• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #include "tensorflow/compiler/xla/client/lib/qr.h"
17 
18 #include <memory>
19 #include <vector>
20 
21 #include "tensorflow/compiler/xla/client/lib/arithmetic.h"
22 #include "tensorflow/compiler/xla/client/lib/constants.h"
23 #include "tensorflow/compiler/xla/client/lib/loops.h"
24 #include "tensorflow/compiler/xla/client/lib/math.h"
25 #include "tensorflow/compiler/xla/client/lib/matrix.h"
26 #include "tensorflow/compiler/xla/client/lib/slicing.h"
27 #include "tensorflow/compiler/xla/client/xla_builder.h"
28 #include "tensorflow/compiler/xla/literal_util.h"
29 #include "tensorflow/compiler/xla/shape_util.h"
30 #include "tensorflow/compiler/xla/status_macros.h"
31 #include "tensorflow/compiler/xla/statusor.h"
32 #include "tensorflow/core/lib/core/errors.h"
33 
34 namespace xla {
35 
Qr(XlaOp a)36 QrDecomposition Qr(XlaOp a) {
37   auto result = [&]() -> StatusOr<QrDecomposition> {
38     XlaBuilder* builder = a.builder();
39     TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a));
40     const int num_dims = a_shape.rank();
41     if (num_dims < 2) {
42       return InvalidArgument(
43           "Arguments to QR must have rank >= 2: got shape %s",
44           a_shape.ToString());
45     }
46     const int64_t m = ShapeUtil::GetDimension(a_shape, -2);
47     const int64_t n = ShapeUtil::GetDimension(a_shape, -1);
48 
49     std::vector<int64_t> taus_dims(a_shape.dimensions().begin(),
50                                    a_shape.dimensions().end());
51     taus_dims.pop_back();
52     taus_dims.back() = std::min(m, n);
53     auto taus_shape = ShapeUtil::MakeShape(a_shape.element_type(), taus_dims);
54 
55     Shape qr_shape = ShapeUtil::MakeTupleShape({a_shape, taus_shape});
56     auto qr = CustomCall(a.builder(), "Qr", {a}, qr_shape);
57     a = GetTupleElement(qr, 0);
58     auto taus = GetTupleElement(qr, 1);
59 
60     return QrDecomposition{a, taus};
61   }();
62   if (!result.ok()) {
63     XlaOp error = a.builder()->ReportError(result.status());
64     return QrDecomposition{error, error};
65   }
66   return result.ValueOrDie();
67 }
68 
ProductOfElementaryHouseholderReflectors(XlaOp a,XlaOp taus)69 XlaOp ProductOfElementaryHouseholderReflectors(XlaOp a, XlaOp taus) {
70   XlaBuilder* builder = a.builder();
71   return builder->ReportErrorOrReturn([&]() -> StatusOr<XlaOp> {
72     TF_ASSIGN_OR_RETURN(Shape a_shape, builder->GetShape(a));
73     TF_ASSIGN_OR_RETURN(Shape taus_shape, builder->GetShape(taus));
74     if (a_shape.rank() < 2) {
75       return InvalidArgument(
76           "Matrix `a` must have >= 2 dimensions: got shape %s",
77           a_shape.ToString());
78     }
79     if (taus_shape.rank() + 1 != a_shape.rank()) {
80       return InvalidArgument(
81           "Matrix `taus` must have one fewer dimension than `a`: got shapes "
82           "%s and %s",
83           taus_shape.ToString(), a_shape.ToString());
84     }
85     const int64_t m = ShapeUtil::GetDimension(a_shape, -2);
86     const int64_t n = ShapeUtil::GetDimension(a_shape, -1);
87     if (m < n) {
88       return InvalidArgument(
89           "Argument to product of elementary Householder "
90           "reflectors must have m >= n, got shape %s",
91           a_shape.ToString());
92     }
93     absl::Span<const int64_t> a_batch_dims =
94         absl::MakeConstSpan(a_shape.dimensions().begin(),
95                             a_shape.dimensions().begin() + a_shape.rank() - 2);
96     absl::Span<const int64_t> taus_batch_dims = absl::MakeConstSpan(
97         taus_shape.dimensions().begin(),
98         taus_shape.dimensions().begin() + taus_shape.rank() - 1);
99     const int64_t k = ShapeUtil::GetDimension(taus_shape, -1);
100     if (a_shape.element_type() != taus_shape.element_type() ||
101         a_batch_dims != taus_batch_dims || k > n) {
102       return InvalidArgument("Invalid shape for `taus`, got a=%s and taus=%s",
103                              taus_shape.ToString(), a_shape.ToString());
104     }
105     return CustomCall(a.builder(), "ProductOfElementaryHouseholderReflectors",
106                       {a, taus}, a_shape);
107   });
108 }
109 
QrExplicit(XlaOp a,bool full_matrices,XlaOp & q,XlaOp & r)110 void QrExplicit(XlaOp a, bool full_matrices, XlaOp& q, XlaOp& r) {
111   StatusOr<Shape> a_shape_or = a.builder()->GetShape(a);
112   if (!a_shape_or.ok()) {
113     q = a.builder()->ReportError(a_shape_or.status());
114     r = q;
115     return;
116   }
117   Shape a_shape = a_shape_or.ValueOrDie();
118   const int64_t m = ShapeUtil::GetDimension(a_shape, -2);
119   const int64_t n = ShapeUtil::GetDimension(a_shape, -1);
120   const int64_t p = std::min(m, n);
121 
122   auto qr = Qr(a);
123   if (full_matrices) {
124     XlaOp t;
125     if (m < n) {
126       t = SliceInMinorDims(qr.q_and_r, {0, 0}, {m, m});
127     } else {
128       t = PadInDim(qr.q_and_r, Zero(a.builder(), a_shape.element_type()),
129                    a_shape.dimensions_size() - 1, /*pad_lo=*/0,
130                    /*pad_hi=*/m - n);
131     }
132     q = ProductOfElementaryHouseholderReflectors(t, qr.taus);
133     r = UpperTriangle(qr.q_and_r);
134   } else {
135     XlaOp t;
136     if (m < n) {
137       t = SliceInMinorDims(qr.q_and_r, {0, 0}, {m, m});
138     } else {
139       t = qr.q_and_r;
140     }
141     q = ProductOfElementaryHouseholderReflectors(t, qr.taus);
142     q = SliceInMinorDims(q, {0, 0}, {m, p});
143     r = UpperTriangle(SliceInMinorDims(qr.q_and_r, {0, 0}, {p, n}));
144   }
145 }
146 
147 }  // namespace xla
148