• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2008 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkPoint.h"
9 #include "include/core/SkScalar.h"
10 #include "include/core/SkTypes.h"
11 #include "include/private/base/SkFloatingPoint.h"
12 #include "src/core/SkPointPriv.h"
13 
14 #include <cmath>
15 
16 ///////////////////////////////////////////////////////////////////////////////
17 
scale(SkScalar scale,SkPoint * dst) const18 void SkPoint::scale(SkScalar scale, SkPoint* dst) const {
19     SkASSERT(dst);
20     dst->set(fX * scale, fY * scale);
21 }
22 
normalize()23 bool SkPoint::normalize() {
24     return this->setLength(fX, fY, SK_Scalar1);
25 }
26 
setNormalize(SkScalar x,SkScalar y)27 bool SkPoint::setNormalize(SkScalar x, SkScalar y) {
28     return this->setLength(x, y, SK_Scalar1);
29 }
30 
setLength(SkScalar length)31 bool SkPoint::setLength(SkScalar length) {
32     return this->setLength(fX, fY, length);
33 }
34 
35 /*
36  *  We have to worry about 2 tricky conditions:
37  *  1. underflow of mag2 (compared against nearlyzero^2)
38  *  2. overflow of mag2 (compared w/ isfinite)
39  *
40  *  If we underflow, we return false. If we overflow, we compute again using
41  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
42  */
set_point_length(SkPoint * pt,float x,float y,float length,float * orig_length=nullptr)43 template <bool use_rsqrt> bool set_point_length(SkPoint* pt, float x, float y, float length,
44                                                 float* orig_length = nullptr) {
45     SkASSERT(!use_rsqrt || (orig_length == nullptr));
46 
47     // our mag2 step overflowed to infinity, so use doubles instead.
48     // much slower, but needed when x or y are very large, other wise we
49     // divide by inf. and return (0,0) vector.
50     double xx = x;
51     double yy = y;
52     double dmag = sqrt(xx * xx + yy * yy);
53     double dscale = sk_ieee_double_divide(length, dmag);
54     x *= dscale;
55     y *= dscale;
56     // check if we're not finite, or we're zero-length
57     if (!sk_float_isfinite(x) || !sk_float_isfinite(y) || (x == 0 && y == 0)) {
58         pt->set(0, 0);
59         return false;
60     }
61     float mag = 0;
62     if (orig_length) {
63         mag = sk_double_to_float(dmag);
64     }
65     pt->set(x, y);
66     if (orig_length) {
67         *orig_length = mag;
68     }
69     return true;
70 }
71 
Normalize(SkPoint * pt)72 SkScalar SkPoint::Normalize(SkPoint* pt) {
73     float mag;
74     if (set_point_length<false>(pt, pt->fX, pt->fY, 1.0f, &mag)) {
75         return mag;
76     }
77     return 0;
78 }
79 
Length(SkScalar dx,SkScalar dy)80 SkScalar SkPoint::Length(SkScalar dx, SkScalar dy) {
81     float mag2 = dx * dx + dy * dy;
82     if (SkScalarIsFinite(mag2)) {
83         return sk_float_sqrt(mag2);
84     } else {
85         double xx = dx;
86         double yy = dy;
87         return sk_double_to_float(sqrt(xx * xx + yy * yy));
88     }
89 }
90 
setLength(float x,float y,float length)91 bool SkPoint::setLength(float x, float y, float length) {
92     return set_point_length<false>(this, x, y, length);
93 }
94 
SetLengthFast(SkPoint * pt,float length)95 bool SkPointPriv::SetLengthFast(SkPoint* pt, float length) {
96     return set_point_length<true>(pt, pt->fX, pt->fY, length);
97 }
98 
99 
100 ///////////////////////////////////////////////////////////////////////////////
101 
DistanceToLineBetweenSqd(const SkPoint & pt,const SkPoint & a,const SkPoint & b,Side * side)102 SkScalar SkPointPriv::DistanceToLineBetweenSqd(const SkPoint& pt, const SkPoint& a,
103                                                const SkPoint& b,
104                                                Side* side) {
105 
106     SkVector u = b - a;
107     SkVector v = pt - a;
108 
109     SkScalar uLengthSqd = LengthSqd(u);
110     SkScalar det = u.cross(v);
111     if (side) {
112         SkASSERT(-1 == kLeft_Side &&
113                   0 == kOn_Side &&
114                   1 == kRight_Side);
115         *side = (Side) SkScalarSignAsInt(det);
116     }
117     SkScalar temp = sk_ieee_float_divide(det, uLengthSqd);
118     temp *= det;
119     // It's possible we have a degenerate line vector, or we're so far away it looks degenerate
120     // In this case, return squared distance to point A.
121     if (!SkScalarIsFinite(temp)) {
122         return LengthSqd(v);
123     }
124     return temp;
125 }
126 
DistanceToLineSegmentBetweenSqd(const SkPoint & pt,const SkPoint & a,const SkPoint & b)127 SkScalar SkPointPriv::DistanceToLineSegmentBetweenSqd(const SkPoint& pt, const SkPoint& a,
128                                                       const SkPoint& b) {
129     // See comments to distanceToLineBetweenSqd. If the projection of c onto
130     // u is between a and b then this returns the same result as that
131     // function. Otherwise, it returns the distance to the closer of a and
132     // b. Let the projection of v onto u be v'.  There are three cases:
133     //    1. v' points opposite to u. c is not between a and b and is closer
134     //       to a than b.
135     //    2. v' points along u and has magnitude less than y. c is between
136     //       a and b and the distance to the segment is the same as distance
137     //       to the line ab.
138     //    3. v' points along u and has greater magnitude than u. c is not
139     //       not between a and b and is closer to b than a.
140     // v' = (u dot v) * u / |u|. So if (u dot v)/|u| is less than zero we're
141     // in case 1. If (u dot v)/|u| is > |u| we are in case 3. Otherwise
142     // we're in case 2. We actually compare (u dot v) to 0 and |u|^2 to
143     // avoid a sqrt to compute |u|.
144 
145     SkVector u = b - a;
146     SkVector v = pt - a;
147 
148     SkScalar uLengthSqd = LengthSqd(u);
149     SkScalar uDotV = SkPoint::DotProduct(u, v);
150 
151     // closest point is point A
152     if (uDotV <= 0) {
153         return LengthSqd(v);
154     // closest point is point B
155     } else if (uDotV > uLengthSqd) {
156         return DistanceToSqd(b, pt);
157     // closest point is inside segment
158     } else {
159         SkScalar det = u.cross(v);
160         SkScalar temp = sk_ieee_float_divide(det, uLengthSqd);
161         temp *= det;
162         // It's possible we have a degenerate segment, or we're so far away it looks degenerate
163         // In this case, return squared distance to point A.
164         if (!SkScalarIsFinite(temp)) {
165             return LengthSqd(v);
166         }
167         return temp;
168     }
169 }
170