLBACK);
277     assert(chain_info->u.pfnSetDeviceLoaderData);
278     gpu_validation_state->vkSetDeviceLoaderData = chain_info->u.pfnSetDeviceLoaderData;
279 
280     // Some devices have extremely high limits here, so set a reasonable max because we have to pad
281     // the pipeline layout with dummy descriptor set layouts.
282     gpu_validation_state->adjusted_max_desc_sets = phys_dev_props.limits.maxBoundDescriptorSets;
283     gpu_validation_state->adjusted_max_desc_sets = std::min(33U, gpu_validation_state->adjusted_max_desc_sets);
284 
285     // We can't do anything if there is only one.
286     // Device probably not a legit Vulkan device, since there should be at least 4. Protect ourselves.
287     if (gpu_validation_state->adjusted_max_desc_sets == 1) {
288         ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
289                            "Device can bind only a single descriptor set.  GPU-Assisted Validation disabled.");
290         gpu_validation_state->aborted = true;
291         return;
292     }
293     gpu_validation_state->desc_set_bind_index = gpu_validation_state->adjusted_max_desc_sets - 1;
294     log_msg(report_data, VK_DEBUG_REPORT_INFORMATION_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
295             "UNASSIGNED-GPU-Assisted Validation. ", "Shaders using descriptor set at index %d. ",
296             gpu_validation_state->desc_set_bind_index);
297 
298     gpu_validation_state->output_buffer_size = sizeof(uint32_t) * (spvtools::kInstMaxOutCnt + 1);
299     VkResult result = GpuInitializeVma();
300     assert(result == VK_SUCCESS);
301     std::unique_ptr<GpuDescriptorSetManager> desc_set_manager(new GpuDescriptorSetManager(this));
302 
303     // The descriptor indexing checks require only the first "output" binding.
304     const VkDescriptorSetLayoutBinding debug_desc_layout_bindings[kNumBindingsInSet] = {
305         {
306             0,  // output
307             VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
308             1,
309             VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT | kShaderStageAllRayTracing,
310             NULL,
311         },
312         {
313             1,  // input
314             VK_DESCRIPTOR_TYPE_STORAGE_BUFFER,
315             1,
316             VK_SHADER_STAGE_ALL_GRAPHICS | VK_SHADER_STAGE_COMPUTE_BIT | kShaderStageAllRayTracing,
317             NULL,
318         },
319     };
320 
321     const VkDescriptorSetLayoutCreateInfo debug_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0,
322                                                                     kNumBindingsInSet, debug_desc_layout_bindings};
323 
324     const VkDescriptorSetLayoutCreateInfo dummy_desc_layout_info = {VK_STRUCTURE_TYPE_DESCRIPTOR_SET_LAYOUT_CREATE_INFO, NULL, 0, 0,
325                                                                     NULL};
326 
327     result = DispatchCreateDescriptorSetLayout(device, &debug_desc_layout_info, NULL, &gpu_validation_state->debug_desc_layout);
328 
329     // This is a layout used to "pad" a pipeline layout to fill in any gaps to the selected bind index.
330     VkResult result2 =
331         DispatchCreateDescriptorSetLayout(device, &dummy_desc_layout_info, NULL, &gpu_validation_state->dummy_desc_layout);
332     assert((result == VK_SUCCESS) && (result2 == VK_SUCCESS));
333     if ((result != VK_SUCCESS) || (result2 != VK_SUCCESS)) {
334         ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
335                            "Unable to create descriptor set layout.  GPU-Assisted Validation disabled.");
336         if (result == VK_SUCCESS) {
337             DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->debug_desc_layout, NULL);
338         }
339         if (result2 == VK_SUCCESS) {
340             DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->dummy_desc_layout, NULL);
341         }
342         gpu_validation_state->debug_desc_layout = VK_NULL_HANDLE;
343         gpu_validation_state->dummy_desc_layout = VK_NULL_HANDLE;
344         gpu_validation_state->aborted = true;
345         return;
346     }
347     gpu_validation_state->desc_set_manager = std::move(desc_set_manager);
348 }
349 
350 // Clean up device-related resources
GpuPreCallRecordDestroyDevice()351 void CoreChecks::GpuPreCallRecordDestroyDevice() {
352     for (auto &queue_barrier_command_info_kv : gpu_validation_state->queue_barrier_command_infos) {
353         GpuQueueBarrierCommandInfo &queue_barrier_command_info = queue_barrier_command_info_kv.second;
354 
355         DispatchFreeCommandBuffers(device, queue_barrier_command_info.barrier_command_pool, 1,
356                                    &queue_barrier_command_info.barrier_command_buffer);
357         queue_barrier_command_info.barrier_command_buffer = VK_NULL_HANDLE;
358 
359         DispatchDestroyCommandPool(device, queue_barrier_command_info.barrier_command_pool, NULL);
360         queue_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
361     }
362     gpu_validation_state->queue_barrier_command_infos.clear();
363     if (gpu_validation_state->debug_desc_layout) {
364         DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->debug_desc_layout, NULL);
365         gpu_validation_state->debug_desc_layout = VK_NULL_HANDLE;
366     }
367     if (gpu_validation_state->dummy_desc_layout) {
368         DispatchDestroyDescriptorSetLayout(device, gpu_validation_state->dummy_desc_layout, NULL);
369         gpu_validation_state->dummy_desc_layout = VK_NULL_HANDLE;
370     }
371     gpu_validation_state->desc_set_manager.reset();
372     if (gpu_validation_state->vmaAllocator) {
373         vmaDestroyAllocator(gpu_validation_state->vmaAllocator);
374     }
375 }
376 
377 // Modify the pipeline layout to include our debug descriptor set and any needed padding with the dummy descriptor set.
GpuPreCallCreatePipelineLayout(const VkPipelineLayoutCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkPipelineLayout * pPipelineLayout,std::vector<VkDescriptorSetLayout> * new_layouts,VkPipelineLayoutCreateInfo * modified_create_info)378 bool CoreChecks::GpuPreCallCreatePipelineLayout(const VkPipelineLayoutCreateInfo *pCreateInfo,
379                                                 const VkAllocationCallbacks *pAllocator, VkPipelineLayout *pPipelineLayout,
380                                                 std::vector<VkDescriptorSetLayout> *new_layouts,
381                                                 VkPipelineLayoutCreateInfo *modified_create_info) {
382     if (gpu_validation_state->aborted) {
383         return false;
384     }
385 
386     if (modified_create_info->setLayoutCount >= gpu_validation_state->adjusted_max_desc_sets) {
387         std::ostringstream strm;
388         strm << "Pipeline Layout conflict with validation's descriptor set at slot " << gpu_validation_state->desc_set_bind_index
389              << ". "
390              << "Application has too many descriptor sets in the pipeline layout to continue with gpu validation. "
391              << "Validation is not modifying the pipeline layout. "
392              << "Instrumented shaders are replaced with non-instrumented shaders.";
393         ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), strm.str().c_str());
394     } else {
395         // Modify the pipeline layout by:
396         // 1. Copying the caller's descriptor set desc_layouts
397         // 2. Fill in dummy descriptor layouts up to the max binding
398         // 3. Fill in with the debug descriptor layout at the max binding slot
399         new_layouts->reserve(gpu_validation_state->adjusted_max_desc_sets);
400         new_layouts->insert(new_layouts->end(), &pCreateInfo->pSetLayouts[0],
401                             &pCreateInfo->pSetLayouts[pCreateInfo->setLayoutCount]);
402         for (uint32_t i = pCreateInfo->setLayoutCount; i < gpu_validation_state->adjusted_max_desc_sets - 1; ++i) {
403             new_layouts->push_back(gpu_validation_state->dummy_desc_layout);
404         }
405         new_layouts->push_back(gpu_validation_state->debug_desc_layout);
406         modified_create_info->pSetLayouts = new_layouts->data();
407         modified_create_info->setLayoutCount = gpu_validation_state->adjusted_max_desc_sets;
408     }
409     return true;
410 }
411 
412 // Clean up GPU validation after the CreatePipelineLayout call is made
GpuPostCallCreatePipelineLayout(VkResult result)413 void CoreChecks::GpuPostCallCreatePipelineLayout(VkResult result) {
414     // Clean up GPU validation
415     if (result != VK_SUCCESS) {
416         ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
417                            "Unable to create pipeline layout.  Device could become unstable.");
418         gpu_validation_state->aborted = true;
419     }
420 }
421 
422 // Free the device memory and descriptor set associated with a command buffer.
GpuResetCommandBuffer(const VkCommandBuffer commandBuffer)423 void CoreChecks::GpuResetCommandBuffer(const VkCommandBuffer commandBuffer) {
424     if (gpu_validation_state->aborted) {
425         return;
426     }
427     auto gpu_buffer_list = gpu_validation_state->GetGpuBufferInfo(commandBuffer);
428     for (auto buffer_info : gpu_buffer_list) {
429         vmaDestroyBuffer(gpu_validation_state->vmaAllocator, buffer_info.output_mem_block.buffer,
430                          buffer_info.output_mem_block.allocation);
431         if (buffer_info.input_mem_block.buffer) {
432             vmaDestroyBuffer(gpu_validation_state->vmaAllocator, buffer_info.input_mem_block.buffer,
433                              buffer_info.input_mem_block.allocation);
434         }
435         if (buffer_info.desc_set != VK_NULL_HANDLE) {
436             gpu_validation_state->desc_set_manager->PutBackDescriptorSet(buffer_info.desc_pool, buffer_info.desc_set);
437         }
438     }
439     gpu_validation_state->command_buffer_map.erase(commandBuffer);
440 }
441 
442 // Just gives a warning about a possible deadlock.
GpuPreCallValidateCmdWaitEvents(VkPipelineStageFlags sourceStageMask)443 void CoreChecks::GpuPreCallValidateCmdWaitEvents(VkPipelineStageFlags sourceStageMask) {
444     if (sourceStageMask & VK_PIPELINE_STAGE_HOST_BIT) {
445         ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
446                            "CmdWaitEvents recorded with VK_PIPELINE_STAGE_HOST_BIT set. "
447                            "GPU_Assisted validation waits on queue completion. "
448                            "This wait could block the host's signaling of this event, resulting in deadlock.");
449     }
450 }
451 
GpuPreCallRecordCreateGraphicsPipelines(VkPipelineCache pipelineCache,uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines,std::vector<std::unique_ptr<PIPELINE_STATE>> & pipe_state)452 std::vector<safe_VkGraphicsPipelineCreateInfo> CoreChecks::GpuPreCallRecordCreateGraphicsPipelines(
453     VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos,
454     const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
455     std::vector<safe_VkGraphicsPipelineCreateInfo> new_pipeline_create_infos;
456     GpuPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, pipe_state, &new_pipeline_create_infos,
457                                       VK_PIPELINE_BIND_POINT_GRAPHICS);
458     return new_pipeline_create_infos;
459 }
GpuPreCallRecordCreateComputePipelines(VkPipelineCache pipelineCache,uint32_t count,const VkComputePipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines,std::vector<std::unique_ptr<PIPELINE_STATE>> & pipe_state)460 std::vector<safe_VkComputePipelineCreateInfo> CoreChecks::GpuPreCallRecordCreateComputePipelines(
461     VkPipelineCache pipelineCache, uint32_t count, const VkComputePipelineCreateInfo *pCreateInfos,
462     const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
463     std::vector<safe_VkComputePipelineCreateInfo> new_pipeline_create_infos;
464     GpuPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, pipe_state, &new_pipeline_create_infos,
465                                       VK_PIPELINE_BIND_POINT_COMPUTE);
466     return new_pipeline_create_infos;
467 }
GpuPreCallRecordCreateRayTracingPipelinesNV(VkPipelineCache pipelineCache,uint32_t count,const VkRayTracingPipelineCreateInfoNV * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines,std::vector<std::unique_ptr<PIPELINE_STATE>> & pipe_state)468 std::vector<safe_VkRayTracingPipelineCreateInfoNV> CoreChecks::GpuPreCallRecordCreateRayTracingPipelinesNV(
469     VkPipelineCache pipelineCache, uint32_t count, const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
470     const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines, std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state) {
471     std::vector<safe_VkRayTracingPipelineCreateInfoNV> new_pipeline_create_infos;
472     GpuPreCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, pipe_state, &new_pipeline_create_infos,
473                                       VK_PIPELINE_BIND_POINT_RAY_TRACING_NV);
474     return new_pipeline_create_infos;
475 }
476 template <typename CreateInfo>
477 struct CreatePipelineTraits {};
478 template <>
479 struct CreatePipelineTraits<VkGraphicsPipelineCreateInfo> {
480     using SafeType = safe_VkGraphicsPipelineCreateInfo;
GetPipelineCICreatePipelineTraits481     static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->graphicsPipelineCI; }
GetStageCountCreatePipelineTraits482     static uint32_t GetStageCount(const VkGraphicsPipelineCreateInfo &createInfo) { return createInfo.stageCount; }
GetShaderModuleCreatePipelineTraits483     static VkShaderModule GetShaderModule(const VkGraphicsPipelineCreateInfo &createInfo, uint32_t stage) {
484         return createInfo.pStages[stage].module;
485     }
SetShaderModuleCreatePipelineTraits486     static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
487         createInfo->pStages[stage].module = shader_module;
488     }
489 };
490 
491 template <>
492 struct CreatePipelineTraits<VkComputePipelineCreateInfo> {
493     using SafeType = safe_VkComputePipelineCreateInfo;
GetPipelineCICreatePipelineTraits494     static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->computePipelineCI; }
GetStageCountCreatePipelineTraits495     static uint32_t GetStageCount(const VkComputePipelineCreateInfo &createInfo) { return 1; }
GetShaderModuleCreatePipelineTraits496     static VkShaderModule GetShaderModule(const VkComputePipelineCreateInfo &createInfo, uint32_t stage) {
497         return createInfo.stage.module;
498     }
SetShaderModuleCreatePipelineTraits499     static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
500         assert(stage == 0);
501         createInfo->stage.module = shader_module;
502     }
503 };
504 template <>
505 struct CreatePipelineTraits<VkRayTracingPipelineCreateInfoNV> {
506     using SafeType = safe_VkRayTracingPipelineCreateInfoNV;
GetPipelineCICreatePipelineTraits507     static const SafeType &GetPipelineCI(const PIPELINE_STATE *pipeline_state) { return pipeline_state->raytracingPipelineCI; }
GetStageCountCreatePipelineTraits508     static uint32_t GetStageCount(const VkRayTracingPipelineCreateInfoNV &createInfo) { return createInfo.stageCount; }
GetShaderModuleCreatePipelineTraits509     static VkShaderModule GetShaderModule(const VkRayTracingPipelineCreateInfoNV &createInfo, uint32_t stage) {
510         return createInfo.pStages[stage].module;
511     }
SetShaderModuleCreatePipelineTraits512     static void SetShaderModule(SafeType *createInfo, VkShaderModule shader_module, uint32_t stage) {
513         createInfo->pStages[stage].module = shader_module;
514     }
515 };
516 
517 // Examine the pipelines to see if they use the debug descriptor set binding index.
518 // If any do, create new non-instrumented shader modules and use them to replace the instrumented
519 // shaders in the pipeline.  Return the (possibly) modified create infos to the caller.
520 template <typename CreateInfo, typename SafeCreateInfo>
GpuPreCallRecordPipelineCreations(uint32_t count,const CreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines,std::vector<std::unique_ptr<PIPELINE_STATE>> & pipe_state,std::vector<SafeCreateInfo> * new_pipeline_create_infos,const VkPipelineBindPoint bind_point)521 void CoreChecks::GpuPreCallRecordPipelineCreations(uint32_t count, const CreateInfo *pCreateInfos,
522                                                    const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
523                                                    std::vector<std::unique_ptr<PIPELINE_STATE>> &pipe_state,
524                                                    std::vector<SafeCreateInfo> *new_pipeline_create_infos,
525                                                    const VkPipelineBindPoint bind_point) {
526     using Accessor = CreatePipelineTraits<CreateInfo>;
527     if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
528         bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
529         return;
530     }
531 
532     // Walk through all the pipelines, make a copy of each and flag each pipeline that contains a shader that uses the debug
533     // descriptor set index.
534     for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
535         uint32_t stageCount = Accessor::GetStageCount(pCreateInfos[pipeline]);
536         new_pipeline_create_infos->push_back(Accessor::GetPipelineCI(pipe_state[pipeline].get()));
537 
538         bool replace_shaders = false;
539         if (pipe_state[pipeline]->active_slots.find(gpu_validation_state->desc_set_bind_index) !=
540             pipe_state[pipeline]->active_slots.end()) {
541             replace_shaders = true;
542         }
543         // If the app requests all available sets, the pipeline layout was not modified at pipeline layout creation and the already
544         // instrumented shaders need to be replaced with uninstrumented shaders
545         if (pipe_state[pipeline]->pipeline_layout.set_layouts.size() >= gpu_validation_state->adjusted_max_desc_sets) {
546             replace_shaders = true;
547         }
548 
549         if (replace_shaders) {
550             for (uint32_t stage = 0; stage < stageCount; ++stage) {
551                 const SHADER_MODULE_STATE *shader = GetShaderModuleState(Accessor::GetShaderModule(pCreateInfos[pipeline], stage));
552 
553                 VkShaderModuleCreateInfo create_info = {};
554                 VkShaderModule shader_module;
555                 create_info.sType = VK_STRUCTURE_TYPE_SHADER_MODULE_CREATE_INFO;
556                 create_info.pCode = shader->words.data();
557                 create_info.codeSize = shader->words.size() * sizeof(uint32_t);
558                 VkResult result = DispatchCreateShaderModule(device, &create_info, pAllocator, &shader_module);
559                 if (result == VK_SUCCESS) {
560                     Accessor::SetShaderModule(new_pipeline_create_infos[pipeline].data(), shader_module, stage);
561                 } else {
562                     uint64_t moduleHandle = HandleToUint64(Accessor::GetShaderModule(pCreateInfos[pipeline], stage));
563                     ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, moduleHandle,
564                                        "Unable to replace instrumented shader with non-instrumented one.  "
565                                        "Device could become unstable.");
566                 }
567             }
568         }
569     }
570 }
571 
GpuPostCallRecordCreateGraphicsPipelines(const uint32_t count,const VkGraphicsPipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)572 void CoreChecks::GpuPostCallRecordCreateGraphicsPipelines(const uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos,
573                                                           const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
574     GpuPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_GRAPHICS);
575 }
GpuPostCallRecordCreateComputePipelines(const uint32_t count,const VkComputePipelineCreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)576 void CoreChecks::GpuPostCallRecordCreateComputePipelines(const uint32_t count, const VkComputePipelineCreateInfo *pCreateInfos,
577                                                          const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
578     GpuPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_COMPUTE);
579 }
GpuPostCallRecordCreateRayTracingPipelinesNV(const uint32_t count,const VkRayTracingPipelineCreateInfoNV * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines)580 void CoreChecks::GpuPostCallRecordCreateRayTracingPipelinesNV(const uint32_t count,
581                                                               const VkRayTracingPipelineCreateInfoNV *pCreateInfos,
582                                                               const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) {
583     GpuPostCallRecordPipelineCreations(count, pCreateInfos, pAllocator, pPipelines, VK_PIPELINE_BIND_POINT_RAY_TRACING_NV);
584 }
585 
586 // For every pipeline:
587 // - For every shader in a pipeline:
588 //   - If the shader had to be replaced in PreCallRecord (because the pipeline is using the debug desc set index):
589 //     - Destroy it since it has been bound into the pipeline by now.  This is our only chance to delete it.
590 //   - Track the shader in the shader_map
591 //   - Save the shader binary if it contains debug code
592 template <typename CreateInfo>
GpuPostCallRecordPipelineCreations(const uint32_t count,const CreateInfo * pCreateInfos,const VkAllocationCallbacks * pAllocator,VkPipeline * pPipelines,const VkPipelineBindPoint bind_point)593 void CoreChecks::GpuPostCallRecordPipelineCreations(const uint32_t count, const CreateInfo *pCreateInfos,
594                                                     const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines,
595                                                     const VkPipelineBindPoint bind_point) {
596     using Accessor = CreatePipelineTraits<CreateInfo>;
597     if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
598         bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
599         return;
600     }
601     for (uint32_t pipeline = 0; pipeline < count; ++pipeline) {
602         auto pipeline_state = ValidationStateTracker::GetPipelineState(pPipelines[pipeline]);
603         if (nullptr == pipeline_state) continue;
604 
605         uint32_t stageCount = 0;
606         if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
607             stageCount = pipeline_state->graphicsPipelineCI.stageCount;
608         } else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
609             stageCount = 1;
610         } else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
611             stageCount = pipeline_state->raytracingPipelineCI.stageCount;
612         } else {
613             assert(false);
614         }
615 
616         for (uint32_t stage = 0; stage < stageCount; ++stage) {
617             if (pipeline_state->active_slots.find(gpu_validation_state->desc_set_bind_index) !=
618                 pipeline_state->active_slots.end()) {
619                 DispatchDestroyShaderModule(device, Accessor::GetShaderModule(pCreateInfos[pipeline], stage), pAllocator);
620             }
621 
622             const SHADER_MODULE_STATE *shader_state = nullptr;
623             if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
624                 shader_state = GetShaderModuleState(pipeline_state->graphicsPipelineCI.pStages[stage].module);
625             } else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
626                 assert(stage == 0);
627                 shader_state = GetShaderModuleState(pipeline_state->computePipelineCI.stage.module);
628             } else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
629                 shader_state = GetShaderModuleState(pipeline_state->raytracingPipelineCI.pStages[stage].module);
630             } else {
631                 assert(false);
632             }
633 
634             std::vector<unsigned int> code;
635             // Save the shader binary if debug info is present.
636             // The core_validation ShaderModule tracker saves the binary too, but discards it when the ShaderModule
637             // is destroyed.  Applications may destroy ShaderModules after they are placed in a pipeline and before
638             // the pipeline is used, so we have to keep another copy.
639             if (shader_state && shader_state->has_valid_spirv) {  // really checking for presense of SPIR-V code.
640                 for (auto insn : *shader_state) {
641                     if (insn.opcode() == spv::OpLine) {
642                         code = shader_state->words;
643                         break;
644                     }
645                 }
646             }
647             gpu_validation_state->shader_map[shader_state->gpu_validation_shader_id].pipeline = pipeline_state->pipeline;
648             // Be careful to use the originally bound (instrumented) shader here, even if PreCallRecord had to back it
649             // out with a non-instrumented shader.  The non-instrumented shader (found in pCreateInfo) was destroyed above.
650             VkShaderModule shader_module = VK_NULL_HANDLE;
651             if (bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
652                 shader_module = pipeline_state->graphicsPipelineCI.pStages[stage].module;
653             } else if (bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
654                 assert(stage == 0);
655                 shader_module = pipeline_state->computePipelineCI.stage.module;
656             } else if (bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
657                 shader_module = pipeline_state->raytracingPipelineCI.pStages[stage].module;
658             } else {
659                 assert(false);
660             }
661             gpu_validation_state->shader_map[shader_state->gpu_validation_shader_id].shader_module = shader_module;
662             gpu_validation_state->shader_map[shader_state->gpu_validation_shader_id].pgm = std::move(code);
663         }
664     }
665 }
666 
667 // Remove all the shader trackers associated with this destroyed pipeline.
GpuPreCallRecordDestroyPipeline(const VkPipeline pipeline)668 void CoreChecks::GpuPreCallRecordDestroyPipeline(const VkPipeline pipeline) {
669     for (auto it = gpu_validation_state->shader_map.begin(); it != gpu_validation_state->shader_map.end();) {
670         if (it->second.pipeline == pipeline) {
671             it = gpu_validation_state->shader_map.erase(it);
672         } else {
673             ++it;
674         }
675     }
676 }
677 
678 // Call the SPIR-V Optimizer to run the instrumentation pass on the shader.
GpuInstrumentShader(const VkShaderModuleCreateInfo * pCreateInfo,std::vector<unsigned int> & new_pgm,uint32_t * unique_shader_id)679 bool CoreChecks::GpuInstrumentShader(const VkShaderModuleCreateInfo *pCreateInfo, std::vector<unsigned int> &new_pgm,
680                                      uint32_t *unique_shader_id) {
681     if (gpu_validation_state->aborted) return false;
682     if (pCreateInfo->pCode[0] != spv::MagicNumber) return false;
683 
684     // Load original shader SPIR-V
685     uint32_t num_words = static_cast<uint32_t>(pCreateInfo->codeSize / 4);
686     new_pgm.clear();
687     new_pgm.reserve(num_words);
688     new_pgm.insert(new_pgm.end(), &pCreateInfo->pCode[0], &pCreateInfo->pCode[num_words]);
689 
690     // Call the optimizer to instrument the shader.
691     // Use the unique_shader_module_id as a shader ID so we can look up its handle later in the shader_map.
692     // If descriptor indexing is enabled, enable length checks and updated descriptor checks
693     const bool descriptor_indexing = device_extensions.vk_ext_descriptor_indexing;
694     using namespace spvtools;
695     spv_target_env target_env = SPV_ENV_VULKAN_1_1;
696     Optimizer optimizer(target_env);
697     optimizer.RegisterPass(CreateInstBindlessCheckPass(gpu_validation_state->desc_set_bind_index,
698                                                        gpu_validation_state->unique_shader_module_id, descriptor_indexing,
699                                                        descriptor_indexing));
700     optimizer.RegisterPass(CreateAggressiveDCEPass());
701     bool pass = optimizer.Run(new_pgm.data(), new_pgm.size(), &new_pgm);
702     if (!pass) {
703         ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_SHADER_MODULE_EXT, VK_NULL_HANDLE,
704                            "Failure to instrument shader.  Proceeding with non-instrumented shader.");
705     }
706     *unique_shader_id = gpu_validation_state->unique_shader_module_id++;
707     return pass;
708 }
709 
710 // Create the instrumented shader data to provide to the driver.
GpuPreCallCreateShaderModule(const VkShaderModuleCreateInfo * pCreateInfo,const VkAllocationCallbacks * pAllocator,VkShaderModule * pShaderModule,uint32_t * unique_shader_id,VkShaderModuleCreateInfo * instrumented_create_info,std::vector<unsigned int> * instrumented_pgm)711 bool CoreChecks::GpuPreCallCreateShaderModule(const VkShaderModuleCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator,
712                                               VkShaderModule *pShaderModule, uint32_t *unique_shader_id,
713                                               VkShaderModuleCreateInfo *instrumented_create_info,
714                                               std::vector<unsigned int> *instrumented_pgm) {
715     bool pass = GpuInstrumentShader(pCreateInfo, *instrumented_pgm, unique_shader_id);
716     if (pass) {
717         instrumented_create_info->pCode = instrumented_pgm->data();
718         instrumented_create_info->codeSize = instrumented_pgm->size() * sizeof(unsigned int);
719     }
720     return pass;
721 }
722 
723 // Generate the stage-specific part of the message.
GenerateStageMessage(const uint32_t * debug_record,std::string & msg)724 static void GenerateStageMessage(const uint32_t *debug_record, std::string &msg) {
725     using namespace spvtools;
726     std::ostringstream strm;
727     switch (debug_record[kInstCommonOutStageIdx]) {
728         case spv::ExecutionModelVertex: {
729             strm << "Stage = Vertex. Vertex Index = " << debug_record[kInstVertOutVertexIndex]
730                  << " Instance Index = " << debug_record[kInstVertOutInstanceIndex] << ". ";
731         } break;
732         case spv::ExecutionModelTessellationControl: {
733             strm << "Stage = Tessellation Control.  Invocation ID = " << debug_record[kInstTessCtlOutInvocationId] << ". ";
734         } break;
735         case spv::ExecutionModelTessellationEvaluation: {
736             strm << "Stage = Tessellation Eval.  Invocation ID = " << debug_record[kInstTessCtlOutInvocationId] << ". ";
737         } break;
738         case spv::ExecutionModelGeometry: {
739             strm << "Stage = Geometry.  Primitive ID = " << debug_record[kInstGeomOutPrimitiveId]
740                  << " Invocation ID = " << debug_record[kInstGeomOutInvocationId] << ". ";
741         } break;
742         case spv::ExecutionModelFragment: {
743             strm << "Stage = Fragment.  Fragment coord (x,y) = ("
744                  << *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordX]) << ", "
745                  << *reinterpret_cast<const float *>(&debug_record[kInstFragOutFragCoordY]) << "). ";
746         } break;
747         case spv::ExecutionModelGLCompute: {
748             strm << "Stage = Compute.  Global invocation ID = " << debug_record[kInstCompOutGlobalInvocationIdX] << ". ";
749         } break;
750         case spv::ExecutionModelRayGenerationNV: {
751             strm << "Stage = Ray Generation.  Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
752                  << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
753         } break;
754         case spv::ExecutionModelIntersectionNV: {
755             strm << "Stage = Intersection.  Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
756                  << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
757         } break;
758         case spv::ExecutionModelAnyHitNV: {
759             strm << "Stage = Any Hit.  Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
760                  << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
761         } break;
762         case spv::ExecutionModelClosestHitNV: {
763             strm << "Stage = Closest Hit.  Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
764                  << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
765         } break;
766         case spv::ExecutionModelMissNV: {
767             strm << "Stage = Miss.  Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
768                  << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
769         } break;
770         case spv::ExecutionModelCallableNV: {
771             strm << "Stage = Callable.  Global Launch ID (x,y,z) = (" << debug_record[kInstRayTracingOutLaunchIdX] << ", "
772                  << debug_record[kInstRayTracingOutLaunchIdY] << ", " << debug_record[kInstRayTracingOutLaunchIdZ] << "). ";
773         } break;
774         default: {
775             strm << "Internal Error (unexpected stage = " << debug_record[kInstCommonOutStageIdx] << "). ";
776             assert(false);
777         } break;
778     }
779     msg = strm.str();
780 }
781 
782 // Generate the part of the message describing the violation.
GenerateValidationMessage(const uint32_t * debug_record,std::string & msg,std::string & vuid_msg)783 static void GenerateValidationMessage(const uint32_t *debug_record, std::string &msg, std::string &vuid_msg) {
784     using namespace spvtools;
785     std::ostringstream strm;
786     switch (debug_record[kInstValidationOutError]) {
787         case 0: {
788             strm << "Index of " << debug_record[kInstBindlessBoundsOutDescIndex] << " used to index descriptor array of length "
789                  << debug_record[kInstBindlessBoundsOutDescBound] << ". ";
790             vuid_msg = "UNASSIGNED-Descriptor index out of bounds";
791         } break;
792         case 1: {
793             strm << "Descriptor index " << debug_record[kInstBindlessBoundsOutDescIndex] << " is uninitialized. ";
794             vuid_msg = "UNASSIGNED-Descriptor uninitialized";
795         } break;
796         default: {
797             strm << "Internal Error (unexpected error type = " << debug_record[kInstValidationOutError] << "). ";
798             vuid_msg = "UNASSIGNED-Internal Error";
799             assert(false);
800         } break;
801     }
802     msg = strm.str();
803 }
804 
LookupDebugUtilsName(const debug_report_data * report_data,const uint64_t object)805 static std::string LookupDebugUtilsName(const debug_report_data *report_data, const uint64_t object) {
806     auto object_label = report_data->DebugReportGetUtilsObjectName(object);
807     if (object_label != "") {
808         object_label = "(" + object_label + ")";
809     }
810     return object_label;
811 }
812 
813 // Generate message from the common portion of the debug report record.
GenerateCommonMessage(const debug_report_data * report_data,const CMD_BUFFER_STATE * cb_node,const uint32_t * debug_record,const VkShaderModule shader_module_handle,const VkPipeline pipeline_handle,const VkPipelineBindPoint pipeline_bind_point,const uint32_t operation_index,std::string & msg)814 static void GenerateCommonMessage(const debug_report_data *report_data, const CMD_BUFFER_STATE *cb_node,
815                                   const uint32_t *debug_record, const VkShaderModule shader_module_handle,
816                                   const VkPipeline pipeline_handle, const VkPipelineBindPoint pipeline_bind_point,
817                                   const uint32_t operation_index, std::string &msg) {
818     using namespace spvtools;
819     std::ostringstream strm;
820     if (shader_module_handle == VK_NULL_HANDLE) {
821         strm << std::hex << std::showbase << "Internal Error: Unable to locate information for shader used in command buffer "
822              << LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
823              << HandleToUint64(cb_node->commandBuffer) << "). ";
824         assert(true);
825     } else {
826         strm << std::hex << std::showbase << "Command buffer "
827              << LookupDebugUtilsName(report_data, HandleToUint64(cb_node->commandBuffer)) << "("
828              << HandleToUint64(cb_node->commandBuffer) << "). ";
829         if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
830             strm << "Draw ";
831         } else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
832             strm << "Compute ";
833         } else if (pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
834             strm << "Ray Trace ";
835         } else {
836             assert(false);
837             strm << "Unknown Pipeline Operation ";
838         }
839         strm << "Index " << operation_index << ". "
840              << "Pipeline " << LookupDebugUtilsName(report_data, HandleToUint64(pipeline_handle)) << "("
841              << HandleToUint64(pipeline_handle) << "). "
842              << "Shader Module " << LookupDebugUtilsName(report_data, HandleToUint64(shader_module_handle)) << "("
843              << HandleToUint64(shader_module_handle) << "). ";
844     }
845     strm << std::dec << std::noshowbase;
846     strm << "Shader Instruction Index = " << debug_record[kInstCommonOutInstructionIdx] << ". ";
847     msg = strm.str();
848 }
849 
850 // Read the contents of the SPIR-V OpSource instruction and any following continuation instructions.
851 // Split the single string into a vector of strings, one for each line, for easier processing.
ReadOpSource(const SHADER_MODULE_STATE & shader,const uint32_t reported_file_id,std::vector<std::string> & opsource_lines)852 static void ReadOpSource(const SHADER_MODULE_STATE &shader, const uint32_t reported_file_id,
853                          std::vector<std::string> &opsource_lines) {
854     for (auto insn : shader) {
855         if ((insn.opcode() == spv::OpSource) && (insn.len() >= 5) && (insn.word(3) == reported_file_id)) {
856             std::istringstream in_stream;
857             std::string cur_line;
858             in_stream.str((char *)&insn.word(4));
859             while (std::getline(in_stream, cur_line)) {
860                 opsource_lines.push_back(cur_line);
861             }
862             while ((++insn).opcode() == spv::OpSourceContinued) {
863                 in_stream.str((char *)&insn.word(1));
864                 while (std::getline(in_stream, cur_line)) {
865                     opsource_lines.push_back(cur_line);
866                 }
867             }
868             break;
869         }
870     }
871 }
872 
873 // The task here is to search the OpSource content to find the #line directive with the
874 // line number that is closest to, but still prior to the reported error line number and
875 // still within the reported filename.
876 // From this known position in the OpSource content we can add the difference between
877 // the #line line number and the reported error line number to determine the location
878 // in the OpSource content of the reported error line.
879 //
880 // Considerations:
881 // - Look only at #line directives that specify the reported_filename since
882 //   the reported error line number refers to its location in the reported filename.
883 // - If a #line directive does not have a filename, the file is the reported filename, or
884 //   the filename found in a prior #line directive.  (This is C-preprocessor behavior)
885 // - It is possible (e.g., inlining) for blocks of code to get shuffled out of their
886 //   original order and the #line directives are used to keep the numbering correct.  This
887 //   is why we need to examine the entire contents of the source, instead of leaving early
888 //   when finding a #line line number larger than the reported error line number.
889 //
890 
891 // GCC 4.8 has a problem with std::regex that is fixed in GCC 4.9.  Provide fallback code for 4.8
892 #define GCC_VERSION (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__)
893 
894 #if defined(__GNUC__) && GCC_VERSION < 40900
GetLineAndFilename(const std::string string,uint32_t * linenumber,std::string & filename)895 static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
896     // # line <linenumber> "<filename>" or
897     // #line <linenumber> "<filename>"
898     std::vector<std::string> tokens;
899     std::stringstream stream(string);
900     std::string temp;
901     uint32_t line_index = 0;
902 
903     while (stream >> temp) tokens.push_back(temp);
904     auto size = tokens.size();
905     if (size > 1) {
906         if (tokens[0] == "#" && tokens[1] == "line") {
907             line_index = 2;
908         } else if (tokens[0] == "#line") {
909             line_index = 1;
910         }
911     }
912     if (0 == line_index) return false;
913     *linenumber = std::stoul(tokens[line_index]);
914     uint32_t filename_index = line_index + 1;
915     // Remove enclosing double quotes around filename
916     if (size > filename_index) filename = tokens[filename_index].substr(1, tokens[filename_index].size() - 2);
917     return true;
918 }
919 #else
GetLineAndFilename(const std::string string,uint32_t * linenumber,std::string & filename)920 static bool GetLineAndFilename(const std::string string, uint32_t *linenumber, std::string &filename) {
921     static const std::regex line_regex(  // matches #line directives
922         "^"                              // beginning of line
923         "\\s*"                           // optional whitespace
924         "#"                              // required text
925         "\\s*"                           // optional whitespace
926         "line"                           // required text
927         "\\s+"                           // required whitespace
928         "([0-9]+)"                       // required first capture - line number
929         "(\\s+)?"                        // optional second capture - whitespace
930         "(\".+\")?"                      // optional third capture - quoted filename with at least one char inside
931         ".*");                           // rest of line (needed when using std::regex_match since the entire line is tested)
932 
933     std::smatch captures;
934 
935     bool found_line = std::regex_match(string, captures, line_regex);
936     if (!found_line) return false;
937 
938     // filename is optional and considered found only if the whitespace and the filename are captured
939     if (captures[2].matched && captures[3].matched) {
940         // Remove enclosing double quotes.  The regex guarantees the quotes and at least one char.
941         filename = captures[3].str().substr(1, captures[3].str().size() - 2);
942     }
943     *linenumber = std::stoul(captures[1]);
944     return true;
945 }
946 #endif  // GCC_VERSION
947 
948 // Extract the filename, line number, and column number from the correct OpLine and build a message string from it.
949 // Scan the source (from OpSource) to find the line of source at the reported line number and place it in another message string.
GenerateSourceMessages(const std::vector<unsigned int> & pgm,const uint32_t * debug_record,std::string & filename_msg,std::string & source_msg)950 static void GenerateSourceMessages(const std::vector<unsigned int> &pgm, const uint32_t *debug_record, std::string &filename_msg,
951                                    std::string &source_msg) {
952     using namespace spvtools;
953     std::ostringstream filename_stream;
954     std::ostringstream source_stream;
955     SHADER_MODULE_STATE shader;
956     shader.words = pgm;
957     // Find the OpLine just before the failing instruction indicated by the debug info.
958     // SPIR-V can only be iterated in the forward direction due to its opcode/length encoding.
959     uint32_t instruction_index = 0;
960     uint32_t reported_file_id = 0;
961     uint32_t reported_line_number = 0;
962     uint32_t reported_column_number = 0;
963     if (shader.words.size() > 0) {
964         for (auto insn : shader) {
965             if (insn.opcode() == spv::OpLine) {
966                 reported_file_id = insn.word(1);
967                 reported_line_number = insn.word(2);
968                 reported_column_number = insn.word(3);
969             }
970             if (instruction_index == debug_record[kInstCommonOutInstructionIdx]) {
971                 break;
972             }
973             instruction_index++;
974         }
975     }
976     // Create message with file information obtained from the OpString pointed to by the discovered OpLine.
977     std::string reported_filename;
978     if (reported_file_id == 0) {
979         filename_stream
980             << "Unable to find SPIR-V OpLine for source information.  Build shader with debug info to get source information.";
981     } else {
982         bool found_opstring = false;
983         for (auto insn : shader) {
984             if ((insn.opcode() == spv::OpString) && (insn.len() >= 3) && (insn.word(1) == reported_file_id)) {
985                 found_opstring = true;
986                 reported_filename = (char *)&insn.word(2);
987                 if (reported_filename.empty()) {
988                     filename_stream << "Shader validation error occurred at line " << reported_line_number;
989                 } else {
990                     filename_stream << "Shader validation error occurred in file: " << reported_filename << " at line "
991                                     << reported_line_number;
992                 }
993                 if (reported_column_number > 0) {
994                     filename_stream << ", column " << reported_column_number;
995                 }
996                 filename_stream << ".";
997                 break;
998             }
999         }
1000         if (!found_opstring) {
1001             filename_stream << "Unable to find SPIR-V OpString for file id " << reported_file_id << " from OpLine instruction.";
1002         }
1003     }
1004     filename_msg = filename_stream.str();
1005 
1006     // Create message to display source code line containing error.
1007     if ((reported_file_id != 0)) {
1008         // Read the source code and split it up into separate lines.
1009         std::vector<std::string> opsource_lines;
1010         ReadOpSource(shader, reported_file_id, opsource_lines);
1011         // Find the line in the OpSource content that corresponds to the reported error file and line.
1012         if (!opsource_lines.empty()) {
1013             uint32_t saved_line_number = 0;
1014             std::string current_filename = reported_filename;  // current "preprocessor" filename state.
1015             std::vector<std::string>::size_type saved_opsource_offset = 0;
1016             bool found_best_line = false;
1017             for (auto it = opsource_lines.begin(); it != opsource_lines.end(); ++it) {
1018                 uint32_t parsed_line_number;
1019                 std::string parsed_filename;
1020                 bool found_line = GetLineAndFilename(*it, &parsed_line_number, parsed_filename);
1021                 if (!found_line) continue;
1022 
1023                 bool found_filename = parsed_filename.size() > 0;
1024                 if (found_filename) {
1025                     current_filename = parsed_filename;
1026                 }
1027                 if ((!found_filename) || (current_filename == reported_filename)) {
1028                     // Update the candidate best line directive, if the current one is prior and closer to the reported line
1029                     if (reported_line_number >= parsed_line_number) {
1030                         if (!found_best_line ||
1031                             (reported_line_number - parsed_line_number <= reported_line_number - saved_line_number)) {
1032                             saved_line_number = parsed_line_number;
1033                             saved_opsource_offset = std::distance(opsource_lines.begin(), it);
1034                             found_best_line = true;
1035                         }
1036                     }
1037                 }
1038             }
1039             if (found_best_line) {
1040                 assert(reported_line_number >= saved_line_number);
1041                 std::vector<std::string>::size_type opsource_index =
1042                     (reported_line_number - saved_line_number) + 1 + saved_opsource_offset;
1043                 if (opsource_index < opsource_lines.size()) {
1044                     source_stream << "\n" << reported_line_number << ": " << opsource_lines[opsource_index].c_str();
1045                 } else {
1046                     source_stream << "Internal error: calculated source line of " << opsource_index << " for source size of "
1047                                   << opsource_lines.size() << " lines.";
1048                 }
1049             } else {
1050                 source_stream << "Unable to find suitable #line directive in SPIR-V OpSource.";
1051             }
1052         } else {
1053             source_stream << "Unable to find SPIR-V OpSource.";
1054         }
1055     }
1056     source_msg = source_stream.str();
1057 }
1058 
1059 // Pull together all the information from the debug record to build the error message strings,
1060 // and then assemble them into a single message string.
1061 // Retrieve the shader program referenced by the unique shader ID provided in the debug record.
1062 // We had to keep a copy of the shader program with the same lifecycle as the pipeline to make
1063 // sure it is available when the pipeline is submitted.  (The ShaderModule tracking object also
1064 // keeps a copy, but it can be destroyed after the pipeline is created and before it is submitted.)
1065 //
AnalyzeAndReportError(CMD_BUFFER_STATE * cb_node,VkQueue queue,VkPipelineBindPoint pipeline_bind_point,uint32_t operation_index,uint32_t * const debug_output_buffer)1066 void CoreChecks::AnalyzeAndReportError(CMD_BUFFER_STATE *cb_node, VkQueue queue, VkPipelineBindPoint pipeline_bind_point,
1067                                        uint32_t operation_index, uint32_t *const debug_output_buffer) {
1068     using namespace spvtools;
1069     const uint32_t total_words = debug_output_buffer[0];
1070     // A zero here means that the shader instrumentation didn't write anything.
1071     // If you have nothing to say, don't say it here.
1072     if (0 == total_words) {
1073         return;
1074     }
1075     // The first word in the debug output buffer is the number of words that would have
1076     // been written by the shader instrumentation, if there was enough room in the buffer we provided.
1077     // The number of words actually written by the shaders is determined by the size of the buffer
1078     // we provide via the descriptor.  So, we process only the number of words that can fit in the
1079     // buffer.
1080     // Each "report" written by the shader instrumentation is considered a "record".  This function
1081     // is hard-coded to process only one record because it expects the buffer to be large enough to
1082     // hold only one record.  If there is a desire to process more than one record, this function needs
1083     // to be modified to loop over records and the buffer size increased.
1084     std::string validation_message;
1085     std::string stage_message;
1086     std::string common_message;
1087     std::string filename_message;
1088     std::string source_message;
1089     std::string vuid_msg;
1090     VkShaderModule shader_module_handle = VK_NULL_HANDLE;
1091     VkPipeline pipeline_handle = VK_NULL_HANDLE;
1092     std::vector<unsigned int> pgm;
1093     // The first record starts at this offset after the total_words.
1094     const uint32_t *debug_record = &debug_output_buffer[kDebugOutputDataOffset];
1095     // Lookup the VkShaderModule handle and SPIR-V code used to create the shader, using the unique shader ID value returned
1096     // by the instrumented shader.
1097     auto it = gpu_validation_state->shader_map.find(debug_record[kInstCommonOutShaderId]);
1098     if (it != gpu_validation_state->shader_map.end()) {
1099         shader_module_handle = it->second.shader_module;
1100         pipeline_handle = it->second.pipeline;
1101         pgm = it->second.pgm;
1102     }
1103     GenerateValidationMessage(debug_record, validation_message, vuid_msg);
1104     GenerateStageMessage(debug_record, stage_message);
1105     GenerateCommonMessage(report_data, cb_node, debug_record, shader_module_handle, pipeline_handle, pipeline_bind_point,
1106                           operation_index, common_message);
1107     GenerateSourceMessages(pgm, debug_record, filename_message, source_message);
1108     log_msg(report_data, VK_DEBUG_REPORT_ERROR_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_QUEUE_EXT, HandleToUint64(queue),
1109             vuid_msg.c_str(), "%s %s %s %s%s", validation_message.c_str(), common_message.c_str(), stage_message.c_str(),
1110             filename_message.c_str(), source_message.c_str());
1111     // The debug record at word kInstCommonOutSize is the number of words in the record
1112     // written by the shader.  Clear the entire record plus the total_words word at the start.
1113     const uint32_t words_to_clear = 1 + std::min(debug_record[kInstCommonOutSize], (uint32_t)kInstMaxOutCnt);
1114     memset(debug_output_buffer, 0, sizeof(uint32_t) * words_to_clear);
1115 }
1116 
1117 // For the given command buffer, map its debug data buffers and read their contents for analysis.
ProcessInstrumentationBuffer(VkQueue queue,CMD_BUFFER_STATE * cb_node)1118 void CoreChecks::ProcessInstrumentationBuffer(VkQueue queue, CMD_BUFFER_STATE *cb_node) {
1119     auto gpu_buffer_list = gpu_validation_state->GetGpuBufferInfo(cb_node->commandBuffer);
1120     if (cb_node && (cb_node->hasDrawCmd || cb_node->hasTraceRaysCmd || cb_node->hasDispatchCmd) && gpu_buffer_list.size() > 0) {
1121         VkResult result;
1122         char *pData;
1123         uint32_t draw_index = 0;
1124         uint32_t compute_index = 0;
1125         uint32_t ray_trace_index = 0;
1126 
1127         for (auto &buffer_info : gpu_buffer_list) {
1128             result = vmaMapMemory(gpu_validation_state->vmaAllocator, buffer_info.output_mem_block.allocation, (void **)&pData);
1129             // Analyze debug output buffer
1130             if (result == VK_SUCCESS) {
1131                 uint32_t operation_index = 0;
1132                 if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1133                     operation_index = draw_index;
1134                 } else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
1135                     operation_index = compute_index;
1136                 } else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
1137                     operation_index = ray_trace_index;
1138                 } else {
1139                     assert(false);
1140                 }
1141 
1142                 AnalyzeAndReportError(cb_node, queue, buffer_info.pipeline_bind_point, operation_index, (uint32_t *)pData);
1143                 vmaUnmapMemory(gpu_validation_state->vmaAllocator, buffer_info.output_mem_block.allocation);
1144             }
1145 
1146             if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_GRAPHICS) {
1147                 draw_index++;
1148             } else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_COMPUTE) {
1149                 compute_index++;
1150             } else if (buffer_info.pipeline_bind_point == VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
1151                 ray_trace_index++;
1152             } else {
1153                 assert(false);
1154             }
1155         }
1156     }
1157 }
1158 
1159 // For the given command buffer, map its debug data buffers and update the status of any update after bind descriptors
UpdateInstrumentationBuffer(CMD_BUFFER_STATE * cb_node)1160 void CoreChecks::UpdateInstrumentationBuffer(CMD_BUFFER_STATE *cb_node) {
1161     auto gpu_buffer_list = gpu_validation_state->GetGpuBufferInfo(cb_node->commandBuffer);
1162     uint32_t *pData;
1163     for (auto &buffer_info : gpu_buffer_list) {
1164         if (buffer_info.input_mem_block.update_at_submit.size() > 0) {
1165             VkResult result =
1166                 vmaMapMemory(gpu_validation_state->vmaAllocator, buffer_info.input_mem_block.allocation, (void **)&pData);
1167             if (result == VK_SUCCESS) {
1168                 for (auto update : buffer_info.input_mem_block.update_at_submit) {
1169                     if (update.second->updated) pData[update.first] = 1;
1170                 }
1171                 vmaUnmapMemory(gpu_validation_state->vmaAllocator, buffer_info.input_mem_block.allocation);
1172             }
1173         }
1174     }
1175 }
1176 
1177 // Submit a memory barrier on graphics queues.
1178 // Lazy-create and record the needed command buffer.
SubmitBarrier(VkQueue queue)1179 void CoreChecks::SubmitBarrier(VkQueue queue) {
1180     auto queue_barrier_command_info_it =
1181         gpu_validation_state->queue_barrier_command_infos.emplace(queue, GpuQueueBarrierCommandInfo{});
1182     if (queue_barrier_command_info_it.second) {
1183         GpuQueueBarrierCommandInfo &quere_barrier_command_info = queue_barrier_command_info_it.first->second;
1184 
1185         uint32_t queue_family_index = 0;
1186 
1187         auto queue_state_it = queueMap.find(queue);
1188         if (queue_state_it != queueMap.end()) {
1189             queue_family_index = queue_state_it->second.queueFamilyIndex;
1190         }
1191 
1192         VkResult result = VK_SUCCESS;
1193 
1194         VkCommandPoolCreateInfo pool_create_info = {};
1195         pool_create_info.sType = VK_STRUCTURE_TYPE_COMMAND_POOL_CREATE_INFO;
1196         pool_create_info.queueFamilyIndex = queue_family_index;
1197         result = DispatchCreateCommandPool(device, &pool_create_info, nullptr, &quere_barrier_command_info.barrier_command_pool);
1198         if (result != VK_SUCCESS) {
1199             ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
1200                                "Unable to create command pool for barrier CB.");
1201             quere_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
1202             return;
1203         }
1204 
1205         VkCommandBufferAllocateInfo buffer_alloc_info = {};
1206         buffer_alloc_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_ALLOCATE_INFO;
1207         buffer_alloc_info.commandPool = quere_barrier_command_info.barrier_command_pool;
1208         buffer_alloc_info.commandBufferCount = 1;
1209         buffer_alloc_info.level = VK_COMMAND_BUFFER_LEVEL_PRIMARY;
1210         result = DispatchAllocateCommandBuffers(device, &buffer_alloc_info, &quere_barrier_command_info.barrier_command_buffer);
1211         if (result != VK_SUCCESS) {
1212             ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
1213                                "Unable to create barrier command buffer.");
1214             DispatchDestroyCommandPool(device, quere_barrier_command_info.barrier_command_pool, nullptr);
1215             quere_barrier_command_info.barrier_command_pool = VK_NULL_HANDLE;
1216             quere_barrier_command_info.barrier_command_buffer = VK_NULL_HANDLE;
1217             return;
1218         }
1219 
1220         // Hook up command buffer dispatch
1221         gpu_validation_state->vkSetDeviceLoaderData(device, quere_barrier_command_info.barrier_command_buffer);
1222 
1223         // Record a global memory barrier to force availability of device memory operations to the host domain.
1224         VkCommandBufferBeginInfo command_buffer_begin_info = {};
1225         command_buffer_begin_info.sType = VK_STRUCTURE_TYPE_COMMAND_BUFFER_BEGIN_INFO;
1226         result = DispatchBeginCommandBuffer(quere_barrier_command_info.barrier_command_buffer, &command_buffer_begin_info);
1227         if (result == VK_SUCCESS) {
1228             VkMemoryBarrier memory_barrier = {};
1229             memory_barrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
1230             memory_barrier.srcAccessMask = VK_ACCESS_MEMORY_WRITE_BIT;
1231             memory_barrier.dstAccessMask = VK_ACCESS_HOST_READ_BIT;
1232 
1233             DispatchCmdPipelineBarrier(quere_barrier_command_info.barrier_command_buffer, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
1234                                        VK_PIPELINE_STAGE_HOST_BIT, 0, 1, &memory_barrier, 0, nullptr, 0, nullptr);
1235             DispatchEndCommandBuffer(quere_barrier_command_info.barrier_command_buffer);
1236         }
1237     }
1238 
1239     GpuQueueBarrierCommandInfo &quere_barrier_command_info = queue_barrier_command_info_it.first->second;
1240     if (quere_barrier_command_info.barrier_command_buffer != VK_NULL_HANDLE) {
1241         VkSubmitInfo submit_info = {};
1242         submit_info.sType = VK_STRUCTURE_TYPE_SUBMIT_INFO;
1243         submit_info.commandBufferCount = 1;
1244         submit_info.pCommandBuffers = &quere_barrier_command_info.barrier_command_buffer;
1245         DispatchQueueSubmit(queue, 1, &submit_info, VK_NULL_HANDLE);
1246     }
1247 }
1248 
GpuPreCallRecordQueueSubmit(VkQueue queue,uint32_t submitCount,const VkSubmitInfo * pSubmits,VkFence fence)1249 void CoreChecks::GpuPreCallRecordQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) {
1250     for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
1251         const VkSubmitInfo *submit = &pSubmits[submit_idx];
1252         for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
1253             auto cb_node = GetCBState(submit->pCommandBuffers[i]);
1254             UpdateInstrumentationBuffer(cb_node);
1255             for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
1256                 UpdateInstrumentationBuffer(secondaryCmdBuffer);
1257             }
1258         }
1259     }
1260 }
1261 
1262 // Issue a memory barrier to make GPU-written data available to host.
1263 // Wait for the queue to complete execution.
1264 // Check the debug buffers for all the command buffers that were submitted.
GpuPostCallQueueSubmit(VkQueue queue,uint32_t submitCount,const VkSubmitInfo * pSubmits,VkFence fence)1265 void CoreChecks::GpuPostCallQueueSubmit(VkQueue queue, uint32_t submitCount, const VkSubmitInfo *pSubmits, VkFence fence) {
1266     if (gpu_validation_state->aborted) return;
1267 
1268     SubmitBarrier(queue);
1269 
1270     DispatchQueueWaitIdle(queue);
1271 
1272     for (uint32_t submit_idx = 0; submit_idx < submitCount; submit_idx++) {
1273         const VkSubmitInfo *submit = &pSubmits[submit_idx];
1274         for (uint32_t i = 0; i < submit->commandBufferCount; i++) {
1275             auto cb_node = GetCBState(submit->pCommandBuffers[i]);
1276             ProcessInstrumentationBuffer(queue, cb_node);
1277             for (auto secondaryCmdBuffer : cb_node->linkedCommandBuffers) {
1278                 ProcessInstrumentationBuffer(queue, secondaryCmdBuffer);
1279             }
1280         }
1281     }
1282 }
1283 
GpuAllocateValidationResources(const VkCommandBuffer cmd_buffer,const VkPipelineBindPoint bind_point)1284 void CoreChecks::GpuAllocateValidationResources(const VkCommandBuffer cmd_buffer, const VkPipelineBindPoint bind_point) {
1285     if (bind_point != VK_PIPELINE_BIND_POINT_GRAPHICS && bind_point != VK_PIPELINE_BIND_POINT_COMPUTE &&
1286         bind_point != VK_PIPELINE_BIND_POINT_RAY_TRACING_NV) {
1287         return;
1288     }
1289     VkResult result;
1290 
1291     if (!(enabled.gpu_validation)) return;
1292 
1293     if (gpu_validation_state->aborted) return;
1294 
1295     std::vector<VkDescriptorSet> desc_sets;
1296     VkDescriptorPool desc_pool = VK_NULL_HANDLE;
1297     result = gpu_validation_state->desc_set_manager->GetDescriptorSets(1, &desc_pool, &desc_sets);
1298     assert(result == VK_SUCCESS);
1299     if (result != VK_SUCCESS) {
1300         ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
1301                            "Unable to allocate descriptor sets.  Device could become unstable.");
1302         gpu_validation_state->aborted = true;
1303         return;
1304     }
1305 
1306     VkDescriptorBufferInfo output_desc_buffer_info = {};
1307     output_desc_buffer_info.range = gpu_validation_state->output_buffer_size;
1308 
1309     auto cb_node = GetCBState(cmd_buffer);
1310     if (!cb_node) {
1311         ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unrecognized command buffer");
1312         gpu_validation_state->aborted = true;
1313         return;
1314     }
1315 
1316     // Allocate memory for the output block that the gpu will use to return any error information
1317     GpuDeviceMemoryBlock output_block = {};
1318     VkBufferCreateInfo bufferInfo = {VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO};
1319     bufferInfo.size = gpu_validation_state->output_buffer_size;
1320     bufferInfo.usage = VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
1321     VmaAllocationCreateInfo allocInfo = {};
1322     allocInfo.usage = VMA_MEMORY_USAGE_GPU_TO_CPU;
1323     result = vmaCreateBuffer(gpu_validation_state->vmaAllocator, &bufferInfo, &allocInfo, &output_block.buffer,
1324                              &output_block.allocation, nullptr);
1325     if (result != VK_SUCCESS) {
1326         ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
1327                            "Unable to allocate device memory.  Device could become unstable.");
1328         gpu_validation_state->aborted = true;
1329         return;
1330     }
1331 
1332     // Clear the output block to zeros so that only error information from the gpu will be present
1333     uint32_t *pData;
1334     result = vmaMapMemory(gpu_validation_state->vmaAllocator, output_block.allocation, (void **)&pData);
1335     if (result == VK_SUCCESS) {
1336         memset(pData, 0, gpu_validation_state->output_buffer_size);
1337         vmaUnmapMemory(gpu_validation_state->vmaAllocator, output_block.allocation);
1338     }
1339 
1340     GpuDeviceMemoryBlock input_block = {};
1341     VkWriteDescriptorSet desc_writes[2] = {};
1342     uint32_t desc_count = 1;
1343     auto const &state = cb_node->lastBound[bind_point];
1344     uint32_t number_of_sets = (uint32_t)state.per_set.size();
1345 
1346     // Figure out how much memory we need for the input block based on how many sets and bindings there are
1347     // and how big each of the bindings is
1348     if (number_of_sets > 0 && device_extensions.vk_ext_descriptor_indexing) {
1349         uint32_t descriptor_count = 0;  // Number of descriptors, including all array elements
1350         uint32_t binding_count = 0;     // Number of bindings based on the max binding number used
1351         for (auto s : state.per_set) {
1352             auto desc = s.bound_descriptor_set;
1353             auto bindings = desc->GetLayout()->GetSortedBindingSet();
1354             if (bindings.size() > 0) {
1355                 binding_count += desc->GetLayout()->GetMaxBinding() + 1;
1356                 for (auto binding : bindings) {
1357                     // Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
1358                     // blocks
1359                     if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) {
1360                         descriptor_count++;
1361                         log_msg(report_data, VK_DEBUG_REPORT_WARNING_BIT_EXT, VK_DEBUG_REPORT_OBJECT_TYPE_DESCRIPTOR_SET_EXT,
1362                                 VK_NULL_HANDLE, "UNASSIGNED-GPU-Assisted Validation Warning",
1363                                 "VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT descriptors will not be validated by GPU assisted "
1364                                 "validation");
1365                     } else if (binding == desc->GetLayout()->GetMaxBinding() && desc->IsVariableDescriptorCount(binding)) {
1366                         descriptor_count += desc->GetVariableDescriptorCount();
1367                     } else {
1368                         descriptor_count += desc->GetDescriptorCountFromBinding(binding);
1369                     }
1370                 }
1371             }
1372         }
1373 
1374         // Note that the size of the input buffer is dependent on the maximum binding number, which
1375         // can be very large.  This is because for (set = s, binding = b, index = i), the validation
1376         // code is going to dereference Input[ i + Input[ b + Input[ s + Input[ Input[0] ] ] ] ] to
1377         // see if descriptors have been written. In gpu_validation.md, we note this and advise
1378         // using densely packed bindings as a best practice when using gpu-av with descriptor indexing
1379         uint32_t words_needed = 1 + (number_of_sets * 2) + (binding_count * 2) + descriptor_count;
1380         allocInfo.usage = VMA_MEMORY_USAGE_CPU_TO_GPU;
1381         bufferInfo.size = words_needed * 4;
1382         result = vmaCreateBuffer(gpu_validation_state->vmaAllocator, &bufferInfo, &allocInfo, &input_block.buffer,
1383                                  &input_block.allocation, nullptr);
1384         if (result != VK_SUCCESS) {
1385             ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device),
1386                                "Unable to allocate device memory.  Device could become unstable.");
1387             gpu_validation_state->aborted = true;
1388             return;
1389         }
1390 
1391         // Populate input buffer first with the sizes of every descriptor in every set, then with whether
1392         // each element of each descriptor has been written or not.  See gpu_validation.md for a more thourough
1393         // outline of the input buffer format
1394         result = vmaMapMemory(gpu_validation_state->vmaAllocator, input_block.allocation, (void **)&pData);
1395         memset(pData, 0, static_cast<size_t>(bufferInfo.size));
1396         // Pointer to a sets array that points into the sizes array
1397         uint32_t *sets_to_sizes = pData + 1;
1398         // Pointer to the sizes array that contains the array size of the descriptor at each binding
1399         uint32_t *sizes = sets_to_sizes + number_of_sets;
1400         // Pointer to another sets array that points into the bindings array that points into the written array
1401         uint32_t *sets_to_bindings = sizes + binding_count;
1402         // Pointer to the bindings array that points at the start of the writes in the writes array for each binding
1403         uint32_t *bindings_to_written = sets_to_bindings + number_of_sets;
1404         // Index of the next entry in the written array to be updated
1405         uint32_t written_index = 1 + (number_of_sets * 2) + (binding_count * 2);
1406         uint32_t bindCounter = number_of_sets + 1;
1407         // Index of the start of the sets_to_bindings array
1408         pData[0] = number_of_sets + binding_count + 1;
1409 
1410         for (auto s : state.per_set) {
1411             auto desc = s.bound_descriptor_set;
1412             auto layout = desc->GetLayout();
1413             auto bindings = layout->GetSortedBindingSet();
1414             if (bindings.size() > 0) {
1415                 // For each set, fill in index of its bindings sizes in the sizes array
1416                 *sets_to_sizes++ = bindCounter;
1417                 // For each set, fill in the index of its bindings in the bindings_to_written array
1418                 *sets_to_bindings++ = bindCounter + number_of_sets + binding_count;
1419                 for (auto binding : bindings) {
1420                     // For each binding, fill in its size in the sizes array
1421                     // Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
1422                     // blocks
1423                     if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) {
1424                         sizes[binding] = 1;
1425                     } else if (binding == layout->GetMaxBinding() && desc->IsVariableDescriptorCount(binding)) {
1426                         sizes[binding] = desc->GetVariableDescriptorCount();
1427                     } else {
1428                         sizes[binding] = desc->GetDescriptorCountFromBinding(binding);
1429                     }
1430                     // Fill in the starting index for this binding in the written array in the bindings_to_written array
1431                     bindings_to_written[binding] = written_index;
1432 
1433                     // Shader instrumentation is tracking inline uniform blocks as scalers. Don't try to validate inline uniform
1434                     // blocks
1435                     if (VK_DESCRIPTOR_TYPE_INLINE_UNIFORM_BLOCK_EXT == desc->GetLayout()->GetTypeFromBinding(binding)) {
1436                         pData[written_index++] = 1;
1437                         continue;
1438                     }
1439 
1440                     auto index_range = desc->GetGlobalIndexRangeFromBinding(binding, true);
1441                     // For each array element in the binding, update the written array with whether it has been written
1442                     for (uint32_t i = index_range.start; i < index_range.end; ++i) {
1443                         auto *descriptor = desc->GetDescriptorFromGlobalIndex(i);
1444                         if (descriptor->updated) {
1445                             pData[written_index] = 1;
1446                         } else if (desc->IsUpdateAfterBind(binding)) {
1447                             // If it hasn't been written now and it's update after bind, put it in a list to check at QueueSubmit
1448                             input_block.update_at_submit[written_index] = descriptor;
1449                         }
1450                         written_index++;
1451                     }
1452                 }
1453                 auto last = desc->GetLayout()->GetMaxBinding();
1454                 bindings_to_written += last + 1;
1455                 bindCounter += last + 1;
1456                 sizes += last + 1;
1457             } else {
1458                 *sets_to_sizes++ = 0;
1459                 *sets_to_bindings++ = 0;
1460             }
1461         }
1462         vmaUnmapMemory(gpu_validation_state->vmaAllocator, input_block.allocation);
1463 
1464         VkDescriptorBufferInfo input_desc_buffer_info = {};
1465         input_desc_buffer_info.range = (words_needed * 4);
1466         input_desc_buffer_info.buffer = input_block.buffer;
1467         input_desc_buffer_info.offset = 0;
1468 
1469         desc_writes[1].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
1470         desc_writes[1].dstBinding = 1;
1471         desc_writes[1].descriptorCount = 1;
1472         desc_writes[1].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
1473         desc_writes[1].pBufferInfo = &input_desc_buffer_info;
1474         desc_writes[1].dstSet = desc_sets[0];
1475 
1476         desc_count = 2;
1477     }
1478 
1479     // Write the descriptor
1480     output_desc_buffer_info.buffer = output_block.buffer;
1481     output_desc_buffer_info.offset = 0;
1482 
1483     desc_writes[0].sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
1484     desc_writes[0].descriptorCount = 1;
1485     desc_writes[0].descriptorType = VK_DESCRIPTOR_TYPE_STORAGE_BUFFER;
1486     desc_writes[0].pBufferInfo = &output_desc_buffer_info;
1487     desc_writes[0].dstSet = desc_sets[0];
1488     DispatchUpdateDescriptorSets(device, desc_count, desc_writes, 0, NULL);
1489 
1490     auto iter = cb_node->lastBound.find(bind_point);  // find() allows read-only access to cb_state
1491     if (iter != cb_node->lastBound.end()) {
1492         auto pipeline_state = iter->second.pipeline_state;
1493         if (pipeline_state && (pipeline_state->pipeline_layout.set_layouts.size() <= gpu_validation_state->desc_set_bind_index)) {
1494             DispatchCmdBindDescriptorSets(cmd_buffer, bind_point, pipeline_state->pipeline_layout.layout,
1495                                           gpu_validation_state->desc_set_bind_index, 1, desc_sets.data(), 0, nullptr);
1496         }
1497         // Record buffer and memory info in CB state tracking
1498         gpu_validation_state->GetGpuBufferInfo(cmd_buffer)
1499             .emplace_back(output_block, input_block, desc_sets[0], desc_pool, bind_point);
1500     } else {
1501         ReportSetupProblem(VK_DEBUG_REPORT_OBJECT_TYPE_DEVICE_EXT, HandleToUint64(device), "Unable to find pipeline state");
1502         vmaDestroyBuffer(gpu_validation_state->vmaAllocator, input_block.buffer, input_block.allocation);
1503         vmaDestroyBuffer(gpu_validation_state->vmaAllocator, output_block.buffer, output_block.allocation);
1504         gpu_validation_state->aborted = true;
1505         return;
1506     }
1507 }
1508