1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef SkRefCnt_DEFINED
9 #define SkRefCnt_DEFINED
10
11 #include "include/core/SkTypes.h"
12 #include "include/private/base/SkDebug.h"
13
14 #include <atomic>
15 #include <cstddef>
16 #include <cstdint>
17 #include <iosfwd>
18 #include <type_traits>
19 #include <utility>
20
21 /** \class SkRefCntBase
22
23 SkRefCntBase is the base class for objects that may be shared by multiple
24 objects. When an existing owner wants to share a reference, it calls ref().
25 When an owner wants to release its reference, it calls unref(). When the
26 shared object's reference count goes to zero as the result of an unref()
27 call, its (virtual) destructor is called. It is an error for the
28 destructor to be called explicitly (or via the object going out of scope on
29 the stack or calling delete) if getRefCnt() > 1.
30 */
31 class SK_API SkRefCntBase {
32 public:
33 /** Default construct, initializing the reference count to 1.
34 */
SkRefCntBase()35 SkRefCntBase() : fRefCnt(1) {}
36
37 /** Destruct, asserting that the reference count is 1.
38 */
~SkRefCntBase()39 virtual ~SkRefCntBase() {
40 #ifdef SK_DEBUG
41 SkASSERTF(this->getRefCnt() == 1, "fRefCnt was %d", this->getRefCnt());
42 // illegal value, to catch us if we reuse after delete
43 fRefCnt.store(0, std::memory_order_relaxed);
44 #endif
45 }
46
47 /** May return true if the caller is the only owner.
48 * Ensures that all previous owner's actions are complete.
49 */
unique()50 bool unique() const {
51 if (1 == fRefCnt.load(std::memory_order_acquire)) {
52 // The acquire barrier is only really needed if we return true. It
53 // prevents code conditioned on the result of unique() from running
54 // until previous owners are all totally done calling unref().
55 return true;
56 }
57 return false;
58 }
59
60 /** Increment the reference count. Must be balanced by a call to unref().
61 */
ref()62 void ref() const {
63 SkASSERT(this->getRefCnt() > 0);
64 // No barrier required.
65 (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed);
66 }
67
68 /** Decrement the reference count. If the reference count is 1 before the
69 decrement, then delete the object. Note that if this is the case, then
70 the object needs to have been allocated via new, and not on the stack.
71 */
unref()72 void unref() const {
73 SkASSERT(this->getRefCnt() > 0);
74 // A release here acts in place of all releases we "should" have been doing in ref().
75 if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
76 // Like unique(), the acquire is only needed on success, to make sure
77 // code in internal_dispose() doesn't happen before the decrement.
78 this->internal_dispose();
79 }
80 }
81
82 private:
83
84 #ifdef SK_DEBUG
85 /** Return the reference count. Use only for debugging. */
getRefCnt()86 int32_t getRefCnt() const {
87 return fRefCnt.load(std::memory_order_relaxed);
88 }
89 #endif
90
91 /**
92 * Called when the ref count goes to 0.
93 */
internal_dispose()94 virtual void internal_dispose() const {
95 #ifdef SK_DEBUG
96 SkASSERT(0 == this->getRefCnt());
97 fRefCnt.store(1, std::memory_order_relaxed);
98 #endif
99 delete this;
100 }
101
102 // The following friends are those which override internal_dispose()
103 // and conditionally call SkRefCnt::internal_dispose().
104 friend class SkWeakRefCnt;
105
106 mutable std::atomic<int32_t> fRefCnt;
107
108 SkRefCntBase(SkRefCntBase&&) = delete;
109 SkRefCntBase(const SkRefCntBase&) = delete;
110 SkRefCntBase& operator=(SkRefCntBase&&) = delete;
111 SkRefCntBase& operator=(const SkRefCntBase&) = delete;
112 };
113
114 #ifdef SK_REF_CNT_MIXIN_INCLUDE
115 // It is the responsibility of the following include to define the type SkRefCnt.
116 // This SkRefCnt should normally derive from SkRefCntBase.
117 #include SK_REF_CNT_MIXIN_INCLUDE
118 #else
119 class SK_API SkRefCnt : public SkRefCntBase {
120 // "#include SK_REF_CNT_MIXIN_INCLUDE" doesn't work with this build system.
121 #if defined(SK_BUILD_FOR_GOOGLE3)
122 public:
deref()123 void deref() const { this->unref(); }
124 #endif
125 };
126 #endif
127
128 ///////////////////////////////////////////////////////////////////////////////
129
130 /** Call obj->ref() and return obj. The obj must not be nullptr.
131 */
SkRef(T * obj)132 template <typename T> static inline T* SkRef(T* obj) {
133 SkASSERT(obj);
134 obj->ref();
135 return obj;
136 }
137
138 /** Check if the argument is non-null, and if so, call obj->ref() and return obj.
139 */
SkSafeRef(T * obj)140 template <typename T> static inline T* SkSafeRef(T* obj) {
141 if (obj) {
142 obj->ref();
143 }
144 return obj;
145 }
146
147 /** Check if the argument is non-null, and if so, call obj->unref()
148 */
SkSafeUnref(T * obj)149 template <typename T> static inline void SkSafeUnref(T* obj) {
150 if (obj) {
151 obj->unref();
152 }
153 }
154
155 ///////////////////////////////////////////////////////////////////////////////
156
157 // This is a variant of SkRefCnt that's Not Virtual, so weighs 4 bytes instead of 8 or 16.
158 // There's only benefit to using this if the deriving class does not otherwise need a vtable.
159 template <typename Derived>
160 class SkNVRefCnt {
161 public:
SkNVRefCnt()162 SkNVRefCnt() : fRefCnt(1) {}
~SkNVRefCnt()163 ~SkNVRefCnt() {
164 #ifdef SK_DEBUG
165 int rc = fRefCnt.load(std::memory_order_relaxed);
166 SkASSERTF(rc == 1, "NVRefCnt was %d", rc);
167 #endif
168 }
169
170 // Implementation is pretty much the same as SkRefCntBase. All required barriers are the same:
171 // - unique() needs acquire when it returns true, and no barrier if it returns false;
172 // - ref() doesn't need any barrier;
173 // - unref() needs a release barrier, and an acquire if it's going to call delete.
174
unique()175 bool unique() const { return 1 == fRefCnt.load(std::memory_order_acquire); }
ref()176 void ref() const { (void)fRefCnt.fetch_add(+1, std::memory_order_relaxed); }
unref()177 void unref() const {
178 if (1 == fRefCnt.fetch_add(-1, std::memory_order_acq_rel)) {
179 // restore the 1 for our destructor's assert
180 SkDEBUGCODE(fRefCnt.store(1, std::memory_order_relaxed));
181 delete (const Derived*)this;
182 }
183 }
deref()184 void deref() const { this->unref(); }
185
186 // This must be used with caution. It is only valid to call this when 'threadIsolatedTestCnt'
187 // refs are known to be isolated to the current thread. That is, it is known that there are at
188 // least 'threadIsolatedTestCnt' refs for which no other thread may make a balancing unref()
189 // call. Assuming the contract is followed, if this returns false then no other thread has
190 // ownership of this. If it returns true then another thread *may* have ownership.
refCntGreaterThan(int32_t threadIsolatedTestCnt)191 bool refCntGreaterThan(int32_t threadIsolatedTestCnt) const {
192 int cnt = fRefCnt.load(std::memory_order_acquire);
193 // If this fails then the above contract has been violated.
194 SkASSERT(cnt >= threadIsolatedTestCnt);
195 return cnt > threadIsolatedTestCnt;
196 }
197
198 private:
199 mutable std::atomic<int32_t> fRefCnt;
200
201 SkNVRefCnt(SkNVRefCnt&&) = delete;
202 SkNVRefCnt(const SkNVRefCnt&) = delete;
203 SkNVRefCnt& operator=(SkNVRefCnt&&) = delete;
204 SkNVRefCnt& operator=(const SkNVRefCnt&) = delete;
205 };
206
207 ///////////////////////////////////////////////////////////////////////////////////////////////////
208
209 /**
210 * Shared pointer class to wrap classes that support a ref()/unref() interface.
211 *
212 * This can be used for classes inheriting from SkRefCnt, but it also works for other
213 * classes that match the interface, but have different internal choices: e.g. the hosted class
214 * may have its ref/unref be thread-safe, but that is not assumed/imposed by sk_sp.
215 *
216 * Declared with the trivial_abi attribute where supported so that sk_sp and types containing it
217 * may be considered as trivially relocatable by the compiler so that destroying-move operations
218 * i.e. move constructor followed by destructor can be optimized to memcpy.
219 */
220 template <typename T> class SK_TRIVIAL_ABI sk_sp {
221 public:
222 using element_type = T;
223
sk_sp()224 constexpr sk_sp() : fPtr(nullptr) {}
sk_sp(std::nullptr_t)225 constexpr sk_sp(std::nullptr_t) : fPtr(nullptr) {}
226
227 /**
228 * Shares the underlying object by calling ref(), so that both the argument and the newly
229 * created sk_sp both have a reference to it.
230 */
sk_sp(const sk_sp<T> & that)231 sk_sp(const sk_sp<T>& that) : fPtr(SkSafeRef(that.get())) {}
232 template <typename U,
233 typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
sk_sp(const sk_sp<U> & that)234 sk_sp(const sk_sp<U>& that) : fPtr(SkSafeRef(that.get())) {}
235
236 /**
237 * Move the underlying object from the argument to the newly created sk_sp. Afterwards only
238 * the new sk_sp will have a reference to the object, and the argument will point to null.
239 * No call to ref() or unref() will be made.
240 */
sk_sp(sk_sp<T> && that)241 sk_sp(sk_sp<T>&& that) : fPtr(that.release()) {}
242 template <typename U,
243 typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
sk_sp(sk_sp<U> && that)244 sk_sp(sk_sp<U>&& that) : fPtr(that.release()) {}
245
246 /**
247 * Adopt the bare pointer into the newly created sk_sp.
248 * No call to ref() or unref() will be made.
249 */
sk_sp(T * obj)250 explicit sk_sp(T* obj) : fPtr(obj) {}
251
252 /**
253 * Calls unref() on the underlying object pointer.
254 */
~sk_sp()255 ~sk_sp() {
256 SkSafeUnref(fPtr);
257 SkDEBUGCODE(fPtr = nullptr);
258 }
259
260 sk_sp<T>& operator=(std::nullptr_t) { this->reset(); return *this; }
261
262 /**
263 * Shares the underlying object referenced by the argument by calling ref() on it. If this
264 * sk_sp previously had a reference to an object (i.e. not null) it will call unref() on that
265 * object.
266 */
267 sk_sp<T>& operator=(const sk_sp<T>& that) {
268 if (this != &that) {
269 this->reset(SkSafeRef(that.get()));
270 }
271 return *this;
272 }
273 template <typename U,
274 typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
275 sk_sp<T>& operator=(const sk_sp<U>& that) {
276 this->reset(SkSafeRef(that.get()));
277 return *this;
278 }
279
280 /**
281 * Move the underlying object from the argument to the sk_sp. If the sk_sp previously held
282 * a reference to another object, unref() will be called on that object. No call to ref()
283 * will be made.
284 */
285 sk_sp<T>& operator=(sk_sp<T>&& that) {
286 this->reset(that.release());
287 return *this;
288 }
289 template <typename U,
290 typename = typename std::enable_if<std::is_convertible<U*, T*>::value>::type>
291 sk_sp<T>& operator=(sk_sp<U>&& that) {
292 this->reset(that.release());
293 return *this;
294 }
295
296 T& operator*() const {
297 SkASSERT(this->get() != nullptr);
298 return *this->get();
299 }
300
301 explicit operator bool() const { return this->get() != nullptr; }
302
get()303 T* get() const { return fPtr; }
304 T* operator->() const { return fPtr; }
305
306 /**
307 * Adopt the new bare pointer, and call unref() on any previously held object (if not null).
308 * No call to ref() will be made.
309 */
310 void reset(T* ptr = nullptr) {
311 // Calling fPtr->unref() may call this->~() or this->reset(T*).
312 // http://wg21.cmeerw.net/lwg/issue998
313 // http://wg21.cmeerw.net/lwg/issue2262
314 T* oldPtr = fPtr;
315 fPtr = ptr;
316 SkSafeUnref(oldPtr);
317 }
318
319 /**
320 * Return the bare pointer, and set the internal object pointer to nullptr.
321 * The caller must assume ownership of the object, and manage its reference count directly.
322 * No call to unref() will be made.
323 */
release()324 T* SK_WARN_UNUSED_RESULT release() {
325 T* ptr = fPtr;
326 fPtr = nullptr;
327 return ptr;
328 }
329
swap(sk_sp<T> & that)330 void swap(sk_sp<T>& that) /*noexcept*/ {
331 using std::swap;
332 swap(fPtr, that.fPtr);
333 }
334
335 using sk_is_trivially_relocatable = std::true_type;
336
337 private:
338 T* fPtr;
339 };
340
swap(sk_sp<T> & a,sk_sp<T> & b)341 template <typename T> inline void swap(sk_sp<T>& a, sk_sp<T>& b) /*noexcept*/ {
342 a.swap(b);
343 }
344
345 template <typename T, typename U> inline bool operator==(const sk_sp<T>& a, const sk_sp<U>& b) {
346 return a.get() == b.get();
347 }
348 template <typename T> inline bool operator==(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
349 return !a;
350 }
351 template <typename T> inline bool operator==(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
352 return !b;
353 }
354
355 template <typename T, typename U> inline bool operator!=(const sk_sp<T>& a, const sk_sp<U>& b) {
356 return a.get() != b.get();
357 }
358 template <typename T> inline bool operator!=(const sk_sp<T>& a, std::nullptr_t) /*noexcept*/ {
359 return static_cast<bool>(a);
360 }
361 template <typename T> inline bool operator!=(std::nullptr_t, const sk_sp<T>& b) /*noexcept*/ {
362 return static_cast<bool>(b);
363 }
364
365 template <typename C, typename CT, typename T>
366 auto operator<<(std::basic_ostream<C, CT>& os, const sk_sp<T>& sp) -> decltype(os << sp.get()) {
367 return os << sp.get();
368 }
369
370 template <typename T, typename... Args>
sk_make_sp(Args &&...args)371 sk_sp<T> sk_make_sp(Args&&... args) {
372 return sk_sp<T>(new T(std::forward<Args>(args)...));
373 }
374
375 /*
376 * Returns a sk_sp wrapping the provided ptr AND calls ref on it (if not null).
377 *
378 * This is different than the semantics of the constructor for sk_sp, which just wraps the ptr,
379 * effectively "adopting" it.
380 */
sk_ref_sp(T * obj)381 template <typename T> sk_sp<T> sk_ref_sp(T* obj) {
382 return sk_sp<T>(SkSafeRef(obj));
383 }
384
sk_ref_sp(const T * obj)385 template <typename T> sk_sp<T> sk_ref_sp(const T* obj) {
386 return sk_sp<T>(const_cast<T*>(SkSafeRef(obj)));
387 }
388
389 #endif
390