• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
2#
3# Licensed under the Apache License, Version 2.0 (the "License");
4# you may not use this file except in compliance with the License.
5# You may obtain a copy of the License at
6#
7#     http://www.apache.org/licenses/LICENSE-2.0
8#
9# Unless required by applicable law or agreed to in writing, software
10# distributed under the License is distributed on an "AS IS" BASIS,
11# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12# See the License for the specific language governing permissions and
13# limitations under the License.
14# ==============================================================================
15"""Value for RaggedTensor."""
16
17import numpy as np
18
19from tensorflow.python.ops.ragged.row_partition import RowPartition
20from tensorflow.python.util import dispatch
21from tensorflow.python.util.tf_export import tf_export
22
23
24@tf_export(v1=["ragged.RaggedTensorValue"])
25@dispatch.register_dispatchable_type
26class RaggedTensorValue:
27  """Represents the value of a `RaggedTensor`.
28
29  Warning: `RaggedTensorValue` should only be used in graph mode; in
30  eager mode, the `tf.RaggedTensor` class contains its value directly.
31
32  See `tf.RaggedTensor` for a description of ragged tensors.
33  """
34
35  def __init__(self, values, row_splits):
36    """Creates a `RaggedTensorValue`.
37
38    Args:
39      values: A numpy array of any type and shape; or a RaggedTensorValue.
40      row_splits: A 1-D int32 or int64 numpy array.
41    """
42    if not (isinstance(row_splits, (np.ndarray, np.generic)) and
43            row_splits.dtype in (np.int64, np.int32) and row_splits.ndim == 1):
44      raise TypeError("row_splits must be a 1D int32 or int64 numpy array")
45    if not isinstance(values, (np.ndarray, np.generic, RaggedTensorValue)):
46      raise TypeError("values must be a numpy array or a RaggedTensorValue")
47    if (isinstance(values, RaggedTensorValue) and
48        row_splits.dtype != values.row_splits.dtype):
49      raise ValueError("row_splits and values.row_splits must have "
50                       "the same dtype")
51    self._values = values
52    self._row_splits = row_splits
53
54  row_splits = property(
55      lambda self: self._row_splits,
56      doc="""The split indices for the ragged tensor value.""")
57  values = property(
58      lambda self: self._values,
59      doc="""The concatenated values for all rows in this tensor.""")
60  dtype = property(
61      lambda self: self._values.dtype,
62      doc="""The numpy dtype of values in this tensor.""")
63
64  @property
65  def flat_values(self):
66    """The innermost `values` array for this ragged tensor value."""
67    rt_values = self.values
68    while isinstance(rt_values, RaggedTensorValue):
69      rt_values = rt_values.values
70    return rt_values
71
72  @property
73  def nested_row_splits(self):
74    """The row_splits for all ragged dimensions in this ragged tensor value."""
75    rt_nested_splits = [self.row_splits]
76    rt_values = self.values
77    while isinstance(rt_values, RaggedTensorValue):
78      rt_nested_splits.append(rt_values.row_splits)
79      rt_values = rt_values.values
80    return tuple(rt_nested_splits)
81
82  @property
83  def ragged_rank(self):
84    """The number of ragged dimensions in this ragged tensor value."""
85    values_is_ragged = isinstance(self._values, RaggedTensorValue)
86    return self._values.ragged_rank + 1 if values_is_ragged else 1
87
88  @property
89  def shape(self):
90    """A tuple indicating the shape of this RaggedTensorValue."""
91    return (self._row_splits.shape[0] - 1,) + (None,) + self._values.shape[1:]
92
93  @property
94  def _nested_row_partitions(self):
95    """The row_partitions representing this shape."""
96    return [RowPartition.from_row_splits(rs) for rs in self.nested_row_splits]
97
98  def __str__(self):
99    return "<tf.RaggedTensorValue %s>" % self.to_list()
100
101  def __repr__(self):
102    return "tf.RaggedTensorValue(values=%r, row_splits=%r)" % (self._values,
103                                                               self._row_splits)
104
105  def to_list(self):
106    """Returns this ragged tensor value as a nested Python list."""
107    if isinstance(self._values, RaggedTensorValue):
108      values_as_list = self._values.to_list()
109    else:
110      values_as_list = self._values.tolist()
111    return [
112        values_as_list[self._row_splits[i]:self._row_splits[i + 1]]
113        for i in range(len(self._row_splits) - 1)
114    ]
115