• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2022 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // Sharp RGB to YUV conversion.
11 //
12 // Author: Skal (pascal.massimino@gmail.com)
13 
14 #include "sharpyuv/sharpyuv.h"
15 
16 #include <assert.h>
17 #include <limits.h>
18 #include <stddef.h>
19 #include <stdlib.h>
20 #include <string.h>
21 
22 #include "src/webp/types.h"
23 #include "sharpyuv/sharpyuv_cpu.h"
24 #include "sharpyuv/sharpyuv_dsp.h"
25 #include "sharpyuv/sharpyuv_gamma.h"
26 
27 //------------------------------------------------------------------------------
28 
SharpYuvGetVersion(void)29 int SharpYuvGetVersion(void) {
30   return SHARPYUV_VERSION;
31 }
32 
33 //------------------------------------------------------------------------------
34 // Sharp RGB->YUV conversion
35 
36 static const int kNumIterations = 4;
37 
38 #define YUV_FIX 16  // fixed-point precision for RGB->YUV
39 static const int kYuvHalf = 1 << (YUV_FIX - 1);
40 
41 // Max bit depth so that intermediate calculations fit in 16 bits.
42 static const int kMaxBitDepth = 14;
43 
44 // Returns the precision shift to use based on the input rgb_bit_depth.
GetPrecisionShift(int rgb_bit_depth)45 static int GetPrecisionShift(int rgb_bit_depth) {
46   // Try to add 2 bits of precision if it fits in kMaxBitDepth. Otherwise remove
47   // bits if needed.
48   return ((rgb_bit_depth + 2) <= kMaxBitDepth) ? 2
49                                                : (kMaxBitDepth - rgb_bit_depth);
50 }
51 
52 typedef int16_t fixed_t;      // signed type with extra precision for UV
53 typedef uint16_t fixed_y_t;   // unsigned type with extra precision for W
54 
55 //------------------------------------------------------------------------------
56 
clip_8b(fixed_t v)57 static uint8_t clip_8b(fixed_t v) {
58   return (!(v & ~0xff)) ? (uint8_t)v : (v < 0) ? 0u : 255u;
59 }
60 
clip(fixed_t v,int max)61 static uint16_t clip(fixed_t v, int max) {
62   return (v < 0) ? 0 : (v > max) ? max : (uint16_t)v;
63 }
64 
clip_bit_depth(int y,int bit_depth)65 static fixed_y_t clip_bit_depth(int y, int bit_depth) {
66   const int max = (1 << bit_depth) - 1;
67   return (!(y & ~max)) ? (fixed_y_t)y : (y < 0) ? 0 : max;
68 }
69 
70 //------------------------------------------------------------------------------
71 
RGBToGray(int64_t r,int64_t g,int64_t b)72 static int RGBToGray(int64_t r, int64_t g, int64_t b) {
73   const int64_t luma = 13933 * r + 46871 * g + 4732 * b + kYuvHalf;
74   return (int)(luma >> YUV_FIX);
75 }
76 
ScaleDown(uint16_t a,uint16_t b,uint16_t c,uint16_t d,int rgb_bit_depth)77 static uint32_t ScaleDown(uint16_t a, uint16_t b, uint16_t c, uint16_t d,
78                           int rgb_bit_depth) {
79   const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
80   const uint32_t A = SharpYuvGammaToLinear(a, bit_depth);
81   const uint32_t B = SharpYuvGammaToLinear(b, bit_depth);
82   const uint32_t C = SharpYuvGammaToLinear(c, bit_depth);
83   const uint32_t D = SharpYuvGammaToLinear(d, bit_depth);
84   return SharpYuvLinearToGamma((A + B + C + D + 2) >> 2, bit_depth);
85 }
86 
UpdateW(const fixed_y_t * src,fixed_y_t * dst,int w,int rgb_bit_depth)87 static WEBP_INLINE void UpdateW(const fixed_y_t* src, fixed_y_t* dst, int w,
88                                 int rgb_bit_depth) {
89   const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
90   int i;
91   for (i = 0; i < w; ++i) {
92     const uint32_t R = SharpYuvGammaToLinear(src[0 * w + i], bit_depth);
93     const uint32_t G = SharpYuvGammaToLinear(src[1 * w + i], bit_depth);
94     const uint32_t B = SharpYuvGammaToLinear(src[2 * w + i], bit_depth);
95     const uint32_t Y = RGBToGray(R, G, B);
96     dst[i] = (fixed_y_t)SharpYuvLinearToGamma(Y, bit_depth);
97   }
98 }
99 
UpdateChroma(const fixed_y_t * src1,const fixed_y_t * src2,fixed_t * dst,int uv_w,int rgb_bit_depth)100 static void UpdateChroma(const fixed_y_t* src1, const fixed_y_t* src2,
101                          fixed_t* dst, int uv_w, int rgb_bit_depth) {
102   int i;
103   for (i = 0; i < uv_w; ++i) {
104     const int r =
105         ScaleDown(src1[0 * uv_w + 0], src1[0 * uv_w + 1], src2[0 * uv_w + 0],
106                   src2[0 * uv_w + 1], rgb_bit_depth);
107     const int g =
108         ScaleDown(src1[2 * uv_w + 0], src1[2 * uv_w + 1], src2[2 * uv_w + 0],
109                   src2[2 * uv_w + 1], rgb_bit_depth);
110     const int b =
111         ScaleDown(src1[4 * uv_w + 0], src1[4 * uv_w + 1], src2[4 * uv_w + 0],
112                   src2[4 * uv_w + 1], rgb_bit_depth);
113     const int W = RGBToGray(r, g, b);
114     dst[0 * uv_w] = (fixed_t)(r - W);
115     dst[1 * uv_w] = (fixed_t)(g - W);
116     dst[2 * uv_w] = (fixed_t)(b - W);
117     dst  += 1;
118     src1 += 2;
119     src2 += 2;
120   }
121 }
122 
StoreGray(const fixed_y_t * rgb,fixed_y_t * y,int w)123 static void StoreGray(const fixed_y_t* rgb, fixed_y_t* y, int w) {
124   int i;
125   assert(w > 0);
126   for (i = 0; i < w; ++i) {
127     y[i] = RGBToGray(rgb[0 * w + i], rgb[1 * w + i], rgb[2 * w + i]);
128   }
129 }
130 
131 //------------------------------------------------------------------------------
132 
Filter2(int A,int B,int W0,int bit_depth)133 static WEBP_INLINE fixed_y_t Filter2(int A, int B, int W0, int bit_depth) {
134   const int v0 = (A * 3 + B + 2) >> 2;
135   return clip_bit_depth(v0 + W0, bit_depth);
136 }
137 
138 //------------------------------------------------------------------------------
139 
Shift(int v,int shift)140 static WEBP_INLINE int Shift(int v, int shift) {
141   return (shift >= 0) ? (v << shift) : (v >> -shift);
142 }
143 
ImportOneRow(const uint8_t * const r_ptr,const uint8_t * const g_ptr,const uint8_t * const b_ptr,int rgb_step,int rgb_bit_depth,int pic_width,fixed_y_t * const dst)144 static void ImportOneRow(const uint8_t* const r_ptr,
145                          const uint8_t* const g_ptr,
146                          const uint8_t* const b_ptr,
147                          int rgb_step,
148                          int rgb_bit_depth,
149                          int pic_width,
150                          fixed_y_t* const dst) {
151   // Convert the rgb_step from a number of bytes to a number of uint8_t or
152   // uint16_t values depending the bit depth.
153   const int step = (rgb_bit_depth > 8) ? rgb_step / 2 : rgb_step;
154   int i;
155   const int w = (pic_width + 1) & ~1;
156   for (i = 0; i < pic_width; ++i) {
157     const int off = i * step;
158     const int shift = GetPrecisionShift(rgb_bit_depth);
159     if (rgb_bit_depth == 8) {
160       dst[i + 0 * w] = Shift(r_ptr[off], shift);
161       dst[i + 1 * w] = Shift(g_ptr[off], shift);
162       dst[i + 2 * w] = Shift(b_ptr[off], shift);
163     } else {
164       dst[i + 0 * w] = Shift(((uint16_t*)r_ptr)[off], shift);
165       dst[i + 1 * w] = Shift(((uint16_t*)g_ptr)[off], shift);
166       dst[i + 2 * w] = Shift(((uint16_t*)b_ptr)[off], shift);
167     }
168   }
169   if (pic_width & 1) {  // replicate rightmost pixel
170     dst[pic_width + 0 * w] = dst[pic_width + 0 * w - 1];
171     dst[pic_width + 1 * w] = dst[pic_width + 1 * w - 1];
172     dst[pic_width + 2 * w] = dst[pic_width + 2 * w - 1];
173   }
174 }
175 
InterpolateTwoRows(const fixed_y_t * const best_y,const fixed_t * prev_uv,const fixed_t * cur_uv,const fixed_t * next_uv,int w,fixed_y_t * out1,fixed_y_t * out2,int rgb_bit_depth)176 static void InterpolateTwoRows(const fixed_y_t* const best_y,
177                                const fixed_t* prev_uv,
178                                const fixed_t* cur_uv,
179                                const fixed_t* next_uv,
180                                int w,
181                                fixed_y_t* out1,
182                                fixed_y_t* out2,
183                                int rgb_bit_depth) {
184   const int uv_w = w >> 1;
185   const int len = (w - 1) >> 1;   // length to filter
186   int k = 3;
187   const int bit_depth = rgb_bit_depth + GetPrecisionShift(rgb_bit_depth);
188   while (k-- > 0) {   // process each R/G/B segments in turn
189     // special boundary case for i==0
190     out1[0] = Filter2(cur_uv[0], prev_uv[0], best_y[0], bit_depth);
191     out2[0] = Filter2(cur_uv[0], next_uv[0], best_y[w], bit_depth);
192 
193     SharpYuvFilterRow(cur_uv, prev_uv, len, best_y + 0 + 1, out1 + 1,
194                       bit_depth);
195     SharpYuvFilterRow(cur_uv, next_uv, len, best_y + w + 1, out2 + 1,
196                       bit_depth);
197 
198     // special boundary case for i == w - 1 when w is even
199     if (!(w & 1)) {
200       out1[w - 1] = Filter2(cur_uv[uv_w - 1], prev_uv[uv_w - 1],
201                             best_y[w - 1 + 0], bit_depth);
202       out2[w - 1] = Filter2(cur_uv[uv_w - 1], next_uv[uv_w - 1],
203                             best_y[w - 1 + w], bit_depth);
204     }
205     out1 += w;
206     out2 += w;
207     prev_uv += uv_w;
208     cur_uv  += uv_w;
209     next_uv += uv_w;
210   }
211 }
212 
RGBToYUVComponent(int r,int g,int b,const int coeffs[4],int sfix)213 static WEBP_INLINE int RGBToYUVComponent(int r, int g, int b,
214                                          const int coeffs[4], int sfix) {
215   const int srounder = 1 << (YUV_FIX + sfix - 1);
216   const int luma = coeffs[0] * r + coeffs[1] * g + coeffs[2] * b +
217                    coeffs[3] + srounder;
218   return (luma >> (YUV_FIX + sfix));
219 }
220 
ConvertWRGBToYUV(const fixed_y_t * best_y,const fixed_t * best_uv,uint8_t * y_ptr,int y_stride,uint8_t * u_ptr,int u_stride,uint8_t * v_ptr,int v_stride,int rgb_bit_depth,int yuv_bit_depth,int width,int height,const SharpYuvConversionMatrix * yuv_matrix)221 static int ConvertWRGBToYUV(const fixed_y_t* best_y, const fixed_t* best_uv,
222                             uint8_t* y_ptr, int y_stride, uint8_t* u_ptr,
223                             int u_stride, uint8_t* v_ptr, int v_stride,
224                             int rgb_bit_depth,
225                             int yuv_bit_depth, int width, int height,
226                             const SharpYuvConversionMatrix* yuv_matrix) {
227   int i, j;
228   const fixed_t* const best_uv_base = best_uv;
229   const int w = (width + 1) & ~1;
230   const int h = (height + 1) & ~1;
231   const int uv_w = w >> 1;
232   const int uv_h = h >> 1;
233   const int sfix = GetPrecisionShift(rgb_bit_depth);
234   const int yuv_max = (1 << yuv_bit_depth) - 1;
235 
236   for (best_uv = best_uv_base, j = 0; j < height; ++j) {
237     for (i = 0; i < width; ++i) {
238       const int off = (i >> 1);
239       const int W = best_y[i];
240       const int r = best_uv[off + 0 * uv_w] + W;
241       const int g = best_uv[off + 1 * uv_w] + W;
242       const int b = best_uv[off + 2 * uv_w] + W;
243       const int y = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_y, sfix);
244       if (yuv_bit_depth <= 8) {
245         y_ptr[i] = clip_8b(y);
246       } else {
247         ((uint16_t*)y_ptr)[i] = clip(y, yuv_max);
248       }
249     }
250     best_y += w;
251     best_uv += (j & 1) * 3 * uv_w;
252     y_ptr += y_stride;
253   }
254   for (best_uv = best_uv_base, j = 0; j < uv_h; ++j) {
255     for (i = 0; i < uv_w; ++i) {
256       const int off = i;
257       // Note r, g and b values here are off by W, but a constant offset on all
258       // 3 components doesn't change the value of u and v with a YCbCr matrix.
259       const int r = best_uv[off + 0 * uv_w];
260       const int g = best_uv[off + 1 * uv_w];
261       const int b = best_uv[off + 2 * uv_w];
262       const int u = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_u, sfix);
263       const int v = RGBToYUVComponent(r, g, b, yuv_matrix->rgb_to_v, sfix);
264       if (yuv_bit_depth <= 8) {
265         u_ptr[i] = clip_8b(u);
266         v_ptr[i] = clip_8b(v);
267       } else {
268         ((uint16_t*)u_ptr)[i] = clip(u, yuv_max);
269         ((uint16_t*)v_ptr)[i] = clip(v, yuv_max);
270       }
271     }
272     best_uv += 3 * uv_w;
273     u_ptr += u_stride;
274     v_ptr += v_stride;
275   }
276   return 1;
277 }
278 
279 //------------------------------------------------------------------------------
280 // Main function
281 
SafeMalloc(uint64_t nmemb,size_t size)282 static void* SafeMalloc(uint64_t nmemb, size_t size) {
283   const uint64_t total_size = nmemb * (uint64_t)size;
284   if (total_size != (size_t)total_size) return NULL;
285   return malloc((size_t)total_size);
286 }
287 
288 #define SAFE_ALLOC(W, H, T) ((T*)SafeMalloc((W) * (H), sizeof(T)))
289 
DoSharpArgbToYuv(const uint8_t * r_ptr,const uint8_t * g_ptr,const uint8_t * b_ptr,int rgb_step,int rgb_stride,int rgb_bit_depth,uint8_t * y_ptr,int y_stride,uint8_t * u_ptr,int u_stride,uint8_t * v_ptr,int v_stride,int yuv_bit_depth,int width,int height,const SharpYuvConversionMatrix * yuv_matrix)290 static int DoSharpArgbToYuv(const uint8_t* r_ptr, const uint8_t* g_ptr,
291                             const uint8_t* b_ptr, int rgb_step, int rgb_stride,
292                             int rgb_bit_depth, uint8_t* y_ptr, int y_stride,
293                             uint8_t* u_ptr, int u_stride, uint8_t* v_ptr,
294                             int v_stride, int yuv_bit_depth, int width,
295                             int height,
296                             const SharpYuvConversionMatrix* yuv_matrix) {
297   // we expand the right/bottom border if needed
298   const int w = (width + 1) & ~1;
299   const int h = (height + 1) & ~1;
300   const int uv_w = w >> 1;
301   const int uv_h = h >> 1;
302   uint64_t prev_diff_y_sum = ~0;
303   int j, iter;
304 
305   // TODO(skal): allocate one big memory chunk. But for now, it's easier
306   // for valgrind debugging to have several chunks.
307   fixed_y_t* const tmp_buffer = SAFE_ALLOC(w * 3, 2, fixed_y_t);   // scratch
308   fixed_y_t* const best_y_base = SAFE_ALLOC(w, h, fixed_y_t);
309   fixed_y_t* const target_y_base = SAFE_ALLOC(w, h, fixed_y_t);
310   fixed_y_t* const best_rgb_y = SAFE_ALLOC(w, 2, fixed_y_t);
311   fixed_t* const best_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
312   fixed_t* const target_uv_base = SAFE_ALLOC(uv_w * 3, uv_h, fixed_t);
313   fixed_t* const best_rgb_uv = SAFE_ALLOC(uv_w * 3, 1, fixed_t);
314   fixed_y_t* best_y = best_y_base;
315   fixed_y_t* target_y = target_y_base;
316   fixed_t* best_uv = best_uv_base;
317   fixed_t* target_uv = target_uv_base;
318   const uint64_t diff_y_threshold = (uint64_t)(3.0 * w * h);
319   int ok;
320   assert(w > 0);
321   assert(h > 0);
322 
323   if (best_y_base == NULL || best_uv_base == NULL ||
324       target_y_base == NULL || target_uv_base == NULL ||
325       best_rgb_y == NULL || best_rgb_uv == NULL ||
326       tmp_buffer == NULL) {
327     ok = 0;
328     goto End;
329   }
330 
331   // Import RGB samples to W/RGB representation.
332   for (j = 0; j < height; j += 2) {
333     const int is_last_row = (j == height - 1);
334     fixed_y_t* const src1 = tmp_buffer + 0 * w;
335     fixed_y_t* const src2 = tmp_buffer + 3 * w;
336 
337     // prepare two rows of input
338     ImportOneRow(r_ptr, g_ptr, b_ptr, rgb_step, rgb_bit_depth, width,
339                  src1);
340     if (!is_last_row) {
341       ImportOneRow(r_ptr + rgb_stride, g_ptr + rgb_stride, b_ptr + rgb_stride,
342                    rgb_step, rgb_bit_depth, width, src2);
343     } else {
344       memcpy(src2, src1, 3 * w * sizeof(*src2));
345     }
346     StoreGray(src1, best_y + 0, w);
347     StoreGray(src2, best_y + w, w);
348 
349     UpdateW(src1, target_y, w, rgb_bit_depth);
350     UpdateW(src2, target_y + w, w, rgb_bit_depth);
351     UpdateChroma(src1, src2, target_uv, uv_w, rgb_bit_depth);
352     memcpy(best_uv, target_uv, 3 * uv_w * sizeof(*best_uv));
353     best_y += 2 * w;
354     best_uv += 3 * uv_w;
355     target_y += 2 * w;
356     target_uv += 3 * uv_w;
357     r_ptr += 2 * rgb_stride;
358     g_ptr += 2 * rgb_stride;
359     b_ptr += 2 * rgb_stride;
360   }
361 
362   // Iterate and resolve clipping conflicts.
363   for (iter = 0; iter < kNumIterations; ++iter) {
364     const fixed_t* cur_uv = best_uv_base;
365     const fixed_t* prev_uv = best_uv_base;
366     uint64_t diff_y_sum = 0;
367 
368     best_y = best_y_base;
369     best_uv = best_uv_base;
370     target_y = target_y_base;
371     target_uv = target_uv_base;
372     for (j = 0; j < h; j += 2) {
373       fixed_y_t* const src1 = tmp_buffer + 0 * w;
374       fixed_y_t* const src2 = tmp_buffer + 3 * w;
375       {
376         const fixed_t* const next_uv = cur_uv + ((j < h - 2) ? 3 * uv_w : 0);
377         InterpolateTwoRows(best_y, prev_uv, cur_uv, next_uv, w,
378                            src1, src2, rgb_bit_depth);
379         prev_uv = cur_uv;
380         cur_uv = next_uv;
381       }
382 
383       UpdateW(src1, best_rgb_y + 0 * w, w, rgb_bit_depth);
384       UpdateW(src2, best_rgb_y + 1 * w, w, rgb_bit_depth);
385       UpdateChroma(src1, src2, best_rgb_uv, uv_w, rgb_bit_depth);
386 
387       // update two rows of Y and one row of RGB
388       diff_y_sum +=
389           SharpYuvUpdateY(target_y, best_rgb_y, best_y, 2 * w,
390                           rgb_bit_depth + GetPrecisionShift(rgb_bit_depth));
391       SharpYuvUpdateRGB(target_uv, best_rgb_uv, best_uv, 3 * uv_w);
392 
393       best_y += 2 * w;
394       best_uv += 3 * uv_w;
395       target_y += 2 * w;
396       target_uv += 3 * uv_w;
397     }
398     // test exit condition
399     if (iter > 0) {
400       if (diff_y_sum < diff_y_threshold) break;
401       if (diff_y_sum > prev_diff_y_sum) break;
402     }
403     prev_diff_y_sum = diff_y_sum;
404   }
405 
406   // final reconstruction
407   ok = ConvertWRGBToYUV(best_y_base, best_uv_base, y_ptr, y_stride, u_ptr,
408                         u_stride, v_ptr, v_stride, rgb_bit_depth, yuv_bit_depth,
409                         width, height, yuv_matrix);
410 
411  End:
412   free(best_y_base);
413   free(best_uv_base);
414   free(target_y_base);
415   free(target_uv_base);
416   free(best_rgb_y);
417   free(best_rgb_uv);
418   free(tmp_buffer);
419   return ok;
420 }
421 #undef SAFE_ALLOC
422 
423 #if defined(WEBP_USE_THREAD) && !defined(_WIN32)
424 #include <pthread.h>  // NOLINT
425 
426 #define LOCK_ACCESS \
427     static pthread_mutex_t sharpyuv_lock = PTHREAD_MUTEX_INITIALIZER; \
428     if (pthread_mutex_lock(&sharpyuv_lock)) return
429 #define UNLOCK_ACCESS_AND_RETURN                  \
430     do {                                          \
431       (void)pthread_mutex_unlock(&sharpyuv_lock); \
432       return;                                     \
433     } while (0)
434 #else  // !(defined(WEBP_USE_THREAD) && !defined(_WIN32))
435 #define LOCK_ACCESS do {} while (0)
436 #define UNLOCK_ACCESS_AND_RETURN return
437 #endif  // defined(WEBP_USE_THREAD) && !defined(_WIN32)
438 
439 // Hidden exported init function.
440 // By default SharpYuvConvert calls it with SharpYuvGetCPUInfo. If needed,
441 // users can declare it as extern and call it with an alternate VP8CPUInfo
442 // function.
443 SHARPYUV_EXTERN void SharpYuvInit(VP8CPUInfo cpu_info_func);
SharpYuvInit(VP8CPUInfo cpu_info_func)444 void SharpYuvInit(VP8CPUInfo cpu_info_func) {
445   static volatile VP8CPUInfo sharpyuv_last_cpuinfo_used =
446       (VP8CPUInfo)&sharpyuv_last_cpuinfo_used;
447   LOCK_ACCESS;
448   // Only update SharpYuvGetCPUInfo when called from external code to avoid a
449   // race on reading the value in SharpYuvConvert().
450   if (cpu_info_func != (VP8CPUInfo)&SharpYuvGetCPUInfo) {
451     SharpYuvGetCPUInfo = cpu_info_func;
452   }
453   if (sharpyuv_last_cpuinfo_used == SharpYuvGetCPUInfo) {
454     UNLOCK_ACCESS_AND_RETURN;
455   }
456 
457   SharpYuvInitDsp();
458   SharpYuvInitGammaTables();
459 
460   sharpyuv_last_cpuinfo_used = SharpYuvGetCPUInfo;
461   UNLOCK_ACCESS_AND_RETURN;
462 }
463 
SharpYuvConvert(const void * r_ptr,const void * g_ptr,const void * b_ptr,int rgb_step,int rgb_stride,int rgb_bit_depth,void * y_ptr,int y_stride,void * u_ptr,int u_stride,void * v_ptr,int v_stride,int yuv_bit_depth,int width,int height,const SharpYuvConversionMatrix * yuv_matrix)464 int SharpYuvConvert(const void* r_ptr, const void* g_ptr,
465                     const void* b_ptr, int rgb_step, int rgb_stride,
466                     int rgb_bit_depth, void* y_ptr, int y_stride,
467                     void* u_ptr, int u_stride, void* v_ptr,
468                     int v_stride, int yuv_bit_depth, int width,
469                     int height, const SharpYuvConversionMatrix* yuv_matrix) {
470   SharpYuvConversionMatrix scaled_matrix;
471   const int rgb_max = (1 << rgb_bit_depth) - 1;
472   const int rgb_round = 1 << (rgb_bit_depth - 1);
473   const int yuv_max = (1 << yuv_bit_depth) - 1;
474   const int sfix = GetPrecisionShift(rgb_bit_depth);
475 
476   if (width < 1 || height < 1 || width == INT_MAX || height == INT_MAX ||
477       r_ptr == NULL || g_ptr == NULL || b_ptr == NULL || y_ptr == NULL ||
478       u_ptr == NULL || v_ptr == NULL) {
479     return 0;
480   }
481   if (rgb_bit_depth != 8 && rgb_bit_depth != 10 && rgb_bit_depth != 12 &&
482       rgb_bit_depth != 16) {
483     return 0;
484   }
485   if (yuv_bit_depth != 8 && yuv_bit_depth != 10 && yuv_bit_depth != 12) {
486     return 0;
487   }
488   if (rgb_bit_depth > 8 && (rgb_step % 2 != 0 || rgb_stride %2 != 0)) {
489     // Step/stride should be even for uint16_t buffers.
490     return 0;
491   }
492   if (yuv_bit_depth > 8 &&
493       (y_stride % 2 != 0 || u_stride % 2 != 0 || v_stride % 2 != 0)) {
494     // Stride should be even for uint16_t buffers.
495     return 0;
496   }
497   // The address of the function pointer is used to avoid a read race.
498   SharpYuvInit((VP8CPUInfo)&SharpYuvGetCPUInfo);
499 
500   // Add scaling factor to go from rgb_bit_depth to yuv_bit_depth, to the
501   // rgb->yuv conversion matrix.
502   if (rgb_bit_depth == yuv_bit_depth) {
503     memcpy(&scaled_matrix, yuv_matrix, sizeof(scaled_matrix));
504   } else {
505     int i;
506     for (i = 0; i < 3; ++i) {
507       scaled_matrix.rgb_to_y[i] =
508           (yuv_matrix->rgb_to_y[i] * yuv_max + rgb_round) / rgb_max;
509       scaled_matrix.rgb_to_u[i] =
510           (yuv_matrix->rgb_to_u[i] * yuv_max + rgb_round) / rgb_max;
511       scaled_matrix.rgb_to_v[i] =
512           (yuv_matrix->rgb_to_v[i] * yuv_max + rgb_round) / rgb_max;
513     }
514   }
515   // Also incorporate precision change scaling.
516   scaled_matrix.rgb_to_y[3] = Shift(yuv_matrix->rgb_to_y[3], sfix);
517   scaled_matrix.rgb_to_u[3] = Shift(yuv_matrix->rgb_to_u[3], sfix);
518   scaled_matrix.rgb_to_v[3] = Shift(yuv_matrix->rgb_to_v[3], sfix);
519 
520   return DoSharpArgbToYuv(r_ptr, g_ptr, b_ptr, rgb_step, rgb_stride,
521                           rgb_bit_depth, y_ptr, y_stride, u_ptr, u_stride,
522                           v_ptr, v_stride, yuv_bit_depth, width, height,
523                           &scaled_matrix);
524 }
525 
526 //------------------------------------------------------------------------------
527