• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- llvm/ModuleSummaryIndex.h - Module Summary Index ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// ModuleSummaryIndex.h This file contains the declarations the classes that
11 ///  hold the module index and summary for function importing.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_MODULESUMMARYINDEX_H
16 #define LLVM_IR_MODULESUMMARYINDEX_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringMap.h"
24 #include "llvm/ADT/StringRef.h"
25 #include "llvm/ADT/TinyPtrVector.h"
26 #include "llvm/IR/GlobalValue.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/Support/Allocator.h"
29 #include "llvm/Support/MathExtras.h"
30 #include "llvm/Support/ScaledNumber.h"
31 #include "llvm/Support/StringSaver.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 #include <array>
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <map>
39 #include <memory>
40 #include <set>
41 #include <string>
42 #include <utility>
43 #include <vector>
44 
45 namespace llvm {
46 
47 namespace yaml {
48 
49 template <typename T> struct MappingTraits;
50 
51 } // end namespace yaml
52 
53 /// Class to accumulate and hold information about a callee.
54 struct CalleeInfo {
55   enum class HotnessType : uint8_t {
56     Unknown = 0,
57     Cold = 1,
58     None = 2,
59     Hot = 3,
60     Critical = 4
61   };
62 
63   // The size of the bit-field might need to be adjusted if more values are
64   // added to HotnessType enum.
65   uint32_t Hotness : 3;
66 
67   /// The value stored in RelBlockFreq has to be interpreted as the digits of
68   /// a scaled number with a scale of \p -ScaleShift.
69   uint32_t RelBlockFreq : 29;
70   static constexpr int32_t ScaleShift = 8;
71   static constexpr uint64_t MaxRelBlockFreq = (1 << 29) - 1;
72 
CalleeInfoCalleeInfo73   CalleeInfo()
74       : Hotness(static_cast<uint32_t>(HotnessType::Unknown)), RelBlockFreq(0) {}
CalleeInfoCalleeInfo75   explicit CalleeInfo(HotnessType Hotness, uint64_t RelBF)
76       : Hotness(static_cast<uint32_t>(Hotness)), RelBlockFreq(RelBF) {}
77 
updateHotnessCalleeInfo78   void updateHotness(const HotnessType OtherHotness) {
79     Hotness = std::max(Hotness, static_cast<uint32_t>(OtherHotness));
80   }
81 
getHotnessCalleeInfo82   HotnessType getHotness() const { return HotnessType(Hotness); }
83 
84   /// Update \p RelBlockFreq from \p BlockFreq and \p EntryFreq
85   ///
86   /// BlockFreq is divided by EntryFreq and added to RelBlockFreq. To represent
87   /// fractional values, the result is represented as a fixed point number with
88   /// scale of -ScaleShift.
updateRelBlockFreqCalleeInfo89   void updateRelBlockFreq(uint64_t BlockFreq, uint64_t EntryFreq) {
90     if (EntryFreq == 0)
91       return;
92     using Scaled64 = ScaledNumber<uint64_t>;
93     Scaled64 Temp(BlockFreq, ScaleShift);
94     Temp /= Scaled64::get(EntryFreq);
95 
96     uint64_t Sum =
97         SaturatingAdd<uint64_t>(Temp.toInt<uint64_t>(), RelBlockFreq);
98     Sum = std::min(Sum, uint64_t(MaxRelBlockFreq));
99     RelBlockFreq = static_cast<uint32_t>(Sum);
100   }
101 };
102 
getHotnessName(CalleeInfo::HotnessType HT)103 inline const char *getHotnessName(CalleeInfo::HotnessType HT) {
104   switch (HT) {
105   case CalleeInfo::HotnessType::Unknown:
106     return "unknown";
107   case CalleeInfo::HotnessType::Cold:
108     return "cold";
109   case CalleeInfo::HotnessType::None:
110     return "none";
111   case CalleeInfo::HotnessType::Hot:
112     return "hot";
113   case CalleeInfo::HotnessType::Critical:
114     return "critical";
115   }
116   llvm_unreachable("invalid hotness");
117 }
118 
119 class GlobalValueSummary;
120 
121 using GlobalValueSummaryList = std::vector<std::unique_ptr<GlobalValueSummary>>;
122 
123 struct alignas(8) GlobalValueSummaryInfo {
124   union NameOrGV {
NameOrGV(bool HaveGVs)125     NameOrGV(bool HaveGVs) {
126       if (HaveGVs)
127         GV = nullptr;
128       else
129         Name = "";
130     }
131 
132     /// The GlobalValue corresponding to this summary. This is only used in
133     /// per-module summaries and when the IR is available. E.g. when module
134     /// analysis is being run, or when parsing both the IR and the summary
135     /// from assembly.
136     const GlobalValue *GV;
137 
138     /// Summary string representation. This StringRef points to BC module
139     /// string table and is valid until module data is stored in memory.
140     /// This is guaranteed to happen until runThinLTOBackend function is
141     /// called, so it is safe to use this field during thin link. This field
142     /// is only valid if summary index was loaded from BC file.
143     StringRef Name;
144   } U;
145 
GlobalValueSummaryInfoGlobalValueSummaryInfo146   GlobalValueSummaryInfo(bool HaveGVs) : U(HaveGVs) {}
147 
148   /// List of global value summary structures for a particular value held
149   /// in the GlobalValueMap. Requires a vector in the case of multiple
150   /// COMDAT values of the same name.
151   GlobalValueSummaryList SummaryList;
152 };
153 
154 /// Map from global value GUID to corresponding summary structures. Use a
155 /// std::map rather than a DenseMap so that pointers to the map's value_type
156 /// (which are used by ValueInfo) are not invalidated by insertion. Also it will
157 /// likely incur less overhead, as the value type is not very small and the size
158 /// of the map is unknown, resulting in inefficiencies due to repeated
159 /// insertions and resizing.
160 using GlobalValueSummaryMapTy =
161     std::map<GlobalValue::GUID, GlobalValueSummaryInfo>;
162 
163 /// Struct that holds a reference to a particular GUID in a global value
164 /// summary.
165 struct ValueInfo {
166   enum Flags { HaveGV = 1, ReadOnly = 2, WriteOnly = 4 };
167   PointerIntPair<const GlobalValueSummaryMapTy::value_type *, 3, int>
168       RefAndFlags;
169 
170   ValueInfo() = default;
ValueInfoValueInfo171   ValueInfo(bool HaveGVs, const GlobalValueSummaryMapTy::value_type *R) {
172     RefAndFlags.setPointer(R);
173     RefAndFlags.setInt(HaveGVs);
174   }
175 
176   explicit operator bool() const { return getRef(); }
177 
getGUIDValueInfo178   GlobalValue::GUID getGUID() const { return getRef()->first; }
getValueValueInfo179   const GlobalValue *getValue() const {
180     assert(haveGVs());
181     return getRef()->second.U.GV;
182   }
183 
getSummaryListValueInfo184   ArrayRef<std::unique_ptr<GlobalValueSummary>> getSummaryList() const {
185     return getRef()->second.SummaryList;
186   }
187 
nameValueInfo188   StringRef name() const {
189     return haveGVs() ? getRef()->second.U.GV->getName()
190                      : getRef()->second.U.Name;
191   }
192 
haveGVsValueInfo193   bool haveGVs() const { return RefAndFlags.getInt() & HaveGV; }
isReadOnlyValueInfo194   bool isReadOnly() const {
195     assert(isValidAccessSpecifier());
196     return RefAndFlags.getInt() & ReadOnly;
197   }
isWriteOnlyValueInfo198   bool isWriteOnly() const {
199     assert(isValidAccessSpecifier());
200     return RefAndFlags.getInt() & WriteOnly;
201   }
getAccessSpecifierValueInfo202   unsigned getAccessSpecifier() const {
203     assert(isValidAccessSpecifier());
204     return RefAndFlags.getInt() & (ReadOnly | WriteOnly);
205   }
isValidAccessSpecifierValueInfo206   bool isValidAccessSpecifier() const {
207     unsigned BadAccessMask = ReadOnly | WriteOnly;
208     return (RefAndFlags.getInt() & BadAccessMask) != BadAccessMask;
209   }
setReadOnlyValueInfo210   void setReadOnly() {
211     // We expect ro/wo attribute to set only once during
212     // ValueInfo lifetime.
213     assert(getAccessSpecifier() == 0);
214     RefAndFlags.setInt(RefAndFlags.getInt() | ReadOnly);
215   }
setWriteOnlyValueInfo216   void setWriteOnly() {
217     assert(getAccessSpecifier() == 0);
218     RefAndFlags.setInt(RefAndFlags.getInt() | WriteOnly);
219   }
220 
getRefValueInfo221   const GlobalValueSummaryMapTy::value_type *getRef() const {
222     return RefAndFlags.getPointer();
223   }
224 
225   bool isDSOLocal() const;
226 
227   /// Checks if all copies are eligible for auto-hiding (have flag set).
228   bool canAutoHide() const;
229 };
230 
231 inline raw_ostream &operator<<(raw_ostream &OS, const ValueInfo &VI) {
232   OS << VI.getGUID();
233   if (!VI.name().empty())
234     OS << " (" << VI.name() << ")";
235   return OS;
236 }
237 
238 inline bool operator==(const ValueInfo &A, const ValueInfo &B) {
239   assert(A.getRef() && B.getRef() &&
240          "Need ValueInfo with non-null Ref for comparison");
241   return A.getRef() == B.getRef();
242 }
243 
244 inline bool operator!=(const ValueInfo &A, const ValueInfo &B) {
245   assert(A.getRef() && B.getRef() &&
246          "Need ValueInfo with non-null Ref for comparison");
247   return A.getRef() != B.getRef();
248 }
249 
250 inline bool operator<(const ValueInfo &A, const ValueInfo &B) {
251   assert(A.getRef() && B.getRef() &&
252          "Need ValueInfo with non-null Ref to compare GUIDs");
253   return A.getGUID() < B.getGUID();
254 }
255 
256 template <> struct DenseMapInfo<ValueInfo> {
257   static inline ValueInfo getEmptyKey() {
258     return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
259   }
260 
261   static inline ValueInfo getTombstoneKey() {
262     return ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-16);
263   }
264 
265   static inline bool isSpecialKey(ValueInfo V) {
266     return V == getTombstoneKey() || V == getEmptyKey();
267   }
268 
269   static bool isEqual(ValueInfo L, ValueInfo R) {
270     // We are not supposed to mix ValueInfo(s) with different HaveGVs flag
271     // in a same container.
272     assert(isSpecialKey(L) || isSpecialKey(R) || (L.haveGVs() == R.haveGVs()));
273     return L.getRef() == R.getRef();
274   }
275   static unsigned getHashValue(ValueInfo I) { return (uintptr_t)I.getRef(); }
276 };
277 
278 /// Function and variable summary information to aid decisions and
279 /// implementation of importing.
280 class GlobalValueSummary {
281 public:
282   /// Sububclass discriminator (for dyn_cast<> et al.)
283   enum SummaryKind : unsigned { AliasKind, FunctionKind, GlobalVarKind };
284 
285   /// Group flags (Linkage, NotEligibleToImport, etc.) as a bitfield.
286   struct GVFlags {
287     /// The linkage type of the associated global value.
288     ///
289     /// One use is to flag values that have local linkage types and need to
290     /// have module identifier appended before placing into the combined
291     /// index, to disambiguate from other values with the same name.
292     /// In the future this will be used to update and optimize linkage
293     /// types based on global summary-based analysis.
294     unsigned Linkage : 4;
295 
296     /// Indicate if the global value cannot be imported (e.g. it cannot
297     /// be renamed or references something that can't be renamed).
298     unsigned NotEligibleToImport : 1;
299 
300     /// In per-module summary, indicate that the global value must be considered
301     /// a live root for index-based liveness analysis. Used for special LLVM
302     /// values such as llvm.global_ctors that the linker does not know about.
303     ///
304     /// In combined summary, indicate that the global value is live.
305     unsigned Live : 1;
306 
307     /// Indicates that the linker resolved the symbol to a definition from
308     /// within the same linkage unit.
309     unsigned DSOLocal : 1;
310 
311     /// In the per-module summary, indicates that the global value is
312     /// linkonce_odr and global unnamed addr (so eligible for auto-hiding
313     /// via hidden visibility). In the combined summary, indicates that the
314     /// prevailing linkonce_odr copy can be auto-hidden via hidden visibility
315     /// when it is upgraded to weak_odr in the backend. This is legal when
316     /// all copies are eligible for auto-hiding (i.e. all copies were
317     /// linkonce_odr global unnamed addr. If any copy is not (e.g. it was
318     /// originally weak_odr, we cannot auto-hide the prevailing copy as it
319     /// means the symbol was externally visible.
320     unsigned CanAutoHide : 1;
321 
322     /// Convenience Constructors
323     explicit GVFlags(GlobalValue::LinkageTypes Linkage,
324                      bool NotEligibleToImport, bool Live, bool IsLocal,
325                      bool CanAutoHide)
326         : Linkage(Linkage), NotEligibleToImport(NotEligibleToImport),
327           Live(Live), DSOLocal(IsLocal), CanAutoHide(CanAutoHide) {}
328   };
329 
330 private:
331   /// Kind of summary for use in dyn_cast<> et al.
332   SummaryKind Kind;
333 
334   GVFlags Flags;
335 
336   /// This is the hash of the name of the symbol in the original file. It is
337   /// identical to the GUID for global symbols, but differs for local since the
338   /// GUID includes the module level id in the hash.
339   GlobalValue::GUID OriginalName = 0;
340 
341   /// Path of module IR containing value's definition, used to locate
342   /// module during importing.
343   ///
344   /// This is only used during parsing of the combined index, or when
345   /// parsing the per-module index for creation of the combined summary index,
346   /// not during writing of the per-module index which doesn't contain a
347   /// module path string table.
348   StringRef ModulePath;
349 
350   /// List of values referenced by this global value's definition
351   /// (either by the initializer of a global variable, or referenced
352   /// from within a function). This does not include functions called, which
353   /// are listed in the derived FunctionSummary object.
354   std::vector<ValueInfo> RefEdgeList;
355 
356 protected:
357   GlobalValueSummary(SummaryKind K, GVFlags Flags, std::vector<ValueInfo> Refs)
358       : Kind(K), Flags(Flags), RefEdgeList(std::move(Refs)) {
359     assert((K != AliasKind || Refs.empty()) &&
360            "Expect no references for AliasSummary");
361   }
362 
363 public:
364   virtual ~GlobalValueSummary() = default;
365 
366   /// Returns the hash of the original name, it is identical to the GUID for
367   /// externally visible symbols, but not for local ones.
368   GlobalValue::GUID getOriginalName() const { return OriginalName; }
369 
370   /// Initialize the original name hash in this summary.
371   void setOriginalName(GlobalValue::GUID Name) { OriginalName = Name; }
372 
373   /// Which kind of summary subclass this is.
374   SummaryKind getSummaryKind() const { return Kind; }
375 
376   /// Set the path to the module containing this function, for use in
377   /// the combined index.
378   void setModulePath(StringRef ModPath) { ModulePath = ModPath; }
379 
380   /// Get the path to the module containing this function.
381   StringRef modulePath() const { return ModulePath; }
382 
383   /// Get the flags for this GlobalValue (see \p struct GVFlags).
384   GVFlags flags() const { return Flags; }
385 
386   /// Return linkage type recorded for this global value.
387   GlobalValue::LinkageTypes linkage() const {
388     return static_cast<GlobalValue::LinkageTypes>(Flags.Linkage);
389   }
390 
391   /// Sets the linkage to the value determined by global summary-based
392   /// optimization. Will be applied in the ThinLTO backends.
393   void setLinkage(GlobalValue::LinkageTypes Linkage) {
394     Flags.Linkage = Linkage;
395   }
396 
397   /// Return true if this global value can't be imported.
398   bool notEligibleToImport() const { return Flags.NotEligibleToImport; }
399 
400   bool isLive() const { return Flags.Live; }
401 
402   void setLive(bool Live) { Flags.Live = Live; }
403 
404   void setDSOLocal(bool Local) { Flags.DSOLocal = Local; }
405 
406   bool isDSOLocal() const { return Flags.DSOLocal; }
407 
408   void setCanAutoHide(bool CanAutoHide) { Flags.CanAutoHide = CanAutoHide; }
409 
410   bool canAutoHide() const { return Flags.CanAutoHide; }
411 
412   /// Flag that this global value cannot be imported.
413   void setNotEligibleToImport() { Flags.NotEligibleToImport = true; }
414 
415   /// Return the list of values referenced by this global value definition.
416   ArrayRef<ValueInfo> refs() const { return RefEdgeList; }
417 
418   /// If this is an alias summary, returns the summary of the aliased object (a
419   /// global variable or function), otherwise returns itself.
420   GlobalValueSummary *getBaseObject();
421   const GlobalValueSummary *getBaseObject() const;
422 
423   friend class ModuleSummaryIndex;
424 };
425 
426 /// Alias summary information.
427 class AliasSummary : public GlobalValueSummary {
428   ValueInfo AliaseeValueInfo;
429 
430   /// This is the Aliasee in the same module as alias (could get from VI, trades
431   /// memory for time). Note that this pointer may be null (and the value info
432   /// empty) when we have a distributed index where the alias is being imported
433   /// (as a copy of the aliasee), but the aliasee is not.
434   GlobalValueSummary *AliaseeSummary;
435 
436 public:
437   AliasSummary(GVFlags Flags)
438       : GlobalValueSummary(AliasKind, Flags, ArrayRef<ValueInfo>{}),
439         AliaseeSummary(nullptr) {}
440 
441   /// Check if this is an alias summary.
442   static bool classof(const GlobalValueSummary *GVS) {
443     return GVS->getSummaryKind() == AliasKind;
444   }
445 
446   void setAliasee(ValueInfo &AliaseeVI, GlobalValueSummary *Aliasee) {
447     AliaseeValueInfo = AliaseeVI;
448     AliaseeSummary = Aliasee;
449   }
450 
451   bool hasAliasee() const {
452     assert(!!AliaseeSummary == (AliaseeValueInfo &&
453                                 !AliaseeValueInfo.getSummaryList().empty()) &&
454            "Expect to have both aliasee summary and summary list or neither");
455     return !!AliaseeSummary;
456   }
457 
458   const GlobalValueSummary &getAliasee() const {
459     assert(AliaseeSummary && "Unexpected missing aliasee summary");
460     return *AliaseeSummary;
461   }
462 
463   GlobalValueSummary &getAliasee() {
464     return const_cast<GlobalValueSummary &>(
465                          static_cast<const AliasSummary *>(this)->getAliasee());
466   }
467   ValueInfo getAliaseeVI() const {
468     assert(AliaseeValueInfo && "Unexpected missing aliasee");
469     return AliaseeValueInfo;
470   }
471   GlobalValue::GUID getAliaseeGUID() const {
472     assert(AliaseeValueInfo && "Unexpected missing aliasee");
473     return AliaseeValueInfo.getGUID();
474   }
475 };
476 
477 const inline GlobalValueSummary *GlobalValueSummary::getBaseObject() const {
478   if (auto *AS = dyn_cast<AliasSummary>(this))
479     return &AS->getAliasee();
480   return this;
481 }
482 
483 inline GlobalValueSummary *GlobalValueSummary::getBaseObject() {
484   if (auto *AS = dyn_cast<AliasSummary>(this))
485     return &AS->getAliasee();
486   return this;
487 }
488 
489 /// Function summary information to aid decisions and implementation of
490 /// importing.
491 class FunctionSummary : public GlobalValueSummary {
492 public:
493   /// <CalleeValueInfo, CalleeInfo> call edge pair.
494   using EdgeTy = std::pair<ValueInfo, CalleeInfo>;
495 
496   /// Types for -force-summary-edges-cold debugging option.
497   enum ForceSummaryHotnessType : unsigned {
498     FSHT_None,
499     FSHT_AllNonCritical,
500     FSHT_All
501   };
502 
503   /// An "identifier" for a virtual function. This contains the type identifier
504   /// represented as a GUID and the offset from the address point to the virtual
505   /// function pointer, where "address point" is as defined in the Itanium ABI:
506   /// https://itanium-cxx-abi.github.io/cxx-abi/abi.html#vtable-general
507   struct VFuncId {
508     GlobalValue::GUID GUID;
509     uint64_t Offset;
510   };
511 
512   /// A specification for a virtual function call with all constant integer
513   /// arguments. This is used to perform virtual constant propagation on the
514   /// summary.
515   struct ConstVCall {
516     VFuncId VFunc;
517     std::vector<uint64_t> Args;
518   };
519 
520   /// All type identifier related information. Because these fields are
521   /// relatively uncommon we only allocate space for them if necessary.
522   struct TypeIdInfo {
523     /// List of type identifiers used by this function in llvm.type.test
524     /// intrinsics referenced by something other than an llvm.assume intrinsic,
525     /// represented as GUIDs.
526     std::vector<GlobalValue::GUID> TypeTests;
527 
528     /// List of virtual calls made by this function using (respectively)
529     /// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics that do
530     /// not have all constant integer arguments.
531     std::vector<VFuncId> TypeTestAssumeVCalls, TypeCheckedLoadVCalls;
532 
533     /// List of virtual calls made by this function using (respectively)
534     /// llvm.assume(llvm.type.test) or llvm.type.checked.load intrinsics with
535     /// all constant integer arguments.
536     std::vector<ConstVCall> TypeTestAssumeConstVCalls,
537         TypeCheckedLoadConstVCalls;
538   };
539 
540   /// Flags specific to function summaries.
541   struct FFlags {
542     // Function attribute flags. Used to track if a function accesses memory,
543     // recurses or aliases.
544     unsigned ReadNone : 1;
545     unsigned ReadOnly : 1;
546     unsigned NoRecurse : 1;
547     unsigned ReturnDoesNotAlias : 1;
548 
549     // Indicate if the global value cannot be inlined.
550     unsigned NoInline : 1;
551     // Indicate if function should be always inlined.
552     unsigned AlwaysInline : 1;
553   };
554 
555   /// Create an empty FunctionSummary (with specified call edges).
556   /// Used to represent external nodes and the dummy root node.
557   static FunctionSummary
558   makeDummyFunctionSummary(std::vector<FunctionSummary::EdgeTy> Edges) {
559     return FunctionSummary(
560         FunctionSummary::GVFlags(
561             GlobalValue::LinkageTypes::AvailableExternallyLinkage,
562             /*NotEligibleToImport=*/true, /*Live=*/true, /*IsLocal=*/false,
563             /*CanAutoHide=*/false),
564         /*InsCount=*/0, FunctionSummary::FFlags{}, /*EntryCount=*/0,
565         std::vector<ValueInfo>(), std::move(Edges),
566         std::vector<GlobalValue::GUID>(),
567         std::vector<FunctionSummary::VFuncId>(),
568         std::vector<FunctionSummary::VFuncId>(),
569         std::vector<FunctionSummary::ConstVCall>(),
570         std::vector<FunctionSummary::ConstVCall>());
571   }
572 
573   /// A dummy node to reference external functions that aren't in the index
574   static FunctionSummary ExternalNode;
575 
576 private:
577   /// Number of instructions (ignoring debug instructions, e.g.) computed
578   /// during the initial compile step when the summary index is first built.
579   unsigned InstCount;
580 
581   /// Function summary specific flags.
582   FFlags FunFlags;
583 
584   /// The synthesized entry count of the function.
585   /// This is only populated during ThinLink phase and remains unused while
586   /// generating per-module summaries.
587   uint64_t EntryCount = 0;
588 
589   /// List of <CalleeValueInfo, CalleeInfo> call edge pairs from this function.
590   std::vector<EdgeTy> CallGraphEdgeList;
591 
592   std::unique_ptr<TypeIdInfo> TIdInfo;
593 
594 public:
595   FunctionSummary(GVFlags Flags, unsigned NumInsts, FFlags FunFlags,
596                   uint64_t EntryCount, std::vector<ValueInfo> Refs,
597                   std::vector<EdgeTy> CGEdges,
598                   std::vector<GlobalValue::GUID> TypeTests,
599                   std::vector<VFuncId> TypeTestAssumeVCalls,
600                   std::vector<VFuncId> TypeCheckedLoadVCalls,
601                   std::vector<ConstVCall> TypeTestAssumeConstVCalls,
602                   std::vector<ConstVCall> TypeCheckedLoadConstVCalls)
603       : GlobalValueSummary(FunctionKind, Flags, std::move(Refs)),
604         InstCount(NumInsts), FunFlags(FunFlags), EntryCount(EntryCount),
605         CallGraphEdgeList(std::move(CGEdges)) {
606     if (!TypeTests.empty() || !TypeTestAssumeVCalls.empty() ||
607         !TypeCheckedLoadVCalls.empty() || !TypeTestAssumeConstVCalls.empty() ||
608         !TypeCheckedLoadConstVCalls.empty())
609       TIdInfo = std::make_unique<TypeIdInfo>(TypeIdInfo{
610           std::move(TypeTests), std::move(TypeTestAssumeVCalls),
611           std::move(TypeCheckedLoadVCalls),
612           std::move(TypeTestAssumeConstVCalls),
613           std::move(TypeCheckedLoadConstVCalls)});
614   }
615   // Gets the number of readonly and writeonly refs in RefEdgeList
616   std::pair<unsigned, unsigned> specialRefCounts() const;
617 
618   /// Check if this is a function summary.
619   static bool classof(const GlobalValueSummary *GVS) {
620     return GVS->getSummaryKind() == FunctionKind;
621   }
622 
623   /// Get function summary flags.
624   FFlags fflags() const { return FunFlags; }
625 
626   /// Get the instruction count recorded for this function.
627   unsigned instCount() const { return InstCount; }
628 
629   /// Get the synthetic entry count for this function.
630   uint64_t entryCount() const { return EntryCount; }
631 
632   /// Set the synthetic entry count for this function.
633   void setEntryCount(uint64_t EC) { EntryCount = EC; }
634 
635   /// Return the list of <CalleeValueInfo, CalleeInfo> pairs.
636   ArrayRef<EdgeTy> calls() const { return CallGraphEdgeList; }
637 
638   void addCall(EdgeTy E) { CallGraphEdgeList.push_back(E); }
639 
640   /// Returns the list of type identifiers used by this function in
641   /// llvm.type.test intrinsics other than by an llvm.assume intrinsic,
642   /// represented as GUIDs.
643   ArrayRef<GlobalValue::GUID> type_tests() const {
644     if (TIdInfo)
645       return TIdInfo->TypeTests;
646     return {};
647   }
648 
649   /// Returns the list of virtual calls made by this function using
650   /// llvm.assume(llvm.type.test) intrinsics that do not have all constant
651   /// integer arguments.
652   ArrayRef<VFuncId> type_test_assume_vcalls() const {
653     if (TIdInfo)
654       return TIdInfo->TypeTestAssumeVCalls;
655     return {};
656   }
657 
658   /// Returns the list of virtual calls made by this function using
659   /// llvm.type.checked.load intrinsics that do not have all constant integer
660   /// arguments.
661   ArrayRef<VFuncId> type_checked_load_vcalls() const {
662     if (TIdInfo)
663       return TIdInfo->TypeCheckedLoadVCalls;
664     return {};
665   }
666 
667   /// Returns the list of virtual calls made by this function using
668   /// llvm.assume(llvm.type.test) intrinsics with all constant integer
669   /// arguments.
670   ArrayRef<ConstVCall> type_test_assume_const_vcalls() const {
671     if (TIdInfo)
672       return TIdInfo->TypeTestAssumeConstVCalls;
673     return {};
674   }
675 
676   /// Returns the list of virtual calls made by this function using
677   /// llvm.type.checked.load intrinsics with all constant integer arguments.
678   ArrayRef<ConstVCall> type_checked_load_const_vcalls() const {
679     if (TIdInfo)
680       return TIdInfo->TypeCheckedLoadConstVCalls;
681     return {};
682   }
683 
684   /// Add a type test to the summary. This is used by WholeProgramDevirt if we
685   /// were unable to devirtualize a checked call.
686   void addTypeTest(GlobalValue::GUID Guid) {
687     if (!TIdInfo)
688       TIdInfo = std::make_unique<TypeIdInfo>();
689     TIdInfo->TypeTests.push_back(Guid);
690   }
691 
692   const TypeIdInfo *getTypeIdInfo() const { return TIdInfo.get(); };
693 
694   friend struct GraphTraits<ValueInfo>;
695 };
696 
697 template <> struct DenseMapInfo<FunctionSummary::VFuncId> {
698   static FunctionSummary::VFuncId getEmptyKey() { return {0, uint64_t(-1)}; }
699 
700   static FunctionSummary::VFuncId getTombstoneKey() {
701     return {0, uint64_t(-2)};
702   }
703 
704   static bool isEqual(FunctionSummary::VFuncId L, FunctionSummary::VFuncId R) {
705     return L.GUID == R.GUID && L.Offset == R.Offset;
706   }
707 
708   static unsigned getHashValue(FunctionSummary::VFuncId I) { return I.GUID; }
709 };
710 
711 template <> struct DenseMapInfo<FunctionSummary::ConstVCall> {
712   static FunctionSummary::ConstVCall getEmptyKey() {
713     return {{0, uint64_t(-1)}, {}};
714   }
715 
716   static FunctionSummary::ConstVCall getTombstoneKey() {
717     return {{0, uint64_t(-2)}, {}};
718   }
719 
720   static bool isEqual(FunctionSummary::ConstVCall L,
721                       FunctionSummary::ConstVCall R) {
722     return DenseMapInfo<FunctionSummary::VFuncId>::isEqual(L.VFunc, R.VFunc) &&
723            L.Args == R.Args;
724   }
725 
726   static unsigned getHashValue(FunctionSummary::ConstVCall I) {
727     return I.VFunc.GUID;
728   }
729 };
730 
731 /// The ValueInfo and offset for a function within a vtable definition
732 /// initializer array.
733 struct VirtFuncOffset {
734   VirtFuncOffset(ValueInfo VI, uint64_t Offset)
735       : FuncVI(VI), VTableOffset(Offset) {}
736 
737   ValueInfo FuncVI;
738   uint64_t VTableOffset;
739 };
740 /// List of functions referenced by a particular vtable definition.
741 using VTableFuncList = std::vector<VirtFuncOffset>;
742 
743 /// Global variable summary information to aid decisions and
744 /// implementation of importing.
745 ///
746 /// Global variable summary has two extra flag, telling if it is
747 /// readonly or writeonly. Both readonly and writeonly variables
748 /// can be optimized in the backed: readonly variables can be
749 /// const-folded, while writeonly vars can be completely eliminated
750 /// together with corresponding stores. We let both things happen
751 /// by means of internalizing such variables after ThinLTO import.
752 class GlobalVarSummary : public GlobalValueSummary {
753 private:
754   /// For vtable definitions this holds the list of functions and
755   /// their corresponding offsets within the initializer array.
756   std::unique_ptr<VTableFuncList> VTableFuncs;
757 
758 public:
759   struct GVarFlags {
760     GVarFlags(bool ReadOnly, bool WriteOnly)
761         : MaybeReadOnly(ReadOnly), MaybeWriteOnly(WriteOnly) {}
762 
763     // In permodule summaries both MaybeReadOnly and MaybeWriteOnly
764     // bits are set, because attribute propagation occurs later on
765     // thin link phase.
766     unsigned MaybeReadOnly : 1;
767     unsigned MaybeWriteOnly : 1;
768   } VarFlags;
769 
770   GlobalVarSummary(GVFlags Flags, GVarFlags VarFlags,
771                    std::vector<ValueInfo> Refs)
772       : GlobalValueSummary(GlobalVarKind, Flags, std::move(Refs)),
773         VarFlags(VarFlags) {}
774 
775   /// Check if this is a global variable summary.
776   static bool classof(const GlobalValueSummary *GVS) {
777     return GVS->getSummaryKind() == GlobalVarKind;
778   }
779 
780   GVarFlags varflags() const { return VarFlags; }
781   void setReadOnly(bool RO) { VarFlags.MaybeReadOnly = RO; }
782   void setWriteOnly(bool WO) { VarFlags.MaybeWriteOnly = WO; }
783   bool maybeReadOnly() const { return VarFlags.MaybeReadOnly; }
784   bool maybeWriteOnly() const { return VarFlags.MaybeWriteOnly; }
785 
786   void setVTableFuncs(VTableFuncList Funcs) {
787     assert(!VTableFuncs);
788     VTableFuncs = std::make_unique<VTableFuncList>(std::move(Funcs));
789   }
790 
791   ArrayRef<VirtFuncOffset> vTableFuncs() const {
792     if (VTableFuncs)
793       return *VTableFuncs;
794     return {};
795   }
796 };
797 
798 struct TypeTestResolution {
799   /// Specifies which kind of type check we should emit for this byte array.
800   /// See http://clang.llvm.org/docs/ControlFlowIntegrityDesign.html for full
801   /// details on each kind of check; the enumerators are described with
802   /// reference to that document.
803   enum Kind {
804     Unsat,     ///< Unsatisfiable type (i.e. no global has this type metadata)
805     ByteArray, ///< Test a byte array (first example)
806     Inline,    ///< Inlined bit vector ("Short Inline Bit Vectors")
807     Single,    ///< Single element (last example in "Short Inline Bit Vectors")
808     AllOnes,   ///< All-ones bit vector ("Eliminating Bit Vector Checks for
809                ///  All-Ones Bit Vectors")
810   } TheKind = Unsat;
811 
812   /// Range of size-1 expressed as a bit width. For example, if the size is in
813   /// range [1,256], this number will be 8. This helps generate the most compact
814   /// instruction sequences.
815   unsigned SizeM1BitWidth = 0;
816 
817   // The following fields are only used if the target does not support the use
818   // of absolute symbols to store constants. Their meanings are the same as the
819   // corresponding fields in LowerTypeTestsModule::TypeIdLowering in
820   // LowerTypeTests.cpp.
821 
822   uint64_t AlignLog2 = 0;
823   uint64_t SizeM1 = 0;
824   uint8_t BitMask = 0;
825   uint64_t InlineBits = 0;
826 };
827 
828 struct WholeProgramDevirtResolution {
829   enum Kind {
830     Indir,        ///< Just do a regular virtual call
831     SingleImpl,   ///< Single implementation devirtualization
832     BranchFunnel, ///< When retpoline mitigation is enabled, use a branch funnel
833                   ///< that is defined in the merged module. Otherwise same as
834                   ///< Indir.
835   } TheKind = Indir;
836 
837   std::string SingleImplName;
838 
839   struct ByArg {
840     enum Kind {
841       Indir,            ///< Just do a regular virtual call
842       UniformRetVal,    ///< Uniform return value optimization
843       UniqueRetVal,     ///< Unique return value optimization
844       VirtualConstProp, ///< Virtual constant propagation
845     } TheKind = Indir;
846 
847     /// Additional information for the resolution:
848     /// - UniformRetVal: the uniform return value.
849     /// - UniqueRetVal: the return value associated with the unique vtable (0 or
850     ///   1).
851     uint64_t Info = 0;
852 
853     // The following fields are only used if the target does not support the use
854     // of absolute symbols to store constants.
855 
856     uint32_t Byte = 0;
857     uint32_t Bit = 0;
858   };
859 
860   /// Resolutions for calls with all constant integer arguments (excluding the
861   /// first argument, "this"), where the key is the argument vector.
862   std::map<std::vector<uint64_t>, ByArg> ResByArg;
863 };
864 
865 struct TypeIdSummary {
866   TypeTestResolution TTRes;
867 
868   /// Mapping from byte offset to whole-program devirt resolution for that
869   /// (typeid, byte offset) pair.
870   std::map<uint64_t, WholeProgramDevirtResolution> WPDRes;
871 };
872 
873 /// 160 bits SHA1
874 using ModuleHash = std::array<uint32_t, 5>;
875 
876 /// Type used for iterating through the global value summary map.
877 using const_gvsummary_iterator = GlobalValueSummaryMapTy::const_iterator;
878 using gvsummary_iterator = GlobalValueSummaryMapTy::iterator;
879 
880 /// String table to hold/own module path strings, which additionally holds the
881 /// module ID assigned to each module during the plugin step, as well as a hash
882 /// of the module. The StringMap makes a copy of and owns inserted strings.
883 using ModulePathStringTableTy = StringMap<std::pair<uint64_t, ModuleHash>>;
884 
885 /// Map of global value GUID to its summary, used to identify values defined in
886 /// a particular module, and provide efficient access to their summary.
887 using GVSummaryMapTy = DenseMap<GlobalValue::GUID, GlobalValueSummary *>;
888 
889 /// Map of a type GUID to type id string and summary (multimap used
890 /// in case of GUID conflicts).
891 using TypeIdSummaryMapTy =
892     std::multimap<GlobalValue::GUID, std::pair<std::string, TypeIdSummary>>;
893 
894 /// The following data structures summarize type metadata information.
895 /// For type metadata overview see https://llvm.org/docs/TypeMetadata.html.
896 /// Each type metadata includes both the type identifier and the offset of
897 /// the address point of the type (the address held by objects of that type
898 /// which may not be the beginning of the virtual table). Vtable definitions
899 /// are decorated with type metadata for the types they are compatible with.
900 ///
901 /// Holds information about vtable definitions decorated with type metadata:
902 /// the vtable definition value and its address point offset in a type
903 /// identifier metadata it is decorated (compatible) with.
904 struct TypeIdOffsetVtableInfo {
905   TypeIdOffsetVtableInfo(uint64_t Offset, ValueInfo VI)
906       : AddressPointOffset(Offset), VTableVI(VI) {}
907 
908   uint64_t AddressPointOffset;
909   ValueInfo VTableVI;
910 };
911 /// List of vtable definitions decorated by a particular type identifier,
912 /// and their corresponding offsets in that type identifier's metadata.
913 /// Note that each type identifier may be compatible with multiple vtables, due
914 /// to inheritance, which is why this is a vector.
915 using TypeIdCompatibleVtableInfo = std::vector<TypeIdOffsetVtableInfo>;
916 
917 /// Class to hold module path string table and global value map,
918 /// and encapsulate methods for operating on them.
919 class ModuleSummaryIndex {
920 private:
921   /// Map from value name to list of summary instances for values of that
922   /// name (may be duplicates in the COMDAT case, e.g.).
923   GlobalValueSummaryMapTy GlobalValueMap;
924 
925   /// Holds strings for combined index, mapping to the corresponding module ID.
926   ModulePathStringTableTy ModulePathStringTable;
927 
928   /// Mapping from type identifier GUIDs to type identifier and its summary
929   /// information. Produced by thin link.
930   TypeIdSummaryMapTy TypeIdMap;
931 
932   /// Mapping from type identifier to information about vtables decorated
933   /// with that type identifier's metadata. Produced by per module summary
934   /// analysis and consumed by thin link. For more information, see description
935   /// above where TypeIdCompatibleVtableInfo is defined.
936   std::map<std::string, TypeIdCompatibleVtableInfo> TypeIdCompatibleVtableMap;
937 
938   /// Mapping from original ID to GUID. If original ID can map to multiple
939   /// GUIDs, it will be mapped to 0.
940   std::map<GlobalValue::GUID, GlobalValue::GUID> OidGuidMap;
941 
942   /// Indicates that summary-based GlobalValue GC has run, and values with
943   /// GVFlags::Live==false are really dead. Otherwise, all values must be
944   /// considered live.
945   bool WithGlobalValueDeadStripping = false;
946 
947   /// Indicates that summary-based attribute propagation has run and
948   /// GVarFlags::MaybeReadonly / GVarFlags::MaybeWriteonly are really
949   /// read/write only.
950   bool WithAttributePropagation = false;
951 
952   /// Indicates that summary-based synthetic entry count propagation has run
953   bool HasSyntheticEntryCounts = false;
954 
955   /// Indicates that distributed backend should skip compilation of the
956   /// module. Flag is suppose to be set by distributed ThinLTO indexing
957   /// when it detected that the module is not needed during the final
958   /// linking. As result distributed backend should just output a minimal
959   /// valid object file.
960   bool SkipModuleByDistributedBackend = false;
961 
962   /// If true then we're performing analysis of IR module, or parsing along with
963   /// the IR from assembly. The value of 'false' means we're reading summary
964   /// from BC or YAML source. Affects the type of value stored in NameOrGV
965   /// union.
966   bool HaveGVs;
967 
968   // True if the index was created for a module compiled with -fsplit-lto-unit.
969   bool EnableSplitLTOUnit;
970 
971   // True if some of the modules were compiled with -fsplit-lto-unit and
972   // some were not. Set when the combined index is created during the thin link.
973   bool PartiallySplitLTOUnits = false;
974 
975   std::set<std::string> CfiFunctionDefs;
976   std::set<std::string> CfiFunctionDecls;
977 
978   // Used in cases where we want to record the name of a global, but
979   // don't have the string owned elsewhere (e.g. the Strtab on a module).
980   StringSaver Saver;
981   BumpPtrAllocator Alloc;
982 
983   // YAML I/O support.
984   friend yaml::MappingTraits<ModuleSummaryIndex>;
985 
986   GlobalValueSummaryMapTy::value_type *
987   getOrInsertValuePtr(GlobalValue::GUID GUID) {
988     return &*GlobalValueMap.emplace(GUID, GlobalValueSummaryInfo(HaveGVs))
989                  .first;
990   }
991 
992 public:
993   // See HaveGVs variable comment.
994   ModuleSummaryIndex(bool HaveGVs, bool EnableSplitLTOUnit = false)
995       : HaveGVs(HaveGVs), EnableSplitLTOUnit(EnableSplitLTOUnit), Saver(Alloc) {
996   }
997 
998   // Current version for the module summary in bitcode files.
999   // The BitcodeSummaryVersion should be bumped whenever we introduce changes
1000   // in the way some record are interpreted, like flags for instance.
1001   // Note that incrementing this may require changes in both BitcodeReader.cpp
1002   // and BitcodeWriter.cpp.
1003   static constexpr uint64_t BitcodeSummaryVersion = 8;
1004 
1005   bool haveGVs() const { return HaveGVs; }
1006 
1007   gvsummary_iterator begin() { return GlobalValueMap.begin(); }
1008   const_gvsummary_iterator begin() const { return GlobalValueMap.begin(); }
1009   gvsummary_iterator end() { return GlobalValueMap.end(); }
1010   const_gvsummary_iterator end() const { return GlobalValueMap.end(); }
1011   size_t size() const { return GlobalValueMap.size(); }
1012 
1013   /// Convenience function for doing a DFS on a ValueInfo. Marks the function in
1014   /// the FunctionHasParent map.
1015   static void discoverNodes(ValueInfo V,
1016                             std::map<ValueInfo, bool> &FunctionHasParent) {
1017     if (!V.getSummaryList().size())
1018       return; // skip external functions that don't have summaries
1019 
1020     // Mark discovered if we haven't yet
1021     auto S = FunctionHasParent.emplace(V, false);
1022 
1023     // Stop if we've already discovered this node
1024     if (!S.second)
1025       return;
1026 
1027     FunctionSummary *F =
1028         dyn_cast<FunctionSummary>(V.getSummaryList().front().get());
1029     assert(F != nullptr && "Expected FunctionSummary node");
1030 
1031     for (auto &C : F->calls()) {
1032       // Insert node if necessary
1033       auto S = FunctionHasParent.emplace(C.first, true);
1034 
1035       // Skip nodes that we're sure have parents
1036       if (!S.second && S.first->second)
1037         continue;
1038 
1039       if (S.second)
1040         discoverNodes(C.first, FunctionHasParent);
1041       else
1042         S.first->second = true;
1043     }
1044   }
1045 
1046   // Calculate the callgraph root
1047   FunctionSummary calculateCallGraphRoot() {
1048     // Functions that have a parent will be marked in FunctionHasParent pair.
1049     // Once we've marked all functions, the functions in the map that are false
1050     // have no parent (so they're the roots)
1051     std::map<ValueInfo, bool> FunctionHasParent;
1052 
1053     for (auto &S : *this) {
1054       // Skip external functions
1055       if (!S.second.SummaryList.size() ||
1056           !isa<FunctionSummary>(S.second.SummaryList.front().get()))
1057         continue;
1058       discoverNodes(ValueInfo(HaveGVs, &S), FunctionHasParent);
1059     }
1060 
1061     std::vector<FunctionSummary::EdgeTy> Edges;
1062     // create edges to all roots in the Index
1063     for (auto &P : FunctionHasParent) {
1064       if (P.second)
1065         continue; // skip over non-root nodes
1066       Edges.push_back(std::make_pair(P.first, CalleeInfo{}));
1067     }
1068     if (Edges.empty()) {
1069       // Failed to find root - return an empty node
1070       return FunctionSummary::makeDummyFunctionSummary({});
1071     }
1072     auto CallGraphRoot = FunctionSummary::makeDummyFunctionSummary(Edges);
1073     return CallGraphRoot;
1074   }
1075 
1076   bool withGlobalValueDeadStripping() const {
1077     return WithGlobalValueDeadStripping;
1078   }
1079   void setWithGlobalValueDeadStripping() {
1080     WithGlobalValueDeadStripping = true;
1081   }
1082 
1083   bool withAttributePropagation() const { return WithAttributePropagation; }
1084   void setWithAttributePropagation() {
1085     WithAttributePropagation = true;
1086   }
1087 
1088   bool isReadOnly(const GlobalVarSummary *GVS) const {
1089     return WithAttributePropagation && GVS->maybeReadOnly();
1090   }
1091   bool isWriteOnly(const GlobalVarSummary *GVS) const {
1092     return WithAttributePropagation && GVS->maybeWriteOnly();
1093   }
1094 
1095   bool hasSyntheticEntryCounts() const { return HasSyntheticEntryCounts; }
1096   void setHasSyntheticEntryCounts() { HasSyntheticEntryCounts = true; }
1097 
1098   bool skipModuleByDistributedBackend() const {
1099     return SkipModuleByDistributedBackend;
1100   }
1101   void setSkipModuleByDistributedBackend() {
1102     SkipModuleByDistributedBackend = true;
1103   }
1104 
1105   bool enableSplitLTOUnit() const { return EnableSplitLTOUnit; }
1106   void setEnableSplitLTOUnit() { EnableSplitLTOUnit = true; }
1107 
1108   bool partiallySplitLTOUnits() const { return PartiallySplitLTOUnits; }
1109   void setPartiallySplitLTOUnits() { PartiallySplitLTOUnits = true; }
1110 
1111   bool isGlobalValueLive(const GlobalValueSummary *GVS) const {
1112     return !WithGlobalValueDeadStripping || GVS->isLive();
1113   }
1114   bool isGUIDLive(GlobalValue::GUID GUID) const;
1115 
1116   /// Return a ValueInfo for the index value_type (convenient when iterating
1117   /// index).
1118   ValueInfo getValueInfo(const GlobalValueSummaryMapTy::value_type &R) const {
1119     return ValueInfo(HaveGVs, &R);
1120   }
1121 
1122   /// Return a ValueInfo for GUID if it exists, otherwise return ValueInfo().
1123   ValueInfo getValueInfo(GlobalValue::GUID GUID) const {
1124     auto I = GlobalValueMap.find(GUID);
1125     return ValueInfo(HaveGVs, I == GlobalValueMap.end() ? nullptr : &*I);
1126   }
1127 
1128   /// Return a ValueInfo for \p GUID.
1129   ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID) {
1130     return ValueInfo(HaveGVs, getOrInsertValuePtr(GUID));
1131   }
1132 
1133   // Save a string in the Index. Use before passing Name to
1134   // getOrInsertValueInfo when the string isn't owned elsewhere (e.g. on the
1135   // module's Strtab).
1136   StringRef saveString(StringRef String) { return Saver.save(String); }
1137 
1138   /// Return a ValueInfo for \p GUID setting value \p Name.
1139   ValueInfo getOrInsertValueInfo(GlobalValue::GUID GUID, StringRef Name) {
1140     assert(!HaveGVs);
1141     auto VP = getOrInsertValuePtr(GUID);
1142     VP->second.U.Name = Name;
1143     return ValueInfo(HaveGVs, VP);
1144   }
1145 
1146   /// Return a ValueInfo for \p GV and mark it as belonging to GV.
1147   ValueInfo getOrInsertValueInfo(const GlobalValue *GV) {
1148     assert(HaveGVs);
1149     auto VP = getOrInsertValuePtr(GV->getGUID());
1150     VP->second.U.GV = GV;
1151     return ValueInfo(HaveGVs, VP);
1152   }
1153 
1154   /// Return the GUID for \p OriginalId in the OidGuidMap.
1155   GlobalValue::GUID getGUIDFromOriginalID(GlobalValue::GUID OriginalID) const {
1156     const auto I = OidGuidMap.find(OriginalID);
1157     return I == OidGuidMap.end() ? 0 : I->second;
1158   }
1159 
1160   std::set<std::string> &cfiFunctionDefs() { return CfiFunctionDefs; }
1161   const std::set<std::string> &cfiFunctionDefs() const { return CfiFunctionDefs; }
1162 
1163   std::set<std::string> &cfiFunctionDecls() { return CfiFunctionDecls; }
1164   const std::set<std::string> &cfiFunctionDecls() const { return CfiFunctionDecls; }
1165 
1166   /// Add a global value summary for a value.
1167   void addGlobalValueSummary(const GlobalValue &GV,
1168                              std::unique_ptr<GlobalValueSummary> Summary) {
1169     addGlobalValueSummary(getOrInsertValueInfo(&GV), std::move(Summary));
1170   }
1171 
1172   /// Add a global value summary for a value of the given name.
1173   void addGlobalValueSummary(StringRef ValueName,
1174                              std::unique_ptr<GlobalValueSummary> Summary) {
1175     addGlobalValueSummary(getOrInsertValueInfo(GlobalValue::getGUID(ValueName)),
1176                           std::move(Summary));
1177   }
1178 
1179   /// Add a global value summary for the given ValueInfo.
1180   void addGlobalValueSummary(ValueInfo VI,
1181                              std::unique_ptr<GlobalValueSummary> Summary) {
1182     addOriginalName(VI.getGUID(), Summary->getOriginalName());
1183     // Here we have a notionally const VI, but the value it points to is owned
1184     // by the non-const *this.
1185     const_cast<GlobalValueSummaryMapTy::value_type *>(VI.getRef())
1186         ->second.SummaryList.push_back(std::move(Summary));
1187   }
1188 
1189   /// Add an original name for the value of the given GUID.
1190   void addOriginalName(GlobalValue::GUID ValueGUID,
1191                        GlobalValue::GUID OrigGUID) {
1192     if (OrigGUID == 0 || ValueGUID == OrigGUID)
1193       return;
1194     if (OidGuidMap.count(OrigGUID) && OidGuidMap[OrigGUID] != ValueGUID)
1195       OidGuidMap[OrigGUID] = 0;
1196     else
1197       OidGuidMap[OrigGUID] = ValueGUID;
1198   }
1199 
1200   /// Find the summary for ValueInfo \p VI in module \p ModuleId, or nullptr if
1201   /// not found.
1202   GlobalValueSummary *findSummaryInModule(ValueInfo VI, StringRef ModuleId) const {
1203     auto SummaryList = VI.getSummaryList();
1204     auto Summary =
1205         llvm::find_if(SummaryList,
1206                       [&](const std::unique_ptr<GlobalValueSummary> &Summary) {
1207                         return Summary->modulePath() == ModuleId;
1208                       });
1209     if (Summary == SummaryList.end())
1210       return nullptr;
1211     return Summary->get();
1212   }
1213 
1214   /// Find the summary for global \p GUID in module \p ModuleId, or nullptr if
1215   /// not found.
1216   GlobalValueSummary *findSummaryInModule(GlobalValue::GUID ValueGUID,
1217                                           StringRef ModuleId) const {
1218     auto CalleeInfo = getValueInfo(ValueGUID);
1219     if (!CalleeInfo)
1220       return nullptr; // This function does not have a summary
1221     return findSummaryInModule(CalleeInfo, ModuleId);
1222   }
1223 
1224   /// Returns the first GlobalValueSummary for \p GV, asserting that there
1225   /// is only one if \p PerModuleIndex.
1226   GlobalValueSummary *getGlobalValueSummary(const GlobalValue &GV,
1227                                             bool PerModuleIndex = true) const {
1228     assert(GV.hasName() && "Can't get GlobalValueSummary for GV with no name");
1229     return getGlobalValueSummary(GV.getGUID(), PerModuleIndex);
1230   }
1231 
1232   /// Returns the first GlobalValueSummary for \p ValueGUID, asserting that
1233   /// there
1234   /// is only one if \p PerModuleIndex.
1235   GlobalValueSummary *getGlobalValueSummary(GlobalValue::GUID ValueGUID,
1236                                             bool PerModuleIndex = true) const;
1237 
1238   /// Table of modules, containing module hash and id.
1239   const StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() const {
1240     return ModulePathStringTable;
1241   }
1242 
1243   /// Table of modules, containing hash and id.
1244   StringMap<std::pair<uint64_t, ModuleHash>> &modulePaths() {
1245     return ModulePathStringTable;
1246   }
1247 
1248   /// Get the module ID recorded for the given module path.
1249   uint64_t getModuleId(const StringRef ModPath) const {
1250     return ModulePathStringTable.lookup(ModPath).first;
1251   }
1252 
1253   /// Get the module SHA1 hash recorded for the given module path.
1254   const ModuleHash &getModuleHash(const StringRef ModPath) const {
1255     auto It = ModulePathStringTable.find(ModPath);
1256     assert(It != ModulePathStringTable.end() && "Module not registered");
1257     return It->second.second;
1258   }
1259 
1260   /// Convenience method for creating a promoted global name
1261   /// for the given value name of a local, and its original module's ID.
1262   static std::string getGlobalNameForLocal(StringRef Name, ModuleHash ModHash) {
1263     SmallString<256> NewName(Name);
1264     NewName += ".llvm.";
1265     NewName += utostr((uint64_t(ModHash[0]) << 32) |
1266                       ModHash[1]); // Take the first 64 bits
1267     return NewName.str();
1268   }
1269 
1270   /// Helper to obtain the unpromoted name for a global value (or the original
1271   /// name if not promoted). Split off the rightmost ".llvm.${hash}" suffix,
1272   /// because it is possible in certain clients (not clang at the moment) for
1273   /// two rounds of ThinLTO optimization and therefore promotion to occur.
1274   static StringRef getOriginalNameBeforePromote(StringRef Name) {
1275     std::pair<StringRef, StringRef> Pair = Name.rsplit(".llvm.");
1276     return Pair.first;
1277   }
1278 
1279   typedef ModulePathStringTableTy::value_type ModuleInfo;
1280 
1281   /// Add a new module with the given \p Hash, mapped to the given \p
1282   /// ModID, and return a reference to the module.
1283   ModuleInfo *addModule(StringRef ModPath, uint64_t ModId,
1284                         ModuleHash Hash = ModuleHash{{0}}) {
1285     return &*ModulePathStringTable.insert({ModPath, {ModId, Hash}}).first;
1286   }
1287 
1288   /// Return module entry for module with the given \p ModPath.
1289   ModuleInfo *getModule(StringRef ModPath) {
1290     auto It = ModulePathStringTable.find(ModPath);
1291     assert(It != ModulePathStringTable.end() && "Module not registered");
1292     return &*It;
1293   }
1294 
1295   /// Check if the given Module has any functions available for exporting
1296   /// in the index. We consider any module present in the ModulePathStringTable
1297   /// to have exported functions.
1298   bool hasExportedFunctions(const Module &M) const {
1299     return ModulePathStringTable.count(M.getModuleIdentifier());
1300   }
1301 
1302   const TypeIdSummaryMapTy &typeIds() const { return TypeIdMap; }
1303 
1304   /// Return an existing or new TypeIdSummary entry for \p TypeId.
1305   /// This accessor can mutate the map and therefore should not be used in
1306   /// the ThinLTO backends.
1307   TypeIdSummary &getOrInsertTypeIdSummary(StringRef TypeId) {
1308     auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
1309     for (auto It = TidIter.first; It != TidIter.second; ++It)
1310       if (It->second.first == TypeId)
1311         return It->second.second;
1312     auto It = TypeIdMap.insert(
1313         {GlobalValue::getGUID(TypeId), {TypeId, TypeIdSummary()}});
1314     return It->second.second;
1315   }
1316 
1317   /// This returns either a pointer to the type id summary (if present in the
1318   /// summary map) or null (if not present). This may be used when importing.
1319   const TypeIdSummary *getTypeIdSummary(StringRef TypeId) const {
1320     auto TidIter = TypeIdMap.equal_range(GlobalValue::getGUID(TypeId));
1321     for (auto It = TidIter.first; It != TidIter.second; ++It)
1322       if (It->second.first == TypeId)
1323         return &It->second.second;
1324     return nullptr;
1325   }
1326 
1327   TypeIdSummary *getTypeIdSummary(StringRef TypeId) {
1328     return const_cast<TypeIdSummary *>(
1329         static_cast<const ModuleSummaryIndex *>(this)->getTypeIdSummary(
1330             TypeId));
1331   }
1332 
1333   const std::map<std::string, TypeIdCompatibleVtableInfo> &
1334   typeIdCompatibleVtableMap() const {
1335     return TypeIdCompatibleVtableMap;
1336   }
1337 
1338   /// Return an existing or new TypeIdCompatibleVtableMap entry for \p TypeId.
1339   /// This accessor can mutate the map and therefore should not be used in
1340   /// the ThinLTO backends.
1341   TypeIdCompatibleVtableInfo &
1342   getOrInsertTypeIdCompatibleVtableSummary(StringRef TypeId) {
1343     return TypeIdCompatibleVtableMap[TypeId];
1344   }
1345 
1346   /// For the given \p TypeId, this returns the TypeIdCompatibleVtableMap
1347   /// entry if present in the summary map. This may be used when importing.
1348   Optional<TypeIdCompatibleVtableInfo>
1349   getTypeIdCompatibleVtableSummary(StringRef TypeId) const {
1350     auto I = TypeIdCompatibleVtableMap.find(TypeId);
1351     if (I == TypeIdCompatibleVtableMap.end())
1352       return None;
1353     return I->second;
1354   }
1355 
1356   /// Collect for the given module the list of functions it defines
1357   /// (GUID -> Summary).
1358   void collectDefinedFunctionsForModule(StringRef ModulePath,
1359                                         GVSummaryMapTy &GVSummaryMap) const;
1360 
1361   /// Collect for each module the list of Summaries it defines (GUID ->
1362   /// Summary).
1363   template <class Map>
1364   void
1365   collectDefinedGVSummariesPerModule(Map &ModuleToDefinedGVSummaries) const {
1366     for (auto &GlobalList : *this) {
1367       auto GUID = GlobalList.first;
1368       for (auto &Summary : GlobalList.second.SummaryList) {
1369         ModuleToDefinedGVSummaries[Summary->modulePath()][GUID] = Summary.get();
1370       }
1371     }
1372   }
1373 
1374   /// Print to an output stream.
1375   void print(raw_ostream &OS, bool IsForDebug = false) const;
1376 
1377   /// Dump to stderr (for debugging).
1378   void dump() const;
1379 
1380   /// Export summary to dot file for GraphViz.
1381   void
1382   exportToDot(raw_ostream &OS,
1383               const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols) const;
1384 
1385   /// Print out strongly connected components for debugging.
1386   void dumpSCCs(raw_ostream &OS);
1387 
1388   /// Analyze index and detect unmodified globals
1389   void propagateAttributes(const DenseSet<GlobalValue::GUID> &PreservedSymbols);
1390 
1391   /// Checks if we can import global variable from another module.
1392   bool canImportGlobalVar(GlobalValueSummary *S, bool AnalyzeRefs) const;
1393 };
1394 
1395 /// GraphTraits definition to build SCC for the index
1396 template <> struct GraphTraits<ValueInfo> {
1397   typedef ValueInfo NodeRef;
1398   using EdgeRef = FunctionSummary::EdgeTy &;
1399 
1400   static NodeRef valueInfoFromEdge(FunctionSummary::EdgeTy &P) {
1401     return P.first;
1402   }
1403   using ChildIteratorType =
1404       mapped_iterator<std::vector<FunctionSummary::EdgeTy>::iterator,
1405                       decltype(&valueInfoFromEdge)>;
1406 
1407   using ChildEdgeIteratorType = std::vector<FunctionSummary::EdgeTy>::iterator;
1408 
1409   static NodeRef getEntryNode(ValueInfo V) { return V; }
1410 
1411   static ChildIteratorType child_begin(NodeRef N) {
1412     if (!N.getSummaryList().size()) // handle external function
1413       return ChildIteratorType(
1414           FunctionSummary::ExternalNode.CallGraphEdgeList.begin(),
1415           &valueInfoFromEdge);
1416     FunctionSummary *F =
1417         cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1418     return ChildIteratorType(F->CallGraphEdgeList.begin(), &valueInfoFromEdge);
1419   }
1420 
1421   static ChildIteratorType child_end(NodeRef N) {
1422     if (!N.getSummaryList().size()) // handle external function
1423       return ChildIteratorType(
1424           FunctionSummary::ExternalNode.CallGraphEdgeList.end(),
1425           &valueInfoFromEdge);
1426     FunctionSummary *F =
1427         cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1428     return ChildIteratorType(F->CallGraphEdgeList.end(), &valueInfoFromEdge);
1429   }
1430 
1431   static ChildEdgeIteratorType child_edge_begin(NodeRef N) {
1432     if (!N.getSummaryList().size()) // handle external function
1433       return FunctionSummary::ExternalNode.CallGraphEdgeList.begin();
1434 
1435     FunctionSummary *F =
1436         cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1437     return F->CallGraphEdgeList.begin();
1438   }
1439 
1440   static ChildEdgeIteratorType child_edge_end(NodeRef N) {
1441     if (!N.getSummaryList().size()) // handle external function
1442       return FunctionSummary::ExternalNode.CallGraphEdgeList.end();
1443 
1444     FunctionSummary *F =
1445         cast<FunctionSummary>(N.getSummaryList().front()->getBaseObject());
1446     return F->CallGraphEdgeList.end();
1447   }
1448 
1449   static NodeRef edge_dest(EdgeRef E) { return E.first; }
1450 };
1451 
1452 template <>
1453 struct GraphTraits<ModuleSummaryIndex *> : public GraphTraits<ValueInfo> {
1454   static NodeRef getEntryNode(ModuleSummaryIndex *I) {
1455     std::unique_ptr<GlobalValueSummary> Root =
1456         std::make_unique<FunctionSummary>(I->calculateCallGraphRoot());
1457     GlobalValueSummaryInfo G(I->haveGVs());
1458     G.SummaryList.push_back(std::move(Root));
1459     static auto P =
1460         GlobalValueSummaryMapTy::value_type(GlobalValue::GUID(0), std::move(G));
1461     return ValueInfo(I->haveGVs(), &P);
1462   }
1463 };
1464 } // end namespace llvm
1465 
1466 #endif // LLVM_IR_MODULESUMMARYINDEX_H
1467