1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "src/profiling/memory/unwinding.h"
18
19 #include <sys/types.h>
20 #include <unistd.h>
21
22 #include <unwindstack/MachineArm.h>
23 #include <unwindstack/MachineArm64.h>
24 #include <unwindstack/MachineMips.h>
25 #include <unwindstack/MachineMips64.h>
26 #include <unwindstack/MachineRiscv64.h>
27 #include <unwindstack/MachineX86.h>
28 #include <unwindstack/MachineX86_64.h>
29 #include <unwindstack/Maps.h>
30 #include <unwindstack/Memory.h>
31 #include <unwindstack/Regs.h>
32 #include <unwindstack/RegsArm.h>
33 #include <unwindstack/RegsArm64.h>
34 #include <unwindstack/RegsMips.h>
35 #include <unwindstack/RegsMips64.h>
36 #include <unwindstack/RegsRiscv64.h>
37 #include <unwindstack/RegsX86.h>
38 #include <unwindstack/RegsX86_64.h>
39 #include <unwindstack/Unwinder.h>
40 #include <unwindstack/UserArm.h>
41 #include <unwindstack/UserArm64.h>
42 #include <unwindstack/UserMips.h>
43 #include <unwindstack/UserMips64.h>
44 #include <unwindstack/UserRiscv64.h>
45 #include <unwindstack/UserX86.h>
46 #include <unwindstack/UserX86_64.h>
47
48 #include <procinfo/process_map.h>
49
50 #include "perfetto/base/logging.h"
51 #include "perfetto/base/task_runner.h"
52 #include "perfetto/ext/base/file_utils.h"
53 #include "perfetto/ext/base/scoped_file.h"
54 #include "perfetto/ext/base/string_utils.h"
55 #include "perfetto/ext/base/thread_task_runner.h"
56
57 #include "src/profiling/memory/unwound_messages.h"
58 #include "src/profiling/memory/wire_protocol.h"
59
60 namespace perfetto {
61 namespace profiling {
62 namespace {
63
64 constexpr base::TimeMillis kMapsReparseInterval{500};
65 constexpr uint32_t kRetryDelayMs = 100;
66
67 constexpr size_t kMaxFrames = 500;
68
69 // We assume average ~300us per unwind. If we handle up to 1000 unwinds, this
70 // makes sure other tasks get to be run at least every 300ms if the unwinding
71 // saturates this thread.
72 constexpr size_t kUnwindBatchSize = 1000;
73 constexpr size_t kRecordBatchSize = 1024;
74 constexpr size_t kMaxAllocRecordArenaSize = 2 * kRecordBatchSize;
75
76 #pragma GCC diagnostic push
77 // We do not care about deterministic destructor order.
78 #pragma GCC diagnostic ignored "-Wglobal-constructors"
79 #pragma GCC diagnostic ignored "-Wexit-time-destructors"
80 static std::vector<std::string> kSkipMaps{"heapprofd_client.so",
81 "heapprofd_client_api.so"};
82 #pragma GCC diagnostic pop
83
GetRegsSize(unwindstack::Regs * regs)84 size_t GetRegsSize(unwindstack::Regs* regs) {
85 if (regs->Is32Bit())
86 return sizeof(uint32_t) * regs->total_regs();
87 return sizeof(uint64_t) * regs->total_regs();
88 }
89
ReadFromRawData(unwindstack::Regs * regs,void * raw_data)90 void ReadFromRawData(unwindstack::Regs* regs, void* raw_data) {
91 memcpy(regs->RawData(), raw_data, GetRegsSize(regs));
92 }
93
94 } // namespace
95
CreateRegsFromRawData(unwindstack::ArchEnum arch,void * raw_data)96 std::unique_ptr<unwindstack::Regs> CreateRegsFromRawData(
97 unwindstack::ArchEnum arch,
98 void* raw_data) {
99 std::unique_ptr<unwindstack::Regs> ret;
100 switch (arch) {
101 case unwindstack::ARCH_X86:
102 ret.reset(new unwindstack::RegsX86());
103 break;
104 case unwindstack::ARCH_X86_64:
105 ret.reset(new unwindstack::RegsX86_64());
106 break;
107 case unwindstack::ARCH_ARM:
108 ret.reset(new unwindstack::RegsArm());
109 break;
110 case unwindstack::ARCH_ARM64:
111 ret.reset(new unwindstack::RegsArm64());
112 break;
113 case unwindstack::ARCH_MIPS:
114 ret.reset(new unwindstack::RegsMips());
115 break;
116 case unwindstack::ARCH_MIPS64:
117 ret.reset(new unwindstack::RegsMips64());
118 break;
119 case unwindstack::ARCH_RISCV64:
120 ret.reset(new unwindstack::RegsRiscv64());
121 break;
122 case unwindstack::ARCH_UNKNOWN:
123 break;
124 }
125 if (ret)
126 ReadFromRawData(ret.get(), raw_data);
127 return ret;
128 }
129
DoUnwind(WireMessage * msg,UnwindingMetadata * metadata,AllocRecord * out)130 bool DoUnwind(WireMessage* msg, UnwindingMetadata* metadata, AllocRecord* out) {
131 AllocMetadata* alloc_metadata = msg->alloc_header;
132 std::unique_ptr<unwindstack::Regs> regs(CreateRegsFromRawData(
133 alloc_metadata->arch, alloc_metadata->register_data));
134 if (regs == nullptr) {
135 PERFETTO_DLOG("Unable to construct unwindstack::Regs");
136 unwindstack::FrameData frame_data{};
137 frame_data.function_name = "ERROR READING REGISTERS";
138
139 out->frames.clear();
140 out->build_ids.clear();
141 out->frames.emplace_back(std::move(frame_data));
142 out->build_ids.emplace_back("");
143 out->error = true;
144 return false;
145 }
146 uint8_t* stack = reinterpret_cast<uint8_t*>(msg->payload);
147 std::shared_ptr<unwindstack::Memory> mems =
148 std::make_shared<StackOverlayMemory>(metadata->fd_mem,
149 alloc_metadata->stack_pointer, stack,
150 msg->payload_size);
151
152 unwindstack::Unwinder unwinder(kMaxFrames, &metadata->fd_maps, regs.get(),
153 mems);
154 #if PERFETTO_BUILDFLAG(PERFETTO_ANDROID_BUILD)
155 unwinder.SetJitDebug(metadata->GetJitDebug(regs->Arch()));
156 unwinder.SetDexFiles(metadata->GetDexFiles(regs->Arch()));
157 #endif
158 // Suppress incorrect "variable may be uninitialized" error for if condition
159 // after this loop. error_code = LastErrorCode gets run at least once.
160 unwindstack::ErrorCode error_code = unwindstack::ERROR_NONE;
161 for (int attempt = 0; attempt < 2; ++attempt) {
162 if (attempt > 0) {
163 if (metadata->last_maps_reparse_time + kMapsReparseInterval >
164 base::GetWallTimeMs()) {
165 PERFETTO_DLOG("Skipping reparse due to rate limit.");
166 break;
167 }
168 PERFETTO_DLOG("Reparsing maps");
169 metadata->ReparseMaps();
170 metadata->last_maps_reparse_time = base::GetWallTimeMs();
171 // Regs got invalidated by libuwindstack's speculative jump.
172 // Reset.
173 ReadFromRawData(regs.get(), alloc_metadata->register_data);
174 out->reparsed_map = true;
175 #if PERFETTO_BUILDFLAG(PERFETTO_ANDROID_BUILD)
176 unwinder.SetJitDebug(metadata->GetJitDebug(regs->Arch()));
177 unwinder.SetDexFiles(metadata->GetDexFiles(regs->Arch()));
178 #endif
179 }
180 out->frames.swap(unwinder.frames()); // Provide the unwinder buffer to use.
181 unwinder.Unwind(&kSkipMaps, /*map_suffixes_to_ignore=*/nullptr);
182 out->frames.swap(unwinder.frames()); // Take the buffer back.
183 error_code = unwinder.LastErrorCode();
184 if (error_code != unwindstack::ERROR_INVALID_MAP &&
185 (unwinder.warnings() & unwindstack::WARNING_DEX_PC_NOT_IN_MAP) == 0) {
186 break;
187 }
188 }
189 out->build_ids.resize(out->frames.size());
190 for (size_t i = 0; i < out->frames.size(); ++i) {
191 out->build_ids[i] = metadata->GetBuildId(out->frames[i]);
192 }
193
194 if (error_code != unwindstack::ERROR_NONE) {
195 PERFETTO_DLOG("Unwinding error %" PRIu8, error_code);
196 unwindstack::FrameData frame_data{};
197 frame_data.function_name =
198 "ERROR " + StringifyLibUnwindstackError(error_code);
199
200 out->frames.emplace_back(std::move(frame_data));
201 out->build_ids.emplace_back("");
202 out->error = true;
203 }
204 return true;
205 }
206
~UnwindingWorker()207 UnwindingWorker::~UnwindingWorker() {
208 if (thread_task_runner_.get() == nullptr) {
209 return;
210 }
211 std::mutex mutex;
212 std::condition_variable cv;
213
214 std::unique_lock<std::mutex> lock(mutex);
215 bool done = false;
216 thread_task_runner_.PostTask([&mutex, &cv, &done, this] {
217 for (auto& it : client_data_) {
218 auto& client_data = it.second;
219 client_data.sock->Shutdown(false);
220 }
221 client_data_.clear();
222
223 std::lock_guard<std::mutex> inner_lock(mutex);
224 done = true;
225 cv.notify_one();
226 });
227 cv.wait(lock, [&done] { return done; });
228 }
229
OnDisconnect(base::UnixSocket * self)230 void UnwindingWorker::OnDisconnect(base::UnixSocket* self) {
231 pid_t peer_pid = self->peer_pid_linux();
232 auto it = client_data_.find(peer_pid);
233 if (it == client_data_.end()) {
234 PERFETTO_DFATAL_OR_ELOG("Disconnected unexpected socket.");
235 return;
236 }
237
238 ClientData& client_data = it->second;
239 SharedRingBuffer& shmem = client_data.shmem;
240 client_data.drain_bytes = shmem.read_avail();
241
242 if (client_data.drain_bytes != 0) {
243 DrainJob(peer_pid);
244 } else {
245 FinishDisconnect(it);
246 }
247 }
248
RemoveClientData(std::map<pid_t,ClientData>::iterator client_data_iterator)249 void UnwindingWorker::RemoveClientData(
250 std::map<pid_t, ClientData>::iterator client_data_iterator) {
251 client_data_.erase(client_data_iterator);
252 if (client_data_.empty()) {
253 // We got rid of the last client. Flush and destruct AllocRecords in
254 // arena. Disable the arena (will not accept returning borrowed records)
255 // in case there are pending AllocRecords on the main thread.
256 alloc_record_arena_.Disable();
257 }
258 }
259
FinishDisconnect(std::map<pid_t,ClientData>::iterator client_data_iterator)260 void UnwindingWorker::FinishDisconnect(
261 std::map<pid_t, ClientData>::iterator client_data_iterator) {
262 pid_t peer_pid = client_data_iterator->first;
263 ClientData& client_data = client_data_iterator->second;
264 SharedRingBuffer& shmem = client_data.shmem;
265
266 if (!client_data.free_records.empty()) {
267 delegate_->PostFreeRecord(this, std::move(client_data.free_records));
268 }
269
270 SharedRingBuffer::Stats stats = {};
271 {
272 auto lock = shmem.AcquireLock(ScopedSpinlock::Mode::Try);
273 if (lock.locked())
274 stats = shmem.GetStats(lock);
275 else
276 PERFETTO_ELOG("Failed to log shmem to get stats.");
277 }
278 DataSourceInstanceID ds_id = client_data.data_source_instance_id;
279
280 RemoveClientData(client_data_iterator);
281 delegate_->PostSocketDisconnected(this, ds_id, peer_pid, stats);
282 }
283
OnDataAvailable(base::UnixSocket * self)284 void UnwindingWorker::OnDataAvailable(base::UnixSocket* self) {
285 // Drain buffer to clear the notification.
286 char recv_buf[kUnwindBatchSize];
287 self->Receive(recv_buf, sizeof(recv_buf));
288 BatchUnwindJob(self->peer_pid_linux());
289 }
290
ReadAndUnwindBatch(ClientData * client_data)291 UnwindingWorker::ReadAndUnwindBatchResult UnwindingWorker::ReadAndUnwindBatch(
292 ClientData* client_data) {
293 SharedRingBuffer& shmem = client_data->shmem;
294 SharedRingBuffer::Buffer buf;
295 ReadAndUnwindBatchResult res;
296
297 size_t i;
298 for (i = 0; i < kUnwindBatchSize; ++i) {
299 uint64_t reparses_before = client_data->metadata.reparses;
300 buf = shmem.BeginRead();
301 if (!buf)
302 break;
303 HandleBuffer(this, &alloc_record_arena_, buf, client_data,
304 client_data->sock->peer_pid_linux(), delegate_);
305 res.bytes_read += shmem.EndRead(std::move(buf));
306 // Reparsing takes time, so process the rest in a new batch to avoid timing
307 // out.
308 if (reparses_before < client_data->metadata.reparses) {
309 res.status = ReadAndUnwindBatchResult::Status::kHasMore;
310 return res;
311 }
312 }
313
314 if (i == kUnwindBatchSize) {
315 res.status = ReadAndUnwindBatchResult::Status::kHasMore;
316 } else if (i > 0) {
317 res.status = ReadAndUnwindBatchResult::Status::kReadSome;
318 } else {
319 res.status = ReadAndUnwindBatchResult::Status::kReadNone;
320 }
321 return res;
322 }
323
BatchUnwindJob(pid_t peer_pid)324 void UnwindingWorker::BatchUnwindJob(pid_t peer_pid) {
325 auto it = client_data_.find(peer_pid);
326 if (it == client_data_.end()) {
327 // This can happen if the client disconnected before the buffer was fully
328 // handled.
329 PERFETTO_DLOG("Unexpected data.");
330 return;
331 }
332 ClientData& client_data = it->second;
333 if (client_data.drain_bytes != 0) {
334 // This process disconnected and we're reading out the remainder of its
335 // buffered data in a dedicated recurring task (DrainJob), so this task has
336 // nothing to do.
337 return;
338 }
339
340 bool job_reposted = false;
341 bool reader_paused = false;
342 switch (ReadAndUnwindBatch(&client_data).status) {
343 case ReadAndUnwindBatchResult::Status::kHasMore:
344 thread_task_runner_.get()->PostTask(
345 [this, peer_pid] { BatchUnwindJob(peer_pid); });
346 job_reposted = true;
347 break;
348 case ReadAndUnwindBatchResult::Status::kReadSome:
349 thread_task_runner_.get()->PostDelayedTask(
350 [this, peer_pid] { BatchUnwindJob(peer_pid); }, kRetryDelayMs);
351 job_reposted = true;
352 break;
353 case ReadAndUnwindBatchResult::Status::kReadNone:
354 client_data.shmem.SetReaderPaused();
355 reader_paused = true;
356 break;
357 }
358
359 // We need to either repost the job, or set the reader paused bit. By
360 // setting that bit, we inform the client that we want to be notified when
361 // new data is written to the shared memory buffer.
362 // If we do neither of these things, we will not read from the shared memory
363 // buffer again.
364 PERFETTO_CHECK(job_reposted || reader_paused);
365 }
366
DrainJob(pid_t peer_pid)367 void UnwindingWorker::DrainJob(pid_t peer_pid) {
368 auto it = client_data_.find(peer_pid);
369 if (it == client_data_.end()) {
370 return;
371 }
372 ClientData& client_data = it->second;
373 auto res = ReadAndUnwindBatch(&client_data);
374 switch (res.status) {
375 case ReadAndUnwindBatchResult::Status::kHasMore:
376 if (res.bytes_read < client_data.drain_bytes) {
377 client_data.drain_bytes -= res.bytes_read;
378 thread_task_runner_.get()->PostTask(
379 [this, peer_pid] { DrainJob(peer_pid); });
380 return;
381 }
382 // ReadAndUnwindBatch read more than client_data.drain_bytes.
383 break;
384 case ReadAndUnwindBatchResult::Status::kReadSome:
385 // ReadAndUnwindBatch read all the available data (for now) in the shared
386 // memory buffer.
387 case ReadAndUnwindBatchResult::Status::kReadNone:
388 // There was no data in the shared memory buffer.
389 break;
390 }
391 // No further drain task has been scheduled. Drain is finished. Finish the
392 // disconnect operation as well.
393
394 FinishDisconnect(it);
395 }
396
397 // static
HandleBuffer(UnwindingWorker * self,AllocRecordArena * alloc_record_arena,const SharedRingBuffer::Buffer & buf,ClientData * client_data,pid_t peer_pid,Delegate * delegate)398 void UnwindingWorker::HandleBuffer(UnwindingWorker* self,
399 AllocRecordArena* alloc_record_arena,
400 const SharedRingBuffer::Buffer& buf,
401 ClientData* client_data,
402 pid_t peer_pid,
403 Delegate* delegate) {
404 UnwindingMetadata* unwinding_metadata = &client_data->metadata;
405 DataSourceInstanceID data_source_instance_id =
406 client_data->data_source_instance_id;
407 WireMessage msg;
408 // TODO(fmayer): standardise on char* or uint8_t*.
409 // char* has stronger guarantees regarding aliasing.
410 // see https://timsong-cpp.github.io/cppwp/n3337/basic.lval#10.8
411 if (!ReceiveWireMessage(reinterpret_cast<char*>(buf.data), buf.size, &msg)) {
412 PERFETTO_DFATAL_OR_ELOG("Failed to receive wire message.");
413 return;
414 }
415
416 if (msg.record_type == RecordType::Malloc) {
417 std::unique_ptr<AllocRecord> rec = alloc_record_arena->BorrowAllocRecord();
418 rec->alloc_metadata = *msg.alloc_header;
419 rec->pid = peer_pid;
420 rec->data_source_instance_id = data_source_instance_id;
421 auto start_time_us = base::GetWallTimeNs() / 1000;
422 if (!client_data->stream_allocations)
423 DoUnwind(&msg, unwinding_metadata, rec.get());
424 rec->unwinding_time_us = static_cast<uint64_t>(
425 ((base::GetWallTimeNs() / 1000) - start_time_us).count());
426 delegate->PostAllocRecord(self, std::move(rec));
427 } else if (msg.record_type == RecordType::Free) {
428 FreeRecord rec;
429 rec.pid = peer_pid;
430 rec.data_source_instance_id = data_source_instance_id;
431 // We need to copy this, so we can return the memory to the shmem buffer.
432 memcpy(&rec.entry, msg.free_header, sizeof(*msg.free_header));
433 client_data->free_records.emplace_back(std::move(rec));
434 if (client_data->free_records.size() == kRecordBatchSize) {
435 delegate->PostFreeRecord(self, std::move(client_data->free_records));
436 client_data->free_records.clear();
437 client_data->free_records.reserve(kRecordBatchSize);
438 }
439 } else if (msg.record_type == RecordType::HeapName) {
440 HeapNameRecord rec;
441 rec.pid = peer_pid;
442 rec.data_source_instance_id = data_source_instance_id;
443 memcpy(&rec.entry, msg.heap_name_header, sizeof(*msg.heap_name_header));
444 rec.entry.heap_name[sizeof(rec.entry.heap_name) - 1] = '\0';
445 delegate->PostHeapNameRecord(self, std::move(rec));
446 } else {
447 PERFETTO_DFATAL_OR_ELOG("Invalid record type.");
448 }
449 }
450
PostHandoffSocket(HandoffData handoff_data)451 void UnwindingWorker::PostHandoffSocket(HandoffData handoff_data) {
452 // Even with C++14, this cannot be moved, as std::function has to be
453 // copyable, which HandoffData is not.
454 HandoffData* raw_data = new HandoffData(std::move(handoff_data));
455 // We do not need to use a WeakPtr here because the task runner will not
456 // outlive its UnwindingWorker.
457 thread_task_runner_.get()->PostTask([this, raw_data] {
458 HandoffData data = std::move(*raw_data);
459 delete raw_data;
460 HandleHandoffSocket(std::move(data));
461 });
462 }
463
HandleHandoffSocket(HandoffData handoff_data)464 void UnwindingWorker::HandleHandoffSocket(HandoffData handoff_data) {
465 auto sock = base::UnixSocket::AdoptConnected(
466 handoff_data.sock.ReleaseFd(), this, this->thread_task_runner_.get(),
467 base::SockFamily::kUnix, base::SockType::kStream);
468 pid_t peer_pid = sock->peer_pid_linux();
469
470 UnwindingMetadata metadata(std::move(handoff_data.maps_fd),
471 std::move(handoff_data.mem_fd));
472 ClientData client_data{
473 handoff_data.data_source_instance_id,
474 std::move(sock),
475 std::move(metadata),
476 std::move(handoff_data.shmem),
477 std::move(handoff_data.client_config),
478 handoff_data.stream_allocations,
479 /*drain_bytes=*/0,
480 /*free_records=*/{},
481 };
482 client_data.free_records.reserve(kRecordBatchSize);
483 client_data.shmem.SetReaderPaused();
484 client_data_.emplace(peer_pid, std::move(client_data));
485 alloc_record_arena_.Enable();
486 }
487
HandleDrainFree(DataSourceInstanceID ds_id,pid_t pid)488 void UnwindingWorker::HandleDrainFree(DataSourceInstanceID ds_id, pid_t pid) {
489 auto it = client_data_.find(pid);
490 if (it != client_data_.end()) {
491 ClientData& client_data = it->second;
492
493 if (!client_data.free_records.empty()) {
494 delegate_->PostFreeRecord(this, std::move(client_data.free_records));
495 client_data.free_records.clear();
496 client_data.free_records.reserve(kRecordBatchSize);
497 }
498 }
499 delegate_->PostDrainDone(this, ds_id);
500 }
501
PostDisconnectSocket(pid_t pid)502 void UnwindingWorker::PostDisconnectSocket(pid_t pid) {
503 // We do not need to use a WeakPtr here because the task runner will not
504 // outlive its UnwindingWorker.
505 thread_task_runner_.get()->PostTask(
506 [this, pid] { HandleDisconnectSocket(pid); });
507 }
508
PostPurgeProcess(pid_t pid)509 void UnwindingWorker::PostPurgeProcess(pid_t pid) {
510 // We do not need to use a WeakPtr here because the task runner will not
511 // outlive its UnwindingWorker.
512 thread_task_runner_.get()->PostTask([this, pid] {
513 auto it = client_data_.find(pid);
514 if (it == client_data_.end()) {
515 return;
516 }
517 RemoveClientData(it);
518 });
519 }
520
PostDrainFree(DataSourceInstanceID ds_id,pid_t pid)521 void UnwindingWorker::PostDrainFree(DataSourceInstanceID ds_id, pid_t pid) {
522 // We do not need to use a WeakPtr here because the task runner will not
523 // outlive its UnwindingWorker.
524 thread_task_runner_.get()->PostTask(
525 [this, ds_id, pid] { HandleDrainFree(ds_id, pid); });
526 }
527
HandleDisconnectSocket(pid_t pid)528 void UnwindingWorker::HandleDisconnectSocket(pid_t pid) {
529 auto it = client_data_.find(pid);
530 if (it == client_data_.end()) {
531 // This is expected if the client voluntarily disconnects before the
532 // profiling session ended. In that case, there is a race between the main
533 // thread learning about the disconnect and it calling back here.
534 return;
535 }
536 ClientData& client_data = it->second;
537 // Shutdown and call OnDisconnect handler.
538 client_data.shmem.SetShuttingDown();
539 client_data.sock->Shutdown(/* notify= */ true);
540 }
541
BorrowAllocRecord()542 std::unique_ptr<AllocRecord> AllocRecordArena::BorrowAllocRecord() {
543 std::lock_guard<std::mutex> l(*alloc_records_mutex_);
544 if (!alloc_records_.empty()) {
545 std::unique_ptr<AllocRecord> result = std::move(alloc_records_.back());
546 alloc_records_.pop_back();
547 return result;
548 }
549 return std::unique_ptr<AllocRecord>(new AllocRecord());
550 }
551
ReturnAllocRecord(std::unique_ptr<AllocRecord> record)552 void AllocRecordArena::ReturnAllocRecord(std::unique_ptr<AllocRecord> record) {
553 std::lock_guard<std::mutex> l(*alloc_records_mutex_);
554 if (enabled_ && record && alloc_records_.size() < kMaxAllocRecordArenaSize)
555 alloc_records_.emplace_back(std::move(record));
556 }
557
Disable()558 void AllocRecordArena::Disable() {
559 std::lock_guard<std::mutex> l(*alloc_records_mutex_);
560 alloc_records_.clear();
561 enabled_ = false;
562 }
563
Enable()564 void AllocRecordArena::Enable() {
565 std::lock_guard<std::mutex> l(*alloc_records_mutex_);
566 enabled_ = true;
567 }
568
569 UnwindingWorker::Delegate::~Delegate() = default;
570
571 } // namespace profiling
572 } // namespace perfetto
573