• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkTemplates_DEFINED
9 #define SkTemplates_DEFINED
10 
11 #include "include/private/base/SkAlign.h"
12 #include "include/private/base/SkAssert.h"
13 #include "include/private/base/SkDebug.h"
14 #include "include/private/base/SkMalloc.h"
15 #include "include/private/base/SkTLogic.h"
16 
17 #include <array>
18 #include <cstddef>
19 #include <cstdint>
20 #include <cstring>
21 #include <memory>
22 #include <type_traits>
23 #include <utility>
24 
25 
26 /** \file SkTemplates.h
27 
28     This file contains light-weight template classes for type-safe and exception-safe
29     resource management.
30 */
31 
32 /**
33  *  Marks a local variable as known to be unused (to avoid warnings).
34  *  Note that this does *not* prevent the local variable from being optimized away.
35  */
sk_ignore_unused_variable(const T &)36 template<typename T> inline void sk_ignore_unused_variable(const T&) { }
37 
38 /**
39  * This is a general purpose absolute-value function.
40  * See SkAbs32 in (SkSafe32.h) for a 32-bit int specific version that asserts.
41  */
SkTAbs(T value)42 template <typename T> static inline T SkTAbs(T value) {
43     if (value < 0) {
44         value = -value;
45     }
46     return value;
47 }
48 
49 /**
50  *  Returns a pointer to a D which comes immediately after S[count].
51  */
52 template <typename D, typename S> inline D* SkTAfter(S* ptr, size_t count = 1) {
53     return reinterpret_cast<D*>(ptr + count);
54 }
55 
56 /**
57  *  Returns a pointer to a D which comes byteOffset bytes after S.
58  */
SkTAddOffset(S * ptr,ptrdiff_t byteOffset)59 template <typename D, typename S> inline D* SkTAddOffset(S* ptr, ptrdiff_t byteOffset) {
60     // The intermediate char* has the same cv-ness as D as this produces better error messages.
61     // This relies on the fact that reinterpret_cast can add constness, but cannot remove it.
62     return reinterpret_cast<D*>(reinterpret_cast<sknonstd::same_cv_t<char, D>*>(ptr) + byteOffset);
63 }
64 
65 template <typename T, T* P> struct SkOverloadedFunctionObject {
66     template <typename... Args>
67     auto operator()(Args&&... args) const -> decltype(P(std::forward<Args>(args)...)) {
68         return P(std::forward<Args>(args)...);
69     }
70 };
71 
72 template <auto F> using SkFunctionObject =
73     SkOverloadedFunctionObject<std::remove_pointer_t<decltype(F)>, F>;
74 
75 /** \class SkAutoTCallVProc
76 
77     Call a function when this goes out of scope. The template uses two
78     parameters, the object, and a function that is to be called in the destructor.
79     If release() is called, the object reference is set to null. If the object
80     reference is null when the destructor is called, we do not call the
81     function.
82 */
83 template <typename T, void (*P)(T*)> class SkAutoTCallVProc
84     : public std::unique_ptr<T, SkFunctionObject<P>> {
85     using inherited = std::unique_ptr<T, SkFunctionObject<P>>;
86 public:
87     using inherited::inherited;
88     SkAutoTCallVProc(const SkAutoTCallVProc&) = delete;
SkAutoTCallVProc(SkAutoTCallVProc && that)89     SkAutoTCallVProc(SkAutoTCallVProc&& that) : inherited(std::move(that)) {}
90 
91     operator T*() const { return this->get(); }
92 };
93 
94 
95 namespace skia_private {
96 /** Allocate an array of T elements, and free the array in the destructor
97  */
98 template <typename T> class AutoTArray  {
99 public:
AutoTArray()100     AutoTArray() {}
101     /** Allocate count number of T elements
102      */
AutoTArray(int count)103     explicit AutoTArray(int count) {
104         SkASSERT(count >= 0);
105         if (count) {
106             fArray.reset(new T[count]);
107         }
108         SkDEBUGCODE(fCount = count;)
109     }
110 
AutoTArray(AutoTArray && other)111     AutoTArray(AutoTArray&& other) : fArray(std::move(other.fArray)) {
112         SkDEBUGCODE(fCount = other.fCount; other.fCount = 0;)
113     }
114     AutoTArray& operator=(AutoTArray&& other) {
115         if (this != &other) {
116             fArray = std::move(other.fArray);
117             SkDEBUGCODE(fCount = other.fCount; other.fCount = 0;)
118         }
119         return *this;
120     }
121 
122     /** Reallocates given a new count. Reallocation occurs even if new count equals old count.
123      */
124     void reset(int count = 0) { *this = AutoTArray(count); }
125 
126     /** Return the array of T elements. Will be NULL if count == 0
127      */
get()128     T* get() const { return fArray.get(); }
129 
130     /** Return the nth element in the array
131      */
132     T&  operator[](int index) const {
133         SkASSERT((unsigned)index < (unsigned)fCount);
134         return fArray[index];
135     }
136 
137     /** Aliases matching other types, like std::vector. */
data()138     const T* data() const { return fArray.get(); }
data()139     T* data() { return fArray.get(); }
140 
141 private:
142     std::unique_ptr<T[]> fArray;
143     SkDEBUGCODE(int fCount = 0;)
144 };
145 
146 /** Wraps AutoTArray, with room for kCountRequested elements preallocated.
147  */
148 template <int kCountRequested, typename T> class AutoSTArray {
149 public:
150     AutoSTArray(AutoSTArray&&) = delete;
151     AutoSTArray(const AutoSTArray&) = delete;
152     AutoSTArray& operator=(AutoSTArray&&) = delete;
153     AutoSTArray& operator=(const AutoSTArray&) = delete;
154 
155     /** Initialize with no objects */
AutoSTArray()156     AutoSTArray() {
157         fArray = nullptr;
158         fCount = 0;
159     }
160 
161     /** Allocate count number of T elements
162      */
AutoSTArray(int count)163     AutoSTArray(int count) {
164         fArray = nullptr;
165         fCount = 0;
166         this->reset(count);
167     }
168 
~AutoSTArray()169     ~AutoSTArray() {
170         this->reset(0);
171     }
172 
173     /** Destroys previous objects in the array and default constructs count number of objects */
reset(int count)174     void reset(int count) {
175         T* start = fArray;
176         T* iter = start + fCount;
177         while (iter > start) {
178             (--iter)->~T();
179         }
180 
181         SkASSERT(count >= 0);
182         if (fCount != count) {
183             if (fCount > kCount) {
184                 // 'fArray' was allocated last time so free it now
185                 SkASSERT((T*) fStorage != fArray);
186                 sk_free(fArray);
187             }
188 
189             if (count > kCount) {
190                 fArray = (T*) sk_malloc_throw(count, sizeof(T));
191             } else if (count > 0) {
192                 fArray = (T*) fStorage;
193             } else {
194                 fArray = nullptr;
195             }
196 
197             fCount = count;
198         }
199 
200         iter = fArray;
201         T* stop = fArray + count;
202         while (iter < stop) {
203             new (iter++) T;
204         }
205     }
206 
207     /** Return the number of T elements in the array
208      */
count()209     int count() const { return fCount; }
210 
211     /** Return the array of T elements. Will be NULL if count == 0
212      */
get()213     T* get() const { return fArray; }
214 
begin()215     T* begin() { return fArray; }
216 
begin()217     const T* begin() const { return fArray; }
218 
end()219     T* end() { return fArray + fCount; }
220 
end()221     const T* end() const { return fArray + fCount; }
222 
223     /** Return the nth element in the array
224      */
225     T&  operator[](int index) const {
226         SkASSERT(index < fCount);
227         return fArray[index];
228     }
229 
230     /** Aliases matching other types, like std::vector. */
data()231     const T* data() const { return fArray; }
data()232     T* data() { return fArray; }
size()233     size_t size() const { return fCount; }
234 
235 private:
236 #if defined(SK_BUILD_FOR_GOOGLE3)
237     // Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max,
238     // but some functions have multiple large stack allocations.
239     static const int kMaxBytes = 4 * 1024;
240     static const int kCount = kCountRequested * sizeof(T) > kMaxBytes
241         ? kMaxBytes / sizeof(T)
242         : kCountRequested;
243 #else
244     static const int kCount = kCountRequested;
245 #endif
246 
247     int fCount;
248     T* fArray;
249     alignas(T) char fStorage[kCount * sizeof(T)];
250 };
251 
252 /** Manages an array of T elements, freeing the array in the destructor.
253  *  Does NOT call any constructors/destructors on T (T must be POD).
254  */
255 template <typename T,
256           typename = std::enable_if_t<std::is_trivially_default_constructible<T>::value &&
257                                       std::is_trivially_destructible<T>::value>>
258 class AutoTMalloc  {
259 public:
260     /** Takes ownership of the ptr. The ptr must be a value which can be passed to sk_free. */
fPtr(ptr)261     explicit AutoTMalloc(T* ptr = nullptr) : fPtr(ptr) {}
262 
263     /** Allocates space for 'count' Ts. */
AutoTMalloc(size_t count)264     explicit AutoTMalloc(size_t count)
265         : fPtr(count ? (T*)sk_malloc_throw(count, sizeof(T)) : nullptr) {}
266 
267     AutoTMalloc(AutoTMalloc&&) = default;
268     AutoTMalloc& operator=(AutoTMalloc&&) = default;
269 
270     /** Resize the memory area pointed to by the current ptr preserving contents. */
realloc(size_t count)271     void realloc(size_t count) {
272         fPtr.reset(count ? (T*)sk_realloc_throw(fPtr.release(), count * sizeof(T)) : nullptr);
273     }
274 
275     /** Resize the memory area pointed to by the current ptr without preserving contents. */
276     T* reset(size_t count = 0) {
277         fPtr.reset(count ? (T*)sk_malloc_throw(count, sizeof(T)) : nullptr);
278         return this->get();
279     }
280 
get()281     T* get() const { return fPtr.get(); }
282 
283     operator T*() { return fPtr.get(); }
284 
285     operator const T*() const { return fPtr.get(); }
286 
287     T& operator[](int index) { return fPtr.get()[index]; }
288 
289     const T& operator[](int index) const { return fPtr.get()[index]; }
290 
291     /** Aliases matching other types, like std::vector. */
data()292     const T* data() const { return fPtr.get(); }
data()293     T* data() { return fPtr.get(); }
294 
295     /**
296      *  Transfer ownership of the ptr to the caller, setting the internal
297      *  pointer to NULL. Note that this differs from get(), which also returns
298      *  the pointer, but it does not transfer ownership.
299      */
release()300     T* release() { return fPtr.release(); }
301 
302 private:
303     std::unique_ptr<T, SkOverloadedFunctionObject<void(void*), sk_free>> fPtr;
304 };
305 
306 template <size_t kCountRequested,
307           typename T,
308           typename = std::enable_if_t<std::is_trivially_default_constructible<T>::value &&
309                                       std::is_trivially_destructible<T>::value>>
310 class AutoSTMalloc {
311 public:
AutoSTMalloc()312     AutoSTMalloc() : fPtr(fTStorage) {}
313 
AutoSTMalloc(size_t count)314     AutoSTMalloc(size_t count) {
315         if (count > kCount) {
316             fPtr = (T*)sk_malloc_throw(count, sizeof(T));
317         } else if (count) {
318             fPtr = fTStorage;
319         } else {
320             fPtr = nullptr;
321         }
322     }
323 
324     AutoSTMalloc(AutoSTMalloc&&) = delete;
325     AutoSTMalloc(const AutoSTMalloc&) = delete;
326     AutoSTMalloc& operator=(AutoSTMalloc&&) = delete;
327     AutoSTMalloc& operator=(const AutoSTMalloc&) = delete;
328 
~AutoSTMalloc()329     ~AutoSTMalloc() {
330         if (fPtr != fTStorage) {
331             sk_free(fPtr);
332         }
333     }
334 
335     // doesn't preserve contents
reset(size_t count)336     T* reset(size_t count) {
337         if (fPtr != fTStorage) {
338             sk_free(fPtr);
339         }
340         if (count > kCount) {
341             fPtr = (T*)sk_malloc_throw(count, sizeof(T));
342         } else if (count) {
343             fPtr = fTStorage;
344         } else {
345             fPtr = nullptr;
346         }
347         return fPtr;
348     }
349 
get()350     T* get() const { return fPtr; }
351 
352     operator T*() {
353         return fPtr;
354     }
355 
356     operator const T*() const {
357         return fPtr;
358     }
359 
360     T& operator[](int index) {
361         return fPtr[index];
362     }
363 
364     const T& operator[](int index) const {
365         return fPtr[index];
366     }
367 
368     /** Aliases matching other types, like std::vector. */
data()369     const T* data() const { return fPtr; }
data()370     T* data() { return fPtr; }
371 
372     // Reallocs the array, can be used to shrink the allocation.  Makes no attempt to be intelligent
realloc(size_t count)373     void realloc(size_t count) {
374         if (count > kCount) {
375             if (fPtr == fTStorage) {
376                 fPtr = (T*)sk_malloc_throw(count, sizeof(T));
377                 memcpy((void*)fPtr, fTStorage, kCount * sizeof(T));
378             } else {
379                 fPtr = (T*)sk_realloc_throw(fPtr, count, sizeof(T));
380             }
381         } else if (count) {
382             if (fPtr != fTStorage) {
383                 fPtr = (T*)sk_realloc_throw(fPtr, count, sizeof(T));
384             }
385         } else {
386             this->reset(0);
387         }
388     }
389 
390 private:
391     // Since we use uint32_t storage, we might be able to get more elements for free.
392     static const size_t kCountWithPadding = SkAlign4(kCountRequested*sizeof(T)) / sizeof(T);
393 #if defined(SK_BUILD_FOR_GOOGLE3)
394     // Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max, but some functions
395     // have multiple large stack allocations.
396     static const size_t kMaxBytes = 4 * 1024;
397     static const size_t kCount = kCountRequested * sizeof(T) > kMaxBytes
398         ? kMaxBytes / sizeof(T)
399         : kCountWithPadding;
400 #else
401     static const size_t kCount = kCountWithPadding;
402 #endif
403 
404     T*          fPtr;
405     union {
406         uint32_t    fStorage32[SkAlign4(kCount*sizeof(T)) >> 2];
407         T           fTStorage[1];   // do NOT want to invoke T::T()
408     };
409 };
410 
411 using UniqueVoidPtr = std::unique_ptr<void, SkOverloadedFunctionObject<void(void*), sk_free>>;
412 
413 }  // namespace skia_private
414 
415 template<typename C, std::size_t... Is>
416 constexpr auto SkMakeArrayFromIndexSequence(C c, std::index_sequence<Is...> is)
417 -> std::array<decltype(c(std::declval<typename decltype(is)::value_type>())), sizeof...(Is)> {
418     return {{ c(Is)... }};
419 }
420 
421 template<size_t N, typename C> constexpr auto SkMakeArray(C c)
422 -> std::array<decltype(c(std::declval<typename std::index_sequence<N>::value_type>())), N> {
423     return SkMakeArrayFromIndexSequence(c, std::make_index_sequence<N>{});
424 }
425 
426 #endif
427