1 // Copyright 2014, VIXL authors
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
6 //
7 // * Redistributions of source code must retain the above copyright notice,
8 // this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above copyright notice,
10 // this list of conditions and the following disclaimer in the documentation
11 // and/or other materials provided with the distribution.
12 // * Neither the name of ARM Limited nor the names of its contributors may be
13 // used to endorse or promote products derived from this software without
14 // specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26
27 #include <cmath>
28 #include <queue>
29
30 #include "test-runner.h"
31 #include "test-utils-aarch64.h"
32
33 #include "../test/aarch64/test-simulator-inputs-aarch64.h"
34 #include "aarch64/cpu-aarch64.h"
35 #include "aarch64/disasm-aarch64.h"
36 #include "aarch64/macro-assembler-aarch64.h"
37 #include "aarch64/simulator-aarch64.h"
38
39 #define __ masm->
40
41 namespace vixl {
42 namespace aarch64 {
43
44
45 // This value is a signalling NaN as FP64, and also as FP32 or FP16 (taking the
46 // least-significant bits).
47 const double kFP64SignallingNaN = RawbitsToDouble(UINT64_C(0x7ff000007f807c01));
48 const float kFP32SignallingNaN = RawbitsToFloat(0x7f807c01);
49 const Float16 kFP16SignallingNaN = RawbitsToFloat16(0x7c01);
50
51 // A similar value, but as a quiet NaN.
52 const double kFP64QuietNaN = RawbitsToDouble(UINT64_C(0x7ff800007fc07e01));
53 const float kFP32QuietNaN = RawbitsToFloat(0x7fc07e01);
54 const Float16 kFP16QuietNaN = RawbitsToFloat16(0x7e01);
55
56
Equal32(uint32_t expected,const RegisterDump *,uint32_t result)57 bool Equal32(uint32_t expected, const RegisterDump*, uint32_t result) {
58 if (result != expected) {
59 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
60 expected,
61 result);
62 }
63
64 return expected == result;
65 }
66
67
Equal64(uint64_t reference,const RegisterDump *,uint64_t result,ExpectedResult option)68 bool Equal64(uint64_t reference,
69 const RegisterDump*,
70 uint64_t result,
71 ExpectedResult option) {
72 switch (option) {
73 case kExpectEqual:
74 if (result != reference) {
75 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
76 reference,
77 result);
78 }
79 break;
80 case kExpectNotEqual:
81 if (result == reference) {
82 printf("Expected a result not equal to 0x%016" PRIx64 "\n", reference);
83 }
84 break;
85 }
86
87 return reference == result;
88 }
89
90
Equal128(QRegisterValue expected,const RegisterDump *,QRegisterValue result)91 bool Equal128(QRegisterValue expected,
92 const RegisterDump*,
93 QRegisterValue result) {
94 if (!expected.Equals(result)) {
95 printf("Expected 0x%016" PRIx64 "%016" PRIx64
96 "\t "
97 "Found 0x%016" PRIx64 "%016" PRIx64 "\n",
98 expected.GetLane<uint64_t>(1),
99 expected.GetLane<uint64_t>(0),
100 result.GetLane<uint64_t>(1),
101 result.GetLane<uint64_t>(0));
102 }
103
104 return expected.Equals(result);
105 }
106
107
EqualFP16(Float16 expected,const RegisterDump *,Float16 result)108 bool EqualFP16(Float16 expected, const RegisterDump*, Float16 result) {
109 uint16_t e_rawbits = Float16ToRawbits(expected);
110 uint16_t r_rawbits = Float16ToRawbits(result);
111 if (e_rawbits == r_rawbits) {
112 return true;
113 } else {
114 if (IsNaN(expected) || IsZero(expected)) {
115 printf("Expected 0x%04" PRIx16 "\t Found 0x%04" PRIx16 "\n",
116 e_rawbits,
117 r_rawbits);
118 } else {
119 printf("Expected %.6f (16 bit): (0x%04" PRIx16
120 ")\t "
121 "Found %.6f (0x%04" PRIx16 ")\n",
122 FPToFloat(expected, kIgnoreDefaultNaN),
123 e_rawbits,
124 FPToFloat(result, kIgnoreDefaultNaN),
125 r_rawbits);
126 }
127 return false;
128 }
129 }
130
131
EqualFP32(float expected,const RegisterDump *,float result)132 bool EqualFP32(float expected, const RegisterDump*, float result) {
133 if (FloatToRawbits(expected) == FloatToRawbits(result)) {
134 return true;
135 } else {
136 if (IsNaN(expected) || (expected == 0.0)) {
137 printf("Expected 0x%08" PRIx32 "\t Found 0x%08" PRIx32 "\n",
138 FloatToRawbits(expected),
139 FloatToRawbits(result));
140 } else {
141 printf("Expected %.9f (0x%08" PRIx32
142 ")\t "
143 "Found %.9f (0x%08" PRIx32 ")\n",
144 expected,
145 FloatToRawbits(expected),
146 result,
147 FloatToRawbits(result));
148 }
149 return false;
150 }
151 }
152
153
EqualFP64(double expected,const RegisterDump *,double result)154 bool EqualFP64(double expected, const RegisterDump*, double result) {
155 if (DoubleToRawbits(expected) == DoubleToRawbits(result)) {
156 return true;
157 }
158
159 if (IsNaN(expected) || (expected == 0.0)) {
160 printf("Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
161 DoubleToRawbits(expected),
162 DoubleToRawbits(result));
163 } else {
164 printf("Expected %.17f (0x%016" PRIx64
165 ")\t "
166 "Found %.17f (0x%016" PRIx64 ")\n",
167 expected,
168 DoubleToRawbits(expected),
169 result,
170 DoubleToRawbits(result));
171 }
172 return false;
173 }
174
175
Equal32(uint32_t expected,const RegisterDump * core,const Register & reg)176 bool Equal32(uint32_t expected, const RegisterDump* core, const Register& reg) {
177 VIXL_ASSERT(reg.Is32Bits());
178 // Retrieve the corresponding X register so we can check that the upper part
179 // was properly cleared.
180 int64_t result_x = core->xreg(reg.GetCode());
181 if ((result_x & 0xffffffff00000000) != 0) {
182 printf("Expected 0x%08" PRIx32 "\t Found 0x%016" PRIx64 "\n",
183 expected,
184 result_x);
185 return false;
186 }
187 uint32_t result_w = core->wreg(reg.GetCode());
188 return Equal32(expected, core, result_w);
189 }
190
191
Equal64(uint64_t reference,const RegisterDump * core,const Register & reg,ExpectedResult option)192 bool Equal64(uint64_t reference,
193 const RegisterDump* core,
194 const Register& reg,
195 ExpectedResult option) {
196 VIXL_ASSERT(reg.Is64Bits());
197 uint64_t result = core->xreg(reg.GetCode());
198 return Equal64(reference, core, result, option);
199 }
200
201
NotEqual64(uint64_t reference,const RegisterDump * core,const Register & reg)202 bool NotEqual64(uint64_t reference,
203 const RegisterDump* core,
204 const Register& reg) {
205 VIXL_ASSERT(reg.Is64Bits());
206 uint64_t result = core->xreg(reg.GetCode());
207 return NotEqual64(reference, core, result);
208 }
209
210
Equal128(uint64_t expected_h,uint64_t expected_l,const RegisterDump * core,const VRegister & vreg)211 bool Equal128(uint64_t expected_h,
212 uint64_t expected_l,
213 const RegisterDump* core,
214 const VRegister& vreg) {
215 VIXL_ASSERT(vreg.Is128Bits());
216 QRegisterValue expected;
217 expected.SetLane(0, expected_l);
218 expected.SetLane(1, expected_h);
219 QRegisterValue result = core->qreg(vreg.GetCode());
220 return Equal128(expected, core, result);
221 }
222
223
EqualFP16(Float16 expected,const RegisterDump * core,const VRegister & fpreg)224 bool EqualFP16(Float16 expected,
225 const RegisterDump* core,
226 const VRegister& fpreg) {
227 VIXL_ASSERT(fpreg.Is16Bits());
228 // Retrieve the corresponding D register so we can check that the upper part
229 // was properly cleared.
230 uint64_t result_64 = core->dreg_bits(fpreg.GetCode());
231 if ((result_64 & 0xfffffffffff0000) != 0) {
232 printf("Expected 0x%04" PRIx16 " (%f)\t Found 0x%016" PRIx64 "\n",
233 Float16ToRawbits(expected),
234 FPToFloat(expected, kIgnoreDefaultNaN),
235 result_64);
236 return false;
237 }
238 return EqualFP16(expected, core, core->hreg(fpreg.GetCode()));
239 }
240
241
EqualFP32(float expected,const RegisterDump * core,const VRegister & fpreg)242 bool EqualFP32(float expected,
243 const RegisterDump* core,
244 const VRegister& fpreg) {
245 VIXL_ASSERT(fpreg.Is32Bits());
246 // Retrieve the corresponding D register so we can check that the upper part
247 // was properly cleared.
248 uint64_t result_64 = core->dreg_bits(fpreg.GetCode());
249 if ((result_64 & 0xffffffff00000000) != 0) {
250 printf("Expected 0x%08" PRIx32 " (%f)\t Found 0x%016" PRIx64 "\n",
251 FloatToRawbits(expected),
252 expected,
253 result_64);
254 return false;
255 }
256
257 return EqualFP32(expected, core, core->sreg(fpreg.GetCode()));
258 }
259
260
EqualFP64(double expected,const RegisterDump * core,const VRegister & fpreg)261 bool EqualFP64(double expected,
262 const RegisterDump* core,
263 const VRegister& fpreg) {
264 VIXL_ASSERT(fpreg.Is64Bits());
265 return EqualFP64(expected, core, core->dreg(fpreg.GetCode()));
266 }
267
268
Equal64(const Register & reg0,const RegisterDump * core,const Register & reg1,ExpectedResult option)269 bool Equal64(const Register& reg0,
270 const RegisterDump* core,
271 const Register& reg1,
272 ExpectedResult option) {
273 VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
274 int64_t reference = core->xreg(reg0.GetCode());
275 int64_t result = core->xreg(reg1.GetCode());
276 return Equal64(reference, core, result, option);
277 }
278
279
NotEqual64(const Register & reg0,const RegisterDump * core,const Register & reg1)280 bool NotEqual64(const Register& reg0,
281 const RegisterDump* core,
282 const Register& reg1) {
283 VIXL_ASSERT(reg0.Is64Bits() && reg1.Is64Bits());
284 int64_t expected = core->xreg(reg0.GetCode());
285 int64_t result = core->xreg(reg1.GetCode());
286 return NotEqual64(expected, core, result);
287 }
288
289
Equal64(uint64_t expected,const RegisterDump * core,const VRegister & vreg)290 bool Equal64(uint64_t expected,
291 const RegisterDump* core,
292 const VRegister& vreg) {
293 VIXL_ASSERT(vreg.Is64Bits());
294 uint64_t result = core->dreg_bits(vreg.GetCode());
295 return Equal64(expected, core, result);
296 }
297
298
FlagN(uint32_t flags)299 static char FlagN(uint32_t flags) { return (flags & NFlag) ? 'N' : 'n'; }
300
301
FlagZ(uint32_t flags)302 static char FlagZ(uint32_t flags) { return (flags & ZFlag) ? 'Z' : 'z'; }
303
304
FlagC(uint32_t flags)305 static char FlagC(uint32_t flags) { return (flags & CFlag) ? 'C' : 'c'; }
306
307
FlagV(uint32_t flags)308 static char FlagV(uint32_t flags) { return (flags & VFlag) ? 'V' : 'v'; }
309
310
EqualNzcv(uint32_t expected,uint32_t result)311 bool EqualNzcv(uint32_t expected, uint32_t result) {
312 VIXL_ASSERT((expected & ~NZCVFlag) == 0);
313 VIXL_ASSERT((result & ~NZCVFlag) == 0);
314 if (result != expected) {
315 printf("Expected: %c%c%c%c\t Found: %c%c%c%c\n",
316 FlagN(expected),
317 FlagZ(expected),
318 FlagC(expected),
319 FlagV(expected),
320 FlagN(result),
321 FlagZ(result),
322 FlagC(result),
323 FlagV(result));
324 return false;
325 }
326
327 return true;
328 }
329
330
EqualRegisters(const RegisterDump * a,const RegisterDump * b)331 bool EqualRegisters(const RegisterDump* a, const RegisterDump* b) {
332 for (unsigned i = 0; i < kNumberOfRegisters; i++) {
333 if (a->xreg(i) != b->xreg(i)) {
334 printf("x%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
335 i,
336 a->xreg(i),
337 b->xreg(i));
338 return false;
339 }
340 }
341
342 for (unsigned i = 0; i < kNumberOfVRegisters; i++) {
343 uint64_t a_bits = a->dreg_bits(i);
344 uint64_t b_bits = b->dreg_bits(i);
345 if (a_bits != b_bits) {
346 printf("d%d\t Expected 0x%016" PRIx64 "\t Found 0x%016" PRIx64 "\n",
347 i,
348 a_bits,
349 b_bits);
350 return false;
351 }
352 }
353
354 return true;
355 }
356
EqualSVELane(uint64_t expected,const RegisterDump * core,const ZRegister & reg,int lane)357 bool EqualSVELane(uint64_t expected,
358 const RegisterDump* core,
359 const ZRegister& reg,
360 int lane) {
361 unsigned lane_size = reg.GetLaneSizeInBits();
362 // For convenience in the tests, we allow negative values to be passed into
363 // `expected`, but truncate them to an appropriately-sized unsigned value for
364 // the check. For example, in `EqualSVELane(-1, core, z0.VnB())`, the expected
365 // value is truncated from 0xffffffffffffffff to 0xff before the comparison.
366 VIXL_ASSERT(IsUintN(lane_size, expected) ||
367 IsIntN(lane_size, RawbitsToInt64(expected)));
368 expected &= GetUintMask(lane_size);
369
370 uint64_t result = core->zreg_lane(reg.GetCode(), lane_size, lane);
371 if (expected != result) {
372 unsigned lane_size_in_hex_chars = lane_size / 4;
373 std::string reg_name = reg.GetArchitecturalName();
374 printf("%s[%d]\t Expected 0x%0*" PRIx64 "\t Found 0x%0*" PRIx64 "\n",
375 reg_name.c_str(),
376 lane,
377 lane_size_in_hex_chars,
378 expected,
379 lane_size_in_hex_chars,
380 result);
381 return false;
382 }
383 return true;
384 }
385
EqualSVELane(uint64_t expected,const RegisterDump * core,const PRegister & reg,int lane)386 bool EqualSVELane(uint64_t expected,
387 const RegisterDump* core,
388 const PRegister& reg,
389 int lane) {
390 VIXL_ASSERT(reg.HasLaneSize());
391 VIXL_ASSERT((reg.GetLaneSizeInBits() % kZRegBitsPerPRegBit) == 0);
392 unsigned p_bits_per_lane = reg.GetLaneSizeInBits() / kZRegBitsPerPRegBit;
393 VIXL_ASSERT(IsUintN(p_bits_per_lane, expected));
394 expected &= GetUintMask(p_bits_per_lane);
395
396 uint64_t result = core->preg_lane(reg.GetCode(), p_bits_per_lane, lane);
397 if (expected != result) {
398 unsigned lane_size_in_hex_chars = (p_bits_per_lane + 3) / 4;
399 std::string reg_name = reg.GetArchitecturalName();
400 printf("%s[%d]\t Expected 0x%0*" PRIx64 "\t Found 0x%0*" PRIx64 "\n",
401 reg_name.c_str(),
402 lane,
403 lane_size_in_hex_chars,
404 expected,
405 lane_size_in_hex_chars,
406 result);
407 return false;
408 }
409 return true;
410 }
411
412 struct EqualMemoryChunk {
413 typedef uint64_t RawChunk;
414
415 uintptr_t address;
416 RawChunk expected;
417 RawChunk result;
418
IsEqualvixl::aarch64::EqualMemoryChunk419 bool IsEqual() const { return expected == result; }
420 };
421
EqualMemory(const void * expected,const void * result,size_t size_in_bytes,size_t zero_offset)422 bool EqualMemory(const void* expected,
423 const void* result,
424 size_t size_in_bytes,
425 size_t zero_offset) {
426 if (memcmp(expected, result, size_in_bytes) == 0) return true;
427
428 // Read 64-bit chunks, and print them side-by-side if they don't match.
429
430 // Remember the last few chunks, even if they matched, so we can print some
431 // context. We don't want to print the whole buffer, because it could be huge.
432 static const size_t kContextLines = 1;
433 std::queue<EqualMemoryChunk> context;
434 static const size_t kChunkSize = sizeof(EqualMemoryChunk::RawChunk);
435
436 // This assumption keeps the logic simple, and is acceptable for our tests.
437 VIXL_ASSERT((size_in_bytes % kChunkSize) == 0);
438
439 const char* expected_it = reinterpret_cast<const char*>(expected);
440 const char* result_it = reinterpret_cast<const char*>(result);
441
442 // This is the first error, so print a header row.
443 printf(" Address (of result) Expected Result\n");
444
445 // Always print some context at the start of the buffer.
446 uintptr_t print_context_to =
447 reinterpret_cast<uintptr_t>(result) + (kContextLines + 1) * kChunkSize;
448 for (size_t i = 0; i < size_in_bytes; i += kChunkSize) {
449 EqualMemoryChunk chunk;
450 chunk.address = reinterpret_cast<uintptr_t>(result_it);
451 memcpy(&chunk.expected, expected_it, kChunkSize);
452 memcpy(&chunk.result, result_it, kChunkSize);
453
454 while (context.size() > kContextLines) context.pop();
455 context.push(chunk);
456
457 // Print context after an error, and at the end of the buffer.
458 if (!chunk.IsEqual() || ((i + kChunkSize) >= size_in_bytes)) {
459 if (chunk.address > print_context_to) {
460 // We aren't currently printing context, so separate this context from
461 // the previous block.
462 printf("...\n");
463 }
464 print_context_to = chunk.address + (kContextLines + 1) * kChunkSize;
465 }
466
467 // Print context (including the current line).
468 while (!context.empty() && (context.front().address < print_context_to)) {
469 uintptr_t address = context.front().address;
470 uint64_t offset = address - reinterpret_cast<uintptr_t>(result);
471 bool is_negative = (offset < zero_offset);
472 printf("0x%016" PRIxPTR " (result %c %5" PRIu64 "): 0x%016" PRIx64
473 " 0x%016" PRIx64 "\n",
474 address,
475 (is_negative ? '-' : '+'),
476 (is_negative ? (zero_offset - offset) : (offset - zero_offset)),
477 context.front().expected,
478 context.front().result);
479 context.pop();
480 }
481
482 expected_it += kChunkSize;
483 result_it += kChunkSize;
484 }
485
486 return false;
487 }
PopulateRegisterArray(Register * w,Register * x,Register * r,int reg_size,int reg_count,RegList allowed)488 RegList PopulateRegisterArray(Register* w,
489 Register* x,
490 Register* r,
491 int reg_size,
492 int reg_count,
493 RegList allowed) {
494 RegList list = 0;
495 int i = 0;
496 for (unsigned n = 0; (n < kNumberOfRegisters) && (i < reg_count); n++) {
497 if (((UINT64_C(1) << n) & allowed) != 0) {
498 // Only assign allowed registers.
499 if (r) {
500 r[i] = Register(n, reg_size);
501 }
502 if (x) {
503 x[i] = Register(n, kXRegSize);
504 }
505 if (w) {
506 w[i] = Register(n, kWRegSize);
507 }
508 list |= (UINT64_C(1) << n);
509 i++;
510 }
511 }
512 // Check that we got enough registers.
513 VIXL_ASSERT(CountSetBits(list, kNumberOfRegisters) == reg_count);
514
515 return list;
516 }
517
518
PopulateVRegisterArray(VRegister * s,VRegister * d,VRegister * v,int reg_size,int reg_count,RegList allowed)519 RegList PopulateVRegisterArray(VRegister* s,
520 VRegister* d,
521 VRegister* v,
522 int reg_size,
523 int reg_count,
524 RegList allowed) {
525 RegList list = 0;
526 int i = 0;
527 for (unsigned n = 0; (n < kNumberOfVRegisters) && (i < reg_count); n++) {
528 if (((UINT64_C(1) << n) & allowed) != 0) {
529 // Only assigned allowed registers.
530 if (v) {
531 v[i] = VRegister(n, reg_size);
532 }
533 if (d) {
534 d[i] = VRegister(n, kDRegSize);
535 }
536 if (s) {
537 s[i] = VRegister(n, kSRegSize);
538 }
539 list |= (UINT64_C(1) << n);
540 i++;
541 }
542 }
543 // Check that we got enough registers.
544 VIXL_ASSERT(CountSetBits(list, kNumberOfVRegisters) == reg_count);
545
546 return list;
547 }
548
549
Clobber(MacroAssembler * masm,RegList reg_list,uint64_t const value)550 void Clobber(MacroAssembler* masm, RegList reg_list, uint64_t const value) {
551 Register first = NoReg;
552 for (unsigned i = 0; i < kNumberOfRegisters; i++) {
553 if (reg_list & (UINT64_C(1) << i)) {
554 Register xn(i, kXRegSize);
555 // We should never write into sp here.
556 VIXL_ASSERT(!xn.Is(sp));
557 if (!xn.IsZero()) {
558 if (!first.IsValid()) {
559 // This is the first register we've hit, so construct the literal.
560 __ Mov(xn, value);
561 first = xn;
562 } else {
563 // We've already loaded the literal, so re-use the value already
564 // loaded into the first register we hit.
565 __ Mov(xn, first);
566 }
567 }
568 }
569 }
570 }
571
572
ClobberFP(MacroAssembler * masm,RegList reg_list,double const value)573 void ClobberFP(MacroAssembler* masm, RegList reg_list, double const value) {
574 VRegister first = NoVReg;
575 for (unsigned i = 0; i < kNumberOfVRegisters; i++) {
576 if (reg_list & (UINT64_C(1) << i)) {
577 VRegister dn(i, kDRegSize);
578 if (!first.IsValid()) {
579 // This is the first register we've hit, so construct the literal.
580 __ Fmov(dn, value);
581 first = dn;
582 } else {
583 // We've already loaded the literal, so re-use the value already loaded
584 // into the first register we hit.
585 __ Fmov(dn, first);
586 }
587 }
588 }
589 }
590
591
Clobber(MacroAssembler * masm,CPURegList reg_list)592 void Clobber(MacroAssembler* masm, CPURegList reg_list) {
593 if (reg_list.GetType() == CPURegister::kRegister) {
594 // This will always clobber X registers.
595 Clobber(masm, reg_list.GetList());
596 } else if (reg_list.GetType() == CPURegister::kVRegister) {
597 // This will always clobber D registers.
598 ClobberFP(masm, reg_list.GetList());
599 } else {
600 VIXL_UNIMPLEMENTED();
601 }
602 }
603
604 // TODO: Once registers have sufficiently compatible interfaces, merge the two
605 // DumpRegisters templates.
606 template <typename T>
DumpRegisters(MacroAssembler * masm,Register dump_base,int offset)607 static void DumpRegisters(MacroAssembler* masm,
608 Register dump_base,
609 int offset) {
610 UseScratchRegisterScope temps(masm);
611 Register dump = temps.AcquireX();
612 __ Add(dump, dump_base, offset);
613 for (unsigned i = 0; i <= T::GetMaxCode(); i++) {
614 T reg(i);
615 __ Str(reg, SVEMemOperand(dump));
616 __ Add(dump, dump, reg.GetMaxSizeInBytes());
617 }
618 }
619
620 template <typename T>
DumpRegisters(MacroAssembler * masm,Register dump_base,int offset,int reg_size_in_bytes)621 static void DumpRegisters(MacroAssembler* masm,
622 Register dump_base,
623 int offset,
624 int reg_size_in_bytes) {
625 UseScratchRegisterScope temps(masm);
626 Register dump = temps.AcquireX();
627 __ Add(dump, dump_base, offset);
628 for (unsigned i = 0; i <= T::GetMaxCode(); i++) {
629 T reg(i, reg_size_in_bytes * kBitsPerByte);
630 __ Str(reg, MemOperand(dump));
631 __ Add(dump, dump, reg_size_in_bytes);
632 }
633 }
634
Dump(MacroAssembler * masm)635 void RegisterDump::Dump(MacroAssembler* masm) {
636 VIXL_ASSERT(__ StackPointer().Is(sp));
637
638 dump_cpu_features_ = *masm->GetCPUFeatures();
639
640 // We need some scratch registers, but we also need to dump them, so we have
641 // to control exactly which registers are used, and dump them separately.
642 CPURegList scratch_registers(x0, x1, x2, x3);
643
644 UseScratchRegisterScope temps(masm);
645 temps.ExcludeAll();
646 __ PushCPURegList(scratch_registers);
647 temps.Include(scratch_registers);
648
649 Register dump_base = temps.AcquireX();
650 Register tmp = temps.AcquireX();
651
652 // Offsets into the dump_ structure.
653 const int x_offset = offsetof(dump_t, x_);
654 const int w_offset = offsetof(dump_t, w_);
655 const int d_offset = offsetof(dump_t, d_);
656 const int s_offset = offsetof(dump_t, s_);
657 const int h_offset = offsetof(dump_t, h_);
658 const int q_offset = offsetof(dump_t, q_);
659 const int z_offset = offsetof(dump_t, z_);
660 const int p_offset = offsetof(dump_t, p_);
661 const int sp_offset = offsetof(dump_t, sp_);
662 const int wsp_offset = offsetof(dump_t, wsp_);
663 const int flags_offset = offsetof(dump_t, flags_);
664 const int vl_offset = offsetof(dump_t, vl_);
665
666 // Load the address where we will dump the state.
667 __ Mov(dump_base, reinterpret_cast<uintptr_t>(&dump_));
668
669 // Dump the stack pointer (sp and wsp).
670 // The stack pointer cannot be stored directly; it needs to be moved into
671 // another register first. Also, we pushed four X registers, so we need to
672 // compensate here.
673 __ Add(tmp, sp, 4 * kXRegSizeInBytes);
674 __ Str(tmp, MemOperand(dump_base, sp_offset));
675 __ Add(tmp.W(), wsp, 4 * kXRegSizeInBytes);
676 __ Str(tmp.W(), MemOperand(dump_base, wsp_offset));
677
678 // Dump core registers.
679 DumpRegisters<Register>(masm, dump_base, x_offset, kXRegSizeInBytes);
680 DumpRegisters<Register>(masm, dump_base, w_offset, kWRegSizeInBytes);
681
682 // Dump NEON and FP registers.
683 DumpRegisters<VRegister>(masm, dump_base, q_offset, kQRegSizeInBytes);
684 DumpRegisters<VRegister>(masm, dump_base, d_offset, kDRegSizeInBytes);
685 DumpRegisters<VRegister>(masm, dump_base, s_offset, kSRegSizeInBytes);
686 DumpRegisters<VRegister>(masm, dump_base, h_offset, kHRegSizeInBytes);
687
688 // Dump SVE registers.
689 if (CPUHas(CPUFeatures::kSVE)) {
690 DumpRegisters<ZRegister>(masm, dump_base, z_offset);
691 DumpRegisters<PRegister>(masm, dump_base, p_offset);
692
693 // Record the vector length.
694 __ Rdvl(tmp, kBitsPerByte);
695 __ Str(tmp, MemOperand(dump_base, vl_offset));
696 }
697
698 // Dump the flags.
699 __ Mrs(tmp, NZCV);
700 __ Str(tmp, MemOperand(dump_base, flags_offset));
701
702 // To dump the values we used as scratch registers, we need a new scratch
703 // register. We can use any of the already dumped registers since we can
704 // easily restore them.
705 Register dump2_base = x10;
706 VIXL_ASSERT(!scratch_registers.IncludesAliasOf(dump2_base));
707
708 VIXL_ASSERT(scratch_registers.IncludesAliasOf(dump_base));
709
710 // Ensure that we don't try to use the scratch registers again.
711 temps.ExcludeAll();
712
713 // Don't lose the dump_ address.
714 __ Mov(dump2_base, dump_base);
715
716 __ PopCPURegList(scratch_registers);
717
718 while (!scratch_registers.IsEmpty()) {
719 CPURegister reg = scratch_registers.PopLowestIndex();
720 Register x = reg.X();
721 Register w = reg.W();
722 unsigned code = reg.GetCode();
723 __ Str(x, MemOperand(dump2_base, x_offset + (code * kXRegSizeInBytes)));
724 __ Str(w, MemOperand(dump2_base, w_offset + (code * kWRegSizeInBytes)));
725 }
726
727 // Finally, restore dump2_base.
728 __ Ldr(dump2_base,
729 MemOperand(dump2_base,
730 x_offset + (dump2_base.GetCode() * kXRegSizeInBytes)));
731
732 completed_ = true;
733 }
734
GetSignallingNan(int size_in_bits)735 uint64_t GetSignallingNan(int size_in_bits) {
736 switch (size_in_bits) {
737 case kHRegSize:
738 return Float16ToRawbits(kFP16SignallingNaN);
739 case kSRegSize:
740 return FloatToRawbits(kFP32SignallingNaN);
741 case kDRegSize:
742 return DoubleToRawbits(kFP64SignallingNaN);
743 default:
744 VIXL_UNIMPLEMENTED();
745 return 0;
746 }
747 }
748
CanRun(const CPUFeatures & required,bool * queried_can_run)749 bool CanRun(const CPUFeatures& required, bool* queried_can_run) {
750 bool log_if_missing = true;
751 if (queried_can_run != NULL) {
752 log_if_missing = !*queried_can_run;
753 *queried_can_run = true;
754 }
755
756 #ifdef VIXL_INCLUDE_SIMULATOR_AARCH64
757 // The Simulator can run any test that VIXL can assemble.
758 USE(required);
759 USE(log_if_missing);
760 return true;
761 #else
762 CPUFeatures cpu = CPUFeatures::InferFromOS();
763 // If InferFromOS fails, assume that basic features are present.
764 if (cpu.HasNoFeatures()) cpu = CPUFeatures::AArch64LegacyBaseline();
765 VIXL_ASSERT(cpu.Has(kInfrastructureCPUFeatures));
766
767 if (cpu.Has(required)) return true;
768
769 if (log_if_missing) {
770 CPUFeatures missing = required.Without(cpu);
771 // Note: This message needs to match REGEXP_MISSING_FEATURES from
772 // tools/threaded_test.py.
773 std::cout << "SKIPPED: Missing features: { " << missing << " }\n";
774 std::cout << "This test requires the following features to run its "
775 "generated code on this CPU: "
776 << required << "\n";
777 }
778 return false;
779 #endif
780 }
781
782 // Note that the function assumes p0, p1, p2 and p3 are set to all true in b-,
783 // h-, s- and d-lane sizes respectively, and p4, p5 are clobberred as a temp
784 // predicate.
785 template <typename T, size_t N>
SetFpData(MacroAssembler * masm,int esize,const T (& values)[N],uint64_t lcg_mult)786 void SetFpData(MacroAssembler* masm,
787 int esize,
788 const T (&values)[N],
789 uint64_t lcg_mult) {
790 uint64_t a = 0;
791 uint64_t b = lcg_mult;
792 // Be used to populate the assigned element slots of register based on the
793 // type of floating point.
794 __ Pfalse(p5.VnB());
795 switch (esize) {
796 case kHRegSize:
797 a = Float16ToRawbits(Float16(1.5));
798 // Pick a convenient number within largest normal half-precision floating
799 // point.
800 b = Float16ToRawbits(Float16(lcg_mult % 1024));
801 // Step 1: Set fp16 numbers to the undefined registers.
802 // p4< 15:0>: 0b0101010101010101
803 // z{code}<127:0>: 0xHHHHHHHHHHHHHHHH
804 __ Zip1(p4.VnB(), p0.VnB(), p5.VnB());
805 break;
806 case kSRegSize:
807 a = FloatToRawbits(1.5);
808 b = FloatToRawbits(lcg_mult);
809 // Step 2: Set fp32 numbers to register on top of fp16 initialized.
810 // p4< 15:0>: 0b0000000100000001
811 // z{code}<127:0>: 0xHHHHSSSSHHHHSSSS
812 __ Zip1(p4.VnS(), p2.VnS(), p5.VnS());
813 break;
814 case kDRegSize:
815 a = DoubleToRawbits(1.5);
816 b = DoubleToRawbits(lcg_mult);
817 // Step 3: Set fp64 numbers to register on top of both fp16 and fp 32
818 // initialized.
819 // p4< 15:0>: 0b0000000000000001
820 // z{code}<127:0>: 0xHHHHSSSSDDDDDDDD
821 __ Zip1(p4.VnD(), p3.VnD(), p5.VnD());
822 break;
823 default:
824 VIXL_UNIMPLEMENTED();
825 break;
826 }
827
828 __ Dup(z30.WithLaneSize(esize), a);
829 __ Dup(z31.WithLaneSize(esize), b);
830
831 for (unsigned j = 0; j <= (kZRegMaxSize / (N * esize)); j++) {
832 // As floating point operations on random values have a tendency to
833 // converge on special-case numbers like NaNs, adopt normal floating point
834 // values be the seed instead.
835 InsrHelper(masm, z0.WithLaneSize(esize), values);
836 }
837
838 __ Fmla(z0.WithLaneSize(esize),
839 p4.Merging(),
840 z30.WithLaneSize(esize),
841 z0.WithLaneSize(esize),
842 z31.WithLaneSize(esize),
843 FastNaNPropagation);
844
845 for (unsigned i = 1; i < kNumberOfZRegisters - 1; i++) {
846 __ Fmla(ZRegister(i).WithLaneSize(esize),
847 p4.Merging(),
848 z30.WithLaneSize(esize),
849 ZRegister(i - 1).WithLaneSize(esize),
850 z31.WithLaneSize(esize),
851 FastNaNPropagation);
852 }
853
854 __ Fmul(z31.WithLaneSize(esize),
855 p4.Merging(),
856 z31.WithLaneSize(esize),
857 z30.WithLaneSize(esize),
858 FastNaNPropagation);
859 __ Fadd(z31.WithLaneSize(esize), p4.Merging(), z31.WithLaneSize(esize), 1);
860 }
861
862 // Set z0 - z31 to some normal floating point data.
InitialiseRegisterFp(MacroAssembler * masm,uint64_t lcg_mult)863 void InitialiseRegisterFp(MacroAssembler* masm, uint64_t lcg_mult) {
864 // Initialise each Z registers to a mixture of fp16/32/64 values as following
865 // pattern:
866 // z0.h[0-1] = fp16, z0.s[1] = fp32, z0.d[1] = fp64 repeatedly throughout the
867 // register.
868 //
869 // For example:
870 // z{code}<2047:1920>: 0x{< fp64 >< fp32 ><fp16><fp16>}
871 // ...
872 // z{code}< 127: 0>: 0x{< fp64 >< fp32 ><fp16><fp16>}
873 //
874 // In current manner, in order to make a desired mixture, each part of
875 // initialization have to be called in the following order.
876 SetFpData(masm, kHRegSize, kInputFloat16Basic, lcg_mult);
877 SetFpData(masm, kSRegSize, kInputFloatBasic, lcg_mult);
878 SetFpData(masm, kDRegSize, kInputDoubleBasic, lcg_mult);
879 }
880
SetInitialMachineState(MacroAssembler * masm,InputSet input_set)881 void SetInitialMachineState(MacroAssembler* masm, InputSet input_set) {
882 USE(input_set);
883 uint64_t lcg_mult = 6364136223846793005;
884
885 // Set x0 - x30 to pseudo-random data.
886 __ Mov(x29, 1); // LCG increment.
887 __ Mov(x30, lcg_mult);
888 __ Mov(x0, 42); // LCG seed.
889
890 __ Cmn(x0, 0); // Clear NZCV flags for later.
891
892 __ Madd(x0, x0, x30, x29); // First pseudo-random number.
893
894 // Registers 1 - 29.
895 for (unsigned i = 1; i < 30; i++) {
896 __ Madd(XRegister(i), XRegister(i - 1), x30, x29);
897 }
898 __ Mul(x30, x29, x30);
899 __ Add(x30, x30, 1);
900
901
902 // Set first four predicate registers to true for increasing lane sizes.
903 __ Ptrue(p0.VnB());
904 __ Ptrue(p1.VnH());
905 __ Ptrue(p2.VnS());
906 __ Ptrue(p3.VnD());
907
908 // Set z0 - z31 to pseudo-random data.
909 if (input_set == kIntInputSet) {
910 __ Dup(z30.VnD(), 1);
911 __ Dup(z31.VnD(), lcg_mult);
912 __ Index(z0.VnB(), -16, 13); // LCG seeds.
913
914 __ Mla(z0.VnD(), p0.Merging(), z30.VnD(), z0.VnD(), z31.VnD());
915 for (unsigned i = 1; i < kNumberOfZRegisters - 1; i++) {
916 __ Mla(ZRegister(i).VnD(),
917 p0.Merging(),
918 z30.VnD(),
919 ZRegister(i - 1).VnD(),
920 z31.VnD());
921 }
922 __ Mul(z31.VnD(), p0.Merging(), z31.VnD(), z30.VnD());
923 __ Add(z31.VnD(), z31.VnD(), 1);
924
925 } else {
926 VIXL_ASSERT(input_set == kFpInputSet);
927 InitialiseRegisterFp(masm, lcg_mult);
928 }
929
930 // Set remaining predicate registers based on earlier pseudo-random data.
931 for (unsigned i = 4; i < kNumberOfPRegisters; i++) {
932 __ Cmpge(PRegister(i).VnB(), p0.Zeroing(), ZRegister(i).VnB(), 0);
933 }
934 for (unsigned i = 4; i < kNumberOfPRegisters; i += 2) {
935 __ Zip1(p0.VnB(), PRegister(i).VnB(), PRegister(i + 1).VnB());
936 __ Zip2(PRegister(i + 1).VnB(), PRegister(i).VnB(), PRegister(i + 1).VnB());
937 __ Mov(PRegister(i), p0);
938 }
939 __ Ptrue(p0.VnB());
940
941 // At this point, only sp and a few status registers are undefined. These
942 // must be ignored when computing the state hash.
943 }
944
ComputeMachineStateHash(MacroAssembler * masm,uint32_t * dst)945 void ComputeMachineStateHash(MacroAssembler* masm, uint32_t* dst) {
946 // Use explicit registers, to avoid hash order varying if
947 // UseScratchRegisterScope changes.
948 UseScratchRegisterScope temps(masm);
949 temps.ExcludeAll();
950 Register t0 = w0;
951 Register t1 = x1;
952
953 // Compute hash of x0 - x30.
954 __ Push(t0.X(), t1);
955 __ Crc32x(t0, wzr, t0.X());
956 for (unsigned i = 0; i < kNumberOfRegisters; i++) {
957 if (i == xzr.GetCode()) continue; // Skip sp.
958 if (t0.Is(WRegister(i))) continue; // Skip t0, as it's already hashed.
959 __ Crc32x(t0, t0, XRegister(i));
960 }
961
962 // Hash the status flags.
963 __ Mrs(t1, NZCV);
964 __ Crc32x(t0, t0, t1);
965
966 // Acquire another temp, as integer registers have been hashed already.
967 __ Push(x30, xzr);
968 Register t2 = x30;
969
970 // Compute hash of all bits in z0 - z31. This implies different hashes are
971 // produced for machines of different vector length.
972 for (unsigned i = 0; i < kNumberOfZRegisters; i++) {
973 __ Rdvl(t2, 1);
974 __ Lsr(t2, t2, 4);
975 Label vl_loop;
976 __ Bind(&vl_loop);
977 __ Umov(t1, VRegister(i).V2D(), 0);
978 __ Crc32x(t0, t0, t1);
979 __ Umov(t1, VRegister(i).V2D(), 1);
980 __ Crc32x(t0, t0, t1);
981 __ Ext(ZRegister(i).VnB(), ZRegister(i).VnB(), ZRegister(i).VnB(), 16);
982 __ Sub(t2, t2, 1);
983 __ Cbnz(t2, &vl_loop);
984 }
985
986 // Hash predicate registers. For simplicity, this writes the predicate
987 // registers to a zero-initialised area of stack of the maximum size required
988 // for P registers. It then computes a hash of that entire stack area.
989 unsigned p_stack_space = kNumberOfPRegisters * kPRegMaxSizeInBytes;
990
991 // Zero claimed stack area.
992 for (unsigned i = 0; i < p_stack_space; i += kXRegSizeInBytes * 2) {
993 __ Push(xzr, xzr);
994 }
995
996 // Store all P registers to the stack.
997 __ Mov(t1, sp);
998 for (unsigned i = 0; i < kNumberOfPRegisters; i++) {
999 __ Str(PRegister(i), SVEMemOperand(t1));
1000 __ Add(t1, t1, kPRegMaxSizeInBytes);
1001 }
1002
1003 // Hash the entire stack area.
1004 for (unsigned i = 0; i < p_stack_space; i += kXRegSizeInBytes * 2) {
1005 __ Pop(t1, t2);
1006 __ Crc32x(t0, t0, t1);
1007 __ Crc32x(t0, t0, t2);
1008 }
1009
1010 __ Mov(t1, reinterpret_cast<uint64_t>(dst));
1011 __ Str(t0, MemOperand(t1));
1012
1013 __ Pop(xzr, x30);
1014 __ Pop(t1, t0.X());
1015 }
1016
1017 } // namespace aarch64
1018 } // namespace vixl
1019