1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/core/SkGeometry.h"
9
10 #include "include/core/SkMatrix.h"
11 #include "include/core/SkPoint3.h"
12 #include "include/core/SkRect.h"
13 #include "include/private/base/SkDebug.h"
14 #include "include/private/base/SkFloatingPoint.h"
15 #include "include/private/base/SkTPin.h"
16 #include "include/private/base/SkTo.h"
17 #include "src/base/SkBezierCurves.h"
18 #include "src/base/SkCubics.h"
19 #include "src/base/SkVx.h"
20 #include "src/core/SkPointPriv.h"
21
22 #include <algorithm>
23 #include <array>
24 #include <cmath>
25 #include <cstddef>
26 #include <cstdint>
27
28 namespace {
29
30 using float2 = skvx::float2;
31 using float4 = skvx::float4;
32
to_vector(const float2 & x)33 SkVector to_vector(const float2& x) {
34 SkVector vector;
35 x.store(&vector);
36 return vector;
37 }
38
39 ////////////////////////////////////////////////////////////////////////
40
is_not_monotonic(SkScalar a,SkScalar b,SkScalar c)41 int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
42 SkScalar ab = a - b;
43 SkScalar bc = b - c;
44 if (ab < 0) {
45 bc = -bc;
46 }
47 return ab == 0 || bc < 0;
48 }
49
50 ////////////////////////////////////////////////////////////////////////
51
valid_unit_divide(SkScalar numer,SkScalar denom,SkScalar * ratio)52 int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
53 SkASSERT(ratio);
54
55 if (numer < 0) {
56 numer = -numer;
57 denom = -denom;
58 }
59
60 if (denom == 0 || numer == 0 || numer >= denom) {
61 return 0;
62 }
63
64 SkScalar r = numer / denom;
65 if (SkScalarIsNaN(r)) {
66 return 0;
67 }
68 SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
69 if (r == 0) { // catch underflow if numer <<<< denom
70 return 0;
71 }
72 *ratio = r;
73 return 1;
74 }
75
76 // Just returns its argument, but makes it easy to set a break-point to know when
77 // SkFindUnitQuadRoots is going to return 0 (an error).
return_check_zero(int value)78 int return_check_zero(int value) {
79 if (value == 0) {
80 return 0;
81 }
82 return value;
83 }
84
85 } // namespace
86
87 /** From Numerical Recipes in C.
88
89 Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
90 x1 = Q / A
91 x2 = C / Q
92 */
SkFindUnitQuadRoots(SkScalar A,SkScalar B,SkScalar C,SkScalar roots[2])93 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
94 SkASSERT(roots);
95
96 if (A == 0) {
97 return return_check_zero(valid_unit_divide(-C, B, roots));
98 }
99
100 SkScalar* r = roots;
101
102 // use doubles so we don't overflow temporarily trying to compute R
103 double dr = (double)B * B - 4 * (double)A * C;
104 if (dr < 0) {
105 return return_check_zero(0);
106 }
107 dr = sqrt(dr);
108 SkScalar R = SkDoubleToScalar(dr);
109 if (!SkScalarIsFinite(R)) {
110 return return_check_zero(0);
111 }
112
113 SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
114 r += valid_unit_divide(Q, A, r);
115 r += valid_unit_divide(C, Q, r);
116 if (r - roots == 2) {
117 if (roots[0] > roots[1]) {
118 using std::swap;
119 swap(roots[0], roots[1]);
120 } else if (roots[0] == roots[1]) { // nearly-equal?
121 r -= 1; // skip the double root
122 }
123 }
124 return return_check_zero((int)(r - roots));
125 }
126
127 ///////////////////////////////////////////////////////////////////////////////
128 ///////////////////////////////////////////////////////////////////////////////
129
SkEvalQuadAt(const SkPoint src[3],SkScalar t,SkPoint * pt,SkVector * tangent)130 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
131 SkASSERT(src);
132 SkASSERT(t >= 0 && t <= SK_Scalar1);
133
134 if (pt) {
135 *pt = SkEvalQuadAt(src, t);
136 }
137 if (tangent) {
138 *tangent = SkEvalQuadTangentAt(src, t);
139 }
140 }
141
SkEvalQuadAt(const SkPoint src[3],SkScalar t)142 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
143 return to_point(SkQuadCoeff(src).eval(t));
144 }
145
SkEvalQuadTangentAt(const SkPoint src[3],SkScalar t)146 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
147 // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
148 // zero tangent vector when t is 0 or 1, and the control point is equal
149 // to the end point. In this case, use the quad end points to compute the tangent.
150 if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
151 return src[2] - src[0];
152 }
153 SkASSERT(src);
154 SkASSERT(t >= 0 && t <= SK_Scalar1);
155
156 float2 P0 = from_point(src[0]);
157 float2 P1 = from_point(src[1]);
158 float2 P2 = from_point(src[2]);
159
160 float2 B = P1 - P0;
161 float2 A = P2 - P1 - B;
162 float2 T = A * t + B;
163
164 return to_vector(T + T);
165 }
166
interp(const float2 & v0,const float2 & v1,const float2 & t)167 static inline float2 interp(const float2& v0,
168 const float2& v1,
169 const float2& t) {
170 return v0 + (v1 - v0) * t;
171 }
172
SkChopQuadAt(const SkPoint src[3],SkPoint dst[5],SkScalar t)173 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
174 SkASSERT(t > 0 && t < SK_Scalar1);
175
176 float2 p0 = from_point(src[0]);
177 float2 p1 = from_point(src[1]);
178 float2 p2 = from_point(src[2]);
179 float2 tt(t);
180
181 float2 p01 = interp(p0, p1, tt);
182 float2 p12 = interp(p1, p2, tt);
183
184 dst[0] = to_point(p0);
185 dst[1] = to_point(p01);
186 dst[2] = to_point(interp(p01, p12, tt));
187 dst[3] = to_point(p12);
188 dst[4] = to_point(p2);
189 }
190
SkChopQuadAtHalf(const SkPoint src[3],SkPoint dst[5])191 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
192 SkChopQuadAt(src, dst, 0.5f);
193 }
194
SkMeasureAngleBetweenVectors(SkVector a,SkVector b)195 float SkMeasureAngleBetweenVectors(SkVector a, SkVector b) {
196 float cosTheta = sk_ieee_float_divide(a.dot(b), sqrtf(a.dot(a) * b.dot(b)));
197 // Pin cosTheta such that if it is NaN (e.g., if a or b was 0), then we return acos(1) = 0.
198 cosTheta = std::max(std::min(1.f, cosTheta), -1.f);
199 return acosf(cosTheta);
200 }
201
SkFindBisector(SkVector a,SkVector b)202 SkVector SkFindBisector(SkVector a, SkVector b) {
203 std::array<SkVector, 2> v;
204 if (a.dot(b) >= 0) {
205 // a,b are within +/-90 degrees apart.
206 v = {a, b};
207 } else if (a.cross(b) >= 0) {
208 // a,b are >90 degrees apart. Find the bisector of their interior normals instead. (Above 90
209 // degrees, the original vectors start cancelling each other out which eventually becomes
210 // unstable.)
211 v[0].set(-a.fY, +a.fX);
212 v[1].set(+b.fY, -b.fX);
213 } else {
214 // a,b are <-90 degrees apart. Find the bisector of their interior normals instead. (Below
215 // -90 degrees, the original vectors start cancelling each other out which eventually
216 // becomes unstable.)
217 v[0].set(+a.fY, -a.fX);
218 v[1].set(-b.fY, +b.fX);
219 }
220 // Return "normalize(v[0]) + normalize(v[1])".
221 skvx::float2 x0_x1{v[0].fX, v[1].fX};
222 skvx::float2 y0_y1{v[0].fY, v[1].fY};
223 auto invLengths = 1.0f / sqrt(x0_x1 * x0_x1 + y0_y1 * y0_y1);
224 x0_x1 *= invLengths;
225 y0_y1 *= invLengths;
226 return SkPoint{x0_x1[0] + x0_x1[1], y0_y1[0] + y0_y1[1]};
227 }
228
SkFindQuadMidTangent(const SkPoint src[3])229 float SkFindQuadMidTangent(const SkPoint src[3]) {
230 // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
231 // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent:
232 //
233 // n dot midtangent = 0
234 //
235 SkVector tan0 = src[1] - src[0];
236 SkVector tan1 = src[2] - src[1];
237 SkVector bisector = SkFindBisector(tan0, -tan1);
238
239 // The midtangent can be found where (F' dot bisector) = 0:
240 //
241 // 0 = (F'(T) dot bisector) = |2*T 1| * |p0 - 2*p1 + p2| * |bisector.x|
242 // |-2*p0 + 2*p1 | |bisector.y|
243 //
244 // = |2*T 1| * |tan1 - tan0| * |nx|
245 // |2*tan0 | |ny|
246 //
247 // = 2*T * ((tan1 - tan0) dot bisector) + (2*tan0 dot bisector)
248 //
249 // T = (tan0 dot bisector) / ((tan0 - tan1) dot bisector)
250 float T = sk_ieee_float_divide(tan0.dot(bisector), (tan0 - tan1).dot(bisector));
251 if (!(T > 0 && T < 1)) { // Use "!(positive_logic)" so T=nan will take this branch.
252 T = .5; // The quadratic was a line or near-line. Just chop at .5.
253 }
254
255 return T;
256 }
257
258 /** Quad'(t) = At + B, where
259 A = 2(a - 2b + c)
260 B = 2(b - a)
261 Solve for t, only if it fits between 0 < t < 1
262 */
SkFindQuadExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar tValue[1])263 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
264 /* At + B == 0
265 t = -B / A
266 */
267 return valid_unit_divide(a - b, a - b - b + c, tValue);
268 }
269
flatten_double_quad_extrema(SkScalar coords[14])270 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
271 coords[2] = coords[6] = coords[4];
272 }
273
274 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
275 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
276 */
SkChopQuadAtYExtrema(const SkPoint src[3],SkPoint dst[5])277 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
278 SkASSERT(src);
279 SkASSERT(dst);
280
281 SkScalar a = src[0].fY;
282 SkScalar b = src[1].fY;
283 SkScalar c = src[2].fY;
284
285 if (is_not_monotonic(a, b, c)) {
286 SkScalar tValue;
287 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
288 SkChopQuadAt(src, dst, tValue);
289 flatten_double_quad_extrema(&dst[0].fY);
290 return 1;
291 }
292 // if we get here, we need to force dst to be monotonic, even though
293 // we couldn't compute a unit_divide value (probably underflow).
294 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
295 }
296 dst[0].set(src[0].fX, a);
297 dst[1].set(src[1].fX, b);
298 dst[2].set(src[2].fX, c);
299 return 0;
300 }
301
302 /* Returns 0 for 1 quad, and 1 for two quads, either way the answer is
303 stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
304 */
SkChopQuadAtXExtrema(const SkPoint src[3],SkPoint dst[5])305 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
306 SkASSERT(src);
307 SkASSERT(dst);
308
309 SkScalar a = src[0].fX;
310 SkScalar b = src[1].fX;
311 SkScalar c = src[2].fX;
312
313 if (is_not_monotonic(a, b, c)) {
314 SkScalar tValue;
315 if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
316 SkChopQuadAt(src, dst, tValue);
317 flatten_double_quad_extrema(&dst[0].fX);
318 return 1;
319 }
320 // if we get here, we need to force dst to be monotonic, even though
321 // we couldn't compute a unit_divide value (probably underflow).
322 b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
323 }
324 dst[0].set(a, src[0].fY);
325 dst[1].set(b, src[1].fY);
326 dst[2].set(c, src[2].fY);
327 return 0;
328 }
329
330 // F(t) = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
331 // F'(t) = 2 (b - a) + 2 (a - 2b + c) t
332 // F''(t) = 2 (a - 2b + c)
333 //
334 // A = 2 (b - a)
335 // B = 2 (a - 2b + c)
336 //
337 // Maximum curvature for a quadratic means solving
338 // Fx' Fx'' + Fy' Fy'' = 0
339 //
340 // t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
341 //
SkFindQuadMaxCurvature(const SkPoint src[3])342 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
343 SkScalar Ax = src[1].fX - src[0].fX;
344 SkScalar Ay = src[1].fY - src[0].fY;
345 SkScalar Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
346 SkScalar By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
347
348 SkScalar numer = -(Ax * Bx + Ay * By);
349 SkScalar denom = Bx * Bx + By * By;
350 if (denom < 0) {
351 numer = -numer;
352 denom = -denom;
353 }
354 if (numer <= 0) {
355 return 0;
356 }
357 if (numer >= denom) { // Also catches denom=0.
358 return 1;
359 }
360 SkScalar t = numer / denom;
361 SkASSERT((0 <= t && t < 1) || SkScalarIsNaN(t));
362 return t;
363 }
364
SkChopQuadAtMaxCurvature(const SkPoint src[3],SkPoint dst[5])365 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
366 SkScalar t = SkFindQuadMaxCurvature(src);
367 if (t > 0 && t < 1) {
368 SkChopQuadAt(src, dst, t);
369 return 2;
370 } else {
371 memcpy(dst, src, 3 * sizeof(SkPoint));
372 return 1;
373 }
374 }
375
SkConvertQuadToCubic(const SkPoint src[3],SkPoint dst[4])376 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
377 float2 scale(SkDoubleToScalar(2.0 / 3.0));
378 float2 s0 = from_point(src[0]);
379 float2 s1 = from_point(src[1]);
380 float2 s2 = from_point(src[2]);
381
382 dst[0] = to_point(s0);
383 dst[1] = to_point(s0 + (s1 - s0) * scale);
384 dst[2] = to_point(s2 + (s1 - s2) * scale);
385 dst[3] = to_point(s2);
386 }
387
388 //////////////////////////////////////////////////////////////////////////////
389 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
390 //////////////////////////////////////////////////////////////////////////////
391
eval_cubic_derivative(const SkPoint src[4],SkScalar t)392 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
393 SkQuadCoeff coeff;
394 float2 P0 = from_point(src[0]);
395 float2 P1 = from_point(src[1]);
396 float2 P2 = from_point(src[2]);
397 float2 P3 = from_point(src[3]);
398
399 coeff.fA = P3 + 3 * (P1 - P2) - P0;
400 coeff.fB = times_2(P2 - times_2(P1) + P0);
401 coeff.fC = P1 - P0;
402 return to_vector(coeff.eval(t));
403 }
404
eval_cubic_2ndDerivative(const SkPoint src[4],SkScalar t)405 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
406 float2 P0 = from_point(src[0]);
407 float2 P1 = from_point(src[1]);
408 float2 P2 = from_point(src[2]);
409 float2 P3 = from_point(src[3]);
410 float2 A = P3 + 3 * (P1 - P2) - P0;
411 float2 B = P2 - times_2(P1) + P0;
412
413 return to_vector(A * t + B);
414 }
415
SkEvalCubicAt(const SkPoint src[4],SkScalar t,SkPoint * loc,SkVector * tangent,SkVector * curvature)416 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
417 SkVector* tangent, SkVector* curvature) {
418 SkASSERT(src);
419 SkASSERT(t >= 0 && t <= SK_Scalar1);
420
421 if (loc) {
422 *loc = to_point(SkCubicCoeff(src).eval(t));
423 }
424 if (tangent) {
425 // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
426 // adjacent control point is equal to the end point. In this case, use the
427 // next control point or the end points to compute the tangent.
428 if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
429 if (t == 0) {
430 *tangent = src[2] - src[0];
431 } else {
432 *tangent = src[3] - src[1];
433 }
434 if (!tangent->fX && !tangent->fY) {
435 *tangent = src[3] - src[0];
436 }
437 } else {
438 *tangent = eval_cubic_derivative(src, t);
439 }
440 }
441 if (curvature) {
442 *curvature = eval_cubic_2ndDerivative(src, t);
443 }
444 }
445
446 /** Cubic'(t) = At^2 + Bt + C, where
447 A = 3(-a + 3(b - c) + d)
448 B = 6(a - 2b + c)
449 C = 3(b - a)
450 Solve for t, keeping only those that fit betwee 0 < t < 1
451 */
SkFindCubicExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar d,SkScalar tValues[2])452 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
453 SkScalar tValues[2]) {
454 // we divide A,B,C by 3 to simplify
455 SkScalar A = d - a + 3*(b - c);
456 SkScalar B = 2*(a - b - b + c);
457 SkScalar C = b - a;
458
459 return SkFindUnitQuadRoots(A, B, C, tValues);
460 }
461
462 // This does not return b when t==1, but it otherwise seems to get better precision than
463 // "a*(1 - t) + b*t" for things like chopping cubics on exact cusp points.
464 // The responsibility falls on the caller to check that t != 1 before calling.
465 template<int N, typename T>
unchecked_mix(const skvx::Vec<N,T> & a,const skvx::Vec<N,T> & b,const skvx::Vec<N,T> & t)466 inline static skvx::Vec<N,T> unchecked_mix(const skvx::Vec<N,T>& a, const skvx::Vec<N,T>& b,
467 const skvx::Vec<N,T>& t) {
468 return (b - a)*t + a;
469 }
470
SkChopCubicAt(const SkPoint src[4],SkPoint dst[7],SkScalar t)471 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
472 SkASSERT(0 <= t && t <= 1);
473
474 if (t == 1) {
475 memcpy(dst, src, sizeof(SkPoint) * 4);
476 dst[4] = dst[5] = dst[6] = src[3];
477 return;
478 }
479
480 float2 p0 = skvx::bit_pun<float2>(src[0]);
481 float2 p1 = skvx::bit_pun<float2>(src[1]);
482 float2 p2 = skvx::bit_pun<float2>(src[2]);
483 float2 p3 = skvx::bit_pun<float2>(src[3]);
484 float2 T = t;
485
486 float2 ab = unchecked_mix(p0, p1, T);
487 float2 bc = unchecked_mix(p1, p2, T);
488 float2 cd = unchecked_mix(p2, p3, T);
489 float2 abc = unchecked_mix(ab, bc, T);
490 float2 bcd = unchecked_mix(bc, cd, T);
491 float2 abcd = unchecked_mix(abc, bcd, T);
492
493 dst[0] = skvx::bit_pun<SkPoint>(p0);
494 dst[1] = skvx::bit_pun<SkPoint>(ab);
495 dst[2] = skvx::bit_pun<SkPoint>(abc);
496 dst[3] = skvx::bit_pun<SkPoint>(abcd);
497 dst[4] = skvx::bit_pun<SkPoint>(bcd);
498 dst[5] = skvx::bit_pun<SkPoint>(cd);
499 dst[6] = skvx::bit_pun<SkPoint>(p3);
500 }
501
SkChopCubicAt(const SkPoint src[4],SkPoint dst[10],float t0,float t1)502 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[10], float t0, float t1) {
503 SkASSERT(0 <= t0 && t0 <= t1 && t1 <= 1);
504
505 if (t1 == 1) {
506 SkChopCubicAt(src, dst, t0);
507 dst[7] = dst[8] = dst[9] = src[3];
508 return;
509 }
510
511 // Perform both chops in parallel using 4-lane SIMD.
512 float4 p00, p11, p22, p33, T;
513 p00.lo = p00.hi = skvx::bit_pun<float2>(src[0]);
514 p11.lo = p11.hi = skvx::bit_pun<float2>(src[1]);
515 p22.lo = p22.hi = skvx::bit_pun<float2>(src[2]);
516 p33.lo = p33.hi = skvx::bit_pun<float2>(src[3]);
517 T.lo = t0;
518 T.hi = t1;
519
520 float4 ab = unchecked_mix(p00, p11, T);
521 float4 bc = unchecked_mix(p11, p22, T);
522 float4 cd = unchecked_mix(p22, p33, T);
523 float4 abc = unchecked_mix(ab, bc, T);
524 float4 bcd = unchecked_mix(bc, cd, T);
525 float4 abcd = unchecked_mix(abc, bcd, T);
526 float4 middle = unchecked_mix(abc, bcd, skvx::shuffle<2,3,0,1>(T));
527
528 dst[0] = skvx::bit_pun<SkPoint>(p00.lo);
529 dst[1] = skvx::bit_pun<SkPoint>(ab.lo);
530 dst[2] = skvx::bit_pun<SkPoint>(abc.lo);
531 dst[3] = skvx::bit_pun<SkPoint>(abcd.lo);
532 middle.store(dst + 4);
533 dst[6] = skvx::bit_pun<SkPoint>(abcd.hi);
534 dst[7] = skvx::bit_pun<SkPoint>(bcd.hi);
535 dst[8] = skvx::bit_pun<SkPoint>(cd.hi);
536 dst[9] = skvx::bit_pun<SkPoint>(p33.hi);
537 }
538
SkChopCubicAt(const SkPoint src[4],SkPoint dst[],const SkScalar tValues[],int tCount)539 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
540 const SkScalar tValues[], int tCount) {
541 SkASSERT(std::all_of(tValues, tValues + tCount, [](SkScalar t) { return t >= 0 && t <= 1; }));
542 SkASSERT(std::is_sorted(tValues, tValues + tCount));
543
544 if (dst) {
545 if (tCount == 0) { // nothing to chop
546 memcpy(dst, src, 4*sizeof(SkPoint));
547 } else {
548 int i = 0;
549 for (; i < tCount - 1; i += 2) {
550 // Do two chops at once.
551 float2 tt = float2::Load(tValues + i);
552 if (i != 0) {
553 float lastT = tValues[i - 1];
554 tt = skvx::pin((tt - lastT) / (1 - lastT), float2(0), float2(1));
555 }
556 SkChopCubicAt(src, dst, tt[0], tt[1]);
557 src = dst = dst + 6;
558 }
559 if (i < tCount) {
560 // Chop the final cubic if there was an odd number of chops.
561 SkASSERT(i + 1 == tCount);
562 float t = tValues[i];
563 if (i != 0) {
564 float lastT = tValues[i - 1];
565 t = SkTPin(sk_ieee_float_divide(t - lastT, 1 - lastT), 0.f, 1.f);
566 }
567 SkChopCubicAt(src, dst, t);
568 }
569 }
570 }
571 }
572
SkChopCubicAtHalf(const SkPoint src[4],SkPoint dst[7])573 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
574 SkChopCubicAt(src, dst, 0.5f);
575 }
576
SkMeasureNonInflectCubicRotation(const SkPoint pts[4])577 float SkMeasureNonInflectCubicRotation(const SkPoint pts[4]) {
578 SkVector a = pts[1] - pts[0];
579 SkVector b = pts[2] - pts[1];
580 SkVector c = pts[3] - pts[2];
581 if (a.isZero()) {
582 return SkMeasureAngleBetweenVectors(b, c);
583 }
584 if (b.isZero()) {
585 return SkMeasureAngleBetweenVectors(a, c);
586 }
587 if (c.isZero()) {
588 return SkMeasureAngleBetweenVectors(a, b);
589 }
590 // Postulate: When no points are colocated and there are no inflection points in T=0..1, the
591 // rotation is: 360 degrees, minus the angle [p0,p1,p2], minus the angle [p1,p2,p3].
592 return 2*SK_ScalarPI - SkMeasureAngleBetweenVectors(a,-b) - SkMeasureAngleBetweenVectors(b,-c);
593 }
594
fma(const skvx::float4 & f,float m,const skvx::float4 & a)595 static skvx::float4 fma(const skvx::float4& f, float m, const skvx::float4& a) {
596 return skvx::fma(f, skvx::float4(m), a);
597 }
598
599 // Finds the root nearest 0.5. Returns 0.5 if the roots are undefined or outside 0..1.
solve_quadratic_equation_for_midtangent(float a,float b,float c,float discr)600 static float solve_quadratic_equation_for_midtangent(float a, float b, float c, float discr) {
601 // Quadratic formula from Numerical Recipes in C:
602 float q = -.5f * (b + copysignf(sqrtf(discr), b));
603 // The roots are q/a and c/q. Pick the midtangent closer to T=.5.
604 float _5qa = -.5f*q*a;
605 float T = fabsf(q*q + _5qa) < fabsf(a*c + _5qa) ? sk_ieee_float_divide(q,a)
606 : sk_ieee_float_divide(c,q);
607 if (!(T > 0 && T < 1)) { // Use "!(positive_logic)" so T=NaN will take this branch.
608 // Either the curve is a flat line with no rotation or FP precision failed us. Chop at .5.
609 T = .5;
610 }
611 return T;
612 }
613
solve_quadratic_equation_for_midtangent(float a,float b,float c)614 static float solve_quadratic_equation_for_midtangent(float a, float b, float c) {
615 return solve_quadratic_equation_for_midtangent(a, b, c, b*b - 4*a*c);
616 }
617
SkFindCubicMidTangent(const SkPoint src[4])618 float SkFindCubicMidTangent(const SkPoint src[4]) {
619 // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
620 // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent:
621 //
622 // bisector dot midtangent == 0
623 //
624 SkVector tan0 = (src[0] == src[1]) ? src[2] - src[0] : src[1] - src[0];
625 SkVector tan1 = (src[2] == src[3]) ? src[3] - src[1] : src[3] - src[2];
626 SkVector bisector = SkFindBisector(tan0, -tan1);
627
628 // Find the T value at the midtangent. This is a simple quadratic equation:
629 //
630 // midtangent dot bisector == 0, or using a tangent matrix C' in power basis form:
631 //
632 // |C'x C'y|
633 // |T^2 T 1| * |. . | * |bisector.x| == 0
634 // |. . | |bisector.y|
635 //
636 // The coeffs for the quadratic equation we need to solve are therefore: C' * bisector
637 static const skvx::float4 kM[4] = {skvx::float4(-1, 2, -1, 0),
638 skvx::float4( 3, -4, 1, 0),
639 skvx::float4(-3, 2, 0, 0)};
640 auto C_x = fma(kM[0], src[0].fX,
641 fma(kM[1], src[1].fX,
642 fma(kM[2], src[2].fX, skvx::float4(src[3].fX, 0,0,0))));
643 auto C_y = fma(kM[0], src[0].fY,
644 fma(kM[1], src[1].fY,
645 fma(kM[2], src[2].fY, skvx::float4(src[3].fY, 0,0,0))));
646 auto coeffs = C_x * bisector.x() + C_y * bisector.y();
647
648 // Now solve the quadratic for T.
649 float T = 0;
650 float a=coeffs[0], b=coeffs[1], c=coeffs[2];
651 float discr = b*b - 4*a*c;
652 if (discr > 0) { // This will only be false if the curve is a line.
653 return solve_quadratic_equation_for_midtangent(a, b, c, discr);
654 } else {
655 // This is a 0- or 360-degree flat line. It doesn't have single points of midtangent.
656 // (tangent == midtangent at every point on the curve except the cusp points.)
657 // Chop in between both cusps instead, if any. There can be up to two cusps on a flat line,
658 // both where the tangent is perpendicular to the starting tangent:
659 //
660 // tangent dot tan0 == 0
661 //
662 coeffs = C_x * tan0.x() + C_y * tan0.y();
663 a = coeffs[0];
664 b = coeffs[1];
665 if (a != 0) {
666 // We want the point in between both cusps. The midpoint of:
667 //
668 // (-b +/- sqrt(b^2 - 4*a*c)) / (2*a)
669 //
670 // Is equal to:
671 //
672 // -b / (2*a)
673 T = -b / (2*a);
674 }
675 if (!(T > 0 && T < 1)) { // Use "!(positive_logic)" so T=NaN will take this branch.
676 // Either the curve is a flat line with no rotation or FP precision failed us. Chop at
677 // .5.
678 T = .5;
679 }
680 return T;
681 }
682 }
683
flatten_double_cubic_extrema(SkScalar coords[14])684 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
685 coords[4] = coords[8] = coords[6];
686 }
687
688 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
689 the resulting beziers are monotonic in Y. This is called by the scan
690 converter. Depending on what is returned, dst[] is treated as follows:
691 0 dst[0..3] is the original cubic
692 1 dst[0..3] and dst[3..6] are the two new cubics
693 2 dst[0..3], dst[3..6], dst[6..9] are the three new cubics
694 If dst == null, it is ignored and only the count is returned.
695 */
SkChopCubicAtYExtrema(const SkPoint src[4],SkPoint dst[10])696 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
697 SkScalar tValues[2];
698 int roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
699 src[3].fY, tValues);
700
701 SkChopCubicAt(src, dst, tValues, roots);
702 if (dst && roots > 0) {
703 // we do some cleanup to ensure our Y extrema are flat
704 flatten_double_cubic_extrema(&dst[0].fY);
705 if (roots == 2) {
706 flatten_double_cubic_extrema(&dst[3].fY);
707 }
708 }
709 return roots;
710 }
711
SkChopCubicAtXExtrema(const SkPoint src[4],SkPoint dst[10])712 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
713 SkScalar tValues[2];
714 int roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
715 src[3].fX, tValues);
716
717 SkChopCubicAt(src, dst, tValues, roots);
718 if (dst && roots > 0) {
719 // we do some cleanup to ensure our Y extrema are flat
720 flatten_double_cubic_extrema(&dst[0].fX);
721 if (roots == 2) {
722 flatten_double_cubic_extrema(&dst[3].fX);
723 }
724 }
725 return roots;
726 }
727
728 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
729
730 Inflection means that curvature is zero.
731 Curvature is [F' x F''] / [F'^3]
732 So we solve F'x X F''y - F'y X F''y == 0
733 After some canceling of the cubic term, we get
734 A = b - a
735 B = c - 2b + a
736 C = d - 3c + 3b - a
737 (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
738 */
SkFindCubicInflections(const SkPoint src[4],SkScalar tValues[2])739 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[2]) {
740 SkScalar Ax = src[1].fX - src[0].fX;
741 SkScalar Ay = src[1].fY - src[0].fY;
742 SkScalar Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
743 SkScalar By = src[2].fY - 2 * src[1].fY + src[0].fY;
744 SkScalar Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
745 SkScalar Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
746
747 return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
748 Ax*Cy - Ay*Cx,
749 Ax*By - Ay*Bx,
750 tValues);
751 }
752
SkChopCubicAtInflections(const SkPoint src[4],SkPoint dst[10])753 int SkChopCubicAtInflections(const SkPoint src[4], SkPoint dst[10]) {
754 SkScalar tValues[2];
755 int count = SkFindCubicInflections(src, tValues);
756
757 if (dst) {
758 if (count == 0) {
759 memcpy(dst, src, 4 * sizeof(SkPoint));
760 } else {
761 SkChopCubicAt(src, dst, tValues, count);
762 }
763 }
764 return count + 1;
765 }
766
767 // Assumes the third component of points is 1.
768 // Calcs p0 . (p1 x p2)
calc_dot_cross_cubic(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2)769 static double calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
770 const double xComp = (double) p0.fX * ((double) p1.fY - (double) p2.fY);
771 const double yComp = (double) p0.fY * ((double) p2.fX - (double) p1.fX);
772 const double wComp = (double) p1.fX * (double) p2.fY - (double) p1.fY * (double) p2.fX;
773 return (xComp + yComp + wComp);
774 }
775
776 // Returns a positive power of 2 that, when multiplied by n, and excepting the two edge cases listed
777 // below, shifts the exponent of n to yield a magnitude somewhere inside [1..2).
778 // Returns 2^1023 if abs(n) < 2^-1022 (including 0).
779 // Returns NaN if n is Inf or NaN.
previous_inverse_pow2(double n)780 inline static double previous_inverse_pow2(double n) {
781 uint64_t bits;
782 memcpy(&bits, &n, sizeof(double));
783 bits = ((1023llu*2 << 52) + ((1llu << 52) - 1)) - bits; // exp=-exp
784 bits &= (0x7ffllu) << 52; // mantissa=1.0, sign=0
785 memcpy(&n, &bits, sizeof(double));
786 return n;
787 }
788
write_cubic_inflection_roots(double t0,double s0,double t1,double s1,double * t,double * s)789 inline static void write_cubic_inflection_roots(double t0, double s0, double t1, double s1,
790 double* t, double* s) {
791 t[0] = t0;
792 s[0] = s0;
793
794 // This copysign/abs business orients the implicit function so positive values are always on the
795 // "left" side of the curve.
796 t[1] = -copysign(t1, t1 * s1);
797 s[1] = -fabs(s1);
798
799 // Ensure t[0]/s[0] <= t[1]/s[1] (s[1] is negative from above).
800 if (copysign(s[1], s[0]) * t[0] > -fabs(s[0]) * t[1]) {
801 using std::swap;
802 swap(t[0], t[1]);
803 swap(s[0], s[1]);
804 }
805 }
806
SkClassifyCubic(const SkPoint P[4],double t[2],double s[2],double d[4])807 SkCubicType SkClassifyCubic(const SkPoint P[4], double t[2], double s[2], double d[4]) {
808 // Find the cubic's inflection function, I = [T^3 -3T^2 3T -1] dot D. (D0 will always be 0
809 // for integral cubics.)
810 //
811 // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
812 // 4.2 Curve Categorization:
813 //
814 // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
815 double A1 = calc_dot_cross_cubic(P[0], P[3], P[2]);
816 double A2 = calc_dot_cross_cubic(P[1], P[0], P[3]);
817 double A3 = calc_dot_cross_cubic(P[2], P[1], P[0]);
818
819 double D3 = 3 * A3;
820 double D2 = D3 - A2;
821 double D1 = D2 - A2 + A1;
822
823 // Shift the exponents in D so the largest magnitude falls somewhere in 1..2. This protects us
824 // from overflow down the road while solving for roots and KLM functionals.
825 double Dmax = std::max(std::max(fabs(D1), fabs(D2)), fabs(D3));
826 double norm = previous_inverse_pow2(Dmax);
827 D1 *= norm;
828 D2 *= norm;
829 D3 *= norm;
830
831 if (d) {
832 d[3] = D3;
833 d[2] = D2;
834 d[1] = D1;
835 d[0] = 0;
836 }
837
838 // Now use the inflection function to classify the cubic.
839 //
840 // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware",
841 // 4.4 Integral Cubics:
842 //
843 // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
844 if (0 != D1) {
845 double discr = 3*D2*D2 - 4*D1*D3;
846 if (discr > 0) { // Serpentine.
847 if (t && s) {
848 double q = 3*D2 + copysign(sqrt(3*discr), D2);
849 write_cubic_inflection_roots(q, 6*D1, 2*D3, q, t, s);
850 }
851 return SkCubicType::kSerpentine;
852 } else if (discr < 0) { // Loop.
853 if (t && s) {
854 double q = D2 + copysign(sqrt(-discr), D2);
855 write_cubic_inflection_roots(q, 2*D1, 2*(D2*D2 - D3*D1), D1*q, t, s);
856 }
857 return SkCubicType::kLoop;
858 } else { // Cusp.
859 if (t && s) {
860 write_cubic_inflection_roots(D2, 2*D1, D2, 2*D1, t, s);
861 }
862 return SkCubicType::kLocalCusp;
863 }
864 } else {
865 if (0 != D2) { // Cusp at T=infinity.
866 if (t && s) {
867 write_cubic_inflection_roots(D3, 3*D2, 1, 0, t, s); // T1=infinity.
868 }
869 return SkCubicType::kCuspAtInfinity;
870 } else { // Degenerate.
871 if (t && s) {
872 write_cubic_inflection_roots(1, 0, 1, 0, t, s); // T0=T1=infinity.
873 }
874 return 0 != D3 ? SkCubicType::kQuadratic : SkCubicType::kLineOrPoint;
875 }
876 }
877 }
878
bubble_sort(T array[],int count)879 template <typename T> void bubble_sort(T array[], int count) {
880 for (int i = count - 1; i > 0; --i)
881 for (int j = i; j > 0; --j)
882 if (array[j] < array[j-1])
883 {
884 T tmp(array[j]);
885 array[j] = array[j-1];
886 array[j-1] = tmp;
887 }
888 }
889
890 /**
891 * Given an array and count, remove all pair-wise duplicates from the array,
892 * keeping the existing sorting, and return the new count
893 */
collaps_duplicates(SkScalar array[],int count)894 static int collaps_duplicates(SkScalar array[], int count) {
895 for (int n = count; n > 1; --n) {
896 if (array[0] == array[1]) {
897 for (int i = 1; i < n; ++i) {
898 array[i - 1] = array[i];
899 }
900 count -= 1;
901 } else {
902 array += 1;
903 }
904 }
905 return count;
906 }
907
908 #ifdef SK_DEBUG
909
910 #define TEST_COLLAPS_ENTRY(array) array, std::size(array)
911
test_collaps_duplicates()912 static void test_collaps_duplicates() {
913 static bool gOnce;
914 if (gOnce) { return; }
915 gOnce = true;
916 const SkScalar src0[] = { 0 };
917 const SkScalar src1[] = { 0, 0 };
918 const SkScalar src2[] = { 0, 1 };
919 const SkScalar src3[] = { 0, 0, 0 };
920 const SkScalar src4[] = { 0, 0, 1 };
921 const SkScalar src5[] = { 0, 1, 1 };
922 const SkScalar src6[] = { 0, 1, 2 };
923 const struct {
924 const SkScalar* fData;
925 int fCount;
926 int fCollapsedCount;
927 } data[] = {
928 { TEST_COLLAPS_ENTRY(src0), 1 },
929 { TEST_COLLAPS_ENTRY(src1), 1 },
930 { TEST_COLLAPS_ENTRY(src2), 2 },
931 { TEST_COLLAPS_ENTRY(src3), 1 },
932 { TEST_COLLAPS_ENTRY(src4), 2 },
933 { TEST_COLLAPS_ENTRY(src5), 2 },
934 { TEST_COLLAPS_ENTRY(src6), 3 },
935 };
936 for (size_t i = 0; i < std::size(data); ++i) {
937 SkScalar dst[3];
938 memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
939 int count = collaps_duplicates(dst, data[i].fCount);
940 SkASSERT(data[i].fCollapsedCount == count);
941 for (int j = 1; j < count; ++j) {
942 SkASSERT(dst[j-1] < dst[j]);
943 }
944 }
945 }
946 #endif
947
SkScalarCubeRoot(SkScalar x)948 static SkScalar SkScalarCubeRoot(SkScalar x) {
949 return SkScalarPow(x, 0.3333333f);
950 }
951
952 /* Solve coeff(t) == 0, returning the number of roots that
953 lie withing 0 < t < 1.
954 coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
955
956 Eliminates repeated roots (so that all tValues are distinct, and are always
957 in increasing order.
958 */
solve_cubic_poly(const SkScalar coeff[4],SkScalar tValues[3])959 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
960 if (SkScalarNearlyZero(coeff[0])) { // we're just a quadratic
961 return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
962 }
963
964 SkScalar a, b, c, Q, R;
965
966 {
967 SkASSERT(coeff[0] != 0);
968
969 SkScalar inva = SkScalarInvert(coeff[0]);
970 a = coeff[1] * inva;
971 b = coeff[2] * inva;
972 c = coeff[3] * inva;
973 }
974 Q = (a*a - b*3) / 9;
975 R = (2*a*a*a - 9*a*b + 27*c) / 54;
976
977 SkScalar Q3 = Q * Q * Q;
978 SkScalar R2MinusQ3 = R * R - Q3;
979 SkScalar adiv3 = a / 3;
980
981 if (R2MinusQ3 < 0) { // we have 3 real roots
982 // the divide/root can, due to finite precisions, be slightly outside of -1...1
983 SkScalar theta = SkScalarACos(SkTPin(R / SkScalarSqrt(Q3), -1.0f, 1.0f));
984 SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
985
986 tValues[0] = SkTPin(neg2RootQ * SkScalarCos(theta/3) - adiv3, 0.0f, 1.0f);
987 tValues[1] = SkTPin(neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3, 0.0f, 1.0f);
988 tValues[2] = SkTPin(neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3, 0.0f, 1.0f);
989 SkDEBUGCODE(test_collaps_duplicates();)
990
991 // now sort the roots
992 bubble_sort(tValues, 3);
993 return collaps_duplicates(tValues, 3);
994 } else { // we have 1 real root
995 SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
996 A = SkScalarCubeRoot(A);
997 if (R > 0) {
998 A = -A;
999 }
1000 if (A != 0) {
1001 A += Q / A;
1002 }
1003 tValues[0] = SkTPin(A - adiv3, 0.0f, 1.0f);
1004 return 1;
1005 }
1006 }
1007
1008 /* Looking for F' dot F'' == 0
1009
1010 A = b - a
1011 B = c - 2b + a
1012 C = d - 3c + 3b - a
1013
1014 F' = 3Ct^2 + 6Bt + 3A
1015 F'' = 6Ct + 6B
1016
1017 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
1018 */
formulate_F1DotF2(const SkScalar src[],SkScalar coeff[4])1019 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
1020 SkScalar a = src[2] - src[0];
1021 SkScalar b = src[4] - 2 * src[2] + src[0];
1022 SkScalar c = src[6] + 3 * (src[2] - src[4]) - src[0];
1023
1024 coeff[0] = c * c;
1025 coeff[1] = 3 * b * c;
1026 coeff[2] = 2 * b * b + c * a;
1027 coeff[3] = a * b;
1028 }
1029
1030 /* Looking for F' dot F'' == 0
1031
1032 A = b - a
1033 B = c - 2b + a
1034 C = d - 3c + 3b - a
1035
1036 F' = 3Ct^2 + 6Bt + 3A
1037 F'' = 6Ct + 6B
1038
1039 F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
1040 */
SkFindCubicMaxCurvature(const SkPoint src[4],SkScalar tValues[3])1041 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
1042 SkScalar coeffX[4], coeffY[4];
1043 int i;
1044
1045 formulate_F1DotF2(&src[0].fX, coeffX);
1046 formulate_F1DotF2(&src[0].fY, coeffY);
1047
1048 for (i = 0; i < 4; i++) {
1049 coeffX[i] += coeffY[i];
1050 }
1051
1052 int numRoots = solve_cubic_poly(coeffX, tValues);
1053 // now remove extrema where the curvature is zero (mins)
1054 // !!!! need a test for this !!!!
1055 return numRoots;
1056 }
1057
SkChopCubicAtMaxCurvature(const SkPoint src[4],SkPoint dst[13],SkScalar tValues[3])1058 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
1059 SkScalar tValues[3]) {
1060 SkScalar t_storage[3];
1061
1062 if (tValues == nullptr) {
1063 tValues = t_storage;
1064 }
1065
1066 SkScalar roots[3];
1067 int rootCount = SkFindCubicMaxCurvature(src, roots);
1068
1069 // Throw out values not inside 0..1.
1070 int count = 0;
1071 for (int i = 0; i < rootCount; ++i) {
1072 if (0 < roots[i] && roots[i] < 1) {
1073 tValues[count++] = roots[i];
1074 }
1075 }
1076
1077 if (dst) {
1078 if (count == 0) {
1079 memcpy(dst, src, 4 * sizeof(SkPoint));
1080 } else {
1081 SkChopCubicAt(src, dst, tValues, count);
1082 }
1083 }
1084 return count + 1;
1085 }
1086
1087 // Returns a constant proportional to the dimensions of the cubic.
1088 // Constant found through experimentation -- maybe there's a better way....
calc_cubic_precision(const SkPoint src[4])1089 static SkScalar calc_cubic_precision(const SkPoint src[4]) {
1090 return (SkPointPriv::DistanceToSqd(src[1], src[0]) + SkPointPriv::DistanceToSqd(src[2], src[1])
1091 + SkPointPriv::DistanceToSqd(src[3], src[2])) * 1e-8f;
1092 }
1093
1094 // Returns true if both points src[testIndex], src[testIndex+1] are in the same half plane defined
1095 // by the line segment src[lineIndex], src[lineIndex+1].
on_same_side(const SkPoint src[4],int testIndex,int lineIndex)1096 static bool on_same_side(const SkPoint src[4], int testIndex, int lineIndex) {
1097 SkPoint origin = src[lineIndex];
1098 SkVector line = src[lineIndex + 1] - origin;
1099 SkScalar crosses[2];
1100 for (int index = 0; index < 2; ++index) {
1101 SkVector testLine = src[testIndex + index] - origin;
1102 crosses[index] = line.cross(testLine);
1103 }
1104 return crosses[0] * crosses[1] >= 0;
1105 }
1106
1107 // Return location (in t) of cubic cusp, if there is one.
1108 // Note that classify cubic code does not reliably return all cusp'd cubics, so
1109 // it is not called here.
SkFindCubicCusp(const SkPoint src[4])1110 SkScalar SkFindCubicCusp(const SkPoint src[4]) {
1111 // When the adjacent control point matches the end point, it behaves as if
1112 // the cubic has a cusp: there's a point of max curvature where the derivative
1113 // goes to zero. Ideally, this would be where t is zero or one, but math
1114 // error makes not so. It is not uncommon to create cubics this way; skip them.
1115 if (src[0] == src[1]) {
1116 return -1;
1117 }
1118 if (src[2] == src[3]) {
1119 return -1;
1120 }
1121 // Cubics only have a cusp if the line segments formed by the control and end points cross.
1122 // Detect crossing if line ends are on opposite sides of plane formed by the other line.
1123 if (on_same_side(src, 0, 2) || on_same_side(src, 2, 0)) {
1124 return -1;
1125 }
1126 // Cubics may have multiple points of maximum curvature, although at most only
1127 // one is a cusp.
1128 SkScalar maxCurvature[3];
1129 int roots = SkFindCubicMaxCurvature(src, maxCurvature);
1130 for (int index = 0; index < roots; ++index) {
1131 SkScalar testT = maxCurvature[index];
1132 if (0 >= testT || testT >= 1) { // no need to consider max curvature on the end
1133 continue;
1134 }
1135 // A cusp is at the max curvature, and also has a derivative close to zero.
1136 // Choose the 'close to zero' meaning by comparing the derivative length
1137 // with the overall cubic size.
1138 SkVector dPt = eval_cubic_derivative(src, testT);
1139 SkScalar dPtMagnitude = SkPointPriv::LengthSqd(dPt);
1140 SkScalar precision = calc_cubic_precision(src);
1141 if (dPtMagnitude < precision) {
1142 // All three max curvature t values may be close to the cusp;
1143 // return the first one.
1144 return testT;
1145 }
1146 }
1147 return -1;
1148 }
1149
close_enough_to_zero(double x)1150 static bool close_enough_to_zero(double x) {
1151 return std::fabs(x) < 0.00001;
1152 }
1153
first_axis_intersection(const double coefficients[8],bool yDirection,double axisIntercept,double * solution)1154 static bool first_axis_intersection(const double coefficients[8], bool yDirection,
1155 double axisIntercept, double* solution) {
1156 auto [A, B, C, D] = SkBezierCubic::ConvertToPolynomial(coefficients, yDirection);
1157 D -= axisIntercept;
1158 double roots[3] = {0, 0, 0};
1159 int count = SkCubics::RootsValidT(A, B, C, D, roots);
1160 if (count == 0) {
1161 return false;
1162 }
1163 // Verify that at least one of the roots is accurate.
1164 for (int i = 0; i < count; i++) {
1165 if (close_enough_to_zero(SkCubics::EvalAt(A, B, C, D, roots[i]))) {
1166 *solution = roots[i];
1167 return true;
1168 }
1169 }
1170 // None of the roots returned by our normal cubic solver were correct enough
1171 // (e.g. https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=55732)
1172 // So we need to fallback to a more accurate solution.
1173 count = SkCubics::BinarySearchRootsValidT(A, B, C, D, roots);
1174 if (count == 0) {
1175 return false;
1176 }
1177 for (int i = 0; i < count; i++) {
1178 if (close_enough_to_zero(SkCubics::EvalAt(A, B, C, D, roots[i]))) {
1179 *solution = roots[i];
1180 return true;
1181 }
1182 }
1183 return false;
1184 }
1185
SkChopMonoCubicAtY(const SkPoint src[4],SkScalar y,SkPoint dst[7])1186 bool SkChopMonoCubicAtY(const SkPoint src[4], SkScalar y, SkPoint dst[7]) {
1187 double coefficients[8] = {src[0].fX, src[0].fY, src[1].fX, src[1].fY,
1188 src[2].fX, src[2].fY, src[3].fX, src[3].fY};
1189 double solution = 0;
1190 if (first_axis_intersection(coefficients, true, y, &solution)) {
1191 double cubicPair[14];
1192 SkBezierCubic::Subdivide(coefficients, solution, cubicPair);
1193 for (int i = 0; i < 7; i ++) {
1194 dst[i].fX = sk_double_to_float(cubicPair[i*2]);
1195 dst[i].fY = sk_double_to_float(cubicPair[i*2 + 1]);
1196 }
1197 return true;
1198 }
1199 return false;
1200 }
1201
SkChopMonoCubicAtX(const SkPoint src[4],SkScalar x,SkPoint dst[7])1202 bool SkChopMonoCubicAtX(const SkPoint src[4], SkScalar x, SkPoint dst[7]) {
1203 double coefficients[8] = {src[0].fX, src[0].fY, src[1].fX, src[1].fY,
1204 src[2].fX, src[2].fY, src[3].fX, src[3].fY};
1205 double solution = 0;
1206 if (first_axis_intersection(coefficients, false, x, &solution)) {
1207 double cubicPair[14];
1208 SkBezierCubic::Subdivide(coefficients, solution, cubicPair);
1209 for (int i = 0; i < 7; i ++) {
1210 dst[i].fX = sk_double_to_float(cubicPair[i*2]);
1211 dst[i].fY = sk_double_to_float(cubicPair[i*2 + 1]);
1212 }
1213 return true;
1214 }
1215 return false;
1216 }
1217
1218 ///////////////////////////////////////////////////////////////////////////////
1219 //
1220 // NURB representation for conics. Helpful explanations at:
1221 //
1222 // http://citeseerx.ist.psu.edu/viewdoc/
1223 // download?doi=10.1.1.44.5740&rep=rep1&type=ps
1224 // and
1225 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
1226 //
1227 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
1228 // ------------------------------------------
1229 // ((1 - t)^2 + t^2 + 2 (1 - t) t w)
1230 //
1231 // = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
1232 // ------------------------------------------------
1233 // {t^2 (2 - 2 w), t (-2 + 2 w), 1}
1234 //
1235
1236 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
1237 //
1238 // t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
1239 // t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
1240 // t^0 : -2 P0 w + 2 P1 w
1241 //
1242 // We disregard magnitude, so we can freely ignore the denominator of F', and
1243 // divide the numerator by 2
1244 //
1245 // coeff[0] for t^2
1246 // coeff[1] for t^1
1247 // coeff[2] for t^0
1248 //
conic_deriv_coeff(const SkScalar src[],SkScalar w,SkScalar coeff[3])1249 static void conic_deriv_coeff(const SkScalar src[],
1250 SkScalar w,
1251 SkScalar coeff[3]) {
1252 const SkScalar P20 = src[4] - src[0];
1253 const SkScalar P10 = src[2] - src[0];
1254 const SkScalar wP10 = w * P10;
1255 coeff[0] = w * P20 - P20;
1256 coeff[1] = P20 - 2 * wP10;
1257 coeff[2] = wP10;
1258 }
1259
conic_find_extrema(const SkScalar src[],SkScalar w,SkScalar * t)1260 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
1261 SkScalar coeff[3];
1262 conic_deriv_coeff(src, w, coeff);
1263
1264 SkScalar tValues[2];
1265 int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
1266 SkASSERT(0 == roots || 1 == roots);
1267
1268 if (1 == roots) {
1269 *t = tValues[0];
1270 return true;
1271 }
1272 return false;
1273 }
1274
1275 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
p3d_interp(const SkScalar src[7],SkScalar dst[7],SkScalar t)1276 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
1277 SkScalar ab = SkScalarInterp(src[0], src[3], t);
1278 SkScalar bc = SkScalarInterp(src[3], src[6], t);
1279 dst[0] = ab;
1280 dst[3] = SkScalarInterp(ab, bc, t);
1281 dst[6] = bc;
1282 }
1283
ratquad_mapTo3D(const SkPoint src[3],SkScalar w,SkPoint3 dst[3])1284 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkPoint3 dst[3]) {
1285 dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1286 dst[1].set(src[1].fX * w, src[1].fY * w, w);
1287 dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1288 }
1289
project_down(const SkPoint3 & src)1290 static SkPoint project_down(const SkPoint3& src) {
1291 return {src.fX / src.fZ, src.fY / src.fZ};
1292 }
1293
1294 // return false if infinity or NaN is generated; caller must check
chopAt(SkScalar t,SkConic dst[2]) const1295 bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1296 SkPoint3 tmp[3], tmp2[3];
1297
1298 ratquad_mapTo3D(fPts, fW, tmp);
1299
1300 p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1301 p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1302 p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1303
1304 dst[0].fPts[0] = fPts[0];
1305 dst[0].fPts[1] = project_down(tmp2[0]);
1306 dst[0].fPts[2] = project_down(tmp2[1]); dst[1].fPts[0] = dst[0].fPts[2];
1307 dst[1].fPts[1] = project_down(tmp2[2]);
1308 dst[1].fPts[2] = fPts[2];
1309
1310 // to put in "standard form", where w0 and w2 are both 1, we compute the
1311 // new w1 as sqrt(w1*w1/w0*w2)
1312 // or
1313 // w1 /= sqrt(w0*w2)
1314 //
1315 // However, in our case, we know that for dst[0]:
1316 // w0 == 1, and for dst[1], w2 == 1
1317 //
1318 SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1319 dst[0].fW = tmp2[0].fZ / root;
1320 dst[1].fW = tmp2[2].fZ / root;
1321 SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7);
1322 SkASSERT(0 == offsetof(SkConic, fPts[0].fX));
1323 return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2);
1324 }
1325
chopAt(SkScalar t1,SkScalar t2,SkConic * dst) const1326 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
1327 if (0 == t1 || 1 == t2) {
1328 if (0 == t1 && 1 == t2) {
1329 *dst = *this;
1330 return;
1331 } else {
1332 SkConic pair[2];
1333 if (this->chopAt(t1 ? t1 : t2, pair)) {
1334 *dst = pair[SkToBool(t1)];
1335 return;
1336 }
1337 }
1338 }
1339 SkConicCoeff coeff(*this);
1340 float2 tt1(t1);
1341 float2 aXY = coeff.fNumer.eval(tt1);
1342 float2 aZZ = coeff.fDenom.eval(tt1);
1343 float2 midTT((t1 + t2) / 2);
1344 float2 dXY = coeff.fNumer.eval(midTT);
1345 float2 dZZ = coeff.fDenom.eval(midTT);
1346 float2 tt2(t2);
1347 float2 cXY = coeff.fNumer.eval(tt2);
1348 float2 cZZ = coeff.fDenom.eval(tt2);
1349 float2 bXY = times_2(dXY) - (aXY + cXY) * 0.5f;
1350 float2 bZZ = times_2(dZZ) - (aZZ + cZZ) * 0.5f;
1351 dst->fPts[0] = to_point(aXY / aZZ);
1352 dst->fPts[1] = to_point(bXY / bZZ);
1353 dst->fPts[2] = to_point(cXY / cZZ);
1354 float2 ww = bZZ / sqrt(aZZ * cZZ);
1355 dst->fW = ww[0];
1356 }
1357
evalAt(SkScalar t) const1358 SkPoint SkConic::evalAt(SkScalar t) const {
1359 return to_point(SkConicCoeff(*this).eval(t));
1360 }
1361
evalTangentAt(SkScalar t) const1362 SkVector SkConic::evalTangentAt(SkScalar t) const {
1363 // The derivative equation returns a zero tangent vector when t is 0 or 1,
1364 // and the control point is equal to the end point.
1365 // In this case, use the conic endpoints to compute the tangent.
1366 if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1367 return fPts[2] - fPts[0];
1368 }
1369 float2 p0 = from_point(fPts[0]);
1370 float2 p1 = from_point(fPts[1]);
1371 float2 p2 = from_point(fPts[2]);
1372 float2 ww(fW);
1373
1374 float2 p20 = p2 - p0;
1375 float2 p10 = p1 - p0;
1376
1377 float2 C = ww * p10;
1378 float2 A = ww * p20 - p20;
1379 float2 B = p20 - C - C;
1380
1381 return to_vector(SkQuadCoeff(A, B, C).eval(t));
1382 }
1383
evalAt(SkScalar t,SkPoint * pt,SkVector * tangent) const1384 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1385 SkASSERT(t >= 0 && t <= SK_Scalar1);
1386
1387 if (pt) {
1388 *pt = this->evalAt(t);
1389 }
1390 if (tangent) {
1391 *tangent = this->evalTangentAt(t);
1392 }
1393 }
1394
subdivide_w_value(SkScalar w)1395 static SkScalar subdivide_w_value(SkScalar w) {
1396 return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1397 }
1398
chop(SkConic * SK_RESTRICT dst) const1399 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1400 float2 scale = SkScalarInvert(SK_Scalar1 + fW);
1401 SkScalar newW = subdivide_w_value(fW);
1402
1403 float2 p0 = from_point(fPts[0]);
1404 float2 p1 = from_point(fPts[1]);
1405 float2 p2 = from_point(fPts[2]);
1406 float2 ww(fW);
1407
1408 float2 wp1 = ww * p1;
1409 float2 m = (p0 + times_2(wp1) + p2) * scale * 0.5f;
1410 SkPoint mPt = to_point(m);
1411 if (!mPt.isFinite()) {
1412 double w_d = fW;
1413 double w_2 = w_d * 2;
1414 double scale_half = 1 / (1 + w_d) * 0.5;
1415 mPt.fX = SkDoubleToScalar((fPts[0].fX + w_2 * fPts[1].fX + fPts[2].fX) * scale_half);
1416 mPt.fY = SkDoubleToScalar((fPts[0].fY + w_2 * fPts[1].fY + fPts[2].fY) * scale_half);
1417 }
1418 dst[0].fPts[0] = fPts[0];
1419 dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1420 dst[0].fPts[2] = dst[1].fPts[0] = mPt;
1421 dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1422 dst[1].fPts[2] = fPts[2];
1423
1424 dst[0].fW = dst[1].fW = newW;
1425 }
1426
1427 /*
1428 * "High order approximation of conic sections by quadratic splines"
1429 * by Michael Floater, 1993
1430 */
1431 #define AS_QUAD_ERROR_SETUP \
1432 SkScalar a = fW - 1; \
1433 SkScalar k = a / (4 * (2 + a)); \
1434 SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX); \
1435 SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1436
computeAsQuadError(SkVector * err) const1437 void SkConic::computeAsQuadError(SkVector* err) const {
1438 AS_QUAD_ERROR_SETUP
1439 err->set(x, y);
1440 }
1441
asQuadTol(SkScalar tol) const1442 bool SkConic::asQuadTol(SkScalar tol) const {
1443 AS_QUAD_ERROR_SETUP
1444 return (x * x + y * y) <= tol * tol;
1445 }
1446
1447 // Limit the number of suggested quads to approximate a conic
1448 #define kMaxConicToQuadPOW2 5
1449
computeQuadPOW2(SkScalar tol) const1450 int SkConic::computeQuadPOW2(SkScalar tol) const {
1451 if (tol < 0 || !SkScalarIsFinite(tol) || !SkPointPriv::AreFinite(fPts, 3)) {
1452 return 0;
1453 }
1454
1455 AS_QUAD_ERROR_SETUP
1456
1457 SkScalar error = SkScalarSqrt(x * x + y * y);
1458 int pow2;
1459 for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1460 if (error <= tol) {
1461 break;
1462 }
1463 error *= 0.25f;
1464 }
1465 // float version -- using ceil gives the same results as the above.
1466 if ((false)) {
1467 SkScalar err = SkScalarSqrt(x * x + y * y);
1468 if (err <= tol) {
1469 return 0;
1470 }
1471 SkScalar tol2 = tol * tol;
1472 if (tol2 == 0) {
1473 return kMaxConicToQuadPOW2;
1474 }
1475 SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1476 int altPow2 = SkScalarCeilToInt(fpow2);
1477 if (altPow2 != pow2) {
1478 SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1479 }
1480 pow2 = altPow2;
1481 }
1482 return pow2;
1483 }
1484
1485 // This was originally developed and tested for pathops: see SkOpTypes.h
1486 // returns true if (a <= b <= c) || (a >= b >= c)
between(SkScalar a,SkScalar b,SkScalar c)1487 static bool between(SkScalar a, SkScalar b, SkScalar c) {
1488 return (a - b) * (c - b) <= 0;
1489 }
1490
subdivide(const SkConic & src,SkPoint pts[],int level)1491 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1492 SkASSERT(level >= 0);
1493
1494 if (0 == level) {
1495 memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1496 return pts + 2;
1497 } else {
1498 SkConic dst[2];
1499 src.chop(dst);
1500 const SkScalar startY = src.fPts[0].fY;
1501 SkScalar endY = src.fPts[2].fY;
1502 if (between(startY, src.fPts[1].fY, endY)) {
1503 // If the input is monotonic and the output is not, the scan converter hangs.
1504 // Ensure that the chopped conics maintain their y-order.
1505 SkScalar midY = dst[0].fPts[2].fY;
1506 if (!between(startY, midY, endY)) {
1507 // If the computed midpoint is outside the ends, move it to the closer one.
1508 SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
1509 dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
1510 }
1511 if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
1512 // If the 1st control is not between the start and end, put it at the start.
1513 // This also reduces the quad to a line.
1514 dst[0].fPts[1].fY = startY;
1515 }
1516 if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
1517 // If the 2nd control is not between the start and end, put it at the end.
1518 // This also reduces the quad to a line.
1519 dst[1].fPts[1].fY = endY;
1520 }
1521 // Verify that all five points are in order.
1522 SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
1523 SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
1524 SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
1525 }
1526 --level;
1527 pts = subdivide(dst[0], pts, level);
1528 return subdivide(dst[1], pts, level);
1529 }
1530 }
1531
chopIntoQuadsPOW2(SkPoint pts[],int pow2) const1532 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1533 SkASSERT(pow2 >= 0);
1534 *pts = fPts[0];
1535 SkDEBUGCODE(SkPoint* endPts);
1536 if (pow2 == kMaxConicToQuadPOW2) { // If an extreme weight generates many quads ...
1537 SkConic dst[2];
1538 this->chop(dst);
1539 // check to see if the first chop generates a pair of lines
1540 if (SkPointPriv::EqualsWithinTolerance(dst[0].fPts[1], dst[0].fPts[2]) &&
1541 SkPointPriv::EqualsWithinTolerance(dst[1].fPts[0], dst[1].fPts[1])) {
1542 pts[1] = pts[2] = pts[3] = dst[0].fPts[1]; // set ctrl == end to make lines
1543 pts[4] = dst[1].fPts[2];
1544 pow2 = 1;
1545 SkDEBUGCODE(endPts = &pts[5]);
1546 goto commonFinitePtCheck;
1547 }
1548 }
1549 SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
1550 commonFinitePtCheck:
1551 const int quadCount = 1 << pow2;
1552 const int ptCount = 2 * quadCount + 1;
1553 SkASSERT(endPts - pts == ptCount);
1554 if (!SkPointPriv::AreFinite(pts, ptCount)) {
1555 // if we generated a non-finite, pin ourselves to the middle of the hull,
1556 // as our first and last are already on the first/last pts of the hull.
1557 for (int i = 1; i < ptCount - 1; ++i) {
1558 pts[i] = fPts[1];
1559 }
1560 }
1561 return 1 << pow2;
1562 }
1563
findMidTangent() const1564 float SkConic::findMidTangent() const {
1565 // Tangents point in the direction of increasing T, so tan0 and -tan1 both point toward the
1566 // midtangent. The bisector of tan0 and -tan1 is orthogonal to the midtangent:
1567 //
1568 // bisector dot midtangent = 0
1569 //
1570 SkVector tan0 = fPts[1] - fPts[0];
1571 SkVector tan1 = fPts[2] - fPts[1];
1572 SkVector bisector = SkFindBisector(tan0, -tan1);
1573
1574 // Start by finding the tangent function's power basis coefficients. These define a tangent
1575 // direction (scaled by some uniform value) as:
1576 // |T^2|
1577 // Tangent_Direction(T) = dx,dy = |A B C| * |T |
1578 // |. . .| |1 |
1579 //
1580 // The derivative of a conic has a cumbersome order-4 denominator. However, this isn't necessary
1581 // if we are only interested in a vector in the same *direction* as a given tangent line. Since
1582 // the denominator scales dx and dy uniformly, we can throw it out completely after evaluating
1583 // the derivative with the standard quotient rule. This leaves us with a simpler quadratic
1584 // function that we use to find a tangent.
1585 SkVector A = (fPts[2] - fPts[0]) * (fW - 1);
1586 SkVector B = (fPts[2] - fPts[0]) - (fPts[1] - fPts[0]) * (fW*2);
1587 SkVector C = (fPts[1] - fPts[0]) * fW;
1588
1589 // Now solve for "bisector dot midtangent = 0":
1590 //
1591 // |T^2|
1592 // bisector * |A B C| * |T | = 0
1593 // |. . .| |1 |
1594 //
1595 float a = bisector.dot(A);
1596 float b = bisector.dot(B);
1597 float c = bisector.dot(C);
1598 return solve_quadratic_equation_for_midtangent(a, b, c);
1599 }
1600
findXExtrema(SkScalar * t) const1601 bool SkConic::findXExtrema(SkScalar* t) const {
1602 return conic_find_extrema(&fPts[0].fX, fW, t);
1603 }
1604
findYExtrema(SkScalar * t) const1605 bool SkConic::findYExtrema(SkScalar* t) const {
1606 return conic_find_extrema(&fPts[0].fY, fW, t);
1607 }
1608
chopAtXExtrema(SkConic dst[2]) const1609 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1610 SkScalar t;
1611 if (this->findXExtrema(&t)) {
1612 if (!this->chopAt(t, dst)) {
1613 // if chop can't return finite values, don't chop
1614 return false;
1615 }
1616 // now clean-up the middle, since we know t was meant to be at
1617 // an X-extrema
1618 SkScalar value = dst[0].fPts[2].fX;
1619 dst[0].fPts[1].fX = value;
1620 dst[1].fPts[0].fX = value;
1621 dst[1].fPts[1].fX = value;
1622 return true;
1623 }
1624 return false;
1625 }
1626
chopAtYExtrema(SkConic dst[2]) const1627 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1628 SkScalar t;
1629 if (this->findYExtrema(&t)) {
1630 if (!this->chopAt(t, dst)) {
1631 // if chop can't return finite values, don't chop
1632 return false;
1633 }
1634 // now clean-up the middle, since we know t was meant to be at
1635 // an Y-extrema
1636 SkScalar value = dst[0].fPts[2].fY;
1637 dst[0].fPts[1].fY = value;
1638 dst[1].fPts[0].fY = value;
1639 dst[1].fPts[1].fY = value;
1640 return true;
1641 }
1642 return false;
1643 }
1644
computeTightBounds(SkRect * bounds) const1645 void SkConic::computeTightBounds(SkRect* bounds) const {
1646 SkPoint pts[4];
1647 pts[0] = fPts[0];
1648 pts[1] = fPts[2];
1649 int count = 2;
1650
1651 SkScalar t;
1652 if (this->findXExtrema(&t)) {
1653 this->evalAt(t, &pts[count++]);
1654 }
1655 if (this->findYExtrema(&t)) {
1656 this->evalAt(t, &pts[count++]);
1657 }
1658 bounds->setBounds(pts, count);
1659 }
1660
computeFastBounds(SkRect * bounds) const1661 void SkConic::computeFastBounds(SkRect* bounds) const {
1662 bounds->setBounds(fPts, 3);
1663 }
1664
1665 #if 0 // unimplemented
1666 bool SkConic::findMaxCurvature(SkScalar* t) const {
1667 // TODO: Implement me
1668 return false;
1669 }
1670 #endif
1671
TransformW(const SkPoint pts[3],SkScalar w,const SkMatrix & matrix)1672 SkScalar SkConic::TransformW(const SkPoint pts[3], SkScalar w, const SkMatrix& matrix) {
1673 if (!matrix.hasPerspective()) {
1674 return w;
1675 }
1676
1677 SkPoint3 src[3], dst[3];
1678
1679 ratquad_mapTo3D(pts, w, src);
1680
1681 matrix.mapHomogeneousPoints(dst, src, 3);
1682
1683 // w' = sqrt(w1*w1/w0*w2)
1684 // use doubles temporarily, to handle small numer/denom
1685 double w0 = dst[0].fZ;
1686 double w1 = dst[1].fZ;
1687 double w2 = dst[2].fZ;
1688 return sk_double_to_float(sqrt(sk_ieee_double_divide(w1 * w1, w0 * w2)));
1689 }
1690
BuildUnitArc(const SkVector & uStart,const SkVector & uStop,SkRotationDirection dir,const SkMatrix * userMatrix,SkConic dst[kMaxConicsForArc])1691 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1692 const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1693 // rotate by x,y so that uStart is (1.0)
1694 SkScalar x = SkPoint::DotProduct(uStart, uStop);
1695 SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1696
1697 SkScalar absY = SkScalarAbs(y);
1698
1699 // check for (effectively) coincident vectors
1700 // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1701 // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1702 if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1703 (y <= 0 && kCCW_SkRotationDirection == dir))) {
1704 return 0;
1705 }
1706
1707 if (dir == kCCW_SkRotationDirection) {
1708 y = -y;
1709 }
1710
1711 // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1712 // 0 == [0 .. 90)
1713 // 1 == [90 ..180)
1714 // 2 == [180..270)
1715 // 3 == [270..360)
1716 //
1717 int quadrant = 0;
1718 if (0 == y) {
1719 quadrant = 2; // 180
1720 SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1721 } else if (0 == x) {
1722 SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1723 quadrant = y > 0 ? 1 : 3; // 90 : 270
1724 } else {
1725 if (y < 0) {
1726 quadrant += 2;
1727 }
1728 if ((x < 0) != (y < 0)) {
1729 quadrant += 1;
1730 }
1731 }
1732
1733 const SkPoint quadrantPts[] = {
1734 { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1735 };
1736 const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1737
1738 int conicCount = quadrant;
1739 for (int i = 0; i < conicCount; ++i) {
1740 dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1741 }
1742
1743 // Now compute any remaing (sub-90-degree) arc for the last conic
1744 const SkPoint finalP = { x, y };
1745 const SkPoint& lastQ = quadrantPts[quadrant * 2]; // will already be a unit-vector
1746 const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1747 SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1748
1749 if (dot < 1) {
1750 SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1751 // compute the bisector vector, and then rescale to be the off-curve point.
1752 // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1753 // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1754 // This is nice, since our computed weight is cos(theta/2) as well!
1755 //
1756 const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1757 offCurve.setLength(SkScalarInvert(cosThetaOver2));
1758 if (!SkPointPriv::EqualsWithinTolerance(lastQ, offCurve)) {
1759 dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1760 conicCount += 1;
1761 }
1762 }
1763
1764 // now handle counter-clockwise and the initial unitStart rotation
1765 SkMatrix matrix;
1766 matrix.setSinCos(uStart.fY, uStart.fX);
1767 if (dir == kCCW_SkRotationDirection) {
1768 matrix.preScale(SK_Scalar1, -SK_Scalar1);
1769 }
1770 if (userMatrix) {
1771 matrix.postConcat(*userMatrix);
1772 }
1773 for (int i = 0; i < conicCount; ++i) {
1774 matrix.mapPoints(dst[i].fPts, 3);
1775 }
1776 return conicCount;
1777 }
1778