• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2017 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 // This file contains the functions that initialize SELinux during boot as well as helper functions
18 // for SELinux operation for init.
19 
20 // When the system boots, there is no SEPolicy present and init is running in the kernel domain.
21 // Init loads the SEPolicy from the file system, restores the context of /system/bin/init based on
22 // this SEPolicy, and finally exec()'s itself to run in the proper domain.
23 
24 // The SEPolicy on Android comes in two variants: monolithic and split.
25 
26 // The monolithic policy variant is for legacy non-treble devices that contain a single SEPolicy
27 // file located at /sepolicy and is directly loaded into the kernel SELinux subsystem.
28 
29 // The split policy is for supporting treble devices and updateable apexes.  It splits the SEPolicy
30 // across files on /system/etc/selinux (the 'plat' portion of the policy), /vendor/etc/selinux
31 // (the 'vendor' portion of the policy), /system_ext/etc/selinux, /product/etc/selinux,
32 // /odm/etc/selinux, and /dev/selinux (the apex portion of policy).  This is necessary to allow
33 // images to be updated independently of the vendor image, while maintaining contributions from
34 // multiple partitions in the SEPolicy.  This is especially important for VTS testing, where the
35 // SEPolicy on the Google System Image may not be identical to the system image shipped on a
36 // vendor's device.
37 
38 // The split SEPolicy is loaded as described below:
39 // 1) There is a precompiled SEPolicy located at either /vendor/etc/selinux/precompiled_sepolicy or
40 //    /odm/etc/selinux/precompiled_sepolicy if odm parition is present.  Stored along with this file
41 //    are the sha256 hashes of the parts of the SEPolicy on /system, /system_ext, /product, and apex
42 //    that were used to compile this precompiled policy.  The system partition contains a similar
43 //    sha256 of the parts of the SEPolicy that it currently contains. Symmetrically, system_ext,
44 //    product, and apex contain sha256 hashes of their SEPolicy. Init loads this
45 //    precompiled_sepolicy directly if and only if the hashes along with the precompiled SEPolicy on
46 //    /vendor or /odm match the hashes for system, system_ext, product, and apex SEPolicy,
47 //    respectively.
48 // 2) If these hashes do not match, then either /system or /system_ext /product, or apex (or some of
49 //    them) have been updated out of sync with /vendor (or /odm if it is present) and the init needs
50 //    to compile the SEPolicy.  /system contains the SEPolicy compiler, secilc, and it is used by
51 //    the OpenSplitPolicy() function below to compile the SEPolicy to a temp directory and load it.
52 //    That function contains even more documentation with the specific implementation details of how
53 //    the SEPolicy is compiled if needed.
54 
55 #include "selinux.h"
56 
57 #include <android/api-level.h>
58 #include <fcntl.h>
59 #include <linux/audit.h>
60 #include <linux/netlink.h>
61 #include <stdlib.h>
62 #include <sys/wait.h>
63 #include <unistd.h>
64 #include <fstream>
65 
66 #include <CertUtils.h>
67 #include <android-base/chrono_utils.h>
68 #include <android-base/file.h>
69 #include <android-base/logging.h>
70 #include <android-base/parseint.h>
71 #include <android-base/result.h>
72 #include <android-base/scopeguard.h>
73 #include <android-base/strings.h>
74 #include <android-base/unique_fd.h>
75 #include <fs_avb/fs_avb.h>
76 #include <fs_mgr.h>
77 #include <fsverity_init.h>
78 #include <libgsi/libgsi.h>
79 #include <libsnapshot/snapshot.h>
80 #include <mini_keyctl_utils.h>
81 #include <selinux/android.h>
82 #include <ziparchive/zip_archive.h>
83 
84 #include "block_dev_initializer.h"
85 #include "debug_ramdisk.h"
86 #include "reboot_utils.h"
87 #include "snapuserd_transition.h"
88 #include "util.h"
89 
90 using namespace std::string_literals;
91 
92 using android::base::ParseInt;
93 using android::base::Timer;
94 using android::base::unique_fd;
95 using android::fs_mgr::AvbHandle;
96 using android::snapshot::SnapshotManager;
97 
98 namespace android {
99 namespace init {
100 
101 namespace {
102 
103 enum EnforcingStatus { SELINUX_PERMISSIVE, SELINUX_ENFORCING };
104 
StatusFromProperty()105 EnforcingStatus StatusFromProperty() {
106     EnforcingStatus status = SELINUX_ENFORCING;
107 
108     ImportKernelCmdline([&](const std::string& key, const std::string& value) {
109         if (key == "androidboot.selinux" && value == "permissive") {
110             status = SELINUX_PERMISSIVE;
111         }
112     });
113 
114     if (status == SELINUX_ENFORCING) {
115         ImportBootconfig([&](const std::string& key, const std::string& value) {
116             if (key == "androidboot.selinux" && value == "permissive") {
117                 status = SELINUX_PERMISSIVE;
118             }
119         });
120     }
121 
122     return status;
123 }
124 
IsEnforcing()125 bool IsEnforcing() {
126     if (ALLOW_PERMISSIVE_SELINUX) {
127         return StatusFromProperty() == SELINUX_ENFORCING;
128     }
129     return true;
130 }
131 
132 // Forks, executes the provided program in the child, and waits for the completion in the parent.
133 // Child's stderr is captured and logged using LOG(ERROR).
ForkExecveAndWaitForCompletion(const char * filename,char * const argv[])134 bool ForkExecveAndWaitForCompletion(const char* filename, char* const argv[]) {
135     // Create a pipe used for redirecting child process's output.
136     // * pipe_fds[0] is the FD the parent will use for reading.
137     // * pipe_fds[1] is the FD the child will use for writing.
138     int pipe_fds[2];
139     if (pipe(pipe_fds) == -1) {
140         PLOG(ERROR) << "Failed to create pipe";
141         return false;
142     }
143 
144     pid_t child_pid = fork();
145     if (child_pid == -1) {
146         PLOG(ERROR) << "Failed to fork for " << filename;
147         return false;
148     }
149 
150     if (child_pid == 0) {
151         // fork succeeded -- this is executing in the child process
152 
153         // Close the pipe FD not used by this process
154         close(pipe_fds[0]);
155 
156         // Redirect stderr to the pipe FD provided by the parent
157         if (TEMP_FAILURE_RETRY(dup2(pipe_fds[1], STDERR_FILENO)) == -1) {
158             PLOG(ERROR) << "Failed to redirect stderr of " << filename;
159             _exit(127);
160             return false;
161         }
162         close(pipe_fds[1]);
163 
164         if (execv(filename, argv) == -1) {
165             PLOG(ERROR) << "Failed to execve " << filename;
166             return false;
167         }
168         // Unreachable because execve will have succeeded and replaced this code
169         // with child process's code.
170         _exit(127);
171         return false;
172     } else {
173         // fork succeeded -- this is executing in the original/parent process
174 
175         // Close the pipe FD not used by this process
176         close(pipe_fds[1]);
177 
178         // Log the redirected output of the child process.
179         // It's unfortunate that there's no standard way to obtain an istream for a file descriptor.
180         // As a result, we're buffering all output and logging it in one go at the end of the
181         // invocation, instead of logging it as it comes in.
182         const int child_out_fd = pipe_fds[0];
183         std::string child_output;
184         if (!android::base::ReadFdToString(child_out_fd, &child_output)) {
185             PLOG(ERROR) << "Failed to capture full output of " << filename;
186         }
187         close(child_out_fd);
188         if (!child_output.empty()) {
189             // Log captured output, line by line, because LOG expects to be invoked for each line
190             std::istringstream in(child_output);
191             std::string line;
192             while (std::getline(in, line)) {
193                 LOG(ERROR) << filename << ": " << line;
194             }
195         }
196 
197         // Wait for child to terminate
198         int status;
199         if (TEMP_FAILURE_RETRY(waitpid(child_pid, &status, 0)) != child_pid) {
200             PLOG(ERROR) << "Failed to wait for " << filename;
201             return false;
202         }
203 
204         if (WIFEXITED(status)) {
205             int status_code = WEXITSTATUS(status);
206             if (status_code == 0) {
207                 return true;
208             } else {
209                 LOG(ERROR) << filename << " exited with status " << status_code;
210             }
211         } else if (WIFSIGNALED(status)) {
212             LOG(ERROR) << filename << " killed by signal " << WTERMSIG(status);
213         } else if (WIFSTOPPED(status)) {
214             LOG(ERROR) << filename << " stopped by signal " << WSTOPSIG(status);
215         } else {
216             LOG(ERROR) << "waitpid for " << filename << " returned unexpected status: " << status;
217         }
218 
219         return false;
220     }
221 }
222 
ReadFirstLine(const char * file,std::string * line)223 bool ReadFirstLine(const char* file, std::string* line) {
224     line->clear();
225 
226     std::string contents;
227     if (!android::base::ReadFileToString(file, &contents, true /* follow symlinks */)) {
228         return false;
229     }
230     std::istringstream in(contents);
231     std::getline(in, *line);
232     return true;
233 }
234 
FindPrecompiledSplitPolicy()235 Result<std::string> FindPrecompiledSplitPolicy() {
236     std::string precompiled_sepolicy;
237     // If there is an odm partition, precompiled_sepolicy will be in
238     // odm/etc/selinux. Otherwise it will be in vendor/etc/selinux.
239     static constexpr const char vendor_precompiled_sepolicy[] =
240             "/vendor/etc/selinux/precompiled_sepolicy";
241     static constexpr const char odm_precompiled_sepolicy[] =
242             "/odm/etc/selinux/precompiled_sepolicy";
243     if (access(odm_precompiled_sepolicy, R_OK) == 0) {
244         precompiled_sepolicy = odm_precompiled_sepolicy;
245     } else if (access(vendor_precompiled_sepolicy, R_OK) == 0) {
246         precompiled_sepolicy = vendor_precompiled_sepolicy;
247     } else {
248         return ErrnoError() << "No precompiled sepolicy at " << vendor_precompiled_sepolicy;
249     }
250 
251     // Use precompiled sepolicy only when all corresponding hashes are equal.
252     std::vector<std::pair<std::string, std::string>> sepolicy_hashes{
253             {"/system/etc/selinux/plat_sepolicy_and_mapping.sha256",
254              precompiled_sepolicy + ".plat_sepolicy_and_mapping.sha256"},
255             {"/system_ext/etc/selinux/system_ext_sepolicy_and_mapping.sha256",
256              precompiled_sepolicy + ".system_ext_sepolicy_and_mapping.sha256"},
257             {"/product/etc/selinux/product_sepolicy_and_mapping.sha256",
258              precompiled_sepolicy + ".product_sepolicy_and_mapping.sha256"},
259             {"/dev/selinux/apex_sepolicy.sha256", precompiled_sepolicy + ".apex_sepolicy.sha256"},
260     };
261 
262     for (const auto& [actual_id_path, precompiled_id_path] : sepolicy_hashes) {
263         // Both of them should exist or both of them shouldn't exist.
264         if (access(actual_id_path.c_str(), R_OK) != 0) {
265             if (access(precompiled_id_path.c_str(), R_OK) == 0) {
266                 return Error() << precompiled_id_path << " exists but " << actual_id_path
267                                << " doesn't";
268             }
269             continue;
270         }
271 
272         std::string actual_id;
273         if (!ReadFirstLine(actual_id_path.c_str(), &actual_id)) {
274             return ErrnoError() << "Failed to read " << actual_id_path;
275         }
276 
277         std::string precompiled_id;
278         if (!ReadFirstLine(precompiled_id_path.c_str(), &precompiled_id)) {
279             return ErrnoError() << "Failed to read " << precompiled_id_path;
280         }
281 
282         if (actual_id.empty() || actual_id != precompiled_id) {
283             return Error() << actual_id_path << " and " << precompiled_id_path << " differ";
284         }
285     }
286 
287     return precompiled_sepolicy;
288 }
289 
GetVendorMappingVersion(std::string * plat_vers)290 bool GetVendorMappingVersion(std::string* plat_vers) {
291     if (!ReadFirstLine("/vendor/etc/selinux/plat_sepolicy_vers.txt", plat_vers)) {
292         PLOG(ERROR) << "Failed to read /vendor/etc/selinux/plat_sepolicy_vers.txt";
293         return false;
294     }
295     if (plat_vers->empty()) {
296         LOG(ERROR) << "No version present in plat_sepolicy_vers.txt";
297         return false;
298     }
299     return true;
300 }
301 
302 constexpr const char plat_policy_cil_file[] = "/system/etc/selinux/plat_sepolicy.cil";
303 
IsSplitPolicyDevice()304 bool IsSplitPolicyDevice() {
305     return access(plat_policy_cil_file, R_OK) != -1;
306 }
307 
GetUserdebugPlatformPolicyFile()308 std::optional<const char*> GetUserdebugPlatformPolicyFile() {
309     // See if we need to load userdebug_plat_sepolicy.cil instead of plat_sepolicy.cil.
310     const char* force_debuggable_env = getenv("INIT_FORCE_DEBUGGABLE");
311     if (force_debuggable_env && "true"s == force_debuggable_env && AvbHandle::IsDeviceUnlocked()) {
312         const std::vector<const char*> debug_policy_candidates = {
313 #if INSTALL_DEBUG_POLICY_TO_SYSTEM_EXT == 1
314             "/system_ext/etc/selinux/userdebug_plat_sepolicy.cil",
315 #endif
316             kDebugRamdiskSEPolicy,
317         };
318         for (const char* debug_policy : debug_policy_candidates) {
319             if (access(debug_policy, F_OK) == 0) {
320                 return debug_policy;
321             }
322         }
323     }
324     return std::nullopt;
325 }
326 
327 struct PolicyFile {
328     unique_fd fd;
329     std::string path;
330 };
331 
OpenSplitPolicy(PolicyFile * policy_file)332 bool OpenSplitPolicy(PolicyFile* policy_file) {
333     // IMPLEMENTATION NOTE: Split policy consists of three or more CIL files:
334     // * platform -- policy needed due to logic contained in the system image,
335     // * vendor -- policy needed due to logic contained in the vendor image,
336     // * mapping -- mapping policy which helps preserve forward-compatibility of non-platform policy
337     //   with newer versions of platform policy.
338     // * (optional) policy needed due to logic on product, system_ext, odm, or apex.
339     // secilc is invoked to compile the above three policy files into a single monolithic policy
340     // file. This file is then loaded into the kernel.
341 
342     const auto userdebug_plat_sepolicy = GetUserdebugPlatformPolicyFile();
343     const bool use_userdebug_policy = userdebug_plat_sepolicy.has_value();
344     if (use_userdebug_policy) {
345         LOG(INFO) << "Using userdebug system sepolicy " << *userdebug_plat_sepolicy;
346     }
347 
348     // Load precompiled policy from vendor image, if a matching policy is found there. The policy
349     // must match the platform policy on the system image.
350     // use_userdebug_policy requires compiling sepolicy with userdebug_plat_sepolicy.cil.
351     // Thus it cannot use the precompiled policy from vendor image.
352     if (!use_userdebug_policy) {
353         if (auto res = FindPrecompiledSplitPolicy(); res.ok()) {
354             unique_fd fd(open(res->c_str(), O_RDONLY | O_CLOEXEC | O_BINARY));
355             if (fd != -1) {
356                 policy_file->fd = std::move(fd);
357                 policy_file->path = std::move(*res);
358                 return true;
359             }
360         } else {
361             LOG(INFO) << res.error();
362         }
363     }
364     // No suitable precompiled policy could be loaded
365 
366     LOG(INFO) << "Compiling SELinux policy";
367 
368     // We store the output of the compilation on /dev because this is the most convenient tmpfs
369     // storage mount available this early in the boot sequence.
370     char compiled_sepolicy[] = "/dev/sepolicy.XXXXXX";
371     unique_fd compiled_sepolicy_fd(mkostemp(compiled_sepolicy, O_CLOEXEC));
372     if (compiled_sepolicy_fd < 0) {
373         PLOG(ERROR) << "Failed to create temporary file " << compiled_sepolicy;
374         return false;
375     }
376 
377     // Determine which mapping file to include
378     std::string vend_plat_vers;
379     if (!GetVendorMappingVersion(&vend_plat_vers)) {
380         return false;
381     }
382     std::string plat_mapping_file("/system/etc/selinux/mapping/" + vend_plat_vers + ".cil");
383 
384     std::string plat_compat_cil_file("/system/etc/selinux/mapping/" + vend_plat_vers +
385                                      ".compat.cil");
386     if (access(plat_compat_cil_file.c_str(), F_OK) == -1) {
387         plat_compat_cil_file.clear();
388     }
389 
390     std::string system_ext_policy_cil_file("/system_ext/etc/selinux/system_ext_sepolicy.cil");
391     if (access(system_ext_policy_cil_file.c_str(), F_OK) == -1) {
392         system_ext_policy_cil_file.clear();
393     }
394 
395     std::string system_ext_mapping_file("/system_ext/etc/selinux/mapping/" + vend_plat_vers +
396                                         ".cil");
397     if (access(system_ext_mapping_file.c_str(), F_OK) == -1) {
398         system_ext_mapping_file.clear();
399     }
400 
401     std::string system_ext_compat_cil_file("/system_ext/etc/selinux/mapping/" + vend_plat_vers +
402                                            ".compat.cil");
403     if (access(system_ext_compat_cil_file.c_str(), F_OK) == -1) {
404         system_ext_compat_cil_file.clear();
405     }
406 
407     std::string product_policy_cil_file("/product/etc/selinux/product_sepolicy.cil");
408     if (access(product_policy_cil_file.c_str(), F_OK) == -1) {
409         product_policy_cil_file.clear();
410     }
411 
412     std::string product_mapping_file("/product/etc/selinux/mapping/" + vend_plat_vers + ".cil");
413     if (access(product_mapping_file.c_str(), F_OK) == -1) {
414         product_mapping_file.clear();
415     }
416 
417     std::string vendor_policy_cil_file("/vendor/etc/selinux/vendor_sepolicy.cil");
418     if (access(vendor_policy_cil_file.c_str(), F_OK) == -1) {
419         LOG(ERROR) << "Missing " << vendor_policy_cil_file;
420         return false;
421     }
422 
423     std::string plat_pub_versioned_cil_file("/vendor/etc/selinux/plat_pub_versioned.cil");
424     if (access(plat_pub_versioned_cil_file.c_str(), F_OK) == -1) {
425         LOG(ERROR) << "Missing " << plat_pub_versioned_cil_file;
426         return false;
427     }
428 
429     // odm_sepolicy.cil is default but optional.
430     std::string odm_policy_cil_file("/odm/etc/selinux/odm_sepolicy.cil");
431     if (access(odm_policy_cil_file.c_str(), F_OK) == -1) {
432         odm_policy_cil_file.clear();
433     }
434 
435     // apex_sepolicy.cil is default but optional.
436     std::string apex_policy_cil_file("/dev/selinux/apex_sepolicy.cil");
437     if (access(apex_policy_cil_file.c_str(), F_OK) == -1) {
438         apex_policy_cil_file.clear();
439     }
440     const std::string version_as_string = std::to_string(SEPOLICY_VERSION);
441 
442     // clang-format off
443     std::vector<const char*> compile_args {
444         "/system/bin/secilc",
445         use_userdebug_policy ? *userdebug_plat_sepolicy : plat_policy_cil_file,
446         "-m", "-M", "true", "-G", "-N",
447         "-c", version_as_string.c_str(),
448         plat_mapping_file.c_str(),
449         "-o", compiled_sepolicy,
450         // We don't care about file_contexts output by the compiler
451         "-f", "/sys/fs/selinux/null",  // /dev/null is not yet available
452     };
453     // clang-format on
454 
455     if (!plat_compat_cil_file.empty()) {
456         compile_args.push_back(plat_compat_cil_file.c_str());
457     }
458     if (!system_ext_policy_cil_file.empty()) {
459         compile_args.push_back(system_ext_policy_cil_file.c_str());
460     }
461     if (!system_ext_mapping_file.empty()) {
462         compile_args.push_back(system_ext_mapping_file.c_str());
463     }
464     if (!system_ext_compat_cil_file.empty()) {
465         compile_args.push_back(system_ext_compat_cil_file.c_str());
466     }
467     if (!product_policy_cil_file.empty()) {
468         compile_args.push_back(product_policy_cil_file.c_str());
469     }
470     if (!product_mapping_file.empty()) {
471         compile_args.push_back(product_mapping_file.c_str());
472     }
473     if (!plat_pub_versioned_cil_file.empty()) {
474         compile_args.push_back(plat_pub_versioned_cil_file.c_str());
475     }
476     if (!vendor_policy_cil_file.empty()) {
477         compile_args.push_back(vendor_policy_cil_file.c_str());
478     }
479     if (!odm_policy_cil_file.empty()) {
480         compile_args.push_back(odm_policy_cil_file.c_str());
481     }
482     if (!apex_policy_cil_file.empty()) {
483         compile_args.push_back(apex_policy_cil_file.c_str());
484     }
485     compile_args.push_back(nullptr);
486 
487     if (!ForkExecveAndWaitForCompletion(compile_args[0], (char**)compile_args.data())) {
488         unlink(compiled_sepolicy);
489         return false;
490     }
491     unlink(compiled_sepolicy);
492 
493     policy_file->fd = std::move(compiled_sepolicy_fd);
494     policy_file->path = compiled_sepolicy;
495     return true;
496 }
497 
OpenMonolithicPolicy(PolicyFile * policy_file)498 bool OpenMonolithicPolicy(PolicyFile* policy_file) {
499     static constexpr char kSepolicyFile[] = "/sepolicy";
500 
501     LOG(VERBOSE) << "Opening SELinux policy from monolithic file";
502     policy_file->fd.reset(open(kSepolicyFile, O_RDONLY | O_CLOEXEC | O_NOFOLLOW));
503     if (policy_file->fd < 0) {
504         PLOG(ERROR) << "Failed to open monolithic SELinux policy";
505         return false;
506     }
507     policy_file->path = kSepolicyFile;
508     return true;
509 }
510 
511 constexpr const char* kSigningCertRelease =
512         "/system/etc/selinux/com.android.sepolicy.cert-release.der";
513 constexpr const char* kFsVerityProcPath = "/proc/sys/fs/verity";
514 const std::string kSepolicyApexMetadataDir = "/metadata/sepolicy/";
515 const std::string kSepolicyApexSystemDir = "/system/etc/selinux/apex/";
516 const std::string kSepolicyZip = "SEPolicy.zip";
517 const std::string kSepolicySignature = "SEPolicy.zip.sig";
518 
519 const std::string kTmpfsDir = "/dev/selinux/";
520 
521 // Files that are deleted after policy is compiled/loaded.
522 const std::vector<std::string> kApexSepolicyTmp{"apex_sepolicy.cil", "apex_sepolicy.sha256"};
523 // Files that need to persist because they are used by userspace processes.
524 const std::vector<std::string> kApexSepolicy{"apex_file_contexts", "apex_property_contexts",
525                                              "apex_service_contexts", "apex_seapp_contexts",
526                                              "apex_test"};
527 
CreateTmpfsDir()528 Result<void> CreateTmpfsDir() {
529     mode_t mode = 0744;
530     struct stat stat_data;
531     if (stat(kTmpfsDir.c_str(), &stat_data) != 0) {
532         if (errno != ENOENT) {
533             return ErrnoError() << "Could not stat " << kTmpfsDir;
534         }
535         if (mkdir(kTmpfsDir.c_str(), mode) != 0) {
536             return ErrnoError() << "Could not mkdir " << kTmpfsDir;
537         }
538     } else {
539         if (!S_ISDIR(stat_data.st_mode)) {
540             return Error() << kTmpfsDir << " exists and is not a directory.";
541         }
542         LOG(WARNING) << "Directory " << kTmpfsDir << " already exists";
543     }
544 
545     // Need to manually call chmod because mkdir will create a folder with
546     // permissions mode & ~umask.
547     if (chmod(kTmpfsDir.c_str(), mode) != 0) {
548         return ErrnoError() << "Could not chmod " << kTmpfsDir;
549     }
550 
551     return {};
552 }
553 
PutFileInTmpfs(ZipArchiveHandle archive,const std::string & fileName)554 Result<void> PutFileInTmpfs(ZipArchiveHandle archive, const std::string& fileName) {
555     ZipEntry entry;
556     std::string dstPath = kTmpfsDir + fileName;
557 
558     int ret = FindEntry(archive, fileName, &entry);
559     if (ret != 0) {
560         // All files are optional. If a file doesn't exist, return without error.
561         return {};
562     }
563 
564     unique_fd fd(TEMP_FAILURE_RETRY(
565             open(dstPath.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_CLOEXEC, S_IRUSR | S_IWUSR)));
566     if (fd == -1) {
567         return ErrnoError() << "Failed to open " << dstPath;
568     }
569 
570     ret = ExtractEntryToFile(archive, &entry, fd.get());
571     if (ret != 0) {
572         return Error() << "Failed to extract entry \"" << fileName << "\" ("
573                        << entry.uncompressed_length << " bytes) to \"" << dstPath
574                        << "\": " << ErrorCodeString(ret);
575     }
576 
577     return {};
578 }
579 
GetPolicyFromApex(const std::string & dir)580 Result<void> GetPolicyFromApex(const std::string& dir) {
581     LOG(INFO) << "Loading APEX Sepolicy from " << dir + kSepolicyZip;
582     unique_fd fd(open((dir + kSepolicyZip).c_str(), O_RDONLY | O_BINARY | O_CLOEXEC));
583     if (fd < 0) {
584         return ErrnoError() << "Failed to open package " << dir + kSepolicyZip;
585     }
586 
587     ZipArchiveHandle handle;
588     int ret = OpenArchiveFd(fd.get(), (dir + kSepolicyZip).c_str(), &handle,
589                             /*assume_ownership=*/false);
590     if (ret < 0) {
591         return Error() << "Failed to open package " << dir + kSepolicyZip << ": "
592                        << ErrorCodeString(ret);
593     }
594 
595     auto handle_guard = android::base::make_scope_guard([&handle] { CloseArchive(handle); });
596 
597     auto create = CreateTmpfsDir();
598     if (!create.ok()) {
599         return create.error();
600     }
601 
602     for (const auto& file : kApexSepolicy) {
603         auto extract = PutFileInTmpfs(handle, file);
604         if (!extract.ok()) {
605             return extract.error();
606         }
607     }
608     for (const auto& file : kApexSepolicyTmp) {
609         auto extract = PutFileInTmpfs(handle, file);
610         if (!extract.ok()) {
611             return extract.error();
612         }
613     }
614     return {};
615 }
616 
LoadSepolicyApexCerts()617 Result<void> LoadSepolicyApexCerts() {
618     key_serial_t keyring_id = android::GetKeyringId(".fs-verity");
619     if (keyring_id < 0) {
620         return Error() << "Failed to find .fs-verity keyring id";
621     }
622 
623     // TODO(b/199914227) the release key should always exist. Once it's checked in, start
624     // throwing an error here if it doesn't exist.
625     if (access(kSigningCertRelease, F_OK) == 0) {
626         LoadKeyFromFile(keyring_id, "fsv_sepolicy_apex_release", kSigningCertRelease);
627     }
628     return {};
629 }
630 
SepolicyFsVerityCheck()631 Result<void> SepolicyFsVerityCheck() {
632     return Error() << "TODO implement support for fsverity SEPolicy.";
633 }
634 
SepolicyCheckSignature(const std::string & dir)635 Result<void> SepolicyCheckSignature(const std::string& dir) {
636     std::string signature;
637     if (!android::base::ReadFileToString(dir + kSepolicySignature, &signature)) {
638         return ErrnoError() << "Failed to read " << kSepolicySignature;
639     }
640 
641     std::fstream sepolicyZip(dir + kSepolicyZip, std::ios::in | std::ios::binary);
642     if (!sepolicyZip) {
643         return Error() << "Failed to open " << kSepolicyZip;
644     }
645     sepolicyZip.seekg(0);
646     std::string sepolicyStr((std::istreambuf_iterator<char>(sepolicyZip)),
647                             std::istreambuf_iterator<char>());
648 
649     auto releaseKey = extractPublicKeyFromX509(kSigningCertRelease);
650     if (!releaseKey.ok()) {
651         return releaseKey.error();
652     }
653 
654     return verifySignature(sepolicyStr, signature, *releaseKey);
655 }
656 
SepolicyVerify(const std::string & dir,bool supportsFsVerity)657 Result<void> SepolicyVerify(const std::string& dir, bool supportsFsVerity) {
658     if (supportsFsVerity) {
659         auto fsVerityCheck = SepolicyFsVerityCheck();
660         if (fsVerityCheck.ok()) {
661             return fsVerityCheck;
662         }
663         // TODO(b/199914227) If the device supports fsverity, but we fail here, we should fail to
664         // boot and not carry on. For now, fallback to a signature checkuntil the fsverity
665         // logic is implemented.
666         LOG(INFO) << "Falling back to standard signature check. " << fsVerityCheck.error();
667     }
668 
669     auto sepolicySignature = SepolicyCheckSignature(dir);
670     if (!sepolicySignature.ok()) {
671         return Error() << "Apex SEPolicy failed signature check";
672     }
673     return {};
674 }
675 
CleanupApexSepolicy()676 void CleanupApexSepolicy() {
677     for (const auto& file : kApexSepolicyTmp) {
678         std::string path = kTmpfsDir + file;
679         unlink(path.c_str());
680     }
681 }
682 
683 // Updatable sepolicy is shipped within an zip within an APEX. Because
684 // it needs to be available before Apexes are mounted, apexd copies
685 // the zip from the APEX and stores it in /metadata/sepolicy. If there is
686 // no updatable sepolicy in /metadata/sepolicy, then the updatable policy is
687 // loaded from /system/etc/selinux/apex. Init performs the following
688 // steps on boot:
689 //
690 // 1. Validates the zip by checking its signature against a public key that is
691 // stored in /system/etc/selinux.
692 // 2. Extracts files from zip and stores them in /dev/selinux.
693 // 3. Checks if the apex_sepolicy.sha256 matches the sha256 of precompiled_sepolicy.
694 // if so, the precompiled sepolicy is used. Otherwise, an on-device compile of the policy
695 // is used. This is the same flow as on-device compilation of policy for Treble.
696 // 4. Cleans up files in /dev/selinux which are no longer needed.
697 // 5. Restorecons the remaining files in /dev/selinux.
698 // 6. Sets selinux into enforcing mode and continues normal booting.
699 //
PrepareApexSepolicy()700 void PrepareApexSepolicy() {
701     bool supportsFsVerity = access(kFsVerityProcPath, F_OK) == 0;
702     if (supportsFsVerity) {
703         auto loadSepolicyApexCerts = LoadSepolicyApexCerts();
704         if (!loadSepolicyApexCerts.ok()) {
705             // TODO(b/199914227) If the device supports fsverity, but we fail here, we should fail
706             // to boot and not carry on. For now, fallback to a signature checkuntil the fsverity
707             // logic is implemented.
708             LOG(INFO) << loadSepolicyApexCerts.error();
709         }
710     }
711     // If apex sepolicy zip exists in /metadata/sepolicy, use that, otherwise use version on
712     // /system.
713     auto dir = (access((kSepolicyApexMetadataDir + kSepolicyZip).c_str(), F_OK) == 0)
714                        ? kSepolicyApexMetadataDir
715                        : kSepolicyApexSystemDir;
716 
717     auto sepolicyVerify = SepolicyVerify(dir, supportsFsVerity);
718     if (!sepolicyVerify.ok()) {
719         LOG(INFO) << "Error: " << sepolicyVerify.error();
720         // If signature verification fails, fall back to version on /system.
721         // This file doesn't need to be verified because it lives on the system partition which
722         // is signed and protected by verified boot.
723         dir = kSepolicyApexSystemDir;
724     }
725 
726     auto apex = GetPolicyFromApex(dir);
727     if (!apex.ok()) {
728         // TODO(b/199914227) Make failure fatal. For now continue booting with non-apex sepolicy.
729         LOG(ERROR) << apex.error();
730     }
731 }
732 
ReadPolicy(std::string * policy)733 void ReadPolicy(std::string* policy) {
734     PolicyFile policy_file;
735 
736     bool ok = IsSplitPolicyDevice() ? OpenSplitPolicy(&policy_file)
737                                     : OpenMonolithicPolicy(&policy_file);
738     if (!ok) {
739         LOG(FATAL) << "Unable to open SELinux policy";
740     }
741 
742     if (!android::base::ReadFdToString(policy_file.fd, policy)) {
743         PLOG(FATAL) << "Failed to read policy file: " << policy_file.path;
744     }
745 }
746 
SelinuxSetEnforcement()747 void SelinuxSetEnforcement() {
748     bool kernel_enforcing = (security_getenforce() == 1);
749     bool is_enforcing = IsEnforcing();
750     if (kernel_enforcing != is_enforcing) {
751         if (security_setenforce(is_enforcing)) {
752             PLOG(FATAL) << "security_setenforce(" << (is_enforcing ? "true" : "false")
753                         << ") failed";
754         }
755     }
756 
757     if (auto result = WriteFile("/sys/fs/selinux/checkreqprot", "0"); !result.ok()) {
758         LOG(FATAL) << "Unable to write to /sys/fs/selinux/checkreqprot: " << result.error();
759     }
760 }
761 
762 constexpr size_t kKlogMessageSize = 1024;
763 
SelinuxAvcLog(char * buf)764 void SelinuxAvcLog(char* buf) {
765     struct NetlinkMessage {
766         nlmsghdr hdr;
767         char buf[kKlogMessageSize];
768     } request = {};
769 
770     request.hdr.nlmsg_flags = NLM_F_REQUEST;
771     request.hdr.nlmsg_type = AUDIT_USER_AVC;
772     request.hdr.nlmsg_len = sizeof(request);
773     strlcpy(request.buf, buf, sizeof(request.buf));
774 
775     auto fd = unique_fd{socket(PF_NETLINK, SOCK_RAW | SOCK_CLOEXEC, NETLINK_AUDIT)};
776     if (!fd.ok()) {
777         return;
778     }
779 
780     TEMP_FAILURE_RETRY(send(fd.get(), &request, sizeof(request), 0));
781 }
782 
783 }  // namespace
784 
SelinuxRestoreContext()785 void SelinuxRestoreContext() {
786     LOG(INFO) << "Running restorecon...";
787     selinux_android_restorecon("/dev", 0);
788     selinux_android_restorecon("/dev/console", 0);
789     selinux_android_restorecon("/dev/kmsg", 0);
790     if constexpr (WORLD_WRITABLE_KMSG) {
791         selinux_android_restorecon("/dev/kmsg_debug", 0);
792     }
793     selinux_android_restorecon("/dev/null", 0);
794     selinux_android_restorecon("/dev/ptmx", 0);
795     selinux_android_restorecon("/dev/socket", 0);
796     selinux_android_restorecon("/dev/random", 0);
797     selinux_android_restorecon("/dev/urandom", 0);
798     selinux_android_restorecon("/dev/__properties__", 0);
799 
800     selinux_android_restorecon("/dev/block", SELINUX_ANDROID_RESTORECON_RECURSE);
801     selinux_android_restorecon("/dev/dm-user", SELINUX_ANDROID_RESTORECON_RECURSE);
802     selinux_android_restorecon("/dev/device-mapper", 0);
803 
804     selinux_android_restorecon("/apex", 0);
805 
806     selinux_android_restorecon("/linkerconfig", 0);
807 
808     // adb remount, snapshot-based updates, and DSUs all create files during
809     // first-stage init.
810     selinux_android_restorecon(SnapshotManager::GetGlobalRollbackIndicatorPath().c_str(), 0);
811     selinux_android_restorecon("/metadata/gsi", SELINUX_ANDROID_RESTORECON_RECURSE |
812                                                         SELINUX_ANDROID_RESTORECON_SKIP_SEHASH);
813 }
814 
SelinuxKlogCallback(int type,const char * fmt,...)815 int SelinuxKlogCallback(int type, const char* fmt, ...) {
816     android::base::LogSeverity severity = android::base::ERROR;
817     if (type == SELINUX_WARNING) {
818         severity = android::base::WARNING;
819     } else if (type == SELINUX_INFO) {
820         severity = android::base::INFO;
821     }
822     char buf[kKlogMessageSize];
823     va_list ap;
824     va_start(ap, fmt);
825     int length_written = vsnprintf(buf, sizeof(buf), fmt, ap);
826     va_end(ap);
827     if (length_written <= 0) {
828         return 0;
829     }
830 
831     // libselinux log messages usually contain a new line character, while
832     // Android LOG() does not expect it. Remove it to avoid empty lines in
833     // the log buffers.
834     size_t str_len = strlen(buf);
835     if (buf[str_len - 1] == '\n') {
836         buf[str_len - 1] = '\0';
837     }
838 
839     if (type == SELINUX_AVC) {
840         SelinuxAvcLog(buf);
841     } else {
842         android::base::KernelLogger(android::base::MAIN, severity, "selinux", nullptr, 0, buf);
843     }
844     return 0;
845 }
846 
SelinuxSetupKernelLogging()847 void SelinuxSetupKernelLogging() {
848     selinux_callback cb;
849     cb.func_log = SelinuxKlogCallback;
850     selinux_set_callback(SELINUX_CB_LOG, cb);
851 }
852 
SelinuxGetVendorAndroidVersion()853 int SelinuxGetVendorAndroidVersion() {
854     static int vendor_android_version = [] {
855         if (!IsSplitPolicyDevice()) {
856             // If this device does not split sepolicy files, it's not a Treble device and therefore,
857             // we assume it's always on the latest platform.
858             return __ANDROID_API_FUTURE__;
859         }
860 
861         std::string version;
862         if (!GetVendorMappingVersion(&version)) {
863             LOG(FATAL) << "Could not read vendor SELinux version";
864         }
865 
866         int major_version;
867         std::string major_version_str(version, 0, version.find('.'));
868         if (!ParseInt(major_version_str, &major_version)) {
869             PLOG(FATAL) << "Failed to parse the vendor sepolicy major version "
870                         << major_version_str;
871         }
872 
873         return major_version;
874     }();
875     return vendor_android_version;
876 }
877 
878 // This is for R system.img/system_ext.img to work on old vendor.img as system_ext.img
879 // is introduced in R. We mount system_ext in second stage init because the first-stage
880 // init in boot.img won't be updated in the system-only OTA scenario.
MountMissingSystemPartitions()881 void MountMissingSystemPartitions() {
882     android::fs_mgr::Fstab fstab;
883     if (!ReadDefaultFstab(&fstab)) {
884         LOG(ERROR) << "Could not read default fstab";
885     }
886 
887     android::fs_mgr::Fstab mounts;
888     if (!ReadFstabFromFile("/proc/mounts", &mounts)) {
889         LOG(ERROR) << "Could not read /proc/mounts";
890     }
891 
892     static const std::vector<std::string> kPartitionNames = {"system_ext", "product"};
893 
894     android::fs_mgr::Fstab extra_fstab;
895     for (const auto& name : kPartitionNames) {
896         if (GetEntryForMountPoint(&mounts, "/"s + name)) {
897             // The partition is already mounted.
898             continue;
899         }
900 
901         auto system_entries = GetEntriesForMountPoint(&fstab, "/system");
902         for (auto& system_entry : system_entries) {
903             if (!system_entry) {
904                 LOG(ERROR) << "Could not find mount entry for /system";
905                 break;
906             }
907             if (!system_entry->fs_mgr_flags.logical) {
908                 LOG(INFO) << "Skipping mount of " << name << ", system is not dynamic.";
909                 break;
910             }
911 
912             auto entry = *system_entry;
913             auto partition_name = name + fs_mgr_get_slot_suffix();
914             auto replace_name = "system"s + fs_mgr_get_slot_suffix();
915 
916             entry.mount_point = "/"s + name;
917             entry.blk_device =
918                 android::base::StringReplace(entry.blk_device, replace_name, partition_name, false);
919             if (!fs_mgr_update_logical_partition(&entry)) {
920                 LOG(ERROR) << "Could not update logical partition";
921                 continue;
922             }
923 
924             extra_fstab.emplace_back(std::move(entry));
925         }
926     }
927 
928     SkipMountingPartitions(&extra_fstab, true /* verbose */);
929     if (extra_fstab.empty()) {
930         return;
931     }
932 
933     BlockDevInitializer block_dev_init;
934     for (auto& entry : extra_fstab) {
935         if (access(entry.blk_device.c_str(), F_OK) != 0) {
936             auto block_dev = android::base::Basename(entry.blk_device);
937             if (!block_dev_init.InitDmDevice(block_dev)) {
938                 LOG(ERROR) << "Failed to find device-mapper node: " << block_dev;
939                 continue;
940             }
941         }
942         if (fs_mgr_do_mount_one(entry)) {
943             LOG(ERROR) << "Could not mount " << entry.mount_point;
944         }
945     }
946 }
947 
LoadSelinuxPolicy(std::string & policy)948 static void LoadSelinuxPolicy(std::string& policy) {
949     LOG(INFO) << "Loading SELinux policy";
950 
951     set_selinuxmnt("/sys/fs/selinux");
952     if (security_load_policy(policy.data(), policy.size()) < 0) {
953         PLOG(FATAL) << "SELinux:  Could not load policy";
954     }
955 }
956 
957 // The SELinux setup process is carefully orchestrated around snapuserd. Policy
958 // must be loaded off dynamic partitions, and during an OTA, those partitions
959 // cannot be read without snapuserd. But, with kernel-privileged snapuserd
960 // running, loading the policy will immediately trigger audits.
961 //
962 // We use a five-step process to address this:
963 //  (1) Read the policy into a string, with snapuserd running.
964 //  (2) Rewrite the snapshot device-mapper tables, to generate new dm-user
965 //      devices and to flush I/O.
966 //  (3) Kill snapuserd, which no longer has any dm-user devices to attach to.
967 //  (4) Load the sepolicy and issue critical restorecons in /dev, carefully
968 //      avoiding anything that would read from /system.
969 //  (5) Re-launch snapuserd and attach it to the dm-user devices from step (2).
970 //
971 // After this sequence, it is safe to enable enforcing mode and continue booting.
SetupSelinux(char ** argv)972 int SetupSelinux(char** argv) {
973     SetStdioToDevNull(argv);
974     InitKernelLogging(argv);
975 
976     if (REBOOT_BOOTLOADER_ON_PANIC) {
977         InstallRebootSignalHandlers();
978     }
979 
980     boot_clock::time_point start_time = boot_clock::now();
981 
982     MountMissingSystemPartitions();
983 
984     SelinuxSetupKernelLogging();
985 
986     LOG(INFO) << "Opening SELinux policy";
987 
988     PrepareApexSepolicy();
989 
990     // Read the policy before potentially killing snapuserd.
991     std::string policy;
992     ReadPolicy(&policy);
993     CleanupApexSepolicy();
994 
995     auto snapuserd_helper = SnapuserdSelinuxHelper::CreateIfNeeded();
996     if (snapuserd_helper) {
997         // Kill the old snapused to avoid audit messages. After this we cannot
998         // read from /system (or other dynamic partitions) until we call
999         // FinishTransition().
1000         snapuserd_helper->StartTransition();
1001     }
1002 
1003     LoadSelinuxPolicy(policy);
1004 
1005     if (snapuserd_helper) {
1006         // Before enforcing, finish the pending snapuserd transition.
1007         snapuserd_helper->FinishTransition();
1008         snapuserd_helper = nullptr;
1009     }
1010 
1011     // This restorecon is intentionally done before SelinuxSetEnforcement because the permissions
1012     // needed to transition files from tmpfs to *_contexts_file context should not be granted to
1013     // any process after selinux is set into enforcing mode.
1014     if (selinux_android_restorecon("/dev/selinux/", SELINUX_ANDROID_RESTORECON_RECURSE) == -1) {
1015         PLOG(FATAL) << "restorecon failed of /dev/selinux failed";
1016     }
1017 
1018     SelinuxSetEnforcement();
1019 
1020     // We're in the kernel domain and want to transition to the init domain.  File systems that
1021     // store SELabels in their xattrs, such as ext4 do not need an explicit restorecon here,
1022     // but other file systems do.  In particular, this is needed for ramdisks such as the
1023     // recovery image for A/B devices.
1024     if (selinux_android_restorecon("/system/bin/init", 0) == -1) {
1025         PLOG(FATAL) << "restorecon failed of /system/bin/init failed";
1026     }
1027 
1028     setenv(kEnvSelinuxStartedAt, std::to_string(start_time.time_since_epoch().count()).c_str(), 1);
1029 
1030     const char* path = "/system/bin/init";
1031     const char* args[] = {path, "second_stage", nullptr};
1032     execv(path, const_cast<char**>(args));
1033 
1034     // execv() only returns if an error happened, in which case we
1035     // panic and never return from this function.
1036     PLOG(FATAL) << "execv(\"" << path << "\") failed";
1037 
1038     return 1;
1039 }
1040 
1041 }  // namespace init
1042 }  // namespace android
1043