1 //===------- SemaTemplate.cpp - Semantic Analysis for C++ Templates -------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements semantic analysis for C++ templates.
10 //===----------------------------------------------------------------------===//
11
12 #include "TreeTransform.h"
13 #include "clang/AST/ASTConsumer.h"
14 #include "clang/AST/ASTContext.h"
15 #include "clang/AST/DeclFriend.h"
16 #include "clang/AST/DeclTemplate.h"
17 #include "clang/AST/Expr.h"
18 #include "clang/AST/ExprCXX.h"
19 #include "clang/AST/RecursiveASTVisitor.h"
20 #include "clang/AST/TypeVisitor.h"
21 #include "clang/Basic/Builtins.h"
22 #include "clang/Basic/LangOptions.h"
23 #include "clang/Basic/PartialDiagnostic.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "clang/Sema/DeclSpec.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/ParsedTemplate.h"
28 #include "clang/Sema/Scope.h"
29 #include "clang/Sema/SemaInternal.h"
30 #include "clang/Sema/Template.h"
31 #include "clang/Sema/TemplateDeduction.h"
32 #include "llvm/ADT/SmallBitVector.h"
33 #include "llvm/ADT/SmallString.h"
34 #include "llvm/ADT/StringExtras.h"
35
36 #include <iterator>
37 using namespace clang;
38 using namespace sema;
39
40 // Exported for use by Parser.
41 SourceRange
getTemplateParamsRange(TemplateParameterList const * const * Ps,unsigned N)42 clang::getTemplateParamsRange(TemplateParameterList const * const *Ps,
43 unsigned N) {
44 if (!N) return SourceRange();
45 return SourceRange(Ps[0]->getTemplateLoc(), Ps[N-1]->getRAngleLoc());
46 }
47
48 /// \brief Determine whether the declaration found is acceptable as the name
49 /// of a template and, if so, return that template declaration. Otherwise,
50 /// returns NULL.
isAcceptableTemplateName(ASTContext & Context,NamedDecl * Orig,bool AllowFunctionTemplates)51 static NamedDecl *isAcceptableTemplateName(ASTContext &Context,
52 NamedDecl *Orig,
53 bool AllowFunctionTemplates) {
54 NamedDecl *D = Orig->getUnderlyingDecl();
55
56 if (isa<TemplateDecl>(D)) {
57 if (!AllowFunctionTemplates && isa<FunctionTemplateDecl>(D))
58 return nullptr;
59
60 return Orig;
61 }
62
63 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D)) {
64 // C++ [temp.local]p1:
65 // Like normal (non-template) classes, class templates have an
66 // injected-class-name (Clause 9). The injected-class-name
67 // can be used with or without a template-argument-list. When
68 // it is used without a template-argument-list, it is
69 // equivalent to the injected-class-name followed by the
70 // template-parameters of the class template enclosed in
71 // <>. When it is used with a template-argument-list, it
72 // refers to the specified class template specialization,
73 // which could be the current specialization or another
74 // specialization.
75 if (Record->isInjectedClassName()) {
76 Record = cast<CXXRecordDecl>(Record->getDeclContext());
77 if (Record->getDescribedClassTemplate())
78 return Record->getDescribedClassTemplate();
79
80 if (ClassTemplateSpecializationDecl *Spec
81 = dyn_cast<ClassTemplateSpecializationDecl>(Record))
82 return Spec->getSpecializedTemplate();
83 }
84
85 return nullptr;
86 }
87
88 return nullptr;
89 }
90
FilterAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)91 void Sema::FilterAcceptableTemplateNames(LookupResult &R,
92 bool AllowFunctionTemplates) {
93 // The set of class templates we've already seen.
94 llvm::SmallPtrSet<ClassTemplateDecl *, 8> ClassTemplates;
95 LookupResult::Filter filter = R.makeFilter();
96 while (filter.hasNext()) {
97 NamedDecl *Orig = filter.next();
98 NamedDecl *Repl = isAcceptableTemplateName(Context, Orig,
99 AllowFunctionTemplates);
100 if (!Repl)
101 filter.erase();
102 else if (Repl != Orig) {
103
104 // C++ [temp.local]p3:
105 // A lookup that finds an injected-class-name (10.2) can result in an
106 // ambiguity in certain cases (for example, if it is found in more than
107 // one base class). If all of the injected-class-names that are found
108 // refer to specializations of the same class template, and if the name
109 // is used as a template-name, the reference refers to the class
110 // template itself and not a specialization thereof, and is not
111 // ambiguous.
112 if (ClassTemplateDecl *ClassTmpl = dyn_cast<ClassTemplateDecl>(Repl))
113 if (!ClassTemplates.insert(ClassTmpl).second) {
114 filter.erase();
115 continue;
116 }
117
118 // FIXME: we promote access to public here as a workaround to
119 // the fact that LookupResult doesn't let us remember that we
120 // found this template through a particular injected class name,
121 // which means we end up doing nasty things to the invariants.
122 // Pretending that access is public is *much* safer.
123 filter.replace(Repl, AS_public);
124 }
125 }
126 filter.done();
127 }
128
hasAnyAcceptableTemplateNames(LookupResult & R,bool AllowFunctionTemplates)129 bool Sema::hasAnyAcceptableTemplateNames(LookupResult &R,
130 bool AllowFunctionTemplates) {
131 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I)
132 if (isAcceptableTemplateName(Context, *I, AllowFunctionTemplates))
133 return true;
134
135 return false;
136 }
137
isTemplateName(Scope * S,CXXScopeSpec & SS,bool hasTemplateKeyword,UnqualifiedId & Name,ParsedType ObjectTypePtr,bool EnteringContext,TemplateTy & TemplateResult,bool & MemberOfUnknownSpecialization)138 TemplateNameKind Sema::isTemplateName(Scope *S,
139 CXXScopeSpec &SS,
140 bool hasTemplateKeyword,
141 UnqualifiedId &Name,
142 ParsedType ObjectTypePtr,
143 bool EnteringContext,
144 TemplateTy &TemplateResult,
145 bool &MemberOfUnknownSpecialization) {
146 assert(getLangOpts().CPlusPlus && "No template names in C!");
147
148 DeclarationName TName;
149 MemberOfUnknownSpecialization = false;
150
151 switch (Name.getKind()) {
152 case UnqualifiedId::IK_Identifier:
153 TName = DeclarationName(Name.Identifier);
154 break;
155
156 case UnqualifiedId::IK_OperatorFunctionId:
157 TName = Context.DeclarationNames.getCXXOperatorName(
158 Name.OperatorFunctionId.Operator);
159 break;
160
161 case UnqualifiedId::IK_LiteralOperatorId:
162 TName = Context.DeclarationNames.getCXXLiteralOperatorName(Name.Identifier);
163 break;
164
165 default:
166 return TNK_Non_template;
167 }
168
169 QualType ObjectType = ObjectTypePtr.get();
170
171 LookupResult R(*this, TName, Name.getLocStart(), LookupOrdinaryName);
172 LookupTemplateName(R, S, SS, ObjectType, EnteringContext,
173 MemberOfUnknownSpecialization);
174 if (R.empty()) return TNK_Non_template;
175 if (R.isAmbiguous()) {
176 // Suppress diagnostics; we'll redo this lookup later.
177 R.suppressDiagnostics();
178
179 // FIXME: we might have ambiguous templates, in which case we
180 // should at least parse them properly!
181 return TNK_Non_template;
182 }
183
184 TemplateName Template;
185 TemplateNameKind TemplateKind;
186
187 unsigned ResultCount = R.end() - R.begin();
188 if (ResultCount > 1) {
189 // We assume that we'll preserve the qualifier from a function
190 // template name in other ways.
191 Template = Context.getOverloadedTemplateName(R.begin(), R.end());
192 TemplateKind = TNK_Function_template;
193
194 // We'll do this lookup again later.
195 R.suppressDiagnostics();
196 } else {
197 TemplateDecl *TD = cast<TemplateDecl>((*R.begin())->getUnderlyingDecl());
198
199 if (SS.isSet() && !SS.isInvalid()) {
200 NestedNameSpecifier *Qualifier = SS.getScopeRep();
201 Template = Context.getQualifiedTemplateName(Qualifier,
202 hasTemplateKeyword, TD);
203 } else {
204 Template = TemplateName(TD);
205 }
206
207 if (isa<FunctionTemplateDecl>(TD)) {
208 TemplateKind = TNK_Function_template;
209
210 // We'll do this lookup again later.
211 R.suppressDiagnostics();
212 } else {
213 assert(isa<ClassTemplateDecl>(TD) || isa<TemplateTemplateParmDecl>(TD) ||
214 isa<TypeAliasTemplateDecl>(TD) || isa<VarTemplateDecl>(TD) ||
215 isa<BuiltinTemplateDecl>(TD));
216 TemplateKind =
217 isa<VarTemplateDecl>(TD) ? TNK_Var_template : TNK_Type_template;
218 }
219 }
220
221 TemplateResult = TemplateTy::make(Template);
222 return TemplateKind;
223 }
224
DiagnoseUnknownTemplateName(const IdentifierInfo & II,SourceLocation IILoc,Scope * S,const CXXScopeSpec * SS,TemplateTy & SuggestedTemplate,TemplateNameKind & SuggestedKind)225 bool Sema::DiagnoseUnknownTemplateName(const IdentifierInfo &II,
226 SourceLocation IILoc,
227 Scope *S,
228 const CXXScopeSpec *SS,
229 TemplateTy &SuggestedTemplate,
230 TemplateNameKind &SuggestedKind) {
231 // We can't recover unless there's a dependent scope specifier preceding the
232 // template name.
233 // FIXME: Typo correction?
234 if (!SS || !SS->isSet() || !isDependentScopeSpecifier(*SS) ||
235 computeDeclContext(*SS))
236 return false;
237
238 // The code is missing a 'template' keyword prior to the dependent template
239 // name.
240 NestedNameSpecifier *Qualifier = (NestedNameSpecifier*)SS->getScopeRep();
241 Diag(IILoc, diag::err_template_kw_missing)
242 << Qualifier << II.getName()
243 << FixItHint::CreateInsertion(IILoc, "template ");
244 SuggestedTemplate
245 = TemplateTy::make(Context.getDependentTemplateName(Qualifier, &II));
246 SuggestedKind = TNK_Dependent_template_name;
247 return true;
248 }
249
LookupTemplateName(LookupResult & Found,Scope * S,CXXScopeSpec & SS,QualType ObjectType,bool EnteringContext,bool & MemberOfUnknownSpecialization)250 void Sema::LookupTemplateName(LookupResult &Found,
251 Scope *S, CXXScopeSpec &SS,
252 QualType ObjectType,
253 bool EnteringContext,
254 bool &MemberOfUnknownSpecialization) {
255 // Determine where to perform name lookup
256 MemberOfUnknownSpecialization = false;
257 DeclContext *LookupCtx = nullptr;
258 bool isDependent = false;
259 if (!ObjectType.isNull()) {
260 // This nested-name-specifier occurs in a member access expression, e.g.,
261 // x->B::f, and we are looking into the type of the object.
262 assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
263 LookupCtx = computeDeclContext(ObjectType);
264 isDependent = ObjectType->isDependentType();
265 assert((isDependent || !ObjectType->isIncompleteType() ||
266 ObjectType->castAs<TagType>()->isBeingDefined()) &&
267 "Caller should have completed object type");
268
269 // Template names cannot appear inside an Objective-C class or object type.
270 if (ObjectType->isObjCObjectOrInterfaceType()) {
271 Found.clear();
272 return;
273 }
274 } else if (SS.isSet()) {
275 // This nested-name-specifier occurs after another nested-name-specifier,
276 // so long into the context associated with the prior nested-name-specifier.
277 LookupCtx = computeDeclContext(SS, EnteringContext);
278 isDependent = isDependentScopeSpecifier(SS);
279
280 // The declaration context must be complete.
281 if (LookupCtx && RequireCompleteDeclContext(SS, LookupCtx))
282 return;
283 }
284
285 bool ObjectTypeSearchedInScope = false;
286 bool AllowFunctionTemplatesInLookup = true;
287 if (LookupCtx) {
288 // Perform "qualified" name lookup into the declaration context we
289 // computed, which is either the type of the base of a member access
290 // expression or the declaration context associated with a prior
291 // nested-name-specifier.
292 LookupQualifiedName(Found, LookupCtx);
293 if (!ObjectType.isNull() && Found.empty()) {
294 // C++ [basic.lookup.classref]p1:
295 // In a class member access expression (5.2.5), if the . or -> token is
296 // immediately followed by an identifier followed by a <, the
297 // identifier must be looked up to determine whether the < is the
298 // beginning of a template argument list (14.2) or a less-than operator.
299 // The identifier is first looked up in the class of the object
300 // expression. If the identifier is not found, it is then looked up in
301 // the context of the entire postfix-expression and shall name a class
302 // or function template.
303 if (S) LookupName(Found, S);
304 ObjectTypeSearchedInScope = true;
305 AllowFunctionTemplatesInLookup = false;
306 }
307 } else if (isDependent && (!S || ObjectType.isNull())) {
308 // We cannot look into a dependent object type or nested nme
309 // specifier.
310 MemberOfUnknownSpecialization = true;
311 return;
312 } else {
313 // Perform unqualified name lookup in the current scope.
314 LookupName(Found, S);
315
316 if (!ObjectType.isNull())
317 AllowFunctionTemplatesInLookup = false;
318 }
319
320 if (Found.empty() && !isDependent) {
321 // If we did not find any names, attempt to correct any typos.
322 DeclarationName Name = Found.getLookupName();
323 Found.clear();
324 // Simple filter callback that, for keywords, only accepts the C++ *_cast
325 auto FilterCCC = llvm::make_unique<CorrectionCandidateCallback>();
326 FilterCCC->WantTypeSpecifiers = false;
327 FilterCCC->WantExpressionKeywords = false;
328 FilterCCC->WantRemainingKeywords = false;
329 FilterCCC->WantCXXNamedCasts = true;
330 if (TypoCorrection Corrected = CorrectTypo(
331 Found.getLookupNameInfo(), Found.getLookupKind(), S, &SS,
332 std::move(FilterCCC), CTK_ErrorRecovery, LookupCtx)) {
333 Found.setLookupName(Corrected.getCorrection());
334 if (auto *ND = Corrected.getFoundDecl())
335 Found.addDecl(ND);
336 FilterAcceptableTemplateNames(Found);
337 if (!Found.empty()) {
338 if (LookupCtx) {
339 std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
340 bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
341 Name.getAsString() == CorrectedStr;
342 diagnoseTypo(Corrected, PDiag(diag::err_no_member_template_suggest)
343 << Name << LookupCtx << DroppedSpecifier
344 << SS.getRange());
345 } else {
346 diagnoseTypo(Corrected, PDiag(diag::err_no_template_suggest) << Name);
347 }
348 }
349 } else {
350 Found.setLookupName(Name);
351 }
352 }
353
354 FilterAcceptableTemplateNames(Found, AllowFunctionTemplatesInLookup);
355 if (Found.empty()) {
356 if (isDependent)
357 MemberOfUnknownSpecialization = true;
358 return;
359 }
360
361 if (S && !ObjectType.isNull() && !ObjectTypeSearchedInScope &&
362 !getLangOpts().CPlusPlus11) {
363 // C++03 [basic.lookup.classref]p1:
364 // [...] If the lookup in the class of the object expression finds a
365 // template, the name is also looked up in the context of the entire
366 // postfix-expression and [...]
367 //
368 // Note: C++11 does not perform this second lookup.
369 LookupResult FoundOuter(*this, Found.getLookupName(), Found.getNameLoc(),
370 LookupOrdinaryName);
371 LookupName(FoundOuter, S);
372 FilterAcceptableTemplateNames(FoundOuter, /*AllowFunctionTemplates=*/false);
373
374 if (FoundOuter.empty()) {
375 // - if the name is not found, the name found in the class of the
376 // object expression is used, otherwise
377 } else if (!FoundOuter.getAsSingle<ClassTemplateDecl>() ||
378 FoundOuter.isAmbiguous()) {
379 // - if the name is found in the context of the entire
380 // postfix-expression and does not name a class template, the name
381 // found in the class of the object expression is used, otherwise
382 FoundOuter.clear();
383 } else if (!Found.isSuppressingDiagnostics()) {
384 // - if the name found is a class template, it must refer to the same
385 // entity as the one found in the class of the object expression,
386 // otherwise the program is ill-formed.
387 if (!Found.isSingleResult() ||
388 Found.getFoundDecl()->getCanonicalDecl()
389 != FoundOuter.getFoundDecl()->getCanonicalDecl()) {
390 Diag(Found.getNameLoc(),
391 diag::ext_nested_name_member_ref_lookup_ambiguous)
392 << Found.getLookupName()
393 << ObjectType;
394 Diag(Found.getRepresentativeDecl()->getLocation(),
395 diag::note_ambig_member_ref_object_type)
396 << ObjectType;
397 Diag(FoundOuter.getFoundDecl()->getLocation(),
398 diag::note_ambig_member_ref_scope);
399
400 // Recover by taking the template that we found in the object
401 // expression's type.
402 }
403 }
404 }
405 }
406
407 /// ActOnDependentIdExpression - Handle a dependent id-expression that
408 /// was just parsed. This is only possible with an explicit scope
409 /// specifier naming a dependent type.
410 ExprResult
ActOnDependentIdExpression(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,bool isAddressOfOperand,const TemplateArgumentListInfo * TemplateArgs)411 Sema::ActOnDependentIdExpression(const CXXScopeSpec &SS,
412 SourceLocation TemplateKWLoc,
413 const DeclarationNameInfo &NameInfo,
414 bool isAddressOfOperand,
415 const TemplateArgumentListInfo *TemplateArgs) {
416 DeclContext *DC = getFunctionLevelDeclContext();
417
418 // C++11 [expr.prim.general]p12:
419 // An id-expression that denotes a non-static data member or non-static
420 // member function of a class can only be used:
421 // (...)
422 // - if that id-expression denotes a non-static data member and it
423 // appears in an unevaluated operand.
424 //
425 // If this might be the case, form a DependentScopeDeclRefExpr instead of a
426 // CXXDependentScopeMemberExpr. The former can instantiate to either
427 // DeclRefExpr or MemberExpr depending on lookup results, while the latter is
428 // always a MemberExpr.
429 bool MightBeCxx11UnevalField =
430 getLangOpts().CPlusPlus11 && isUnevaluatedContext();
431
432 if (!MightBeCxx11UnevalField && !isAddressOfOperand &&
433 isa<CXXMethodDecl>(DC) && cast<CXXMethodDecl>(DC)->isInstance()) {
434 QualType ThisType = cast<CXXMethodDecl>(DC)->getThisType(Context);
435
436 // Since the 'this' expression is synthesized, we don't need to
437 // perform the double-lookup check.
438 NamedDecl *FirstQualifierInScope = nullptr;
439
440 return CXXDependentScopeMemberExpr::Create(
441 Context, /*This*/ nullptr, ThisType, /*IsArrow*/ true,
442 /*Op*/ SourceLocation(), SS.getWithLocInContext(Context), TemplateKWLoc,
443 FirstQualifierInScope, NameInfo, TemplateArgs);
444 }
445
446 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
447 }
448
449 ExprResult
BuildDependentDeclRefExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)450 Sema::BuildDependentDeclRefExpr(const CXXScopeSpec &SS,
451 SourceLocation TemplateKWLoc,
452 const DeclarationNameInfo &NameInfo,
453 const TemplateArgumentListInfo *TemplateArgs) {
454 return DependentScopeDeclRefExpr::Create(
455 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
456 TemplateArgs);
457 }
458
459 /// DiagnoseTemplateParameterShadow - Produce a diagnostic complaining
460 /// that the template parameter 'PrevDecl' is being shadowed by a new
461 /// declaration at location Loc. Returns true to indicate that this is
462 /// an error, and false otherwise.
DiagnoseTemplateParameterShadow(SourceLocation Loc,Decl * PrevDecl)463 void Sema::DiagnoseTemplateParameterShadow(SourceLocation Loc, Decl *PrevDecl) {
464 assert(PrevDecl->isTemplateParameter() && "Not a template parameter");
465
466 // Microsoft Visual C++ permits template parameters to be shadowed.
467 if (getLangOpts().MicrosoftExt)
468 return;
469
470 // C++ [temp.local]p4:
471 // A template-parameter shall not be redeclared within its
472 // scope (including nested scopes).
473 Diag(Loc, diag::err_template_param_shadow)
474 << cast<NamedDecl>(PrevDecl)->getDeclName();
475 Diag(PrevDecl->getLocation(), diag::note_template_param_here);
476 }
477
478 /// AdjustDeclIfTemplate - If the given decl happens to be a template, reset
479 /// the parameter D to reference the templated declaration and return a pointer
480 /// to the template declaration. Otherwise, do nothing to D and return null.
AdjustDeclIfTemplate(Decl * & D)481 TemplateDecl *Sema::AdjustDeclIfTemplate(Decl *&D) {
482 if (TemplateDecl *Temp = dyn_cast_or_null<TemplateDecl>(D)) {
483 D = Temp->getTemplatedDecl();
484 return Temp;
485 }
486 return nullptr;
487 }
488
getTemplatePackExpansion(SourceLocation EllipsisLoc) const489 ParsedTemplateArgument ParsedTemplateArgument::getTemplatePackExpansion(
490 SourceLocation EllipsisLoc) const {
491 assert(Kind == Template &&
492 "Only template template arguments can be pack expansions here");
493 assert(getAsTemplate().get().containsUnexpandedParameterPack() &&
494 "Template template argument pack expansion without packs");
495 ParsedTemplateArgument Result(*this);
496 Result.EllipsisLoc = EllipsisLoc;
497 return Result;
498 }
499
translateTemplateArgument(Sema & SemaRef,const ParsedTemplateArgument & Arg)500 static TemplateArgumentLoc translateTemplateArgument(Sema &SemaRef,
501 const ParsedTemplateArgument &Arg) {
502
503 switch (Arg.getKind()) {
504 case ParsedTemplateArgument::Type: {
505 TypeSourceInfo *DI;
506 QualType T = SemaRef.GetTypeFromParser(Arg.getAsType(), &DI);
507 if (!DI)
508 DI = SemaRef.Context.getTrivialTypeSourceInfo(T, Arg.getLocation());
509 return TemplateArgumentLoc(TemplateArgument(T), DI);
510 }
511
512 case ParsedTemplateArgument::NonType: {
513 Expr *E = static_cast<Expr *>(Arg.getAsExpr());
514 return TemplateArgumentLoc(TemplateArgument(E), E);
515 }
516
517 case ParsedTemplateArgument::Template: {
518 TemplateName Template = Arg.getAsTemplate().get();
519 TemplateArgument TArg;
520 if (Arg.getEllipsisLoc().isValid())
521 TArg = TemplateArgument(Template, Optional<unsigned int>());
522 else
523 TArg = Template;
524 return TemplateArgumentLoc(TArg,
525 Arg.getScopeSpec().getWithLocInContext(
526 SemaRef.Context),
527 Arg.getLocation(),
528 Arg.getEllipsisLoc());
529 }
530 }
531
532 llvm_unreachable("Unhandled parsed template argument");
533 }
534
535 /// \brief Translates template arguments as provided by the parser
536 /// into template arguments used by semantic analysis.
translateTemplateArguments(const ASTTemplateArgsPtr & TemplateArgsIn,TemplateArgumentListInfo & TemplateArgs)537 void Sema::translateTemplateArguments(const ASTTemplateArgsPtr &TemplateArgsIn,
538 TemplateArgumentListInfo &TemplateArgs) {
539 for (unsigned I = 0, Last = TemplateArgsIn.size(); I != Last; ++I)
540 TemplateArgs.addArgument(translateTemplateArgument(*this,
541 TemplateArgsIn[I]));
542 }
543
maybeDiagnoseTemplateParameterShadow(Sema & SemaRef,Scope * S,SourceLocation Loc,IdentifierInfo * Name)544 static void maybeDiagnoseTemplateParameterShadow(Sema &SemaRef, Scope *S,
545 SourceLocation Loc,
546 IdentifierInfo *Name) {
547 NamedDecl *PrevDecl = SemaRef.LookupSingleName(
548 S, Name, Loc, Sema::LookupOrdinaryName, Sema::ForRedeclaration);
549 if (PrevDecl && PrevDecl->isTemplateParameter())
550 SemaRef.DiagnoseTemplateParameterShadow(Loc, PrevDecl);
551 }
552
553 /// ActOnTypeParameter - Called when a C++ template type parameter
554 /// (e.g., "typename T") has been parsed. Typename specifies whether
555 /// the keyword "typename" was used to declare the type parameter
556 /// (otherwise, "class" was used), and KeyLoc is the location of the
557 /// "class" or "typename" keyword. ParamName is the name of the
558 /// parameter (NULL indicates an unnamed template parameter) and
559 /// ParamNameLoc is the location of the parameter name (if any).
560 /// If the type parameter has a default argument, it will be added
561 /// later via ActOnTypeParameterDefault.
ActOnTypeParameter(Scope * S,bool Typename,SourceLocation EllipsisLoc,SourceLocation KeyLoc,IdentifierInfo * ParamName,SourceLocation ParamNameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedType DefaultArg)562 Decl *Sema::ActOnTypeParameter(Scope *S, bool Typename,
563 SourceLocation EllipsisLoc,
564 SourceLocation KeyLoc,
565 IdentifierInfo *ParamName,
566 SourceLocation ParamNameLoc,
567 unsigned Depth, unsigned Position,
568 SourceLocation EqualLoc,
569 ParsedType DefaultArg) {
570 assert(S->isTemplateParamScope() &&
571 "Template type parameter not in template parameter scope!");
572
573 SourceLocation Loc = ParamNameLoc;
574 if (!ParamName)
575 Loc = KeyLoc;
576
577 bool IsParameterPack = EllipsisLoc.isValid();
578 TemplateTypeParmDecl *Param
579 = TemplateTypeParmDecl::Create(Context, Context.getTranslationUnitDecl(),
580 KeyLoc, Loc, Depth, Position, ParamName,
581 Typename, IsParameterPack);
582 Param->setAccess(AS_public);
583
584 if (ParamName) {
585 maybeDiagnoseTemplateParameterShadow(*this, S, ParamNameLoc, ParamName);
586
587 // Add the template parameter into the current scope.
588 S->AddDecl(Param);
589 IdResolver.AddDecl(Param);
590 }
591
592 // C++0x [temp.param]p9:
593 // A default template-argument may be specified for any kind of
594 // template-parameter that is not a template parameter pack.
595 if (DefaultArg && IsParameterPack) {
596 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
597 DefaultArg = nullptr;
598 }
599
600 // Handle the default argument, if provided.
601 if (DefaultArg) {
602 TypeSourceInfo *DefaultTInfo;
603 GetTypeFromParser(DefaultArg, &DefaultTInfo);
604
605 assert(DefaultTInfo && "expected source information for type");
606
607 // Check for unexpanded parameter packs.
608 if (DiagnoseUnexpandedParameterPack(Loc, DefaultTInfo,
609 UPPC_DefaultArgument))
610 return Param;
611
612 // Check the template argument itself.
613 if (CheckTemplateArgument(Param, DefaultTInfo)) {
614 Param->setInvalidDecl();
615 return Param;
616 }
617
618 Param->setDefaultArgument(DefaultTInfo);
619 }
620
621 return Param;
622 }
623
624 /// \brief Check that the type of a non-type template parameter is
625 /// well-formed.
626 ///
627 /// \returns the (possibly-promoted) parameter type if valid;
628 /// otherwise, produces a diagnostic and returns a NULL type.
629 QualType
CheckNonTypeTemplateParameterType(QualType T,SourceLocation Loc)630 Sema::CheckNonTypeTemplateParameterType(QualType T, SourceLocation Loc) {
631 // We don't allow variably-modified types as the type of non-type template
632 // parameters.
633 if (T->isVariablyModifiedType()) {
634 Diag(Loc, diag::err_variably_modified_nontype_template_param)
635 << T;
636 return QualType();
637 }
638
639 // C++ [temp.param]p4:
640 //
641 // A non-type template-parameter shall have one of the following
642 // (optionally cv-qualified) types:
643 //
644 // -- integral or enumeration type,
645 if (T->isIntegralOrEnumerationType() ||
646 // -- pointer to object or pointer to function,
647 T->isPointerType() ||
648 // -- reference to object or reference to function,
649 T->isReferenceType() ||
650 // -- pointer to member,
651 T->isMemberPointerType() ||
652 // -- std::nullptr_t.
653 T->isNullPtrType() ||
654 // If T is a dependent type, we can't do the check now, so we
655 // assume that it is well-formed.
656 T->isDependentType()) {
657 // C++ [temp.param]p5: The top-level cv-qualifiers on the template-parameter
658 // are ignored when determining its type.
659 return T.getUnqualifiedType();
660 }
661
662 // C++ [temp.param]p8:
663 //
664 // A non-type template-parameter of type "array of T" or
665 // "function returning T" is adjusted to be of type "pointer to
666 // T" or "pointer to function returning T", respectively.
667 else if (T->isArrayType() || T->isFunctionType())
668 return Context.getDecayedType(T);
669
670 Diag(Loc, diag::err_template_nontype_parm_bad_type)
671 << T;
672
673 return QualType();
674 }
675
ActOnNonTypeTemplateParameter(Scope * S,Declarator & D,unsigned Depth,unsigned Position,SourceLocation EqualLoc,Expr * Default)676 Decl *Sema::ActOnNonTypeTemplateParameter(Scope *S, Declarator &D,
677 unsigned Depth,
678 unsigned Position,
679 SourceLocation EqualLoc,
680 Expr *Default) {
681 TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
682 QualType T = TInfo->getType();
683
684 assert(S->isTemplateParamScope() &&
685 "Non-type template parameter not in template parameter scope!");
686 bool Invalid = false;
687
688 T = CheckNonTypeTemplateParameterType(T, D.getIdentifierLoc());
689 if (T.isNull()) {
690 T = Context.IntTy; // Recover with an 'int' type.
691 Invalid = true;
692 }
693
694 IdentifierInfo *ParamName = D.getIdentifier();
695 bool IsParameterPack = D.hasEllipsis();
696 NonTypeTemplateParmDecl *Param
697 = NonTypeTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
698 D.getLocStart(),
699 D.getIdentifierLoc(),
700 Depth, Position, ParamName, T,
701 IsParameterPack, TInfo);
702 Param->setAccess(AS_public);
703
704 if (Invalid)
705 Param->setInvalidDecl();
706
707 if (ParamName) {
708 maybeDiagnoseTemplateParameterShadow(*this, S, D.getIdentifierLoc(),
709 ParamName);
710
711 // Add the template parameter into the current scope.
712 S->AddDecl(Param);
713 IdResolver.AddDecl(Param);
714 }
715
716 // C++0x [temp.param]p9:
717 // A default template-argument may be specified for any kind of
718 // template-parameter that is not a template parameter pack.
719 if (Default && IsParameterPack) {
720 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
721 Default = nullptr;
722 }
723
724 // Check the well-formedness of the default template argument, if provided.
725 if (Default) {
726 // Check for unexpanded parameter packs.
727 if (DiagnoseUnexpandedParameterPack(Default, UPPC_DefaultArgument))
728 return Param;
729
730 TemplateArgument Converted;
731 ExprResult DefaultRes =
732 CheckTemplateArgument(Param, Param->getType(), Default, Converted);
733 if (DefaultRes.isInvalid()) {
734 Param->setInvalidDecl();
735 return Param;
736 }
737 Default = DefaultRes.get();
738
739 Param->setDefaultArgument(Default);
740 }
741
742 return Param;
743 }
744
745 /// ActOnTemplateTemplateParameter - Called when a C++ template template
746 /// parameter (e.g. T in template <template \<typename> class T> class array)
747 /// has been parsed. S is the current scope.
ActOnTemplateTemplateParameter(Scope * S,SourceLocation TmpLoc,TemplateParameterList * Params,SourceLocation EllipsisLoc,IdentifierInfo * Name,SourceLocation NameLoc,unsigned Depth,unsigned Position,SourceLocation EqualLoc,ParsedTemplateArgument Default)748 Decl *Sema::ActOnTemplateTemplateParameter(Scope* S,
749 SourceLocation TmpLoc,
750 TemplateParameterList *Params,
751 SourceLocation EllipsisLoc,
752 IdentifierInfo *Name,
753 SourceLocation NameLoc,
754 unsigned Depth,
755 unsigned Position,
756 SourceLocation EqualLoc,
757 ParsedTemplateArgument Default) {
758 assert(S->isTemplateParamScope() &&
759 "Template template parameter not in template parameter scope!");
760
761 // Construct the parameter object.
762 bool IsParameterPack = EllipsisLoc.isValid();
763 TemplateTemplateParmDecl *Param =
764 TemplateTemplateParmDecl::Create(Context, Context.getTranslationUnitDecl(),
765 NameLoc.isInvalid()? TmpLoc : NameLoc,
766 Depth, Position, IsParameterPack,
767 Name, Params);
768 Param->setAccess(AS_public);
769
770 // If the template template parameter has a name, then link the identifier
771 // into the scope and lookup mechanisms.
772 if (Name) {
773 maybeDiagnoseTemplateParameterShadow(*this, S, NameLoc, Name);
774
775 S->AddDecl(Param);
776 IdResolver.AddDecl(Param);
777 }
778
779 if (Params->size() == 0) {
780 Diag(Param->getLocation(), diag::err_template_template_parm_no_parms)
781 << SourceRange(Params->getLAngleLoc(), Params->getRAngleLoc());
782 Param->setInvalidDecl();
783 }
784
785 // C++0x [temp.param]p9:
786 // A default template-argument may be specified for any kind of
787 // template-parameter that is not a template parameter pack.
788 if (IsParameterPack && !Default.isInvalid()) {
789 Diag(EqualLoc, diag::err_template_param_pack_default_arg);
790 Default = ParsedTemplateArgument();
791 }
792
793 if (!Default.isInvalid()) {
794 // Check only that we have a template template argument. We don't want to
795 // try to check well-formedness now, because our template template parameter
796 // might have dependent types in its template parameters, which we wouldn't
797 // be able to match now.
798 //
799 // If none of the template template parameter's template arguments mention
800 // other template parameters, we could actually perform more checking here.
801 // However, it isn't worth doing.
802 TemplateArgumentLoc DefaultArg = translateTemplateArgument(*this, Default);
803 if (DefaultArg.getArgument().getAsTemplate().isNull()) {
804 Diag(DefaultArg.getLocation(), diag::err_template_arg_not_valid_template)
805 << DefaultArg.getSourceRange();
806 return Param;
807 }
808
809 // Check for unexpanded parameter packs.
810 if (DiagnoseUnexpandedParameterPack(DefaultArg.getLocation(),
811 DefaultArg.getArgument().getAsTemplate(),
812 UPPC_DefaultArgument))
813 return Param;
814
815 Param->setDefaultArgument(Context, DefaultArg);
816 }
817
818 return Param;
819 }
820
821 /// ActOnTemplateParameterList - Builds a TemplateParameterList, optionally
822 /// constrained by RequiresClause, that contains the template parameters in
823 /// Params.
824 TemplateParameterList *
ActOnTemplateParameterList(unsigned Depth,SourceLocation ExportLoc,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ArrayRef<Decl * > Params,SourceLocation RAngleLoc,Expr * RequiresClause)825 Sema::ActOnTemplateParameterList(unsigned Depth,
826 SourceLocation ExportLoc,
827 SourceLocation TemplateLoc,
828 SourceLocation LAngleLoc,
829 ArrayRef<Decl *> Params,
830 SourceLocation RAngleLoc,
831 Expr *RequiresClause) {
832 if (ExportLoc.isValid())
833 Diag(ExportLoc, diag::warn_template_export_unsupported);
834
835 // FIXME: store RequiresClause
836 return TemplateParameterList::Create(
837 Context, TemplateLoc, LAngleLoc,
838 llvm::makeArrayRef((NamedDecl *const *)Params.data(), Params.size()),
839 RAngleLoc);
840 }
841
SetNestedNameSpecifier(TagDecl * T,const CXXScopeSpec & SS)842 static void SetNestedNameSpecifier(TagDecl *T, const CXXScopeSpec &SS) {
843 if (SS.isSet())
844 T->setQualifierInfo(SS.getWithLocInContext(T->getASTContext()));
845 }
846
847 DeclResult
CheckClassTemplate(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr,TemplateParameterList * TemplateParams,AccessSpecifier AS,SourceLocation ModulePrivateLoc,SourceLocation FriendLoc,unsigned NumOuterTemplateParamLists,TemplateParameterList ** OuterTemplateParamLists,SkipBodyInfo * SkipBody)848 Sema::CheckClassTemplate(Scope *S, unsigned TagSpec, TagUseKind TUK,
849 SourceLocation KWLoc, CXXScopeSpec &SS,
850 IdentifierInfo *Name, SourceLocation NameLoc,
851 AttributeList *Attr,
852 TemplateParameterList *TemplateParams,
853 AccessSpecifier AS, SourceLocation ModulePrivateLoc,
854 SourceLocation FriendLoc,
855 unsigned NumOuterTemplateParamLists,
856 TemplateParameterList** OuterTemplateParamLists,
857 SkipBodyInfo *SkipBody) {
858 assert(TemplateParams && TemplateParams->size() > 0 &&
859 "No template parameters");
860 assert(TUK != TUK_Reference && "Can only declare or define class templates");
861 bool Invalid = false;
862
863 // Check that we can declare a template here.
864 if (CheckTemplateDeclScope(S, TemplateParams))
865 return true;
866
867 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
868 assert(Kind != TTK_Enum && "can't build template of enumerated type");
869
870 // There is no such thing as an unnamed class template.
871 if (!Name) {
872 Diag(KWLoc, diag::err_template_unnamed_class);
873 return true;
874 }
875
876 // Find any previous declaration with this name. For a friend with no
877 // scope explicitly specified, we only look for tag declarations (per
878 // C++11 [basic.lookup.elab]p2).
879 DeclContext *SemanticContext;
880 LookupResult Previous(*this, Name, NameLoc,
881 (SS.isEmpty() && TUK == TUK_Friend)
882 ? LookupTagName : LookupOrdinaryName,
883 ForRedeclaration);
884 if (SS.isNotEmpty() && !SS.isInvalid()) {
885 SemanticContext = computeDeclContext(SS, true);
886 if (!SemanticContext) {
887 // FIXME: Horrible, horrible hack! We can't currently represent this
888 // in the AST, and historically we have just ignored such friend
889 // class templates, so don't complain here.
890 Diag(NameLoc, TUK == TUK_Friend
891 ? diag::warn_template_qualified_friend_ignored
892 : diag::err_template_qualified_declarator_no_match)
893 << SS.getScopeRep() << SS.getRange();
894 return TUK != TUK_Friend;
895 }
896
897 if (RequireCompleteDeclContext(SS, SemanticContext))
898 return true;
899
900 // If we're adding a template to a dependent context, we may need to
901 // rebuilding some of the types used within the template parameter list,
902 // now that we know what the current instantiation is.
903 if (SemanticContext->isDependentContext()) {
904 ContextRAII SavedContext(*this, SemanticContext);
905 if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
906 Invalid = true;
907 } else if (TUK != TUK_Friend && TUK != TUK_Reference)
908 diagnoseQualifiedDeclaration(SS, SemanticContext, Name, NameLoc);
909
910 LookupQualifiedName(Previous, SemanticContext);
911 } else {
912 SemanticContext = CurContext;
913
914 // C++14 [class.mem]p14:
915 // If T is the name of a class, then each of the following shall have a
916 // name different from T:
917 // -- every member template of class T
918 if (TUK != TUK_Friend &&
919 DiagnoseClassNameShadow(SemanticContext,
920 DeclarationNameInfo(Name, NameLoc)))
921 return true;
922
923 LookupName(Previous, S);
924 }
925
926 if (Previous.isAmbiguous())
927 return true;
928
929 NamedDecl *PrevDecl = nullptr;
930 if (Previous.begin() != Previous.end())
931 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
932
933 if (PrevDecl && PrevDecl->isTemplateParameter()) {
934 // Maybe we will complain about the shadowed template parameter.
935 DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
936 // Just pretend that we didn't see the previous declaration.
937 PrevDecl = nullptr;
938 }
939
940 // If there is a previous declaration with the same name, check
941 // whether this is a valid redeclaration.
942 ClassTemplateDecl *PrevClassTemplate
943 = dyn_cast_or_null<ClassTemplateDecl>(PrevDecl);
944
945 // We may have found the injected-class-name of a class template,
946 // class template partial specialization, or class template specialization.
947 // In these cases, grab the template that is being defined or specialized.
948 if (!PrevClassTemplate && PrevDecl && isa<CXXRecordDecl>(PrevDecl) &&
949 cast<CXXRecordDecl>(PrevDecl)->isInjectedClassName()) {
950 PrevDecl = cast<CXXRecordDecl>(PrevDecl->getDeclContext());
951 PrevClassTemplate
952 = cast<CXXRecordDecl>(PrevDecl)->getDescribedClassTemplate();
953 if (!PrevClassTemplate && isa<ClassTemplateSpecializationDecl>(PrevDecl)) {
954 PrevClassTemplate
955 = cast<ClassTemplateSpecializationDecl>(PrevDecl)
956 ->getSpecializedTemplate();
957 }
958 }
959
960 if (TUK == TUK_Friend) {
961 // C++ [namespace.memdef]p3:
962 // [...] When looking for a prior declaration of a class or a function
963 // declared as a friend, and when the name of the friend class or
964 // function is neither a qualified name nor a template-id, scopes outside
965 // the innermost enclosing namespace scope are not considered.
966 if (!SS.isSet()) {
967 DeclContext *OutermostContext = CurContext;
968 while (!OutermostContext->isFileContext())
969 OutermostContext = OutermostContext->getLookupParent();
970
971 if (PrevDecl &&
972 (OutermostContext->Equals(PrevDecl->getDeclContext()) ||
973 OutermostContext->Encloses(PrevDecl->getDeclContext()))) {
974 SemanticContext = PrevDecl->getDeclContext();
975 } else {
976 // Declarations in outer scopes don't matter. However, the outermost
977 // context we computed is the semantic context for our new
978 // declaration.
979 PrevDecl = PrevClassTemplate = nullptr;
980 SemanticContext = OutermostContext;
981
982 // Check that the chosen semantic context doesn't already contain a
983 // declaration of this name as a non-tag type.
984 Previous.clear(LookupOrdinaryName);
985 DeclContext *LookupContext = SemanticContext;
986 while (LookupContext->isTransparentContext())
987 LookupContext = LookupContext->getLookupParent();
988 LookupQualifiedName(Previous, LookupContext);
989
990 if (Previous.isAmbiguous())
991 return true;
992
993 if (Previous.begin() != Previous.end())
994 PrevDecl = (*Previous.begin())->getUnderlyingDecl();
995 }
996 }
997 } else if (PrevDecl &&
998 !isDeclInScope(Previous.getRepresentativeDecl(), SemanticContext,
999 S, SS.isValid()))
1000 PrevDecl = PrevClassTemplate = nullptr;
1001
1002 if (auto *Shadow = dyn_cast_or_null<UsingShadowDecl>(
1003 PrevDecl ? Previous.getRepresentativeDecl() : nullptr)) {
1004 if (SS.isEmpty() &&
1005 !(PrevClassTemplate &&
1006 PrevClassTemplate->getDeclContext()->getRedeclContext()->Equals(
1007 SemanticContext->getRedeclContext()))) {
1008 Diag(KWLoc, diag::err_using_decl_conflict_reverse);
1009 Diag(Shadow->getTargetDecl()->getLocation(),
1010 diag::note_using_decl_target);
1011 Diag(Shadow->getUsingDecl()->getLocation(), diag::note_using_decl) << 0;
1012 // Recover by ignoring the old declaration.
1013 PrevDecl = PrevClassTemplate = nullptr;
1014 }
1015 }
1016
1017 if (PrevClassTemplate) {
1018 // Ensure that the template parameter lists are compatible. Skip this check
1019 // for a friend in a dependent context: the template parameter list itself
1020 // could be dependent.
1021 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1022 !TemplateParameterListsAreEqual(TemplateParams,
1023 PrevClassTemplate->getTemplateParameters(),
1024 /*Complain=*/true,
1025 TPL_TemplateMatch))
1026 return true;
1027
1028 // C++ [temp.class]p4:
1029 // In a redeclaration, partial specialization, explicit
1030 // specialization or explicit instantiation of a class template,
1031 // the class-key shall agree in kind with the original class
1032 // template declaration (7.1.5.3).
1033 RecordDecl *PrevRecordDecl = PrevClassTemplate->getTemplatedDecl();
1034 if (!isAcceptableTagRedeclaration(PrevRecordDecl, Kind,
1035 TUK == TUK_Definition, KWLoc, Name)) {
1036 Diag(KWLoc, diag::err_use_with_wrong_tag)
1037 << Name
1038 << FixItHint::CreateReplacement(KWLoc, PrevRecordDecl->getKindName());
1039 Diag(PrevRecordDecl->getLocation(), diag::note_previous_use);
1040 Kind = PrevRecordDecl->getTagKind();
1041 }
1042
1043 // Check for redefinition of this class template.
1044 if (TUK == TUK_Definition) {
1045 if (TagDecl *Def = PrevRecordDecl->getDefinition()) {
1046 // If we have a prior definition that is not visible, treat this as
1047 // simply making that previous definition visible.
1048 NamedDecl *Hidden = nullptr;
1049 if (SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
1050 SkipBody->ShouldSkip = true;
1051 auto *Tmpl = cast<CXXRecordDecl>(Hidden)->getDescribedClassTemplate();
1052 assert(Tmpl && "original definition of a class template is not a "
1053 "class template?");
1054 makeMergedDefinitionVisible(Hidden, KWLoc);
1055 makeMergedDefinitionVisible(Tmpl, KWLoc);
1056 return Def;
1057 }
1058
1059 Diag(NameLoc, diag::err_redefinition) << Name;
1060 Diag(Def->getLocation(), diag::note_previous_definition);
1061 // FIXME: Would it make sense to try to "forget" the previous
1062 // definition, as part of error recovery?
1063 return true;
1064 }
1065 }
1066 } else if (PrevDecl) {
1067 // C++ [temp]p5:
1068 // A class template shall not have the same name as any other
1069 // template, class, function, object, enumeration, enumerator,
1070 // namespace, or type in the same scope (3.3), except as specified
1071 // in (14.5.4).
1072 Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
1073 Diag(PrevDecl->getLocation(), diag::note_previous_definition);
1074 return true;
1075 }
1076
1077 // Check the template parameter list of this declaration, possibly
1078 // merging in the template parameter list from the previous class
1079 // template declaration. Skip this check for a friend in a dependent
1080 // context, because the template parameter list might be dependent.
1081 if (!(TUK == TUK_Friend && CurContext->isDependentContext()) &&
1082 CheckTemplateParameterList(
1083 TemplateParams,
1084 PrevClassTemplate ? PrevClassTemplate->getTemplateParameters()
1085 : nullptr,
1086 (SS.isSet() && SemanticContext && SemanticContext->isRecord() &&
1087 SemanticContext->isDependentContext())
1088 ? TPC_ClassTemplateMember
1089 : TUK == TUK_Friend ? TPC_FriendClassTemplate
1090 : TPC_ClassTemplate))
1091 Invalid = true;
1092
1093 if (SS.isSet()) {
1094 // If the name of the template was qualified, we must be defining the
1095 // template out-of-line.
1096 if (!SS.isInvalid() && !Invalid && !PrevClassTemplate) {
1097 Diag(NameLoc, TUK == TUK_Friend ? diag::err_friend_decl_does_not_match
1098 : diag::err_member_decl_does_not_match)
1099 << Name << SemanticContext << /*IsDefinition*/true << SS.getRange();
1100 Invalid = true;
1101 }
1102 }
1103
1104 CXXRecordDecl *NewClass =
1105 CXXRecordDecl::Create(Context, Kind, SemanticContext, KWLoc, NameLoc, Name,
1106 PrevClassTemplate?
1107 PrevClassTemplate->getTemplatedDecl() : nullptr,
1108 /*DelayTypeCreation=*/true);
1109 SetNestedNameSpecifier(NewClass, SS);
1110 if (NumOuterTemplateParamLists > 0)
1111 NewClass->setTemplateParameterListsInfo(
1112 Context, llvm::makeArrayRef(OuterTemplateParamLists,
1113 NumOuterTemplateParamLists));
1114
1115 // Add alignment attributes if necessary; these attributes are checked when
1116 // the ASTContext lays out the structure.
1117 if (TUK == TUK_Definition) {
1118 AddAlignmentAttributesForRecord(NewClass);
1119 AddMsStructLayoutForRecord(NewClass);
1120 }
1121
1122 ClassTemplateDecl *NewTemplate
1123 = ClassTemplateDecl::Create(Context, SemanticContext, NameLoc,
1124 DeclarationName(Name), TemplateParams,
1125 NewClass, PrevClassTemplate);
1126 NewClass->setDescribedClassTemplate(NewTemplate);
1127
1128 if (ModulePrivateLoc.isValid())
1129 NewTemplate->setModulePrivate();
1130
1131 // Build the type for the class template declaration now.
1132 QualType T = NewTemplate->getInjectedClassNameSpecialization();
1133 T = Context.getInjectedClassNameType(NewClass, T);
1134 assert(T->isDependentType() && "Class template type is not dependent?");
1135 (void)T;
1136
1137 // If we are providing an explicit specialization of a member that is a
1138 // class template, make a note of that.
1139 if (PrevClassTemplate &&
1140 PrevClassTemplate->getInstantiatedFromMemberTemplate())
1141 PrevClassTemplate->setMemberSpecialization();
1142
1143 // Set the access specifier.
1144 if (!Invalid && TUK != TUK_Friend && NewTemplate->getDeclContext()->isRecord())
1145 SetMemberAccessSpecifier(NewTemplate, PrevClassTemplate, AS);
1146
1147 // Set the lexical context of these templates
1148 NewClass->setLexicalDeclContext(CurContext);
1149 NewTemplate->setLexicalDeclContext(CurContext);
1150
1151 if (TUK == TUK_Definition)
1152 NewClass->startDefinition();
1153
1154 if (Attr)
1155 ProcessDeclAttributeList(S, NewClass, Attr);
1156
1157 if (PrevClassTemplate)
1158 mergeDeclAttributes(NewClass, PrevClassTemplate->getTemplatedDecl());
1159
1160 AddPushedVisibilityAttribute(NewClass);
1161
1162 if (TUK != TUK_Friend) {
1163 // Per C++ [basic.scope.temp]p2, skip the template parameter scopes.
1164 Scope *Outer = S;
1165 while ((Outer->getFlags() & Scope::TemplateParamScope) != 0)
1166 Outer = Outer->getParent();
1167 PushOnScopeChains(NewTemplate, Outer);
1168 } else {
1169 if (PrevClassTemplate && PrevClassTemplate->getAccess() != AS_none) {
1170 NewTemplate->setAccess(PrevClassTemplate->getAccess());
1171 NewClass->setAccess(PrevClassTemplate->getAccess());
1172 }
1173
1174 NewTemplate->setObjectOfFriendDecl();
1175
1176 // Friend templates are visible in fairly strange ways.
1177 if (!CurContext->isDependentContext()) {
1178 DeclContext *DC = SemanticContext->getRedeclContext();
1179 DC->makeDeclVisibleInContext(NewTemplate);
1180 if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
1181 PushOnScopeChains(NewTemplate, EnclosingScope,
1182 /* AddToContext = */ false);
1183 }
1184
1185 FriendDecl *Friend = FriendDecl::Create(
1186 Context, CurContext, NewClass->getLocation(), NewTemplate, FriendLoc);
1187 Friend->setAccess(AS_public);
1188 CurContext->addDecl(Friend);
1189 }
1190
1191 if (Invalid) {
1192 NewTemplate->setInvalidDecl();
1193 NewClass->setInvalidDecl();
1194 }
1195
1196 ActOnDocumentableDecl(NewTemplate);
1197
1198 return NewTemplate;
1199 }
1200
1201 /// \brief Diagnose the presence of a default template argument on a
1202 /// template parameter, which is ill-formed in certain contexts.
1203 ///
1204 /// \returns true if the default template argument should be dropped.
DiagnoseDefaultTemplateArgument(Sema & S,Sema::TemplateParamListContext TPC,SourceLocation ParamLoc,SourceRange DefArgRange)1205 static bool DiagnoseDefaultTemplateArgument(Sema &S,
1206 Sema::TemplateParamListContext TPC,
1207 SourceLocation ParamLoc,
1208 SourceRange DefArgRange) {
1209 switch (TPC) {
1210 case Sema::TPC_ClassTemplate:
1211 case Sema::TPC_VarTemplate:
1212 case Sema::TPC_TypeAliasTemplate:
1213 return false;
1214
1215 case Sema::TPC_FunctionTemplate:
1216 case Sema::TPC_FriendFunctionTemplateDefinition:
1217 // C++ [temp.param]p9:
1218 // A default template-argument shall not be specified in a
1219 // function template declaration or a function template
1220 // definition [...]
1221 // If a friend function template declaration specifies a default
1222 // template-argument, that declaration shall be a definition and shall be
1223 // the only declaration of the function template in the translation unit.
1224 // (C++98/03 doesn't have this wording; see DR226).
1225 S.Diag(ParamLoc, S.getLangOpts().CPlusPlus11 ?
1226 diag::warn_cxx98_compat_template_parameter_default_in_function_template
1227 : diag::ext_template_parameter_default_in_function_template)
1228 << DefArgRange;
1229 return false;
1230
1231 case Sema::TPC_ClassTemplateMember:
1232 // C++0x [temp.param]p9:
1233 // A default template-argument shall not be specified in the
1234 // template-parameter-lists of the definition of a member of a
1235 // class template that appears outside of the member's class.
1236 S.Diag(ParamLoc, diag::err_template_parameter_default_template_member)
1237 << DefArgRange;
1238 return true;
1239
1240 case Sema::TPC_FriendClassTemplate:
1241 case Sema::TPC_FriendFunctionTemplate:
1242 // C++ [temp.param]p9:
1243 // A default template-argument shall not be specified in a
1244 // friend template declaration.
1245 S.Diag(ParamLoc, diag::err_template_parameter_default_friend_template)
1246 << DefArgRange;
1247 return true;
1248
1249 // FIXME: C++0x [temp.param]p9 allows default template-arguments
1250 // for friend function templates if there is only a single
1251 // declaration (and it is a definition). Strange!
1252 }
1253
1254 llvm_unreachable("Invalid TemplateParamListContext!");
1255 }
1256
1257 /// \brief Check for unexpanded parameter packs within the template parameters
1258 /// of a template template parameter, recursively.
DiagnoseUnexpandedParameterPacks(Sema & S,TemplateTemplateParmDecl * TTP)1259 static bool DiagnoseUnexpandedParameterPacks(Sema &S,
1260 TemplateTemplateParmDecl *TTP) {
1261 // A template template parameter which is a parameter pack is also a pack
1262 // expansion.
1263 if (TTP->isParameterPack())
1264 return false;
1265
1266 TemplateParameterList *Params = TTP->getTemplateParameters();
1267 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
1268 NamedDecl *P = Params->getParam(I);
1269 if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(P)) {
1270 if (!NTTP->isParameterPack() &&
1271 S.DiagnoseUnexpandedParameterPack(NTTP->getLocation(),
1272 NTTP->getTypeSourceInfo(),
1273 Sema::UPPC_NonTypeTemplateParameterType))
1274 return true;
1275
1276 continue;
1277 }
1278
1279 if (TemplateTemplateParmDecl *InnerTTP
1280 = dyn_cast<TemplateTemplateParmDecl>(P))
1281 if (DiagnoseUnexpandedParameterPacks(S, InnerTTP))
1282 return true;
1283 }
1284
1285 return false;
1286 }
1287
1288 /// \brief Checks the validity of a template parameter list, possibly
1289 /// considering the template parameter list from a previous
1290 /// declaration.
1291 ///
1292 /// If an "old" template parameter list is provided, it must be
1293 /// equivalent (per TemplateParameterListsAreEqual) to the "new"
1294 /// template parameter list.
1295 ///
1296 /// \param NewParams Template parameter list for a new template
1297 /// declaration. This template parameter list will be updated with any
1298 /// default arguments that are carried through from the previous
1299 /// template parameter list.
1300 ///
1301 /// \param OldParams If provided, template parameter list from a
1302 /// previous declaration of the same template. Default template
1303 /// arguments will be merged from the old template parameter list to
1304 /// the new template parameter list.
1305 ///
1306 /// \param TPC Describes the context in which we are checking the given
1307 /// template parameter list.
1308 ///
1309 /// \returns true if an error occurred, false otherwise.
CheckTemplateParameterList(TemplateParameterList * NewParams,TemplateParameterList * OldParams,TemplateParamListContext TPC)1310 bool Sema::CheckTemplateParameterList(TemplateParameterList *NewParams,
1311 TemplateParameterList *OldParams,
1312 TemplateParamListContext TPC) {
1313 bool Invalid = false;
1314
1315 // C++ [temp.param]p10:
1316 // The set of default template-arguments available for use with a
1317 // template declaration or definition is obtained by merging the
1318 // default arguments from the definition (if in scope) and all
1319 // declarations in scope in the same way default function
1320 // arguments are (8.3.6).
1321 bool SawDefaultArgument = false;
1322 SourceLocation PreviousDefaultArgLoc;
1323
1324 // Dummy initialization to avoid warnings.
1325 TemplateParameterList::iterator OldParam = NewParams->end();
1326 if (OldParams)
1327 OldParam = OldParams->begin();
1328
1329 bool RemoveDefaultArguments = false;
1330 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1331 NewParamEnd = NewParams->end();
1332 NewParam != NewParamEnd; ++NewParam) {
1333 // Variables used to diagnose redundant default arguments
1334 bool RedundantDefaultArg = false;
1335 SourceLocation OldDefaultLoc;
1336 SourceLocation NewDefaultLoc;
1337
1338 // Variable used to diagnose missing default arguments
1339 bool MissingDefaultArg = false;
1340
1341 // Variable used to diagnose non-final parameter packs
1342 bool SawParameterPack = false;
1343
1344 if (TemplateTypeParmDecl *NewTypeParm
1345 = dyn_cast<TemplateTypeParmDecl>(*NewParam)) {
1346 // Check the presence of a default argument here.
1347 if (NewTypeParm->hasDefaultArgument() &&
1348 DiagnoseDefaultTemplateArgument(*this, TPC,
1349 NewTypeParm->getLocation(),
1350 NewTypeParm->getDefaultArgumentInfo()->getTypeLoc()
1351 .getSourceRange()))
1352 NewTypeParm->removeDefaultArgument();
1353
1354 // Merge default arguments for template type parameters.
1355 TemplateTypeParmDecl *OldTypeParm
1356 = OldParams? cast<TemplateTypeParmDecl>(*OldParam) : nullptr;
1357 if (NewTypeParm->isParameterPack()) {
1358 assert(!NewTypeParm->hasDefaultArgument() &&
1359 "Parameter packs can't have a default argument!");
1360 SawParameterPack = true;
1361 } else if (OldTypeParm && hasVisibleDefaultArgument(OldTypeParm) &&
1362 NewTypeParm->hasDefaultArgument()) {
1363 OldDefaultLoc = OldTypeParm->getDefaultArgumentLoc();
1364 NewDefaultLoc = NewTypeParm->getDefaultArgumentLoc();
1365 SawDefaultArgument = true;
1366 RedundantDefaultArg = true;
1367 PreviousDefaultArgLoc = NewDefaultLoc;
1368 } else if (OldTypeParm && OldTypeParm->hasDefaultArgument()) {
1369 // Merge the default argument from the old declaration to the
1370 // new declaration.
1371 NewTypeParm->setInheritedDefaultArgument(Context, OldTypeParm);
1372 PreviousDefaultArgLoc = OldTypeParm->getDefaultArgumentLoc();
1373 } else if (NewTypeParm->hasDefaultArgument()) {
1374 SawDefaultArgument = true;
1375 PreviousDefaultArgLoc = NewTypeParm->getDefaultArgumentLoc();
1376 } else if (SawDefaultArgument)
1377 MissingDefaultArg = true;
1378 } else if (NonTypeTemplateParmDecl *NewNonTypeParm
1379 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam)) {
1380 // Check for unexpanded parameter packs.
1381 if (!NewNonTypeParm->isParameterPack() &&
1382 DiagnoseUnexpandedParameterPack(NewNonTypeParm->getLocation(),
1383 NewNonTypeParm->getTypeSourceInfo(),
1384 UPPC_NonTypeTemplateParameterType)) {
1385 Invalid = true;
1386 continue;
1387 }
1388
1389 // Check the presence of a default argument here.
1390 if (NewNonTypeParm->hasDefaultArgument() &&
1391 DiagnoseDefaultTemplateArgument(*this, TPC,
1392 NewNonTypeParm->getLocation(),
1393 NewNonTypeParm->getDefaultArgument()->getSourceRange())) {
1394 NewNonTypeParm->removeDefaultArgument();
1395 }
1396
1397 // Merge default arguments for non-type template parameters
1398 NonTypeTemplateParmDecl *OldNonTypeParm
1399 = OldParams? cast<NonTypeTemplateParmDecl>(*OldParam) : nullptr;
1400 if (NewNonTypeParm->isParameterPack()) {
1401 assert(!NewNonTypeParm->hasDefaultArgument() &&
1402 "Parameter packs can't have a default argument!");
1403 if (!NewNonTypeParm->isPackExpansion())
1404 SawParameterPack = true;
1405 } else if (OldNonTypeParm && hasVisibleDefaultArgument(OldNonTypeParm) &&
1406 NewNonTypeParm->hasDefaultArgument()) {
1407 OldDefaultLoc = OldNonTypeParm->getDefaultArgumentLoc();
1408 NewDefaultLoc = NewNonTypeParm->getDefaultArgumentLoc();
1409 SawDefaultArgument = true;
1410 RedundantDefaultArg = true;
1411 PreviousDefaultArgLoc = NewDefaultLoc;
1412 } else if (OldNonTypeParm && OldNonTypeParm->hasDefaultArgument()) {
1413 // Merge the default argument from the old declaration to the
1414 // new declaration.
1415 NewNonTypeParm->setInheritedDefaultArgument(Context, OldNonTypeParm);
1416 PreviousDefaultArgLoc = OldNonTypeParm->getDefaultArgumentLoc();
1417 } else if (NewNonTypeParm->hasDefaultArgument()) {
1418 SawDefaultArgument = true;
1419 PreviousDefaultArgLoc = NewNonTypeParm->getDefaultArgumentLoc();
1420 } else if (SawDefaultArgument)
1421 MissingDefaultArg = true;
1422 } else {
1423 TemplateTemplateParmDecl *NewTemplateParm
1424 = cast<TemplateTemplateParmDecl>(*NewParam);
1425
1426 // Check for unexpanded parameter packs, recursively.
1427 if (::DiagnoseUnexpandedParameterPacks(*this, NewTemplateParm)) {
1428 Invalid = true;
1429 continue;
1430 }
1431
1432 // Check the presence of a default argument here.
1433 if (NewTemplateParm->hasDefaultArgument() &&
1434 DiagnoseDefaultTemplateArgument(*this, TPC,
1435 NewTemplateParm->getLocation(),
1436 NewTemplateParm->getDefaultArgument().getSourceRange()))
1437 NewTemplateParm->removeDefaultArgument();
1438
1439 // Merge default arguments for template template parameters
1440 TemplateTemplateParmDecl *OldTemplateParm
1441 = OldParams? cast<TemplateTemplateParmDecl>(*OldParam) : nullptr;
1442 if (NewTemplateParm->isParameterPack()) {
1443 assert(!NewTemplateParm->hasDefaultArgument() &&
1444 "Parameter packs can't have a default argument!");
1445 if (!NewTemplateParm->isPackExpansion())
1446 SawParameterPack = true;
1447 } else if (OldTemplateParm &&
1448 hasVisibleDefaultArgument(OldTemplateParm) &&
1449 NewTemplateParm->hasDefaultArgument()) {
1450 OldDefaultLoc = OldTemplateParm->getDefaultArgument().getLocation();
1451 NewDefaultLoc = NewTemplateParm->getDefaultArgument().getLocation();
1452 SawDefaultArgument = true;
1453 RedundantDefaultArg = true;
1454 PreviousDefaultArgLoc = NewDefaultLoc;
1455 } else if (OldTemplateParm && OldTemplateParm->hasDefaultArgument()) {
1456 // Merge the default argument from the old declaration to the
1457 // new declaration.
1458 NewTemplateParm->setInheritedDefaultArgument(Context, OldTemplateParm);
1459 PreviousDefaultArgLoc
1460 = OldTemplateParm->getDefaultArgument().getLocation();
1461 } else if (NewTemplateParm->hasDefaultArgument()) {
1462 SawDefaultArgument = true;
1463 PreviousDefaultArgLoc
1464 = NewTemplateParm->getDefaultArgument().getLocation();
1465 } else if (SawDefaultArgument)
1466 MissingDefaultArg = true;
1467 }
1468
1469 // C++11 [temp.param]p11:
1470 // If a template parameter of a primary class template or alias template
1471 // is a template parameter pack, it shall be the last template parameter.
1472 if (SawParameterPack && (NewParam + 1) != NewParamEnd &&
1473 (TPC == TPC_ClassTemplate || TPC == TPC_VarTemplate ||
1474 TPC == TPC_TypeAliasTemplate)) {
1475 Diag((*NewParam)->getLocation(),
1476 diag::err_template_param_pack_must_be_last_template_parameter);
1477 Invalid = true;
1478 }
1479
1480 if (RedundantDefaultArg) {
1481 // C++ [temp.param]p12:
1482 // A template-parameter shall not be given default arguments
1483 // by two different declarations in the same scope.
1484 Diag(NewDefaultLoc, diag::err_template_param_default_arg_redefinition);
1485 Diag(OldDefaultLoc, diag::note_template_param_prev_default_arg);
1486 Invalid = true;
1487 } else if (MissingDefaultArg && TPC != TPC_FunctionTemplate) {
1488 // C++ [temp.param]p11:
1489 // If a template-parameter of a class template has a default
1490 // template-argument, each subsequent template-parameter shall either
1491 // have a default template-argument supplied or be a template parameter
1492 // pack.
1493 Diag((*NewParam)->getLocation(),
1494 diag::err_template_param_default_arg_missing);
1495 Diag(PreviousDefaultArgLoc, diag::note_template_param_prev_default_arg);
1496 Invalid = true;
1497 RemoveDefaultArguments = true;
1498 }
1499
1500 // If we have an old template parameter list that we're merging
1501 // in, move on to the next parameter.
1502 if (OldParams)
1503 ++OldParam;
1504 }
1505
1506 // We were missing some default arguments at the end of the list, so remove
1507 // all of the default arguments.
1508 if (RemoveDefaultArguments) {
1509 for (TemplateParameterList::iterator NewParam = NewParams->begin(),
1510 NewParamEnd = NewParams->end();
1511 NewParam != NewParamEnd; ++NewParam) {
1512 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*NewParam))
1513 TTP->removeDefaultArgument();
1514 else if (NonTypeTemplateParmDecl *NTTP
1515 = dyn_cast<NonTypeTemplateParmDecl>(*NewParam))
1516 NTTP->removeDefaultArgument();
1517 else
1518 cast<TemplateTemplateParmDecl>(*NewParam)->removeDefaultArgument();
1519 }
1520 }
1521
1522 return Invalid;
1523 }
1524
1525 namespace {
1526
1527 /// A class which looks for a use of a certain level of template
1528 /// parameter.
1529 struct DependencyChecker : RecursiveASTVisitor<DependencyChecker> {
1530 typedef RecursiveASTVisitor<DependencyChecker> super;
1531
1532 unsigned Depth;
1533 bool Match;
1534 SourceLocation MatchLoc;
1535
DependencyChecker__anonb989b1f80111::DependencyChecker1536 DependencyChecker(unsigned Depth) : Depth(Depth), Match(false) {}
1537
DependencyChecker__anonb989b1f80111::DependencyChecker1538 DependencyChecker(TemplateParameterList *Params) : Match(false) {
1539 NamedDecl *ND = Params->getParam(0);
1540 if (TemplateTypeParmDecl *PD = dyn_cast<TemplateTypeParmDecl>(ND)) {
1541 Depth = PD->getDepth();
1542 } else if (NonTypeTemplateParmDecl *PD =
1543 dyn_cast<NonTypeTemplateParmDecl>(ND)) {
1544 Depth = PD->getDepth();
1545 } else {
1546 Depth = cast<TemplateTemplateParmDecl>(ND)->getDepth();
1547 }
1548 }
1549
Matches__anonb989b1f80111::DependencyChecker1550 bool Matches(unsigned ParmDepth, SourceLocation Loc = SourceLocation()) {
1551 if (ParmDepth >= Depth) {
1552 Match = true;
1553 MatchLoc = Loc;
1554 return true;
1555 }
1556 return false;
1557 }
1558
VisitTemplateTypeParmTypeLoc__anonb989b1f80111::DependencyChecker1559 bool VisitTemplateTypeParmTypeLoc(TemplateTypeParmTypeLoc TL) {
1560 return !Matches(TL.getTypePtr()->getDepth(), TL.getNameLoc());
1561 }
1562
VisitTemplateTypeParmType__anonb989b1f80111::DependencyChecker1563 bool VisitTemplateTypeParmType(const TemplateTypeParmType *T) {
1564 return !Matches(T->getDepth());
1565 }
1566
TraverseTemplateName__anonb989b1f80111::DependencyChecker1567 bool TraverseTemplateName(TemplateName N) {
1568 if (TemplateTemplateParmDecl *PD =
1569 dyn_cast_or_null<TemplateTemplateParmDecl>(N.getAsTemplateDecl()))
1570 if (Matches(PD->getDepth()))
1571 return false;
1572 return super::TraverseTemplateName(N);
1573 }
1574
VisitDeclRefExpr__anonb989b1f80111::DependencyChecker1575 bool VisitDeclRefExpr(DeclRefExpr *E) {
1576 if (NonTypeTemplateParmDecl *PD =
1577 dyn_cast<NonTypeTemplateParmDecl>(E->getDecl()))
1578 if (Matches(PD->getDepth(), E->getExprLoc()))
1579 return false;
1580 return super::VisitDeclRefExpr(E);
1581 }
1582
VisitSubstTemplateTypeParmType__anonb989b1f80111::DependencyChecker1583 bool VisitSubstTemplateTypeParmType(const SubstTemplateTypeParmType *T) {
1584 return TraverseType(T->getReplacementType());
1585 }
1586
1587 bool
VisitSubstTemplateTypeParmPackType__anonb989b1f80111::DependencyChecker1588 VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *T) {
1589 return TraverseTemplateArgument(T->getArgumentPack());
1590 }
1591
TraverseInjectedClassNameType__anonb989b1f80111::DependencyChecker1592 bool TraverseInjectedClassNameType(const InjectedClassNameType *T) {
1593 return TraverseType(T->getInjectedSpecializationType());
1594 }
1595 };
1596 } // end anonymous namespace
1597
1598 /// Determines whether a given type depends on the given parameter
1599 /// list.
1600 static bool
DependsOnTemplateParameters(QualType T,TemplateParameterList * Params)1601 DependsOnTemplateParameters(QualType T, TemplateParameterList *Params) {
1602 DependencyChecker Checker(Params);
1603 Checker.TraverseType(T);
1604 return Checker.Match;
1605 }
1606
1607 // Find the source range corresponding to the named type in the given
1608 // nested-name-specifier, if any.
getRangeOfTypeInNestedNameSpecifier(ASTContext & Context,QualType T,const CXXScopeSpec & SS)1609 static SourceRange getRangeOfTypeInNestedNameSpecifier(ASTContext &Context,
1610 QualType T,
1611 const CXXScopeSpec &SS) {
1612 NestedNameSpecifierLoc NNSLoc(SS.getScopeRep(), SS.location_data());
1613 while (NestedNameSpecifier *NNS = NNSLoc.getNestedNameSpecifier()) {
1614 if (const Type *CurType = NNS->getAsType()) {
1615 if (Context.hasSameUnqualifiedType(T, QualType(CurType, 0)))
1616 return NNSLoc.getTypeLoc().getSourceRange();
1617 } else
1618 break;
1619
1620 NNSLoc = NNSLoc.getPrefix();
1621 }
1622
1623 return SourceRange();
1624 }
1625
1626 /// \brief Match the given template parameter lists to the given scope
1627 /// specifier, returning the template parameter list that applies to the
1628 /// name.
1629 ///
1630 /// \param DeclStartLoc the start of the declaration that has a scope
1631 /// specifier or a template parameter list.
1632 ///
1633 /// \param DeclLoc The location of the declaration itself.
1634 ///
1635 /// \param SS the scope specifier that will be matched to the given template
1636 /// parameter lists. This scope specifier precedes a qualified name that is
1637 /// being declared.
1638 ///
1639 /// \param TemplateId The template-id following the scope specifier, if there
1640 /// is one. Used to check for a missing 'template<>'.
1641 ///
1642 /// \param ParamLists the template parameter lists, from the outermost to the
1643 /// innermost template parameter lists.
1644 ///
1645 /// \param IsFriend Whether to apply the slightly different rules for
1646 /// matching template parameters to scope specifiers in friend
1647 /// declarations.
1648 ///
1649 /// \param IsExplicitSpecialization will be set true if the entity being
1650 /// declared is an explicit specialization, false otherwise.
1651 ///
1652 /// \returns the template parameter list, if any, that corresponds to the
1653 /// name that is preceded by the scope specifier @p SS. This template
1654 /// parameter list may have template parameters (if we're declaring a
1655 /// template) or may have no template parameters (if we're declaring a
1656 /// template specialization), or may be NULL (if what we're declaring isn't
1657 /// itself a template).
MatchTemplateParametersToScopeSpecifier(SourceLocation DeclStartLoc,SourceLocation DeclLoc,const CXXScopeSpec & SS,TemplateIdAnnotation * TemplateId,ArrayRef<TemplateParameterList * > ParamLists,bool IsFriend,bool & IsExplicitSpecialization,bool & Invalid)1658 TemplateParameterList *Sema::MatchTemplateParametersToScopeSpecifier(
1659 SourceLocation DeclStartLoc, SourceLocation DeclLoc, const CXXScopeSpec &SS,
1660 TemplateIdAnnotation *TemplateId,
1661 ArrayRef<TemplateParameterList *> ParamLists, bool IsFriend,
1662 bool &IsExplicitSpecialization, bool &Invalid) {
1663 IsExplicitSpecialization = false;
1664 Invalid = false;
1665
1666 // The sequence of nested types to which we will match up the template
1667 // parameter lists. We first build this list by starting with the type named
1668 // by the nested-name-specifier and walking out until we run out of types.
1669 SmallVector<QualType, 4> NestedTypes;
1670 QualType T;
1671 if (SS.getScopeRep()) {
1672 if (CXXRecordDecl *Record
1673 = dyn_cast_or_null<CXXRecordDecl>(computeDeclContext(SS, true)))
1674 T = Context.getTypeDeclType(Record);
1675 else
1676 T = QualType(SS.getScopeRep()->getAsType(), 0);
1677 }
1678
1679 // If we found an explicit specialization that prevents us from needing
1680 // 'template<>' headers, this will be set to the location of that
1681 // explicit specialization.
1682 SourceLocation ExplicitSpecLoc;
1683
1684 while (!T.isNull()) {
1685 NestedTypes.push_back(T);
1686
1687 // Retrieve the parent of a record type.
1688 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1689 // If this type is an explicit specialization, we're done.
1690 if (ClassTemplateSpecializationDecl *Spec
1691 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1692 if (!isa<ClassTemplatePartialSpecializationDecl>(Spec) &&
1693 Spec->getSpecializationKind() == TSK_ExplicitSpecialization) {
1694 ExplicitSpecLoc = Spec->getLocation();
1695 break;
1696 }
1697 } else if (Record->getTemplateSpecializationKind()
1698 == TSK_ExplicitSpecialization) {
1699 ExplicitSpecLoc = Record->getLocation();
1700 break;
1701 }
1702
1703 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Record->getParent()))
1704 T = Context.getTypeDeclType(Parent);
1705 else
1706 T = QualType();
1707 continue;
1708 }
1709
1710 if (const TemplateSpecializationType *TST
1711 = T->getAs<TemplateSpecializationType>()) {
1712 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1713 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Template->getDeclContext()))
1714 T = Context.getTypeDeclType(Parent);
1715 else
1716 T = QualType();
1717 continue;
1718 }
1719 }
1720
1721 // Look one step prior in a dependent template specialization type.
1722 if (const DependentTemplateSpecializationType *DependentTST
1723 = T->getAs<DependentTemplateSpecializationType>()) {
1724 if (NestedNameSpecifier *NNS = DependentTST->getQualifier())
1725 T = QualType(NNS->getAsType(), 0);
1726 else
1727 T = QualType();
1728 continue;
1729 }
1730
1731 // Look one step prior in a dependent name type.
1732 if (const DependentNameType *DependentName = T->getAs<DependentNameType>()){
1733 if (NestedNameSpecifier *NNS = DependentName->getQualifier())
1734 T = QualType(NNS->getAsType(), 0);
1735 else
1736 T = QualType();
1737 continue;
1738 }
1739
1740 // Retrieve the parent of an enumeration type.
1741 if (const EnumType *EnumT = T->getAs<EnumType>()) {
1742 // FIXME: Forward-declared enums require a TSK_ExplicitSpecialization
1743 // check here.
1744 EnumDecl *Enum = EnumT->getDecl();
1745
1746 // Get to the parent type.
1747 if (TypeDecl *Parent = dyn_cast<TypeDecl>(Enum->getParent()))
1748 T = Context.getTypeDeclType(Parent);
1749 else
1750 T = QualType();
1751 continue;
1752 }
1753
1754 T = QualType();
1755 }
1756 // Reverse the nested types list, since we want to traverse from the outermost
1757 // to the innermost while checking template-parameter-lists.
1758 std::reverse(NestedTypes.begin(), NestedTypes.end());
1759
1760 // C++0x [temp.expl.spec]p17:
1761 // A member or a member template may be nested within many
1762 // enclosing class templates. In an explicit specialization for
1763 // such a member, the member declaration shall be preceded by a
1764 // template<> for each enclosing class template that is
1765 // explicitly specialized.
1766 bool SawNonEmptyTemplateParameterList = false;
1767
1768 auto CheckExplicitSpecialization = [&](SourceRange Range, bool Recovery) {
1769 if (SawNonEmptyTemplateParameterList) {
1770 Diag(DeclLoc, diag::err_specialize_member_of_template)
1771 << !Recovery << Range;
1772 Invalid = true;
1773 IsExplicitSpecialization = false;
1774 return true;
1775 }
1776
1777 return false;
1778 };
1779
1780 auto DiagnoseMissingExplicitSpecialization = [&] (SourceRange Range) {
1781 // Check that we can have an explicit specialization here.
1782 if (CheckExplicitSpecialization(Range, true))
1783 return true;
1784
1785 // We don't have a template header, but we should.
1786 SourceLocation ExpectedTemplateLoc;
1787 if (!ParamLists.empty())
1788 ExpectedTemplateLoc = ParamLists[0]->getTemplateLoc();
1789 else
1790 ExpectedTemplateLoc = DeclStartLoc;
1791
1792 Diag(DeclLoc, diag::err_template_spec_needs_header)
1793 << Range
1794 << FixItHint::CreateInsertion(ExpectedTemplateLoc, "template<> ");
1795 return false;
1796 };
1797
1798 unsigned ParamIdx = 0;
1799 for (unsigned TypeIdx = 0, NumTypes = NestedTypes.size(); TypeIdx != NumTypes;
1800 ++TypeIdx) {
1801 T = NestedTypes[TypeIdx];
1802
1803 // Whether we expect a 'template<>' header.
1804 bool NeedEmptyTemplateHeader = false;
1805
1806 // Whether we expect a template header with parameters.
1807 bool NeedNonemptyTemplateHeader = false;
1808
1809 // For a dependent type, the set of template parameters that we
1810 // expect to see.
1811 TemplateParameterList *ExpectedTemplateParams = nullptr;
1812
1813 // C++0x [temp.expl.spec]p15:
1814 // A member or a member template may be nested within many enclosing
1815 // class templates. In an explicit specialization for such a member, the
1816 // member declaration shall be preceded by a template<> for each
1817 // enclosing class template that is explicitly specialized.
1818 if (CXXRecordDecl *Record = T->getAsCXXRecordDecl()) {
1819 if (ClassTemplatePartialSpecializationDecl *Partial
1820 = dyn_cast<ClassTemplatePartialSpecializationDecl>(Record)) {
1821 ExpectedTemplateParams = Partial->getTemplateParameters();
1822 NeedNonemptyTemplateHeader = true;
1823 } else if (Record->isDependentType()) {
1824 if (Record->getDescribedClassTemplate()) {
1825 ExpectedTemplateParams = Record->getDescribedClassTemplate()
1826 ->getTemplateParameters();
1827 NeedNonemptyTemplateHeader = true;
1828 }
1829 } else if (ClassTemplateSpecializationDecl *Spec
1830 = dyn_cast<ClassTemplateSpecializationDecl>(Record)) {
1831 // C++0x [temp.expl.spec]p4:
1832 // Members of an explicitly specialized class template are defined
1833 // in the same manner as members of normal classes, and not using
1834 // the template<> syntax.
1835 if (Spec->getSpecializationKind() != TSK_ExplicitSpecialization)
1836 NeedEmptyTemplateHeader = true;
1837 else
1838 continue;
1839 } else if (Record->getTemplateSpecializationKind()) {
1840 if (Record->getTemplateSpecializationKind()
1841 != TSK_ExplicitSpecialization &&
1842 TypeIdx == NumTypes - 1)
1843 IsExplicitSpecialization = true;
1844
1845 continue;
1846 }
1847 } else if (const TemplateSpecializationType *TST
1848 = T->getAs<TemplateSpecializationType>()) {
1849 if (TemplateDecl *Template = TST->getTemplateName().getAsTemplateDecl()) {
1850 ExpectedTemplateParams = Template->getTemplateParameters();
1851 NeedNonemptyTemplateHeader = true;
1852 }
1853 } else if (T->getAs<DependentTemplateSpecializationType>()) {
1854 // FIXME: We actually could/should check the template arguments here
1855 // against the corresponding template parameter list.
1856 NeedNonemptyTemplateHeader = false;
1857 }
1858
1859 // C++ [temp.expl.spec]p16:
1860 // In an explicit specialization declaration for a member of a class
1861 // template or a member template that ap- pears in namespace scope, the
1862 // member template and some of its enclosing class templates may remain
1863 // unspecialized, except that the declaration shall not explicitly
1864 // specialize a class member template if its en- closing class templates
1865 // are not explicitly specialized as well.
1866 if (ParamIdx < ParamLists.size()) {
1867 if (ParamLists[ParamIdx]->size() == 0) {
1868 if (CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
1869 false))
1870 return nullptr;
1871 } else
1872 SawNonEmptyTemplateParameterList = true;
1873 }
1874
1875 if (NeedEmptyTemplateHeader) {
1876 // If we're on the last of the types, and we need a 'template<>' header
1877 // here, then it's an explicit specialization.
1878 if (TypeIdx == NumTypes - 1)
1879 IsExplicitSpecialization = true;
1880
1881 if (ParamIdx < ParamLists.size()) {
1882 if (ParamLists[ParamIdx]->size() > 0) {
1883 // The header has template parameters when it shouldn't. Complain.
1884 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1885 diag::err_template_param_list_matches_nontemplate)
1886 << T
1887 << SourceRange(ParamLists[ParamIdx]->getLAngleLoc(),
1888 ParamLists[ParamIdx]->getRAngleLoc())
1889 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1890 Invalid = true;
1891 return nullptr;
1892 }
1893
1894 // Consume this template header.
1895 ++ParamIdx;
1896 continue;
1897 }
1898
1899 if (!IsFriend)
1900 if (DiagnoseMissingExplicitSpecialization(
1901 getRangeOfTypeInNestedNameSpecifier(Context, T, SS)))
1902 return nullptr;
1903
1904 continue;
1905 }
1906
1907 if (NeedNonemptyTemplateHeader) {
1908 // In friend declarations we can have template-ids which don't
1909 // depend on the corresponding template parameter lists. But
1910 // assume that empty parameter lists are supposed to match this
1911 // template-id.
1912 if (IsFriend && T->isDependentType()) {
1913 if (ParamIdx < ParamLists.size() &&
1914 DependsOnTemplateParameters(T, ParamLists[ParamIdx]))
1915 ExpectedTemplateParams = nullptr;
1916 else
1917 continue;
1918 }
1919
1920 if (ParamIdx < ParamLists.size()) {
1921 // Check the template parameter list, if we can.
1922 if (ExpectedTemplateParams &&
1923 !TemplateParameterListsAreEqual(ParamLists[ParamIdx],
1924 ExpectedTemplateParams,
1925 true, TPL_TemplateMatch))
1926 Invalid = true;
1927
1928 if (!Invalid &&
1929 CheckTemplateParameterList(ParamLists[ParamIdx], nullptr,
1930 TPC_ClassTemplateMember))
1931 Invalid = true;
1932
1933 ++ParamIdx;
1934 continue;
1935 }
1936
1937 Diag(DeclLoc, diag::err_template_spec_needs_template_parameters)
1938 << T
1939 << getRangeOfTypeInNestedNameSpecifier(Context, T, SS);
1940 Invalid = true;
1941 continue;
1942 }
1943 }
1944
1945 // If there were at least as many template-ids as there were template
1946 // parameter lists, then there are no template parameter lists remaining for
1947 // the declaration itself.
1948 if (ParamIdx >= ParamLists.size()) {
1949 if (TemplateId && !IsFriend) {
1950 // We don't have a template header for the declaration itself, but we
1951 // should.
1952 IsExplicitSpecialization = true;
1953 DiagnoseMissingExplicitSpecialization(SourceRange(TemplateId->LAngleLoc,
1954 TemplateId->RAngleLoc));
1955
1956 // Fabricate an empty template parameter list for the invented header.
1957 return TemplateParameterList::Create(Context, SourceLocation(),
1958 SourceLocation(), None,
1959 SourceLocation());
1960 }
1961
1962 return nullptr;
1963 }
1964
1965 // If there were too many template parameter lists, complain about that now.
1966 if (ParamIdx < ParamLists.size() - 1) {
1967 bool HasAnyExplicitSpecHeader = false;
1968 bool AllExplicitSpecHeaders = true;
1969 for (unsigned I = ParamIdx, E = ParamLists.size() - 1; I != E; ++I) {
1970 if (ParamLists[I]->size() == 0)
1971 HasAnyExplicitSpecHeader = true;
1972 else
1973 AllExplicitSpecHeaders = false;
1974 }
1975
1976 Diag(ParamLists[ParamIdx]->getTemplateLoc(),
1977 AllExplicitSpecHeaders ? diag::warn_template_spec_extra_headers
1978 : diag::err_template_spec_extra_headers)
1979 << SourceRange(ParamLists[ParamIdx]->getTemplateLoc(),
1980 ParamLists[ParamLists.size() - 2]->getRAngleLoc());
1981
1982 // If there was a specialization somewhere, such that 'template<>' is
1983 // not required, and there were any 'template<>' headers, note where the
1984 // specialization occurred.
1985 if (ExplicitSpecLoc.isValid() && HasAnyExplicitSpecHeader)
1986 Diag(ExplicitSpecLoc,
1987 diag::note_explicit_template_spec_does_not_need_header)
1988 << NestedTypes.back();
1989
1990 // We have a template parameter list with no corresponding scope, which
1991 // means that the resulting template declaration can't be instantiated
1992 // properly (we'll end up with dependent nodes when we shouldn't).
1993 if (!AllExplicitSpecHeaders)
1994 Invalid = true;
1995 }
1996
1997 // C++ [temp.expl.spec]p16:
1998 // In an explicit specialization declaration for a member of a class
1999 // template or a member template that ap- pears in namespace scope, the
2000 // member template and some of its enclosing class templates may remain
2001 // unspecialized, except that the declaration shall not explicitly
2002 // specialize a class member template if its en- closing class templates
2003 // are not explicitly specialized as well.
2004 if (ParamLists.back()->size() == 0 &&
2005 CheckExplicitSpecialization(ParamLists[ParamIdx]->getSourceRange(),
2006 false))
2007 return nullptr;
2008
2009 // Return the last template parameter list, which corresponds to the
2010 // entity being declared.
2011 return ParamLists.back();
2012 }
2013
NoteAllFoundTemplates(TemplateName Name)2014 void Sema::NoteAllFoundTemplates(TemplateName Name) {
2015 if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
2016 Diag(Template->getLocation(), diag::note_template_declared_here)
2017 << (isa<FunctionTemplateDecl>(Template)
2018 ? 0
2019 : isa<ClassTemplateDecl>(Template)
2020 ? 1
2021 : isa<VarTemplateDecl>(Template)
2022 ? 2
2023 : isa<TypeAliasTemplateDecl>(Template) ? 3 : 4)
2024 << Template->getDeclName();
2025 return;
2026 }
2027
2028 if (OverloadedTemplateStorage *OST = Name.getAsOverloadedTemplate()) {
2029 for (OverloadedTemplateStorage::iterator I = OST->begin(),
2030 IEnd = OST->end();
2031 I != IEnd; ++I)
2032 Diag((*I)->getLocation(), diag::note_template_declared_here)
2033 << 0 << (*I)->getDeclName();
2034
2035 return;
2036 }
2037 }
2038
2039 static QualType
checkBuiltinTemplateIdType(Sema & SemaRef,BuiltinTemplateDecl * BTD,const SmallVectorImpl<TemplateArgument> & Converted,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)2040 checkBuiltinTemplateIdType(Sema &SemaRef, BuiltinTemplateDecl *BTD,
2041 const SmallVectorImpl<TemplateArgument> &Converted,
2042 SourceLocation TemplateLoc,
2043 TemplateArgumentListInfo &TemplateArgs) {
2044 ASTContext &Context = SemaRef.getASTContext();
2045 switch (BTD->getBuiltinTemplateKind()) {
2046 case BTK__make_integer_seq: {
2047 // Specializations of __make_integer_seq<S, T, N> are treated like
2048 // S<T, 0, ..., N-1>.
2049
2050 // C++14 [inteseq.intseq]p1:
2051 // T shall be an integer type.
2052 if (!Converted[1].getAsType()->isIntegralType(Context)) {
2053 SemaRef.Diag(TemplateArgs[1].getLocation(),
2054 diag::err_integer_sequence_integral_element_type);
2055 return QualType();
2056 }
2057
2058 // C++14 [inteseq.make]p1:
2059 // If N is negative the program is ill-formed.
2060 TemplateArgument NumArgsArg = Converted[2];
2061 llvm::APSInt NumArgs = NumArgsArg.getAsIntegral();
2062 if (NumArgs < 0) {
2063 SemaRef.Diag(TemplateArgs[2].getLocation(),
2064 diag::err_integer_sequence_negative_length);
2065 return QualType();
2066 }
2067
2068 QualType ArgTy = NumArgsArg.getIntegralType();
2069 TemplateArgumentListInfo SyntheticTemplateArgs;
2070 // The type argument gets reused as the first template argument in the
2071 // synthetic template argument list.
2072 SyntheticTemplateArgs.addArgument(TemplateArgs[1]);
2073 // Expand N into 0 ... N-1.
2074 for (llvm::APSInt I(NumArgs.getBitWidth(), NumArgs.isUnsigned());
2075 I < NumArgs; ++I) {
2076 TemplateArgument TA(Context, I, ArgTy);
2077 Expr *E = SemaRef.BuildExpressionFromIntegralTemplateArgument(
2078 TA, TemplateArgs[2].getLocation())
2079 .getAs<Expr>();
2080 SyntheticTemplateArgs.addArgument(
2081 TemplateArgumentLoc(TemplateArgument(E), E));
2082 }
2083 // The first template argument will be reused as the template decl that
2084 // our synthetic template arguments will be applied to.
2085 return SemaRef.CheckTemplateIdType(Converted[0].getAsTemplate(),
2086 TemplateLoc, SyntheticTemplateArgs);
2087 }
2088
2089 case BTK__type_pack_element:
2090 // Specializations of
2091 // __type_pack_element<Index, T_1, ..., T_N>
2092 // are treated like T_Index.
2093 assert(Converted.size() == 2 &&
2094 "__type_pack_element should be given an index and a parameter pack");
2095
2096 // If the Index is out of bounds, the program is ill-formed.
2097 TemplateArgument IndexArg = Converted[0], Ts = Converted[1];
2098 llvm::APSInt Index = IndexArg.getAsIntegral();
2099 assert(Index >= 0 && "the index used with __type_pack_element should be of "
2100 "type std::size_t, and hence be non-negative");
2101 if (Index >= Ts.pack_size()) {
2102 SemaRef.Diag(TemplateArgs[0].getLocation(),
2103 diag::err_type_pack_element_out_of_bounds);
2104 return QualType();
2105 }
2106
2107 // We simply return the type at index `Index`.
2108 auto Nth = std::next(Ts.pack_begin(), Index.getExtValue());
2109 return Nth->getAsType();
2110 }
2111 llvm_unreachable("unexpected BuiltinTemplateDecl!");
2112 }
2113
CheckTemplateIdType(TemplateName Name,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)2114 QualType Sema::CheckTemplateIdType(TemplateName Name,
2115 SourceLocation TemplateLoc,
2116 TemplateArgumentListInfo &TemplateArgs) {
2117 DependentTemplateName *DTN
2118 = Name.getUnderlying().getAsDependentTemplateName();
2119 if (DTN && DTN->isIdentifier())
2120 // When building a template-id where the template-name is dependent,
2121 // assume the template is a type template. Either our assumption is
2122 // correct, or the code is ill-formed and will be diagnosed when the
2123 // dependent name is substituted.
2124 return Context.getDependentTemplateSpecializationType(ETK_None,
2125 DTN->getQualifier(),
2126 DTN->getIdentifier(),
2127 TemplateArgs);
2128
2129 TemplateDecl *Template = Name.getAsTemplateDecl();
2130 if (!Template || isa<FunctionTemplateDecl>(Template) ||
2131 isa<VarTemplateDecl>(Template)) {
2132 // We might have a substituted template template parameter pack. If so,
2133 // build a template specialization type for it.
2134 if (Name.getAsSubstTemplateTemplateParmPack())
2135 return Context.getTemplateSpecializationType(Name, TemplateArgs);
2136
2137 Diag(TemplateLoc, diag::err_template_id_not_a_type)
2138 << Name;
2139 NoteAllFoundTemplates(Name);
2140 return QualType();
2141 }
2142
2143 // Check that the template argument list is well-formed for this
2144 // template.
2145 SmallVector<TemplateArgument, 4> Converted;
2146 if (CheckTemplateArgumentList(Template, TemplateLoc, TemplateArgs,
2147 false, Converted))
2148 return QualType();
2149
2150 QualType CanonType;
2151
2152 bool InstantiationDependent = false;
2153 if (TypeAliasTemplateDecl *AliasTemplate =
2154 dyn_cast<TypeAliasTemplateDecl>(Template)) {
2155 // Find the canonical type for this type alias template specialization.
2156 TypeAliasDecl *Pattern = AliasTemplate->getTemplatedDecl();
2157 if (Pattern->isInvalidDecl())
2158 return QualType();
2159
2160 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
2161 Converted);
2162
2163 // Only substitute for the innermost template argument list.
2164 MultiLevelTemplateArgumentList TemplateArgLists;
2165 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
2166 unsigned Depth = AliasTemplate->getTemplateParameters()->getDepth();
2167 for (unsigned I = 0; I < Depth; ++I)
2168 TemplateArgLists.addOuterTemplateArguments(None);
2169
2170 LocalInstantiationScope Scope(*this);
2171 InstantiatingTemplate Inst(*this, TemplateLoc, Template);
2172 if (Inst.isInvalid())
2173 return QualType();
2174
2175 CanonType = SubstType(Pattern->getUnderlyingType(),
2176 TemplateArgLists, AliasTemplate->getLocation(),
2177 AliasTemplate->getDeclName());
2178 if (CanonType.isNull())
2179 return QualType();
2180 } else if (Name.isDependent() ||
2181 TemplateSpecializationType::anyDependentTemplateArguments(
2182 TemplateArgs, InstantiationDependent)) {
2183 // This class template specialization is a dependent
2184 // type. Therefore, its canonical type is another class template
2185 // specialization type that contains all of the converted
2186 // arguments in canonical form. This ensures that, e.g., A<T> and
2187 // A<T, T> have identical types when A is declared as:
2188 //
2189 // template<typename T, typename U = T> struct A;
2190 TemplateName CanonName = Context.getCanonicalTemplateName(Name);
2191 CanonType = Context.getTemplateSpecializationType(CanonName,
2192 Converted);
2193
2194 // FIXME: CanonType is not actually the canonical type, and unfortunately
2195 // it is a TemplateSpecializationType that we will never use again.
2196 // In the future, we need to teach getTemplateSpecializationType to only
2197 // build the canonical type and return that to us.
2198 CanonType = Context.getCanonicalType(CanonType);
2199
2200 // This might work out to be a current instantiation, in which
2201 // case the canonical type needs to be the InjectedClassNameType.
2202 //
2203 // TODO: in theory this could be a simple hashtable lookup; most
2204 // changes to CurContext don't change the set of current
2205 // instantiations.
2206 if (isa<ClassTemplateDecl>(Template)) {
2207 for (DeclContext *Ctx = CurContext; Ctx; Ctx = Ctx->getLookupParent()) {
2208 // If we get out to a namespace, we're done.
2209 if (Ctx->isFileContext()) break;
2210
2211 // If this isn't a record, keep looking.
2212 CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Ctx);
2213 if (!Record) continue;
2214
2215 // Look for one of the two cases with InjectedClassNameTypes
2216 // and check whether it's the same template.
2217 if (!isa<ClassTemplatePartialSpecializationDecl>(Record) &&
2218 !Record->getDescribedClassTemplate())
2219 continue;
2220
2221 // Fetch the injected class name type and check whether its
2222 // injected type is equal to the type we just built.
2223 QualType ICNT = Context.getTypeDeclType(Record);
2224 QualType Injected = cast<InjectedClassNameType>(ICNT)
2225 ->getInjectedSpecializationType();
2226
2227 if (CanonType != Injected->getCanonicalTypeInternal())
2228 continue;
2229
2230 // If so, the canonical type of this TST is the injected
2231 // class name type of the record we just found.
2232 assert(ICNT.isCanonical());
2233 CanonType = ICNT;
2234 break;
2235 }
2236 }
2237 } else if (ClassTemplateDecl *ClassTemplate
2238 = dyn_cast<ClassTemplateDecl>(Template)) {
2239 // Find the class template specialization declaration that
2240 // corresponds to these arguments.
2241 void *InsertPos = nullptr;
2242 ClassTemplateSpecializationDecl *Decl
2243 = ClassTemplate->findSpecialization(Converted, InsertPos);
2244 if (!Decl) {
2245 // This is the first time we have referenced this class template
2246 // specialization. Create the canonical declaration and add it to
2247 // the set of specializations.
2248 Decl = ClassTemplateSpecializationDecl::Create(Context,
2249 ClassTemplate->getTemplatedDecl()->getTagKind(),
2250 ClassTemplate->getDeclContext(),
2251 ClassTemplate->getTemplatedDecl()->getLocStart(),
2252 ClassTemplate->getLocation(),
2253 ClassTemplate,
2254 Converted, nullptr);
2255 ClassTemplate->AddSpecialization(Decl, InsertPos);
2256 if (ClassTemplate->isOutOfLine())
2257 Decl->setLexicalDeclContext(ClassTemplate->getLexicalDeclContext());
2258 }
2259
2260 // Diagnose uses of this specialization.
2261 (void)DiagnoseUseOfDecl(Decl, TemplateLoc);
2262
2263 CanonType = Context.getTypeDeclType(Decl);
2264 assert(isa<RecordType>(CanonType) &&
2265 "type of non-dependent specialization is not a RecordType");
2266 } else if (auto *BTD = dyn_cast<BuiltinTemplateDecl>(Template)) {
2267 CanonType = checkBuiltinTemplateIdType(*this, BTD, Converted, TemplateLoc,
2268 TemplateArgs);
2269 }
2270
2271 // Build the fully-sugared type for this class template
2272 // specialization, which refers back to the class template
2273 // specialization we created or found.
2274 return Context.getTemplateSpecializationType(Name, TemplateArgs, CanonType);
2275 }
2276
2277 TypeResult
ActOnTemplateIdType(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,bool IsCtorOrDtorName)2278 Sema::ActOnTemplateIdType(CXXScopeSpec &SS, SourceLocation TemplateKWLoc,
2279 TemplateTy TemplateD, SourceLocation TemplateLoc,
2280 SourceLocation LAngleLoc,
2281 ASTTemplateArgsPtr TemplateArgsIn,
2282 SourceLocation RAngleLoc,
2283 bool IsCtorOrDtorName) {
2284 if (SS.isInvalid())
2285 return true;
2286
2287 TemplateName Template = TemplateD.get();
2288
2289 // Translate the parser's template argument list in our AST format.
2290 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2291 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2292
2293 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2294 QualType T
2295 = Context.getDependentTemplateSpecializationType(ETK_None,
2296 DTN->getQualifier(),
2297 DTN->getIdentifier(),
2298 TemplateArgs);
2299 // Build type-source information.
2300 TypeLocBuilder TLB;
2301 DependentTemplateSpecializationTypeLoc SpecTL
2302 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2303 SpecTL.setElaboratedKeywordLoc(SourceLocation());
2304 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2305 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2306 SpecTL.setTemplateNameLoc(TemplateLoc);
2307 SpecTL.setLAngleLoc(LAngleLoc);
2308 SpecTL.setRAngleLoc(RAngleLoc);
2309 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2310 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2311 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2312 }
2313
2314 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2315
2316 if (Result.isNull())
2317 return true;
2318
2319 // Build type-source information.
2320 TypeLocBuilder TLB;
2321 TemplateSpecializationTypeLoc SpecTL
2322 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2323 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2324 SpecTL.setTemplateNameLoc(TemplateLoc);
2325 SpecTL.setLAngleLoc(LAngleLoc);
2326 SpecTL.setRAngleLoc(RAngleLoc);
2327 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2328 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2329
2330 // NOTE: avoid constructing an ElaboratedTypeLoc if this is a
2331 // constructor or destructor name (in such a case, the scope specifier
2332 // will be attached to the enclosing Decl or Expr node).
2333 if (SS.isNotEmpty() && !IsCtorOrDtorName) {
2334 // Create an elaborated-type-specifier containing the nested-name-specifier.
2335 Result = Context.getElaboratedType(ETK_None, SS.getScopeRep(), Result);
2336 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2337 ElabTL.setElaboratedKeywordLoc(SourceLocation());
2338 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2339 }
2340
2341 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2342 }
2343
ActOnTagTemplateIdType(TagUseKind TUK,TypeSpecifierType TagSpec,SourceLocation TagLoc,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateD,SourceLocation TemplateLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)2344 TypeResult Sema::ActOnTagTemplateIdType(TagUseKind TUK,
2345 TypeSpecifierType TagSpec,
2346 SourceLocation TagLoc,
2347 CXXScopeSpec &SS,
2348 SourceLocation TemplateKWLoc,
2349 TemplateTy TemplateD,
2350 SourceLocation TemplateLoc,
2351 SourceLocation LAngleLoc,
2352 ASTTemplateArgsPtr TemplateArgsIn,
2353 SourceLocation RAngleLoc) {
2354 TemplateName Template = TemplateD.get();
2355
2356 // Translate the parser's template argument list in our AST format.
2357 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
2358 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
2359
2360 // Determine the tag kind
2361 TagTypeKind TagKind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
2362 ElaboratedTypeKeyword Keyword
2363 = TypeWithKeyword::getKeywordForTagTypeKind(TagKind);
2364
2365 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
2366 QualType T = Context.getDependentTemplateSpecializationType(Keyword,
2367 DTN->getQualifier(),
2368 DTN->getIdentifier(),
2369 TemplateArgs);
2370
2371 // Build type-source information.
2372 TypeLocBuilder TLB;
2373 DependentTemplateSpecializationTypeLoc SpecTL
2374 = TLB.push<DependentTemplateSpecializationTypeLoc>(T);
2375 SpecTL.setElaboratedKeywordLoc(TagLoc);
2376 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
2377 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2378 SpecTL.setTemplateNameLoc(TemplateLoc);
2379 SpecTL.setLAngleLoc(LAngleLoc);
2380 SpecTL.setRAngleLoc(RAngleLoc);
2381 for (unsigned I = 0, N = SpecTL.getNumArgs(); I != N; ++I)
2382 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
2383 return CreateParsedType(T, TLB.getTypeSourceInfo(Context, T));
2384 }
2385
2386 if (TypeAliasTemplateDecl *TAT =
2387 dyn_cast_or_null<TypeAliasTemplateDecl>(Template.getAsTemplateDecl())) {
2388 // C++0x [dcl.type.elab]p2:
2389 // If the identifier resolves to a typedef-name or the simple-template-id
2390 // resolves to an alias template specialization, the
2391 // elaborated-type-specifier is ill-formed.
2392 Diag(TemplateLoc, diag::err_tag_reference_non_tag) << 4;
2393 Diag(TAT->getLocation(), diag::note_declared_at);
2394 }
2395
2396 QualType Result = CheckTemplateIdType(Template, TemplateLoc, TemplateArgs);
2397 if (Result.isNull())
2398 return TypeResult(true);
2399
2400 // Check the tag kind
2401 if (const RecordType *RT = Result->getAs<RecordType>()) {
2402 RecordDecl *D = RT->getDecl();
2403
2404 IdentifierInfo *Id = D->getIdentifier();
2405 assert(Id && "templated class must have an identifier");
2406
2407 if (!isAcceptableTagRedeclaration(D, TagKind, TUK == TUK_Definition,
2408 TagLoc, Id)) {
2409 Diag(TagLoc, diag::err_use_with_wrong_tag)
2410 << Result
2411 << FixItHint::CreateReplacement(SourceRange(TagLoc), D->getKindName());
2412 Diag(D->getLocation(), diag::note_previous_use);
2413 }
2414 }
2415
2416 // Provide source-location information for the template specialization.
2417 TypeLocBuilder TLB;
2418 TemplateSpecializationTypeLoc SpecTL
2419 = TLB.push<TemplateSpecializationTypeLoc>(Result);
2420 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
2421 SpecTL.setTemplateNameLoc(TemplateLoc);
2422 SpecTL.setLAngleLoc(LAngleLoc);
2423 SpecTL.setRAngleLoc(RAngleLoc);
2424 for (unsigned i = 0, e = SpecTL.getNumArgs(); i != e; ++i)
2425 SpecTL.setArgLocInfo(i, TemplateArgs[i].getLocInfo());
2426
2427 // Construct an elaborated type containing the nested-name-specifier (if any)
2428 // and tag keyword.
2429 Result = Context.getElaboratedType(Keyword, SS.getScopeRep(), Result);
2430 ElaboratedTypeLoc ElabTL = TLB.push<ElaboratedTypeLoc>(Result);
2431 ElabTL.setElaboratedKeywordLoc(TagLoc);
2432 ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
2433 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
2434 }
2435
2436 static bool CheckTemplatePartialSpecializationArgs(
2437 Sema &S, SourceLocation NameLoc, TemplateParameterList *TemplateParams,
2438 unsigned ExplicitArgs, SmallVectorImpl<TemplateArgument> &TemplateArgs);
2439
2440 static bool CheckTemplateSpecializationScope(Sema &S, NamedDecl *Specialized,
2441 NamedDecl *PrevDecl,
2442 SourceLocation Loc,
2443 bool IsPartialSpecialization);
2444
2445 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D);
2446
isTemplateArgumentTemplateParameter(const TemplateArgument & Arg,unsigned Depth,unsigned Index)2447 static bool isTemplateArgumentTemplateParameter(
2448 const TemplateArgument &Arg, unsigned Depth, unsigned Index) {
2449 switch (Arg.getKind()) {
2450 case TemplateArgument::Null:
2451 case TemplateArgument::NullPtr:
2452 case TemplateArgument::Integral:
2453 case TemplateArgument::Declaration:
2454 case TemplateArgument::Pack:
2455 case TemplateArgument::TemplateExpansion:
2456 return false;
2457
2458 case TemplateArgument::Type: {
2459 QualType Type = Arg.getAsType();
2460 const TemplateTypeParmType *TPT =
2461 Arg.getAsType()->getAs<TemplateTypeParmType>();
2462 return TPT && !Type.hasQualifiers() &&
2463 TPT->getDepth() == Depth && TPT->getIndex() == Index;
2464 }
2465
2466 case TemplateArgument::Expression: {
2467 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg.getAsExpr());
2468 if (!DRE || !DRE->getDecl())
2469 return false;
2470 const NonTypeTemplateParmDecl *NTTP =
2471 dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
2472 return NTTP && NTTP->getDepth() == Depth && NTTP->getIndex() == Index;
2473 }
2474
2475 case TemplateArgument::Template:
2476 const TemplateTemplateParmDecl *TTP =
2477 dyn_cast_or_null<TemplateTemplateParmDecl>(
2478 Arg.getAsTemplateOrTemplatePattern().getAsTemplateDecl());
2479 return TTP && TTP->getDepth() == Depth && TTP->getIndex() == Index;
2480 }
2481 llvm_unreachable("unexpected kind of template argument");
2482 }
2483
isSameAsPrimaryTemplate(TemplateParameterList * Params,ArrayRef<TemplateArgument> Args)2484 static bool isSameAsPrimaryTemplate(TemplateParameterList *Params,
2485 ArrayRef<TemplateArgument> Args) {
2486 if (Params->size() != Args.size())
2487 return false;
2488
2489 unsigned Depth = Params->getDepth();
2490
2491 for (unsigned I = 0, N = Args.size(); I != N; ++I) {
2492 TemplateArgument Arg = Args[I];
2493
2494 // If the parameter is a pack expansion, the argument must be a pack
2495 // whose only element is a pack expansion.
2496 if (Params->getParam(I)->isParameterPack()) {
2497 if (Arg.getKind() != TemplateArgument::Pack || Arg.pack_size() != 1 ||
2498 !Arg.pack_begin()->isPackExpansion())
2499 return false;
2500 Arg = Arg.pack_begin()->getPackExpansionPattern();
2501 }
2502
2503 if (!isTemplateArgumentTemplateParameter(Arg, Depth, I))
2504 return false;
2505 }
2506
2507 return true;
2508 }
2509
2510 /// Convert the parser's template argument list representation into our form.
2511 static TemplateArgumentListInfo
makeTemplateArgumentListInfo(Sema & S,TemplateIdAnnotation & TemplateId)2512 makeTemplateArgumentListInfo(Sema &S, TemplateIdAnnotation &TemplateId) {
2513 TemplateArgumentListInfo TemplateArgs(TemplateId.LAngleLoc,
2514 TemplateId.RAngleLoc);
2515 ASTTemplateArgsPtr TemplateArgsPtr(TemplateId.getTemplateArgs(),
2516 TemplateId.NumArgs);
2517 S.translateTemplateArguments(TemplateArgsPtr, TemplateArgs);
2518 return TemplateArgs;
2519 }
2520
ActOnVarTemplateSpecialization(Scope * S,Declarator & D,TypeSourceInfo * DI,SourceLocation TemplateKWLoc,TemplateParameterList * TemplateParams,StorageClass SC,bool IsPartialSpecialization)2521 DeclResult Sema::ActOnVarTemplateSpecialization(
2522 Scope *S, Declarator &D, TypeSourceInfo *DI, SourceLocation TemplateKWLoc,
2523 TemplateParameterList *TemplateParams, StorageClass SC,
2524 bool IsPartialSpecialization) {
2525 // D must be variable template id.
2526 assert(D.getName().getKind() == UnqualifiedId::IK_TemplateId &&
2527 "Variable template specialization is declared with a template it.");
2528
2529 TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2530 TemplateArgumentListInfo TemplateArgs =
2531 makeTemplateArgumentListInfo(*this, *TemplateId);
2532 SourceLocation TemplateNameLoc = D.getIdentifierLoc();
2533 SourceLocation LAngleLoc = TemplateId->LAngleLoc;
2534 SourceLocation RAngleLoc = TemplateId->RAngleLoc;
2535
2536 TemplateName Name = TemplateId->Template.get();
2537
2538 // The template-id must name a variable template.
2539 VarTemplateDecl *VarTemplate =
2540 dyn_cast_or_null<VarTemplateDecl>(Name.getAsTemplateDecl());
2541 if (!VarTemplate) {
2542 NamedDecl *FnTemplate;
2543 if (auto *OTS = Name.getAsOverloadedTemplate())
2544 FnTemplate = *OTS->begin();
2545 else
2546 FnTemplate = dyn_cast_or_null<FunctionTemplateDecl>(Name.getAsTemplateDecl());
2547 if (FnTemplate)
2548 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template_but_method)
2549 << FnTemplate->getDeclName();
2550 return Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
2551 << IsPartialSpecialization;
2552 }
2553
2554 // Check for unexpanded parameter packs in any of the template arguments.
2555 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
2556 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
2557 UPPC_PartialSpecialization))
2558 return true;
2559
2560 // Check that the template argument list is well-formed for this
2561 // template.
2562 SmallVector<TemplateArgument, 4> Converted;
2563 if (CheckTemplateArgumentList(VarTemplate, TemplateNameLoc, TemplateArgs,
2564 false, Converted))
2565 return true;
2566
2567 // Find the variable template (partial) specialization declaration that
2568 // corresponds to these arguments.
2569 if (IsPartialSpecialization) {
2570 if (CheckTemplatePartialSpecializationArgs(
2571 *this, TemplateNameLoc, VarTemplate->getTemplateParameters(),
2572 TemplateArgs.size(), Converted))
2573 return true;
2574
2575 bool InstantiationDependent;
2576 if (!Name.isDependent() &&
2577 !TemplateSpecializationType::anyDependentTemplateArguments(
2578 TemplateArgs.arguments(),
2579 InstantiationDependent)) {
2580 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
2581 << VarTemplate->getDeclName();
2582 IsPartialSpecialization = false;
2583 }
2584
2585 if (isSameAsPrimaryTemplate(VarTemplate->getTemplateParameters(),
2586 Converted)) {
2587 // C++ [temp.class.spec]p9b3:
2588 //
2589 // -- The argument list of the specialization shall not be identical
2590 // to the implicit argument list of the primary template.
2591 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
2592 << /*variable template*/ 1
2593 << /*is definition*/(SC != SC_Extern && !CurContext->isRecord())
2594 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
2595 // FIXME: Recover from this by treating the declaration as a redeclaration
2596 // of the primary template.
2597 return true;
2598 }
2599 }
2600
2601 void *InsertPos = nullptr;
2602 VarTemplateSpecializationDecl *PrevDecl = nullptr;
2603
2604 if (IsPartialSpecialization)
2605 // FIXME: Template parameter list matters too
2606 PrevDecl = VarTemplate->findPartialSpecialization(Converted, InsertPos);
2607 else
2608 PrevDecl = VarTemplate->findSpecialization(Converted, InsertPos);
2609
2610 VarTemplateSpecializationDecl *Specialization = nullptr;
2611
2612 // Check whether we can declare a variable template specialization in
2613 // the current scope.
2614 if (CheckTemplateSpecializationScope(*this, VarTemplate, PrevDecl,
2615 TemplateNameLoc,
2616 IsPartialSpecialization))
2617 return true;
2618
2619 if (PrevDecl && PrevDecl->getSpecializationKind() == TSK_Undeclared) {
2620 // Since the only prior variable template specialization with these
2621 // arguments was referenced but not declared, reuse that
2622 // declaration node as our own, updating its source location and
2623 // the list of outer template parameters to reflect our new declaration.
2624 Specialization = PrevDecl;
2625 Specialization->setLocation(TemplateNameLoc);
2626 PrevDecl = nullptr;
2627 } else if (IsPartialSpecialization) {
2628 // Create a new class template partial specialization declaration node.
2629 VarTemplatePartialSpecializationDecl *PrevPartial =
2630 cast_or_null<VarTemplatePartialSpecializationDecl>(PrevDecl);
2631 VarTemplatePartialSpecializationDecl *Partial =
2632 VarTemplatePartialSpecializationDecl::Create(
2633 Context, VarTemplate->getDeclContext(), TemplateKWLoc,
2634 TemplateNameLoc, TemplateParams, VarTemplate, DI->getType(), DI, SC,
2635 Converted, TemplateArgs);
2636
2637 if (!PrevPartial)
2638 VarTemplate->AddPartialSpecialization(Partial, InsertPos);
2639 Specialization = Partial;
2640
2641 // If we are providing an explicit specialization of a member variable
2642 // template specialization, make a note of that.
2643 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
2644 PrevPartial->setMemberSpecialization();
2645
2646 // Check that all of the template parameters of the variable template
2647 // partial specialization are deducible from the template
2648 // arguments. If not, this variable template partial specialization
2649 // will never be used.
2650 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
2651 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
2652 TemplateParams->getDepth(), DeducibleParams);
2653
2654 if (!DeducibleParams.all()) {
2655 unsigned NumNonDeducible =
2656 DeducibleParams.size() - DeducibleParams.count();
2657 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
2658 << /*variable template*/ 1 << (NumNonDeducible > 1)
2659 << SourceRange(TemplateNameLoc, RAngleLoc);
2660 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
2661 if (!DeducibleParams[I]) {
2662 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
2663 if (Param->getDeclName())
2664 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2665 << Param->getDeclName();
2666 else
2667 Diag(Param->getLocation(), diag::note_partial_spec_unused_parameter)
2668 << "(anonymous)";
2669 }
2670 }
2671 }
2672 } else {
2673 // Create a new class template specialization declaration node for
2674 // this explicit specialization or friend declaration.
2675 Specialization = VarTemplateSpecializationDecl::Create(
2676 Context, VarTemplate->getDeclContext(), TemplateKWLoc, TemplateNameLoc,
2677 VarTemplate, DI->getType(), DI, SC, Converted);
2678 Specialization->setTemplateArgsInfo(TemplateArgs);
2679
2680 if (!PrevDecl)
2681 VarTemplate->AddSpecialization(Specialization, InsertPos);
2682 }
2683
2684 // C++ [temp.expl.spec]p6:
2685 // If a template, a member template or the member of a class template is
2686 // explicitly specialized then that specialization shall be declared
2687 // before the first use of that specialization that would cause an implicit
2688 // instantiation to take place, in every translation unit in which such a
2689 // use occurs; no diagnostic is required.
2690 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
2691 bool Okay = false;
2692 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
2693 // Is there any previous explicit specialization declaration?
2694 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
2695 Okay = true;
2696 break;
2697 }
2698 }
2699
2700 if (!Okay) {
2701 SourceRange Range(TemplateNameLoc, RAngleLoc);
2702 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
2703 << Name << Range;
2704
2705 Diag(PrevDecl->getPointOfInstantiation(),
2706 diag::note_instantiation_required_here)
2707 << (PrevDecl->getTemplateSpecializationKind() !=
2708 TSK_ImplicitInstantiation);
2709 return true;
2710 }
2711 }
2712
2713 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
2714 Specialization->setLexicalDeclContext(CurContext);
2715
2716 // Add the specialization into its lexical context, so that it can
2717 // be seen when iterating through the list of declarations in that
2718 // context. However, specializations are not found by name lookup.
2719 CurContext->addDecl(Specialization);
2720
2721 // Note that this is an explicit specialization.
2722 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
2723
2724 if (PrevDecl) {
2725 // Check that this isn't a redefinition of this specialization,
2726 // merging with previous declarations.
2727 LookupResult PrevSpec(*this, GetNameForDeclarator(D), LookupOrdinaryName,
2728 ForRedeclaration);
2729 PrevSpec.addDecl(PrevDecl);
2730 D.setRedeclaration(CheckVariableDeclaration(Specialization, PrevSpec));
2731 } else if (Specialization->isStaticDataMember() &&
2732 Specialization->isOutOfLine()) {
2733 Specialization->setAccess(VarTemplate->getAccess());
2734 }
2735
2736 // Link instantiations of static data members back to the template from
2737 // which they were instantiated.
2738 if (Specialization->isStaticDataMember())
2739 Specialization->setInstantiationOfStaticDataMember(
2740 VarTemplate->getTemplatedDecl(),
2741 Specialization->getSpecializationKind());
2742
2743 return Specialization;
2744 }
2745
2746 namespace {
2747 /// \brief A partial specialization whose template arguments have matched
2748 /// a given template-id.
2749 struct PartialSpecMatchResult {
2750 VarTemplatePartialSpecializationDecl *Partial;
2751 TemplateArgumentList *Args;
2752 };
2753 } // end anonymous namespace
2754
2755 DeclResult
CheckVarTemplateId(VarTemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation TemplateNameLoc,const TemplateArgumentListInfo & TemplateArgs)2756 Sema::CheckVarTemplateId(VarTemplateDecl *Template, SourceLocation TemplateLoc,
2757 SourceLocation TemplateNameLoc,
2758 const TemplateArgumentListInfo &TemplateArgs) {
2759 assert(Template && "A variable template id without template?");
2760
2761 // Check that the template argument list is well-formed for this template.
2762 SmallVector<TemplateArgument, 4> Converted;
2763 if (CheckTemplateArgumentList(
2764 Template, TemplateNameLoc,
2765 const_cast<TemplateArgumentListInfo &>(TemplateArgs), false,
2766 Converted))
2767 return true;
2768
2769 // Find the variable template specialization declaration that
2770 // corresponds to these arguments.
2771 void *InsertPos = nullptr;
2772 if (VarTemplateSpecializationDecl *Spec = Template->findSpecialization(
2773 Converted, InsertPos)) {
2774 checkSpecializationVisibility(TemplateNameLoc, Spec);
2775 // If we already have a variable template specialization, return it.
2776 return Spec;
2777 }
2778
2779 // This is the first time we have referenced this variable template
2780 // specialization. Create the canonical declaration and add it to
2781 // the set of specializations, based on the closest partial specialization
2782 // that it represents. That is,
2783 VarDecl *InstantiationPattern = Template->getTemplatedDecl();
2784 TemplateArgumentList TemplateArgList(TemplateArgumentList::OnStack,
2785 Converted);
2786 TemplateArgumentList *InstantiationArgs = &TemplateArgList;
2787 bool AmbiguousPartialSpec = false;
2788 typedef PartialSpecMatchResult MatchResult;
2789 SmallVector<MatchResult, 4> Matched;
2790 SourceLocation PointOfInstantiation = TemplateNameLoc;
2791 TemplateSpecCandidateSet FailedCandidates(PointOfInstantiation,
2792 /*ForTakingAddress=*/false);
2793
2794 // 1. Attempt to find the closest partial specialization that this
2795 // specializes, if any.
2796 // If any of the template arguments is dependent, then this is probably
2797 // a placeholder for an incomplete declarative context; which must be
2798 // complete by instantiation time. Thus, do not search through the partial
2799 // specializations yet.
2800 // TODO: Unify with InstantiateClassTemplateSpecialization()?
2801 // Perhaps better after unification of DeduceTemplateArguments() and
2802 // getMoreSpecializedPartialSpecialization().
2803 bool InstantiationDependent = false;
2804 if (!TemplateSpecializationType::anyDependentTemplateArguments(
2805 TemplateArgs, InstantiationDependent)) {
2806
2807 SmallVector<VarTemplatePartialSpecializationDecl *, 4> PartialSpecs;
2808 Template->getPartialSpecializations(PartialSpecs);
2809
2810 for (unsigned I = 0, N = PartialSpecs.size(); I != N; ++I) {
2811 VarTemplatePartialSpecializationDecl *Partial = PartialSpecs[I];
2812 TemplateDeductionInfo Info(FailedCandidates.getLocation());
2813
2814 if (TemplateDeductionResult Result =
2815 DeduceTemplateArguments(Partial, TemplateArgList, Info)) {
2816 // Store the failed-deduction information for use in diagnostics, later.
2817 // TODO: Actually use the failed-deduction info?
2818 FailedCandidates.addCandidate().set(
2819 DeclAccessPair::make(Template, AS_public), Partial,
2820 MakeDeductionFailureInfo(Context, Result, Info));
2821 (void)Result;
2822 } else {
2823 Matched.push_back(PartialSpecMatchResult());
2824 Matched.back().Partial = Partial;
2825 Matched.back().Args = Info.take();
2826 }
2827 }
2828
2829 if (Matched.size() >= 1) {
2830 SmallVector<MatchResult, 4>::iterator Best = Matched.begin();
2831 if (Matched.size() == 1) {
2832 // -- If exactly one matching specialization is found, the
2833 // instantiation is generated from that specialization.
2834 // We don't need to do anything for this.
2835 } else {
2836 // -- If more than one matching specialization is found, the
2837 // partial order rules (14.5.4.2) are used to determine
2838 // whether one of the specializations is more specialized
2839 // than the others. If none of the specializations is more
2840 // specialized than all of the other matching
2841 // specializations, then the use of the variable template is
2842 // ambiguous and the program is ill-formed.
2843 for (SmallVector<MatchResult, 4>::iterator P = Best + 1,
2844 PEnd = Matched.end();
2845 P != PEnd; ++P) {
2846 if (getMoreSpecializedPartialSpecialization(P->Partial, Best->Partial,
2847 PointOfInstantiation) ==
2848 P->Partial)
2849 Best = P;
2850 }
2851
2852 // Determine if the best partial specialization is more specialized than
2853 // the others.
2854 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2855 PEnd = Matched.end();
2856 P != PEnd; ++P) {
2857 if (P != Best && getMoreSpecializedPartialSpecialization(
2858 P->Partial, Best->Partial,
2859 PointOfInstantiation) != Best->Partial) {
2860 AmbiguousPartialSpec = true;
2861 break;
2862 }
2863 }
2864 }
2865
2866 // Instantiate using the best variable template partial specialization.
2867 InstantiationPattern = Best->Partial;
2868 InstantiationArgs = Best->Args;
2869 } else {
2870 // -- If no match is found, the instantiation is generated
2871 // from the primary template.
2872 // InstantiationPattern = Template->getTemplatedDecl();
2873 }
2874 }
2875
2876 // 2. Create the canonical declaration.
2877 // Note that we do not instantiate a definition until we see an odr-use
2878 // in DoMarkVarDeclReferenced().
2879 // FIXME: LateAttrs et al.?
2880 VarTemplateSpecializationDecl *Decl = BuildVarTemplateInstantiation(
2881 Template, InstantiationPattern, *InstantiationArgs, TemplateArgs,
2882 Converted, TemplateNameLoc, InsertPos /*, LateAttrs, StartingScope*/);
2883 if (!Decl)
2884 return true;
2885
2886 if (AmbiguousPartialSpec) {
2887 // Partial ordering did not produce a clear winner. Complain.
2888 Decl->setInvalidDecl();
2889 Diag(PointOfInstantiation, diag::err_partial_spec_ordering_ambiguous)
2890 << Decl;
2891
2892 // Print the matching partial specializations.
2893 for (SmallVector<MatchResult, 4>::iterator P = Matched.begin(),
2894 PEnd = Matched.end();
2895 P != PEnd; ++P)
2896 Diag(P->Partial->getLocation(), diag::note_partial_spec_match)
2897 << getTemplateArgumentBindingsText(
2898 P->Partial->getTemplateParameters(), *P->Args);
2899 return true;
2900 }
2901
2902 if (VarTemplatePartialSpecializationDecl *D =
2903 dyn_cast<VarTemplatePartialSpecializationDecl>(InstantiationPattern))
2904 Decl->setInstantiationOf(D, InstantiationArgs);
2905
2906 checkSpecializationVisibility(TemplateNameLoc, Decl);
2907
2908 assert(Decl && "No variable template specialization?");
2909 return Decl;
2910 }
2911
2912 ExprResult
CheckVarTemplateId(const CXXScopeSpec & SS,const DeclarationNameInfo & NameInfo,VarTemplateDecl * Template,SourceLocation TemplateLoc,const TemplateArgumentListInfo * TemplateArgs)2913 Sema::CheckVarTemplateId(const CXXScopeSpec &SS,
2914 const DeclarationNameInfo &NameInfo,
2915 VarTemplateDecl *Template, SourceLocation TemplateLoc,
2916 const TemplateArgumentListInfo *TemplateArgs) {
2917
2918 DeclResult Decl = CheckVarTemplateId(Template, TemplateLoc, NameInfo.getLoc(),
2919 *TemplateArgs);
2920 if (Decl.isInvalid())
2921 return ExprError();
2922
2923 VarDecl *Var = cast<VarDecl>(Decl.get());
2924 if (!Var->getTemplateSpecializationKind())
2925 Var->setTemplateSpecializationKind(TSK_ImplicitInstantiation,
2926 NameInfo.getLoc());
2927
2928 // Build an ordinary singleton decl ref.
2929 return BuildDeclarationNameExpr(SS, NameInfo, Var,
2930 /*FoundD=*/nullptr, TemplateArgs);
2931 }
2932
BuildTemplateIdExpr(const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,LookupResult & R,bool RequiresADL,const TemplateArgumentListInfo * TemplateArgs)2933 ExprResult Sema::BuildTemplateIdExpr(const CXXScopeSpec &SS,
2934 SourceLocation TemplateKWLoc,
2935 LookupResult &R,
2936 bool RequiresADL,
2937 const TemplateArgumentListInfo *TemplateArgs) {
2938 // FIXME: Can we do any checking at this point? I guess we could check the
2939 // template arguments that we have against the template name, if the template
2940 // name refers to a single template. That's not a terribly common case,
2941 // though.
2942 // foo<int> could identify a single function unambiguously
2943 // This approach does NOT work, since f<int>(1);
2944 // gets resolved prior to resorting to overload resolution
2945 // i.e., template<class T> void f(double);
2946 // vs template<class T, class U> void f(U);
2947
2948 // These should be filtered out by our callers.
2949 assert(!R.empty() && "empty lookup results when building templateid");
2950 assert(!R.isAmbiguous() && "ambiguous lookup when building templateid");
2951
2952 // In C++1y, check variable template ids.
2953 bool InstantiationDependent;
2954 if (R.getAsSingle<VarTemplateDecl>() &&
2955 !TemplateSpecializationType::anyDependentTemplateArguments(
2956 *TemplateArgs, InstantiationDependent)) {
2957 return CheckVarTemplateId(SS, R.getLookupNameInfo(),
2958 R.getAsSingle<VarTemplateDecl>(),
2959 TemplateKWLoc, TemplateArgs);
2960 }
2961
2962 // We don't want lookup warnings at this point.
2963 R.suppressDiagnostics();
2964
2965 UnresolvedLookupExpr *ULE
2966 = UnresolvedLookupExpr::Create(Context, R.getNamingClass(),
2967 SS.getWithLocInContext(Context),
2968 TemplateKWLoc,
2969 R.getLookupNameInfo(),
2970 RequiresADL, TemplateArgs,
2971 R.begin(), R.end());
2972
2973 return ULE;
2974 }
2975
2976 // We actually only call this from template instantiation.
2977 ExprResult
BuildQualifiedTemplateIdExpr(CXXScopeSpec & SS,SourceLocation TemplateKWLoc,const DeclarationNameInfo & NameInfo,const TemplateArgumentListInfo * TemplateArgs)2978 Sema::BuildQualifiedTemplateIdExpr(CXXScopeSpec &SS,
2979 SourceLocation TemplateKWLoc,
2980 const DeclarationNameInfo &NameInfo,
2981 const TemplateArgumentListInfo *TemplateArgs) {
2982
2983 assert(TemplateArgs || TemplateKWLoc.isValid());
2984 DeclContext *DC;
2985 if (!(DC = computeDeclContext(SS, false)) ||
2986 DC->isDependentContext() ||
2987 RequireCompleteDeclContext(SS, DC))
2988 return BuildDependentDeclRefExpr(SS, TemplateKWLoc, NameInfo, TemplateArgs);
2989
2990 bool MemberOfUnknownSpecialization;
2991 LookupResult R(*this, NameInfo, LookupOrdinaryName);
2992 LookupTemplateName(R, (Scope*)nullptr, SS, QualType(), /*Entering*/ false,
2993 MemberOfUnknownSpecialization);
2994
2995 if (R.isAmbiguous())
2996 return ExprError();
2997
2998 if (R.empty()) {
2999 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_non_template)
3000 << NameInfo.getName() << SS.getRange();
3001 return ExprError();
3002 }
3003
3004 if (ClassTemplateDecl *Temp = R.getAsSingle<ClassTemplateDecl>()) {
3005 Diag(NameInfo.getLoc(), diag::err_template_kw_refers_to_class_template)
3006 << SS.getScopeRep()
3007 << NameInfo.getName().getAsString() << SS.getRange();
3008 Diag(Temp->getLocation(), diag::note_referenced_class_template);
3009 return ExprError();
3010 }
3011
3012 return BuildTemplateIdExpr(SS, TemplateKWLoc, R, /*ADL*/ false, TemplateArgs);
3013 }
3014
3015 /// \brief Form a dependent template name.
3016 ///
3017 /// This action forms a dependent template name given the template
3018 /// name and its (presumably dependent) scope specifier. For
3019 /// example, given "MetaFun::template apply", the scope specifier \p
3020 /// SS will be "MetaFun::", \p TemplateKWLoc contains the location
3021 /// of the "template" keyword, and "apply" is the \p Name.
ActOnDependentTemplateName(Scope * S,CXXScopeSpec & SS,SourceLocation TemplateKWLoc,UnqualifiedId & Name,ParsedType ObjectType,bool EnteringContext,TemplateTy & Result)3022 TemplateNameKind Sema::ActOnDependentTemplateName(Scope *S,
3023 CXXScopeSpec &SS,
3024 SourceLocation TemplateKWLoc,
3025 UnqualifiedId &Name,
3026 ParsedType ObjectType,
3027 bool EnteringContext,
3028 TemplateTy &Result) {
3029 if (TemplateKWLoc.isValid() && S && !S->getTemplateParamParent())
3030 Diag(TemplateKWLoc,
3031 getLangOpts().CPlusPlus11 ?
3032 diag::warn_cxx98_compat_template_outside_of_template :
3033 diag::ext_template_outside_of_template)
3034 << FixItHint::CreateRemoval(TemplateKWLoc);
3035
3036 DeclContext *LookupCtx = nullptr;
3037 if (SS.isSet())
3038 LookupCtx = computeDeclContext(SS, EnteringContext);
3039 if (!LookupCtx && ObjectType)
3040 LookupCtx = computeDeclContext(ObjectType.get());
3041 if (LookupCtx) {
3042 // C++0x [temp.names]p5:
3043 // If a name prefixed by the keyword template is not the name of
3044 // a template, the program is ill-formed. [Note: the keyword
3045 // template may not be applied to non-template members of class
3046 // templates. -end note ] [ Note: as is the case with the
3047 // typename prefix, the template prefix is allowed in cases
3048 // where it is not strictly necessary; i.e., when the
3049 // nested-name-specifier or the expression on the left of the ->
3050 // or . is not dependent on a template-parameter, or the use
3051 // does not appear in the scope of a template. -end note]
3052 //
3053 // Note: C++03 was more strict here, because it banned the use of
3054 // the "template" keyword prior to a template-name that was not a
3055 // dependent name. C++ DR468 relaxed this requirement (the
3056 // "template" keyword is now permitted). We follow the C++0x
3057 // rules, even in C++03 mode with a warning, retroactively applying the DR.
3058 bool MemberOfUnknownSpecialization;
3059 TemplateNameKind TNK = isTemplateName(S, SS, TemplateKWLoc.isValid(), Name,
3060 ObjectType, EnteringContext, Result,
3061 MemberOfUnknownSpecialization);
3062 if (TNK == TNK_Non_template && LookupCtx->isDependentContext() &&
3063 isa<CXXRecordDecl>(LookupCtx) &&
3064 (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
3065 cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases())) {
3066 // This is a dependent template. Handle it below.
3067 } else if (TNK == TNK_Non_template) {
3068 Diag(Name.getLocStart(),
3069 diag::err_template_kw_refers_to_non_template)
3070 << GetNameFromUnqualifiedId(Name).getName()
3071 << Name.getSourceRange()
3072 << TemplateKWLoc;
3073 return TNK_Non_template;
3074 } else {
3075 // We found something; return it.
3076 return TNK;
3077 }
3078 }
3079
3080 NestedNameSpecifier *Qualifier = SS.getScopeRep();
3081
3082 switch (Name.getKind()) {
3083 case UnqualifiedId::IK_Identifier:
3084 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
3085 Name.Identifier));
3086 return TNK_Dependent_template_name;
3087
3088 case UnqualifiedId::IK_OperatorFunctionId:
3089 Result = TemplateTy::make(Context.getDependentTemplateName(Qualifier,
3090 Name.OperatorFunctionId.Operator));
3091 return TNK_Function_template;
3092
3093 case UnqualifiedId::IK_LiteralOperatorId:
3094 llvm_unreachable("literal operator id cannot have a dependent scope");
3095
3096 default:
3097 break;
3098 }
3099
3100 Diag(Name.getLocStart(),
3101 diag::err_template_kw_refers_to_non_template)
3102 << GetNameFromUnqualifiedId(Name).getName()
3103 << Name.getSourceRange()
3104 << TemplateKWLoc;
3105 return TNK_Non_template;
3106 }
3107
CheckTemplateTypeArgument(TemplateTypeParmDecl * Param,TemplateArgumentLoc & AL,SmallVectorImpl<TemplateArgument> & Converted)3108 bool Sema::CheckTemplateTypeArgument(TemplateTypeParmDecl *Param,
3109 TemplateArgumentLoc &AL,
3110 SmallVectorImpl<TemplateArgument> &Converted) {
3111 const TemplateArgument &Arg = AL.getArgument();
3112 QualType ArgType;
3113 TypeSourceInfo *TSI = nullptr;
3114
3115 // Check template type parameter.
3116 switch(Arg.getKind()) {
3117 case TemplateArgument::Type:
3118 // C++ [temp.arg.type]p1:
3119 // A template-argument for a template-parameter which is a
3120 // type shall be a type-id.
3121 ArgType = Arg.getAsType();
3122 TSI = AL.getTypeSourceInfo();
3123 break;
3124 case TemplateArgument::Template: {
3125 // We have a template type parameter but the template argument
3126 // is a template without any arguments.
3127 SourceRange SR = AL.getSourceRange();
3128 TemplateName Name = Arg.getAsTemplate();
3129 Diag(SR.getBegin(), diag::err_template_missing_args)
3130 << Name << SR;
3131 if (TemplateDecl *Decl = Name.getAsTemplateDecl())
3132 Diag(Decl->getLocation(), diag::note_template_decl_here);
3133
3134 return true;
3135 }
3136 case TemplateArgument::Expression: {
3137 // We have a template type parameter but the template argument is an
3138 // expression; see if maybe it is missing the "typename" keyword.
3139 CXXScopeSpec SS;
3140 DeclarationNameInfo NameInfo;
3141
3142 if (DeclRefExpr *ArgExpr = dyn_cast<DeclRefExpr>(Arg.getAsExpr())) {
3143 SS.Adopt(ArgExpr->getQualifierLoc());
3144 NameInfo = ArgExpr->getNameInfo();
3145 } else if (DependentScopeDeclRefExpr *ArgExpr =
3146 dyn_cast<DependentScopeDeclRefExpr>(Arg.getAsExpr())) {
3147 SS.Adopt(ArgExpr->getQualifierLoc());
3148 NameInfo = ArgExpr->getNameInfo();
3149 } else if (CXXDependentScopeMemberExpr *ArgExpr =
3150 dyn_cast<CXXDependentScopeMemberExpr>(Arg.getAsExpr())) {
3151 if (ArgExpr->isImplicitAccess()) {
3152 SS.Adopt(ArgExpr->getQualifierLoc());
3153 NameInfo = ArgExpr->getMemberNameInfo();
3154 }
3155 }
3156
3157 if (auto *II = NameInfo.getName().getAsIdentifierInfo()) {
3158 LookupResult Result(*this, NameInfo, LookupOrdinaryName);
3159 LookupParsedName(Result, CurScope, &SS);
3160
3161 if (Result.getAsSingle<TypeDecl>() ||
3162 Result.getResultKind() ==
3163 LookupResult::NotFoundInCurrentInstantiation) {
3164 // Suggest that the user add 'typename' before the NNS.
3165 SourceLocation Loc = AL.getSourceRange().getBegin();
3166 Diag(Loc, getLangOpts().MSVCCompat
3167 ? diag::ext_ms_template_type_arg_missing_typename
3168 : diag::err_template_arg_must_be_type_suggest)
3169 << FixItHint::CreateInsertion(Loc, "typename ");
3170 Diag(Param->getLocation(), diag::note_template_param_here);
3171
3172 // Recover by synthesizing a type using the location information that we
3173 // already have.
3174 ArgType =
3175 Context.getDependentNameType(ETK_Typename, SS.getScopeRep(), II);
3176 TypeLocBuilder TLB;
3177 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(ArgType);
3178 TL.setElaboratedKeywordLoc(SourceLocation(/*synthesized*/));
3179 TL.setQualifierLoc(SS.getWithLocInContext(Context));
3180 TL.setNameLoc(NameInfo.getLoc());
3181 TSI = TLB.getTypeSourceInfo(Context, ArgType);
3182
3183 // Overwrite our input TemplateArgumentLoc so that we can recover
3184 // properly.
3185 AL = TemplateArgumentLoc(TemplateArgument(ArgType),
3186 TemplateArgumentLocInfo(TSI));
3187
3188 break;
3189 }
3190 }
3191 // fallthrough
3192 }
3193 default: {
3194 // We have a template type parameter but the template argument
3195 // is not a type.
3196 SourceRange SR = AL.getSourceRange();
3197 Diag(SR.getBegin(), diag::err_template_arg_must_be_type) << SR;
3198 Diag(Param->getLocation(), diag::note_template_param_here);
3199
3200 return true;
3201 }
3202 }
3203
3204 if (CheckTemplateArgument(Param, TSI))
3205 return true;
3206
3207 // Add the converted template type argument.
3208 ArgType = Context.getCanonicalType(ArgType);
3209
3210 // Objective-C ARC:
3211 // If an explicitly-specified template argument type is a lifetime type
3212 // with no lifetime qualifier, the __strong lifetime qualifier is inferred.
3213 if (getLangOpts().ObjCAutoRefCount &&
3214 ArgType->isObjCLifetimeType() &&
3215 !ArgType.getObjCLifetime()) {
3216 Qualifiers Qs;
3217 Qs.setObjCLifetime(Qualifiers::OCL_Strong);
3218 ArgType = Context.getQualifiedType(ArgType, Qs);
3219 }
3220
3221 Converted.push_back(TemplateArgument(ArgType));
3222 return false;
3223 }
3224
3225 /// \brief Substitute template arguments into the default template argument for
3226 /// the given template type parameter.
3227 ///
3228 /// \param SemaRef the semantic analysis object for which we are performing
3229 /// the substitution.
3230 ///
3231 /// \param Template the template that we are synthesizing template arguments
3232 /// for.
3233 ///
3234 /// \param TemplateLoc the location of the template name that started the
3235 /// template-id we are checking.
3236 ///
3237 /// \param RAngleLoc the location of the right angle bracket ('>') that
3238 /// terminates the template-id.
3239 ///
3240 /// \param Param the template template parameter whose default we are
3241 /// substituting into.
3242 ///
3243 /// \param Converted the list of template arguments provided for template
3244 /// parameters that precede \p Param in the template parameter list.
3245 /// \returns the substituted template argument, or NULL if an error occurred.
3246 static TypeSourceInfo *
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTypeParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3247 SubstDefaultTemplateArgument(Sema &SemaRef,
3248 TemplateDecl *Template,
3249 SourceLocation TemplateLoc,
3250 SourceLocation RAngleLoc,
3251 TemplateTypeParmDecl *Param,
3252 SmallVectorImpl<TemplateArgument> &Converted) {
3253 TypeSourceInfo *ArgType = Param->getDefaultArgumentInfo();
3254
3255 // If the argument type is dependent, instantiate it now based
3256 // on the previously-computed template arguments.
3257 if (ArgType->getType()->isDependentType()) {
3258 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3259 Template, Converted,
3260 SourceRange(TemplateLoc, RAngleLoc));
3261 if (Inst.isInvalid())
3262 return nullptr;
3263
3264 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
3265
3266 // Only substitute for the innermost template argument list.
3267 MultiLevelTemplateArgumentList TemplateArgLists;
3268 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3269 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3270 TemplateArgLists.addOuterTemplateArguments(None);
3271
3272 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3273 ArgType =
3274 SemaRef.SubstType(ArgType, TemplateArgLists,
3275 Param->getDefaultArgumentLoc(), Param->getDeclName());
3276 }
3277
3278 return ArgType;
3279 }
3280
3281 /// \brief Substitute template arguments into the default template argument for
3282 /// the given non-type template parameter.
3283 ///
3284 /// \param SemaRef the semantic analysis object for which we are performing
3285 /// the substitution.
3286 ///
3287 /// \param Template the template that we are synthesizing template arguments
3288 /// for.
3289 ///
3290 /// \param TemplateLoc the location of the template name that started the
3291 /// template-id we are checking.
3292 ///
3293 /// \param RAngleLoc the location of the right angle bracket ('>') that
3294 /// terminates the template-id.
3295 ///
3296 /// \param Param the non-type template parameter whose default we are
3297 /// substituting into.
3298 ///
3299 /// \param Converted the list of template arguments provided for template
3300 /// parameters that precede \p Param in the template parameter list.
3301 ///
3302 /// \returns the substituted template argument, or NULL if an error occurred.
3303 static ExprResult
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,NonTypeTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted)3304 SubstDefaultTemplateArgument(Sema &SemaRef,
3305 TemplateDecl *Template,
3306 SourceLocation TemplateLoc,
3307 SourceLocation RAngleLoc,
3308 NonTypeTemplateParmDecl *Param,
3309 SmallVectorImpl<TemplateArgument> &Converted) {
3310 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc,
3311 Template, Converted,
3312 SourceRange(TemplateLoc, RAngleLoc));
3313 if (Inst.isInvalid())
3314 return ExprError();
3315
3316 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
3317
3318 // Only substitute for the innermost template argument list.
3319 MultiLevelTemplateArgumentList TemplateArgLists;
3320 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3321 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3322 TemplateArgLists.addOuterTemplateArguments(None);
3323
3324 EnterExpressionEvaluationContext ConstantEvaluated(SemaRef,
3325 Sema::ConstantEvaluated);
3326 return SemaRef.SubstExpr(Param->getDefaultArgument(), TemplateArgLists);
3327 }
3328
3329 /// \brief Substitute template arguments into the default template argument for
3330 /// the given template template parameter.
3331 ///
3332 /// \param SemaRef the semantic analysis object for which we are performing
3333 /// the substitution.
3334 ///
3335 /// \param Template the template that we are synthesizing template arguments
3336 /// for.
3337 ///
3338 /// \param TemplateLoc the location of the template name that started the
3339 /// template-id we are checking.
3340 ///
3341 /// \param RAngleLoc the location of the right angle bracket ('>') that
3342 /// terminates the template-id.
3343 ///
3344 /// \param Param the template template parameter whose default we are
3345 /// substituting into.
3346 ///
3347 /// \param Converted the list of template arguments provided for template
3348 /// parameters that precede \p Param in the template parameter list.
3349 ///
3350 /// \param QualifierLoc Will be set to the nested-name-specifier (with
3351 /// source-location information) that precedes the template name.
3352 ///
3353 /// \returns the substituted template argument, or NULL if an error occurred.
3354 static TemplateName
SubstDefaultTemplateArgument(Sema & SemaRef,TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,TemplateTemplateParmDecl * Param,SmallVectorImpl<TemplateArgument> & Converted,NestedNameSpecifierLoc & QualifierLoc)3355 SubstDefaultTemplateArgument(Sema &SemaRef,
3356 TemplateDecl *Template,
3357 SourceLocation TemplateLoc,
3358 SourceLocation RAngleLoc,
3359 TemplateTemplateParmDecl *Param,
3360 SmallVectorImpl<TemplateArgument> &Converted,
3361 NestedNameSpecifierLoc &QualifierLoc) {
3362 Sema::InstantiatingTemplate Inst(SemaRef, TemplateLoc, Template, Converted,
3363 SourceRange(TemplateLoc, RAngleLoc));
3364 if (Inst.isInvalid())
3365 return TemplateName();
3366
3367 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
3368
3369 // Only substitute for the innermost template argument list.
3370 MultiLevelTemplateArgumentList TemplateArgLists;
3371 TemplateArgLists.addOuterTemplateArguments(&TemplateArgs);
3372 for (unsigned i = 0, e = Param->getDepth(); i != e; ++i)
3373 TemplateArgLists.addOuterTemplateArguments(None);
3374
3375 Sema::ContextRAII SavedContext(SemaRef, Template->getDeclContext());
3376 // Substitute into the nested-name-specifier first,
3377 QualifierLoc = Param->getDefaultArgument().getTemplateQualifierLoc();
3378 if (QualifierLoc) {
3379 QualifierLoc =
3380 SemaRef.SubstNestedNameSpecifierLoc(QualifierLoc, TemplateArgLists);
3381 if (!QualifierLoc)
3382 return TemplateName();
3383 }
3384
3385 return SemaRef.SubstTemplateName(
3386 QualifierLoc,
3387 Param->getDefaultArgument().getArgument().getAsTemplate(),
3388 Param->getDefaultArgument().getTemplateNameLoc(),
3389 TemplateArgLists);
3390 }
3391
3392 /// \brief If the given template parameter has a default template
3393 /// argument, substitute into that default template argument and
3394 /// return the corresponding template argument.
3395 TemplateArgumentLoc
SubstDefaultTemplateArgumentIfAvailable(TemplateDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,Decl * Param,SmallVectorImpl<TemplateArgument> & Converted,bool & HasDefaultArg)3396 Sema::SubstDefaultTemplateArgumentIfAvailable(TemplateDecl *Template,
3397 SourceLocation TemplateLoc,
3398 SourceLocation RAngleLoc,
3399 Decl *Param,
3400 SmallVectorImpl<TemplateArgument>
3401 &Converted,
3402 bool &HasDefaultArg) {
3403 HasDefaultArg = false;
3404
3405 if (TemplateTypeParmDecl *TypeParm = dyn_cast<TemplateTypeParmDecl>(Param)) {
3406 if (!hasVisibleDefaultArgument(TypeParm))
3407 return TemplateArgumentLoc();
3408
3409 HasDefaultArg = true;
3410 TypeSourceInfo *DI = SubstDefaultTemplateArgument(*this, Template,
3411 TemplateLoc,
3412 RAngleLoc,
3413 TypeParm,
3414 Converted);
3415 if (DI)
3416 return TemplateArgumentLoc(TemplateArgument(DI->getType()), DI);
3417
3418 return TemplateArgumentLoc();
3419 }
3420
3421 if (NonTypeTemplateParmDecl *NonTypeParm
3422 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3423 if (!hasVisibleDefaultArgument(NonTypeParm))
3424 return TemplateArgumentLoc();
3425
3426 HasDefaultArg = true;
3427 ExprResult Arg = SubstDefaultTemplateArgument(*this, Template,
3428 TemplateLoc,
3429 RAngleLoc,
3430 NonTypeParm,
3431 Converted);
3432 if (Arg.isInvalid())
3433 return TemplateArgumentLoc();
3434
3435 Expr *ArgE = Arg.getAs<Expr>();
3436 return TemplateArgumentLoc(TemplateArgument(ArgE), ArgE);
3437 }
3438
3439 TemplateTemplateParmDecl *TempTempParm
3440 = cast<TemplateTemplateParmDecl>(Param);
3441 if (!hasVisibleDefaultArgument(TempTempParm))
3442 return TemplateArgumentLoc();
3443
3444 HasDefaultArg = true;
3445 NestedNameSpecifierLoc QualifierLoc;
3446 TemplateName TName = SubstDefaultTemplateArgument(*this, Template,
3447 TemplateLoc,
3448 RAngleLoc,
3449 TempTempParm,
3450 Converted,
3451 QualifierLoc);
3452 if (TName.isNull())
3453 return TemplateArgumentLoc();
3454
3455 return TemplateArgumentLoc(TemplateArgument(TName),
3456 TempTempParm->getDefaultArgument().getTemplateQualifierLoc(),
3457 TempTempParm->getDefaultArgument().getTemplateNameLoc());
3458 }
3459
3460 /// \brief Check that the given template argument corresponds to the given
3461 /// template parameter.
3462 ///
3463 /// \param Param The template parameter against which the argument will be
3464 /// checked.
3465 ///
3466 /// \param Arg The template argument, which may be updated due to conversions.
3467 ///
3468 /// \param Template The template in which the template argument resides.
3469 ///
3470 /// \param TemplateLoc The location of the template name for the template
3471 /// whose argument list we're matching.
3472 ///
3473 /// \param RAngleLoc The location of the right angle bracket ('>') that closes
3474 /// the template argument list.
3475 ///
3476 /// \param ArgumentPackIndex The index into the argument pack where this
3477 /// argument will be placed. Only valid if the parameter is a parameter pack.
3478 ///
3479 /// \param Converted The checked, converted argument will be added to the
3480 /// end of this small vector.
3481 ///
3482 /// \param CTAK Describes how we arrived at this particular template argument:
3483 /// explicitly written, deduced, etc.
3484 ///
3485 /// \returns true on error, false otherwise.
CheckTemplateArgument(NamedDecl * Param,TemplateArgumentLoc & Arg,NamedDecl * Template,SourceLocation TemplateLoc,SourceLocation RAngleLoc,unsigned ArgumentPackIndex,SmallVectorImpl<TemplateArgument> & Converted,CheckTemplateArgumentKind CTAK)3486 bool Sema::CheckTemplateArgument(NamedDecl *Param,
3487 TemplateArgumentLoc &Arg,
3488 NamedDecl *Template,
3489 SourceLocation TemplateLoc,
3490 SourceLocation RAngleLoc,
3491 unsigned ArgumentPackIndex,
3492 SmallVectorImpl<TemplateArgument> &Converted,
3493 CheckTemplateArgumentKind CTAK) {
3494 // Check template type parameters.
3495 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param))
3496 return CheckTemplateTypeArgument(TTP, Arg, Converted);
3497
3498 // Check non-type template parameters.
3499 if (NonTypeTemplateParmDecl *NTTP =dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3500 // Do substitution on the type of the non-type template parameter
3501 // with the template arguments we've seen thus far. But if the
3502 // template has a dependent context then we cannot substitute yet.
3503 QualType NTTPType = NTTP->getType();
3504 if (NTTP->isParameterPack() && NTTP->isExpandedParameterPack())
3505 NTTPType = NTTP->getExpansionType(ArgumentPackIndex);
3506
3507 if (NTTPType->isDependentType() &&
3508 !isa<TemplateTemplateParmDecl>(Template) &&
3509 !Template->getDeclContext()->isDependentContext()) {
3510 // Do substitution on the type of the non-type template parameter.
3511 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3512 NTTP, Converted,
3513 SourceRange(TemplateLoc, RAngleLoc));
3514 if (Inst.isInvalid())
3515 return true;
3516
3517 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
3518 Converted);
3519 NTTPType = SubstType(NTTPType,
3520 MultiLevelTemplateArgumentList(TemplateArgs),
3521 NTTP->getLocation(),
3522 NTTP->getDeclName());
3523 // If that worked, check the non-type template parameter type
3524 // for validity.
3525 if (!NTTPType.isNull())
3526 NTTPType = CheckNonTypeTemplateParameterType(NTTPType,
3527 NTTP->getLocation());
3528 if (NTTPType.isNull())
3529 return true;
3530 }
3531
3532 switch (Arg.getArgument().getKind()) {
3533 case TemplateArgument::Null:
3534 llvm_unreachable("Should never see a NULL template argument here");
3535
3536 case TemplateArgument::Expression: {
3537 TemplateArgument Result;
3538 ExprResult Res =
3539 CheckTemplateArgument(NTTP, NTTPType, Arg.getArgument().getAsExpr(),
3540 Result, CTAK);
3541 if (Res.isInvalid())
3542 return true;
3543
3544 // If the resulting expression is new, then use it in place of the
3545 // old expression in the template argument.
3546 if (Res.get() != Arg.getArgument().getAsExpr()) {
3547 TemplateArgument TA(Res.get());
3548 Arg = TemplateArgumentLoc(TA, Res.get());
3549 }
3550
3551 Converted.push_back(Result);
3552 break;
3553 }
3554
3555 case TemplateArgument::Declaration:
3556 case TemplateArgument::Integral:
3557 case TemplateArgument::NullPtr:
3558 // We've already checked this template argument, so just copy
3559 // it to the list of converted arguments.
3560 Converted.push_back(Arg.getArgument());
3561 break;
3562
3563 case TemplateArgument::Template:
3564 case TemplateArgument::TemplateExpansion:
3565 // We were given a template template argument. It may not be ill-formed;
3566 // see below.
3567 if (DependentTemplateName *DTN
3568 = Arg.getArgument().getAsTemplateOrTemplatePattern()
3569 .getAsDependentTemplateName()) {
3570 // We have a template argument such as \c T::template X, which we
3571 // parsed as a template template argument. However, since we now
3572 // know that we need a non-type template argument, convert this
3573 // template name into an expression.
3574
3575 DeclarationNameInfo NameInfo(DTN->getIdentifier(),
3576 Arg.getTemplateNameLoc());
3577
3578 CXXScopeSpec SS;
3579 SS.Adopt(Arg.getTemplateQualifierLoc());
3580 // FIXME: the template-template arg was a DependentTemplateName,
3581 // so it was provided with a template keyword. However, its source
3582 // location is not stored in the template argument structure.
3583 SourceLocation TemplateKWLoc;
3584 ExprResult E = DependentScopeDeclRefExpr::Create(
3585 Context, SS.getWithLocInContext(Context), TemplateKWLoc, NameInfo,
3586 nullptr);
3587
3588 // If we parsed the template argument as a pack expansion, create a
3589 // pack expansion expression.
3590 if (Arg.getArgument().getKind() == TemplateArgument::TemplateExpansion){
3591 E = ActOnPackExpansion(E.get(), Arg.getTemplateEllipsisLoc());
3592 if (E.isInvalid())
3593 return true;
3594 }
3595
3596 TemplateArgument Result;
3597 E = CheckTemplateArgument(NTTP, NTTPType, E.get(), Result);
3598 if (E.isInvalid())
3599 return true;
3600
3601 Converted.push_back(Result);
3602 break;
3603 }
3604
3605 // We have a template argument that actually does refer to a class
3606 // template, alias template, or template template parameter, and
3607 // therefore cannot be a non-type template argument.
3608 Diag(Arg.getLocation(), diag::err_template_arg_must_be_expr)
3609 << Arg.getSourceRange();
3610
3611 Diag(Param->getLocation(), diag::note_template_param_here);
3612 return true;
3613
3614 case TemplateArgument::Type: {
3615 // We have a non-type template parameter but the template
3616 // argument is a type.
3617
3618 // C++ [temp.arg]p2:
3619 // In a template-argument, an ambiguity between a type-id and
3620 // an expression is resolved to a type-id, regardless of the
3621 // form of the corresponding template-parameter.
3622 //
3623 // We warn specifically about this case, since it can be rather
3624 // confusing for users.
3625 QualType T = Arg.getArgument().getAsType();
3626 SourceRange SR = Arg.getSourceRange();
3627 if (T->isFunctionType())
3628 Diag(SR.getBegin(), diag::err_template_arg_nontype_ambig) << SR << T;
3629 else
3630 Diag(SR.getBegin(), diag::err_template_arg_must_be_expr) << SR;
3631 Diag(Param->getLocation(), diag::note_template_param_here);
3632 return true;
3633 }
3634
3635 case TemplateArgument::Pack:
3636 llvm_unreachable("Caller must expand template argument packs");
3637 }
3638
3639 return false;
3640 }
3641
3642
3643 // Check template template parameters.
3644 TemplateTemplateParmDecl *TempParm = cast<TemplateTemplateParmDecl>(Param);
3645
3646 // Substitute into the template parameter list of the template
3647 // template parameter, since previously-supplied template arguments
3648 // may appear within the template template parameter.
3649 {
3650 // Set up a template instantiation context.
3651 LocalInstantiationScope Scope(*this);
3652 InstantiatingTemplate Inst(*this, TemplateLoc, Template,
3653 TempParm, Converted,
3654 SourceRange(TemplateLoc, RAngleLoc));
3655 if (Inst.isInvalid())
3656 return true;
3657
3658 TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack, Converted);
3659 TempParm = cast_or_null<TemplateTemplateParmDecl>(
3660 SubstDecl(TempParm, CurContext,
3661 MultiLevelTemplateArgumentList(TemplateArgs)));
3662 if (!TempParm)
3663 return true;
3664 }
3665
3666 switch (Arg.getArgument().getKind()) {
3667 case TemplateArgument::Null:
3668 llvm_unreachable("Should never see a NULL template argument here");
3669
3670 case TemplateArgument::Template:
3671 case TemplateArgument::TemplateExpansion:
3672 if (CheckTemplateArgument(TempParm, Arg, ArgumentPackIndex))
3673 return true;
3674
3675 Converted.push_back(Arg.getArgument());
3676 break;
3677
3678 case TemplateArgument::Expression:
3679 case TemplateArgument::Type:
3680 // We have a template template parameter but the template
3681 // argument does not refer to a template.
3682 Diag(Arg.getLocation(), diag::err_template_arg_must_be_template)
3683 << getLangOpts().CPlusPlus11;
3684 return true;
3685
3686 case TemplateArgument::Declaration:
3687 llvm_unreachable("Declaration argument with template template parameter");
3688 case TemplateArgument::Integral:
3689 llvm_unreachable("Integral argument with template template parameter");
3690 case TemplateArgument::NullPtr:
3691 llvm_unreachable("Null pointer argument with template template parameter");
3692
3693 case TemplateArgument::Pack:
3694 llvm_unreachable("Caller must expand template argument packs");
3695 }
3696
3697 return false;
3698 }
3699
3700 /// \brief Diagnose an arity mismatch in the
diagnoseArityMismatch(Sema & S,TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs)3701 static bool diagnoseArityMismatch(Sema &S, TemplateDecl *Template,
3702 SourceLocation TemplateLoc,
3703 TemplateArgumentListInfo &TemplateArgs) {
3704 TemplateParameterList *Params = Template->getTemplateParameters();
3705 unsigned NumParams = Params->size();
3706 unsigned NumArgs = TemplateArgs.size();
3707
3708 SourceRange Range;
3709 if (NumArgs > NumParams)
3710 Range = SourceRange(TemplateArgs[NumParams].getLocation(),
3711 TemplateArgs.getRAngleLoc());
3712 S.Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3713 << (NumArgs > NumParams)
3714 << (isa<ClassTemplateDecl>(Template)? 0 :
3715 isa<FunctionTemplateDecl>(Template)? 1 :
3716 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3717 << Template << Range;
3718 S.Diag(Template->getLocation(), diag::note_template_decl_here)
3719 << Params->getSourceRange();
3720 return true;
3721 }
3722
3723 /// \brief Check whether the template parameter is a pack expansion, and if so,
3724 /// determine the number of parameters produced by that expansion. For instance:
3725 ///
3726 /// \code
3727 /// template<typename ...Ts> struct A {
3728 /// template<Ts ...NTs, template<Ts> class ...TTs, typename ...Us> struct B;
3729 /// };
3730 /// \endcode
3731 ///
3732 /// In \c A<int,int>::B, \c NTs and \c TTs have expanded pack size 2, and \c Us
3733 /// is not a pack expansion, so returns an empty Optional.
getExpandedPackSize(NamedDecl * Param)3734 static Optional<unsigned> getExpandedPackSize(NamedDecl *Param) {
3735 if (NonTypeTemplateParmDecl *NTTP
3736 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
3737 if (NTTP->isExpandedParameterPack())
3738 return NTTP->getNumExpansionTypes();
3739 }
3740
3741 if (TemplateTemplateParmDecl *TTP
3742 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
3743 if (TTP->isExpandedParameterPack())
3744 return TTP->getNumExpansionTemplateParameters();
3745 }
3746
3747 return None;
3748 }
3749
3750 /// Diagnose a missing template argument.
3751 template<typename TemplateParmDecl>
diagnoseMissingArgument(Sema & S,SourceLocation Loc,TemplateDecl * TD,const TemplateParmDecl * D,TemplateArgumentListInfo & Args)3752 static bool diagnoseMissingArgument(Sema &S, SourceLocation Loc,
3753 TemplateDecl *TD,
3754 const TemplateParmDecl *D,
3755 TemplateArgumentListInfo &Args) {
3756 // Dig out the most recent declaration of the template parameter; there may be
3757 // declarations of the template that are more recent than TD.
3758 D = cast<TemplateParmDecl>(cast<TemplateDecl>(TD->getMostRecentDecl())
3759 ->getTemplateParameters()
3760 ->getParam(D->getIndex()));
3761
3762 // If there's a default argument that's not visible, diagnose that we're
3763 // missing a module import.
3764 llvm::SmallVector<Module*, 8> Modules;
3765 if (D->hasDefaultArgument() && !S.hasVisibleDefaultArgument(D, &Modules)) {
3766 S.diagnoseMissingImport(Loc, cast<NamedDecl>(TD),
3767 D->getDefaultArgumentLoc(), Modules,
3768 Sema::MissingImportKind::DefaultArgument,
3769 /*Recover*/true);
3770 return true;
3771 }
3772
3773 // FIXME: If there's a more recent default argument that *is* visible,
3774 // diagnose that it was declared too late.
3775
3776 return diagnoseArityMismatch(S, TD, Loc, Args);
3777 }
3778
3779 /// \brief Check that the given template argument list is well-formed
3780 /// for specializing the given template.
CheckTemplateArgumentList(TemplateDecl * Template,SourceLocation TemplateLoc,TemplateArgumentListInfo & TemplateArgs,bool PartialTemplateArgs,SmallVectorImpl<TemplateArgument> & Converted)3781 bool Sema::CheckTemplateArgumentList(TemplateDecl *Template,
3782 SourceLocation TemplateLoc,
3783 TemplateArgumentListInfo &TemplateArgs,
3784 bool PartialTemplateArgs,
3785 SmallVectorImpl<TemplateArgument> &Converted) {
3786 // Make a copy of the template arguments for processing. Only make the
3787 // changes at the end when successful in matching the arguments to the
3788 // template.
3789 TemplateArgumentListInfo NewArgs = TemplateArgs;
3790
3791 TemplateParameterList *Params = Template->getTemplateParameters();
3792
3793 SourceLocation RAngleLoc = NewArgs.getRAngleLoc();
3794
3795 // C++ [temp.arg]p1:
3796 // [...] The type and form of each template-argument specified in
3797 // a template-id shall match the type and form specified for the
3798 // corresponding parameter declared by the template in its
3799 // template-parameter-list.
3800 bool isTemplateTemplateParameter = isa<TemplateTemplateParmDecl>(Template);
3801 SmallVector<TemplateArgument, 2> ArgumentPack;
3802 unsigned ArgIdx = 0, NumArgs = NewArgs.size();
3803 LocalInstantiationScope InstScope(*this, true);
3804 for (TemplateParameterList::iterator Param = Params->begin(),
3805 ParamEnd = Params->end();
3806 Param != ParamEnd; /* increment in loop */) {
3807 // If we have an expanded parameter pack, make sure we don't have too
3808 // many arguments.
3809 if (Optional<unsigned> Expansions = getExpandedPackSize(*Param)) {
3810 if (*Expansions == ArgumentPack.size()) {
3811 // We're done with this parameter pack. Pack up its arguments and add
3812 // them to the list.
3813 Converted.push_back(
3814 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
3815 ArgumentPack.clear();
3816
3817 // This argument is assigned to the next parameter.
3818 ++Param;
3819 continue;
3820 } else if (ArgIdx == NumArgs && !PartialTemplateArgs) {
3821 // Not enough arguments for this parameter pack.
3822 Diag(TemplateLoc, diag::err_template_arg_list_different_arity)
3823 << false
3824 << (isa<ClassTemplateDecl>(Template)? 0 :
3825 isa<FunctionTemplateDecl>(Template)? 1 :
3826 isa<TemplateTemplateParmDecl>(Template)? 2 : 3)
3827 << Template;
3828 Diag(Template->getLocation(), diag::note_template_decl_here)
3829 << Params->getSourceRange();
3830 return true;
3831 }
3832 }
3833
3834 if (ArgIdx < NumArgs) {
3835 // Check the template argument we were given.
3836 if (CheckTemplateArgument(*Param, NewArgs[ArgIdx], Template,
3837 TemplateLoc, RAngleLoc,
3838 ArgumentPack.size(), Converted))
3839 return true;
3840
3841 bool PackExpansionIntoNonPack =
3842 NewArgs[ArgIdx].getArgument().isPackExpansion() &&
3843 (!(*Param)->isTemplateParameterPack() || getExpandedPackSize(*Param));
3844 if (PackExpansionIntoNonPack && isa<TypeAliasTemplateDecl>(Template)) {
3845 // Core issue 1430: we have a pack expansion as an argument to an
3846 // alias template, and it's not part of a parameter pack. This
3847 // can't be canonicalized, so reject it now.
3848 Diag(NewArgs[ArgIdx].getLocation(),
3849 diag::err_alias_template_expansion_into_fixed_list)
3850 << NewArgs[ArgIdx].getSourceRange();
3851 Diag((*Param)->getLocation(), diag::note_template_param_here);
3852 return true;
3853 }
3854
3855 // We're now done with this argument.
3856 ++ArgIdx;
3857
3858 if ((*Param)->isTemplateParameterPack()) {
3859 // The template parameter was a template parameter pack, so take the
3860 // deduced argument and place it on the argument pack. Note that we
3861 // stay on the same template parameter so that we can deduce more
3862 // arguments.
3863 ArgumentPack.push_back(Converted.pop_back_val());
3864 } else {
3865 // Move to the next template parameter.
3866 ++Param;
3867 }
3868
3869 // If we just saw a pack expansion into a non-pack, then directly convert
3870 // the remaining arguments, because we don't know what parameters they'll
3871 // match up with.
3872 if (PackExpansionIntoNonPack) {
3873 if (!ArgumentPack.empty()) {
3874 // If we were part way through filling in an expanded parameter pack,
3875 // fall back to just producing individual arguments.
3876 Converted.insert(Converted.end(),
3877 ArgumentPack.begin(), ArgumentPack.end());
3878 ArgumentPack.clear();
3879 }
3880
3881 while (ArgIdx < NumArgs) {
3882 Converted.push_back(NewArgs[ArgIdx].getArgument());
3883 ++ArgIdx;
3884 }
3885
3886 return false;
3887 }
3888
3889 continue;
3890 }
3891
3892 // If we're checking a partial template argument list, we're done.
3893 if (PartialTemplateArgs) {
3894 if ((*Param)->isTemplateParameterPack() && !ArgumentPack.empty())
3895 Converted.push_back(
3896 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
3897
3898 return false;
3899 }
3900
3901 // If we have a template parameter pack with no more corresponding
3902 // arguments, just break out now and we'll fill in the argument pack below.
3903 if ((*Param)->isTemplateParameterPack()) {
3904 assert(!getExpandedPackSize(*Param) &&
3905 "Should have dealt with this already");
3906
3907 // A non-expanded parameter pack before the end of the parameter list
3908 // only occurs for an ill-formed template parameter list, unless we've
3909 // got a partial argument list for a function template, so just bail out.
3910 if (Param + 1 != ParamEnd)
3911 return true;
3912
3913 Converted.push_back(
3914 TemplateArgument::CreatePackCopy(Context, ArgumentPack));
3915 ArgumentPack.clear();
3916
3917 ++Param;
3918 continue;
3919 }
3920
3921 // Check whether we have a default argument.
3922 TemplateArgumentLoc Arg;
3923
3924 // Retrieve the default template argument from the template
3925 // parameter. For each kind of template parameter, we substitute the
3926 // template arguments provided thus far and any "outer" template arguments
3927 // (when the template parameter was part of a nested template) into
3928 // the default argument.
3929 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(*Param)) {
3930 if (!hasVisibleDefaultArgument(TTP))
3931 return diagnoseMissingArgument(*this, TemplateLoc, Template, TTP,
3932 NewArgs);
3933
3934 TypeSourceInfo *ArgType = SubstDefaultTemplateArgument(*this,
3935 Template,
3936 TemplateLoc,
3937 RAngleLoc,
3938 TTP,
3939 Converted);
3940 if (!ArgType)
3941 return true;
3942
3943 Arg = TemplateArgumentLoc(TemplateArgument(ArgType->getType()),
3944 ArgType);
3945 } else if (NonTypeTemplateParmDecl *NTTP
3946 = dyn_cast<NonTypeTemplateParmDecl>(*Param)) {
3947 if (!hasVisibleDefaultArgument(NTTP))
3948 return diagnoseMissingArgument(*this, TemplateLoc, Template, NTTP,
3949 NewArgs);
3950
3951 ExprResult E = SubstDefaultTemplateArgument(*this, Template,
3952 TemplateLoc,
3953 RAngleLoc,
3954 NTTP,
3955 Converted);
3956 if (E.isInvalid())
3957 return true;
3958
3959 Expr *Ex = E.getAs<Expr>();
3960 Arg = TemplateArgumentLoc(TemplateArgument(Ex), Ex);
3961 } else {
3962 TemplateTemplateParmDecl *TempParm
3963 = cast<TemplateTemplateParmDecl>(*Param);
3964
3965 if (!hasVisibleDefaultArgument(TempParm))
3966 return diagnoseMissingArgument(*this, TemplateLoc, Template, TempParm,
3967 NewArgs);
3968
3969 NestedNameSpecifierLoc QualifierLoc;
3970 TemplateName Name = SubstDefaultTemplateArgument(*this, Template,
3971 TemplateLoc,
3972 RAngleLoc,
3973 TempParm,
3974 Converted,
3975 QualifierLoc);
3976 if (Name.isNull())
3977 return true;
3978
3979 Arg = TemplateArgumentLoc(TemplateArgument(Name), QualifierLoc,
3980 TempParm->getDefaultArgument().getTemplateNameLoc());
3981 }
3982
3983 // Introduce an instantiation record that describes where we are using
3984 // the default template argument.
3985 InstantiatingTemplate Inst(*this, RAngleLoc, Template, *Param, Converted,
3986 SourceRange(TemplateLoc, RAngleLoc));
3987 if (Inst.isInvalid())
3988 return true;
3989
3990 // Check the default template argument.
3991 if (CheckTemplateArgument(*Param, Arg, Template, TemplateLoc,
3992 RAngleLoc, 0, Converted))
3993 return true;
3994
3995 // Core issue 150 (assumed resolution): if this is a template template
3996 // parameter, keep track of the default template arguments from the
3997 // template definition.
3998 if (isTemplateTemplateParameter)
3999 NewArgs.addArgument(Arg);
4000
4001 // Move to the next template parameter and argument.
4002 ++Param;
4003 ++ArgIdx;
4004 }
4005
4006 // If we're performing a partial argument substitution, allow any trailing
4007 // pack expansions; they might be empty. This can happen even if
4008 // PartialTemplateArgs is false (the list of arguments is complete but
4009 // still dependent).
4010 if (ArgIdx < NumArgs && CurrentInstantiationScope &&
4011 CurrentInstantiationScope->getPartiallySubstitutedPack()) {
4012 while (ArgIdx < NumArgs && NewArgs[ArgIdx].getArgument().isPackExpansion())
4013 Converted.push_back(NewArgs[ArgIdx++].getArgument());
4014 }
4015
4016 // If we have any leftover arguments, then there were too many arguments.
4017 // Complain and fail.
4018 if (ArgIdx < NumArgs)
4019 return diagnoseArityMismatch(*this, Template, TemplateLoc, NewArgs);
4020
4021 // No problems found with the new argument list, propagate changes back
4022 // to caller.
4023 TemplateArgs = std::move(NewArgs);
4024
4025 return false;
4026 }
4027
4028 namespace {
4029 class UnnamedLocalNoLinkageFinder
4030 : public TypeVisitor<UnnamedLocalNoLinkageFinder, bool>
4031 {
4032 Sema &S;
4033 SourceRange SR;
4034
4035 typedef TypeVisitor<UnnamedLocalNoLinkageFinder, bool> inherited;
4036
4037 public:
UnnamedLocalNoLinkageFinder(Sema & S,SourceRange SR)4038 UnnamedLocalNoLinkageFinder(Sema &S, SourceRange SR) : S(S), SR(SR) { }
4039
Visit(QualType T)4040 bool Visit(QualType T) {
4041 return inherited::Visit(T.getTypePtr());
4042 }
4043
4044 #define TYPE(Class, Parent) \
4045 bool Visit##Class##Type(const Class##Type *);
4046 #define ABSTRACT_TYPE(Class, Parent) \
4047 bool Visit##Class##Type(const Class##Type *) { return false; }
4048 #define NON_CANONICAL_TYPE(Class, Parent) \
4049 bool Visit##Class##Type(const Class##Type *) { return false; }
4050 #include "clang/AST/TypeNodes.def"
4051
4052 bool VisitTagDecl(const TagDecl *Tag);
4053 bool VisitNestedNameSpecifier(NestedNameSpecifier *NNS);
4054 };
4055 } // end anonymous namespace
4056
VisitBuiltinType(const BuiltinType *)4057 bool UnnamedLocalNoLinkageFinder::VisitBuiltinType(const BuiltinType*) {
4058 return false;
4059 }
4060
VisitComplexType(const ComplexType * T)4061 bool UnnamedLocalNoLinkageFinder::VisitComplexType(const ComplexType* T) {
4062 return Visit(T->getElementType());
4063 }
4064
VisitPointerType(const PointerType * T)4065 bool UnnamedLocalNoLinkageFinder::VisitPointerType(const PointerType* T) {
4066 return Visit(T->getPointeeType());
4067 }
4068
VisitBlockPointerType(const BlockPointerType * T)4069 bool UnnamedLocalNoLinkageFinder::VisitBlockPointerType(
4070 const BlockPointerType* T) {
4071 return Visit(T->getPointeeType());
4072 }
4073
VisitLValueReferenceType(const LValueReferenceType * T)4074 bool UnnamedLocalNoLinkageFinder::VisitLValueReferenceType(
4075 const LValueReferenceType* T) {
4076 return Visit(T->getPointeeType());
4077 }
4078
VisitRValueReferenceType(const RValueReferenceType * T)4079 bool UnnamedLocalNoLinkageFinder::VisitRValueReferenceType(
4080 const RValueReferenceType* T) {
4081 return Visit(T->getPointeeType());
4082 }
4083
VisitMemberPointerType(const MemberPointerType * T)4084 bool UnnamedLocalNoLinkageFinder::VisitMemberPointerType(
4085 const MemberPointerType* T) {
4086 return Visit(T->getPointeeType()) || Visit(QualType(T->getClass(), 0));
4087 }
4088
VisitConstantArrayType(const ConstantArrayType * T)4089 bool UnnamedLocalNoLinkageFinder::VisitConstantArrayType(
4090 const ConstantArrayType* T) {
4091 return Visit(T->getElementType());
4092 }
4093
VisitIncompleteArrayType(const IncompleteArrayType * T)4094 bool UnnamedLocalNoLinkageFinder::VisitIncompleteArrayType(
4095 const IncompleteArrayType* T) {
4096 return Visit(T->getElementType());
4097 }
4098
VisitVariableArrayType(const VariableArrayType * T)4099 bool UnnamedLocalNoLinkageFinder::VisitVariableArrayType(
4100 const VariableArrayType* T) {
4101 return Visit(T->getElementType());
4102 }
4103
VisitDependentSizedArrayType(const DependentSizedArrayType * T)4104 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedArrayType(
4105 const DependentSizedArrayType* T) {
4106 return Visit(T->getElementType());
4107 }
4108
VisitDependentSizedExtVectorType(const DependentSizedExtVectorType * T)4109 bool UnnamedLocalNoLinkageFinder::VisitDependentSizedExtVectorType(
4110 const DependentSizedExtVectorType* T) {
4111 return Visit(T->getElementType());
4112 }
4113
VisitVectorType(const VectorType * T)4114 bool UnnamedLocalNoLinkageFinder::VisitVectorType(const VectorType* T) {
4115 return Visit(T->getElementType());
4116 }
4117
VisitExtVectorType(const ExtVectorType * T)4118 bool UnnamedLocalNoLinkageFinder::VisitExtVectorType(const ExtVectorType* T) {
4119 return Visit(T->getElementType());
4120 }
4121
VisitFunctionProtoType(const FunctionProtoType * T)4122 bool UnnamedLocalNoLinkageFinder::VisitFunctionProtoType(
4123 const FunctionProtoType* T) {
4124 for (const auto &A : T->param_types()) {
4125 if (Visit(A))
4126 return true;
4127 }
4128
4129 return Visit(T->getReturnType());
4130 }
4131
VisitFunctionNoProtoType(const FunctionNoProtoType * T)4132 bool UnnamedLocalNoLinkageFinder::VisitFunctionNoProtoType(
4133 const FunctionNoProtoType* T) {
4134 return Visit(T->getReturnType());
4135 }
4136
VisitUnresolvedUsingType(const UnresolvedUsingType *)4137 bool UnnamedLocalNoLinkageFinder::VisitUnresolvedUsingType(
4138 const UnresolvedUsingType*) {
4139 return false;
4140 }
4141
VisitTypeOfExprType(const TypeOfExprType *)4142 bool UnnamedLocalNoLinkageFinder::VisitTypeOfExprType(const TypeOfExprType*) {
4143 return false;
4144 }
4145
VisitTypeOfType(const TypeOfType * T)4146 bool UnnamedLocalNoLinkageFinder::VisitTypeOfType(const TypeOfType* T) {
4147 return Visit(T->getUnderlyingType());
4148 }
4149
VisitDecltypeType(const DecltypeType *)4150 bool UnnamedLocalNoLinkageFinder::VisitDecltypeType(const DecltypeType*) {
4151 return false;
4152 }
4153
VisitUnaryTransformType(const UnaryTransformType *)4154 bool UnnamedLocalNoLinkageFinder::VisitUnaryTransformType(
4155 const UnaryTransformType*) {
4156 return false;
4157 }
4158
VisitAutoType(const AutoType * T)4159 bool UnnamedLocalNoLinkageFinder::VisitAutoType(const AutoType *T) {
4160 return Visit(T->getDeducedType());
4161 }
4162
VisitRecordType(const RecordType * T)4163 bool UnnamedLocalNoLinkageFinder::VisitRecordType(const RecordType* T) {
4164 return VisitTagDecl(T->getDecl());
4165 }
4166
VisitEnumType(const EnumType * T)4167 bool UnnamedLocalNoLinkageFinder::VisitEnumType(const EnumType* T) {
4168 return VisitTagDecl(T->getDecl());
4169 }
4170
VisitTemplateTypeParmType(const TemplateTypeParmType *)4171 bool UnnamedLocalNoLinkageFinder::VisitTemplateTypeParmType(
4172 const TemplateTypeParmType*) {
4173 return false;
4174 }
4175
VisitSubstTemplateTypeParmPackType(const SubstTemplateTypeParmPackType *)4176 bool UnnamedLocalNoLinkageFinder::VisitSubstTemplateTypeParmPackType(
4177 const SubstTemplateTypeParmPackType *) {
4178 return false;
4179 }
4180
VisitTemplateSpecializationType(const TemplateSpecializationType *)4181 bool UnnamedLocalNoLinkageFinder::VisitTemplateSpecializationType(
4182 const TemplateSpecializationType*) {
4183 return false;
4184 }
4185
VisitInjectedClassNameType(const InjectedClassNameType * T)4186 bool UnnamedLocalNoLinkageFinder::VisitInjectedClassNameType(
4187 const InjectedClassNameType* T) {
4188 return VisitTagDecl(T->getDecl());
4189 }
4190
VisitDependentNameType(const DependentNameType * T)4191 bool UnnamedLocalNoLinkageFinder::VisitDependentNameType(
4192 const DependentNameType* T) {
4193 return VisitNestedNameSpecifier(T->getQualifier());
4194 }
4195
VisitDependentTemplateSpecializationType(const DependentTemplateSpecializationType * T)4196 bool UnnamedLocalNoLinkageFinder::VisitDependentTemplateSpecializationType(
4197 const DependentTemplateSpecializationType* T) {
4198 return VisitNestedNameSpecifier(T->getQualifier());
4199 }
4200
VisitPackExpansionType(const PackExpansionType * T)4201 bool UnnamedLocalNoLinkageFinder::VisitPackExpansionType(
4202 const PackExpansionType* T) {
4203 return Visit(T->getPattern());
4204 }
4205
VisitObjCObjectType(const ObjCObjectType *)4206 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectType(const ObjCObjectType *) {
4207 return false;
4208 }
4209
VisitObjCInterfaceType(const ObjCInterfaceType *)4210 bool UnnamedLocalNoLinkageFinder::VisitObjCInterfaceType(
4211 const ObjCInterfaceType *) {
4212 return false;
4213 }
4214
VisitObjCObjectPointerType(const ObjCObjectPointerType *)4215 bool UnnamedLocalNoLinkageFinder::VisitObjCObjectPointerType(
4216 const ObjCObjectPointerType *) {
4217 return false;
4218 }
4219
VisitAtomicType(const AtomicType * T)4220 bool UnnamedLocalNoLinkageFinder::VisitAtomicType(const AtomicType* T) {
4221 return Visit(T->getValueType());
4222 }
4223
VisitPipeType(const PipeType * T)4224 bool UnnamedLocalNoLinkageFinder::VisitPipeType(const PipeType* T) {
4225 return false;
4226 }
4227
VisitTagDecl(const TagDecl * Tag)4228 bool UnnamedLocalNoLinkageFinder::VisitTagDecl(const TagDecl *Tag) {
4229 if (Tag->getDeclContext()->isFunctionOrMethod()) {
4230 S.Diag(SR.getBegin(),
4231 S.getLangOpts().CPlusPlus11 ?
4232 diag::warn_cxx98_compat_template_arg_local_type :
4233 diag::ext_template_arg_local_type)
4234 << S.Context.getTypeDeclType(Tag) << SR;
4235 return true;
4236 }
4237
4238 if (!Tag->hasNameForLinkage()) {
4239 S.Diag(SR.getBegin(),
4240 S.getLangOpts().CPlusPlus11 ?
4241 diag::warn_cxx98_compat_template_arg_unnamed_type :
4242 diag::ext_template_arg_unnamed_type) << SR;
4243 S.Diag(Tag->getLocation(), diag::note_template_unnamed_type_here);
4244 return true;
4245 }
4246
4247 return false;
4248 }
4249
VisitNestedNameSpecifier(NestedNameSpecifier * NNS)4250 bool UnnamedLocalNoLinkageFinder::VisitNestedNameSpecifier(
4251 NestedNameSpecifier *NNS) {
4252 if (NNS->getPrefix() && VisitNestedNameSpecifier(NNS->getPrefix()))
4253 return true;
4254
4255 switch (NNS->getKind()) {
4256 case NestedNameSpecifier::Identifier:
4257 case NestedNameSpecifier::Namespace:
4258 case NestedNameSpecifier::NamespaceAlias:
4259 case NestedNameSpecifier::Global:
4260 case NestedNameSpecifier::Super:
4261 return false;
4262
4263 case NestedNameSpecifier::TypeSpec:
4264 case NestedNameSpecifier::TypeSpecWithTemplate:
4265 return Visit(QualType(NNS->getAsType(), 0));
4266 }
4267 llvm_unreachable("Invalid NestedNameSpecifier::Kind!");
4268 }
4269
4270 /// \brief Check a template argument against its corresponding
4271 /// template type parameter.
4272 ///
4273 /// This routine implements the semantics of C++ [temp.arg.type]. It
4274 /// returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTypeParmDecl * Param,TypeSourceInfo * ArgInfo)4275 bool Sema::CheckTemplateArgument(TemplateTypeParmDecl *Param,
4276 TypeSourceInfo *ArgInfo) {
4277 assert(ArgInfo && "invalid TypeSourceInfo");
4278 QualType Arg = ArgInfo->getType();
4279 SourceRange SR = ArgInfo->getTypeLoc().getSourceRange();
4280
4281 if (Arg->isVariablyModifiedType()) {
4282 return Diag(SR.getBegin(), diag::err_variably_modified_template_arg) << Arg;
4283 } else if (Context.hasSameUnqualifiedType(Arg, Context.OverloadTy)) {
4284 return Diag(SR.getBegin(), diag::err_template_arg_overload_type) << SR;
4285 }
4286
4287 // C++03 [temp.arg.type]p2:
4288 // A local type, a type with no linkage, an unnamed type or a type
4289 // compounded from any of these types shall not be used as a
4290 // template-argument for a template type-parameter.
4291 //
4292 // C++11 allows these, and even in C++03 we allow them as an extension with
4293 // a warning.
4294 bool NeedsCheck;
4295 if (LangOpts.CPlusPlus11)
4296 NeedsCheck =
4297 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_unnamed_type,
4298 SR.getBegin()) ||
4299 !Diags.isIgnored(diag::warn_cxx98_compat_template_arg_local_type,
4300 SR.getBegin());
4301 else
4302 NeedsCheck = Arg->hasUnnamedOrLocalType();
4303
4304 if (NeedsCheck) {
4305 UnnamedLocalNoLinkageFinder Finder(*this, SR);
4306 (void)Finder.Visit(Context.getCanonicalType(Arg));
4307 }
4308
4309 return false;
4310 }
4311
4312 enum NullPointerValueKind {
4313 NPV_NotNullPointer,
4314 NPV_NullPointer,
4315 NPV_Error
4316 };
4317
4318 /// \brief Determine whether the given template argument is a null pointer
4319 /// value of the appropriate type.
4320 static NullPointerValueKind
isNullPointerValueTemplateArgument(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg)4321 isNullPointerValueTemplateArgument(Sema &S, NonTypeTemplateParmDecl *Param,
4322 QualType ParamType, Expr *Arg) {
4323 if (Arg->isValueDependent() || Arg->isTypeDependent())
4324 return NPV_NotNullPointer;
4325
4326 if (!S.isCompleteType(Arg->getExprLoc(), ParamType))
4327 llvm_unreachable(
4328 "Incomplete parameter type in isNullPointerValueTemplateArgument!");
4329
4330 if (!S.getLangOpts().CPlusPlus11)
4331 return NPV_NotNullPointer;
4332
4333 // Determine whether we have a constant expression.
4334 ExprResult ArgRV = S.DefaultFunctionArrayConversion(Arg);
4335 if (ArgRV.isInvalid())
4336 return NPV_Error;
4337 Arg = ArgRV.get();
4338
4339 Expr::EvalResult EvalResult;
4340 SmallVector<PartialDiagnosticAt, 8> Notes;
4341 EvalResult.Diag = &Notes;
4342 if (!Arg->EvaluateAsRValue(EvalResult, S.Context) ||
4343 EvalResult.HasSideEffects) {
4344 SourceLocation DiagLoc = Arg->getExprLoc();
4345
4346 // If our only note is the usual "invalid subexpression" note, just point
4347 // the caret at its location rather than producing an essentially
4348 // redundant note.
4349 if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
4350 diag::note_invalid_subexpr_in_const_expr) {
4351 DiagLoc = Notes[0].first;
4352 Notes.clear();
4353 }
4354
4355 S.Diag(DiagLoc, diag::err_template_arg_not_address_constant)
4356 << Arg->getType() << Arg->getSourceRange();
4357 for (unsigned I = 0, N = Notes.size(); I != N; ++I)
4358 S.Diag(Notes[I].first, Notes[I].second);
4359
4360 S.Diag(Param->getLocation(), diag::note_template_param_here);
4361 return NPV_Error;
4362 }
4363
4364 // C++11 [temp.arg.nontype]p1:
4365 // - an address constant expression of type std::nullptr_t
4366 if (Arg->getType()->isNullPtrType())
4367 return NPV_NullPointer;
4368
4369 // - a constant expression that evaluates to a null pointer value (4.10); or
4370 // - a constant expression that evaluates to a null member pointer value
4371 // (4.11); or
4372 if ((EvalResult.Val.isLValue() && !EvalResult.Val.getLValueBase()) ||
4373 (EvalResult.Val.isMemberPointer() &&
4374 !EvalResult.Val.getMemberPointerDecl())) {
4375 // If our expression has an appropriate type, we've succeeded.
4376 bool ObjCLifetimeConversion;
4377 if (S.Context.hasSameUnqualifiedType(Arg->getType(), ParamType) ||
4378 S.IsQualificationConversion(Arg->getType(), ParamType, false,
4379 ObjCLifetimeConversion))
4380 return NPV_NullPointer;
4381
4382 // The types didn't match, but we know we got a null pointer; complain,
4383 // then recover as if the types were correct.
4384 S.Diag(Arg->getExprLoc(), diag::err_template_arg_wrongtype_null_constant)
4385 << Arg->getType() << ParamType << Arg->getSourceRange();
4386 S.Diag(Param->getLocation(), diag::note_template_param_here);
4387 return NPV_NullPointer;
4388 }
4389
4390 // If we don't have a null pointer value, but we do have a NULL pointer
4391 // constant, suggest a cast to the appropriate type.
4392 if (Arg->isNullPointerConstant(S.Context, Expr::NPC_NeverValueDependent)) {
4393 std::string Code = "static_cast<" + ParamType.getAsString() + ">(";
4394 S.Diag(Arg->getExprLoc(), diag::err_template_arg_untyped_null_constant)
4395 << ParamType << FixItHint::CreateInsertion(Arg->getLocStart(), Code)
4396 << FixItHint::CreateInsertion(S.getLocForEndOfToken(Arg->getLocEnd()),
4397 ")");
4398 S.Diag(Param->getLocation(), diag::note_template_param_here);
4399 return NPV_NullPointer;
4400 }
4401
4402 // FIXME: If we ever want to support general, address-constant expressions
4403 // as non-type template arguments, we should return the ExprResult here to
4404 // be interpreted by the caller.
4405 return NPV_NotNullPointer;
4406 }
4407
4408 /// \brief Checks whether the given template argument is compatible with its
4409 /// template parameter.
CheckTemplateArgumentIsCompatibleWithParameter(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,Expr * Arg,QualType ArgType)4410 static bool CheckTemplateArgumentIsCompatibleWithParameter(
4411 Sema &S, NonTypeTemplateParmDecl *Param, QualType ParamType, Expr *ArgIn,
4412 Expr *Arg, QualType ArgType) {
4413 bool ObjCLifetimeConversion;
4414 if (ParamType->isPointerType() &&
4415 !ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType() &&
4416 S.IsQualificationConversion(ArgType, ParamType, false,
4417 ObjCLifetimeConversion)) {
4418 // For pointer-to-object types, qualification conversions are
4419 // permitted.
4420 } else {
4421 if (const ReferenceType *ParamRef = ParamType->getAs<ReferenceType>()) {
4422 if (!ParamRef->getPointeeType()->isFunctionType()) {
4423 // C++ [temp.arg.nontype]p5b3:
4424 // For a non-type template-parameter of type reference to
4425 // object, no conversions apply. The type referred to by the
4426 // reference may be more cv-qualified than the (otherwise
4427 // identical) type of the template- argument. The
4428 // template-parameter is bound directly to the
4429 // template-argument, which shall be an lvalue.
4430
4431 // FIXME: Other qualifiers?
4432 unsigned ParamQuals = ParamRef->getPointeeType().getCVRQualifiers();
4433 unsigned ArgQuals = ArgType.getCVRQualifiers();
4434
4435 if ((ParamQuals | ArgQuals) != ParamQuals) {
4436 S.Diag(Arg->getLocStart(),
4437 diag::err_template_arg_ref_bind_ignores_quals)
4438 << ParamType << Arg->getType() << Arg->getSourceRange();
4439 S.Diag(Param->getLocation(), diag::note_template_param_here);
4440 return true;
4441 }
4442 }
4443 }
4444
4445 // At this point, the template argument refers to an object or
4446 // function with external linkage. We now need to check whether the
4447 // argument and parameter types are compatible.
4448 if (!S.Context.hasSameUnqualifiedType(ArgType,
4449 ParamType.getNonReferenceType())) {
4450 // We can't perform this conversion or binding.
4451 if (ParamType->isReferenceType())
4452 S.Diag(Arg->getLocStart(), diag::err_template_arg_no_ref_bind)
4453 << ParamType << ArgIn->getType() << Arg->getSourceRange();
4454 else
4455 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4456 << ArgIn->getType() << ParamType << Arg->getSourceRange();
4457 S.Diag(Param->getLocation(), diag::note_template_param_here);
4458 return true;
4459 }
4460 }
4461
4462 return false;
4463 }
4464
4465 /// \brief Checks whether the given template argument is the address
4466 /// of an object or function according to C++ [temp.arg.nontype]p1.
4467 static bool
CheckTemplateArgumentAddressOfObjectOrFunction(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * ArgIn,TemplateArgument & Converted)4468 CheckTemplateArgumentAddressOfObjectOrFunction(Sema &S,
4469 NonTypeTemplateParmDecl *Param,
4470 QualType ParamType,
4471 Expr *ArgIn,
4472 TemplateArgument &Converted) {
4473 bool Invalid = false;
4474 Expr *Arg = ArgIn;
4475 QualType ArgType = Arg->getType();
4476
4477 bool AddressTaken = false;
4478 SourceLocation AddrOpLoc;
4479 if (S.getLangOpts().MicrosoftExt) {
4480 // Microsoft Visual C++ strips all casts, allows an arbitrary number of
4481 // dereference and address-of operators.
4482 Arg = Arg->IgnoreParenCasts();
4483
4484 bool ExtWarnMSTemplateArg = false;
4485 UnaryOperatorKind FirstOpKind;
4486 SourceLocation FirstOpLoc;
4487 while (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4488 UnaryOperatorKind UnOpKind = UnOp->getOpcode();
4489 if (UnOpKind == UO_Deref)
4490 ExtWarnMSTemplateArg = true;
4491 if (UnOpKind == UO_AddrOf || UnOpKind == UO_Deref) {
4492 Arg = UnOp->getSubExpr()->IgnoreParenCasts();
4493 if (!AddrOpLoc.isValid()) {
4494 FirstOpKind = UnOpKind;
4495 FirstOpLoc = UnOp->getOperatorLoc();
4496 }
4497 } else
4498 break;
4499 }
4500 if (FirstOpLoc.isValid()) {
4501 if (ExtWarnMSTemplateArg)
4502 S.Diag(ArgIn->getLocStart(), diag::ext_ms_deref_template_argument)
4503 << ArgIn->getSourceRange();
4504
4505 if (FirstOpKind == UO_AddrOf)
4506 AddressTaken = true;
4507 else if (Arg->getType()->isPointerType()) {
4508 // We cannot let pointers get dereferenced here, that is obviously not a
4509 // constant expression.
4510 assert(FirstOpKind == UO_Deref);
4511 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4512 << Arg->getSourceRange();
4513 }
4514 }
4515 } else {
4516 // See through any implicit casts we added to fix the type.
4517 Arg = Arg->IgnoreImpCasts();
4518
4519 // C++ [temp.arg.nontype]p1:
4520 //
4521 // A template-argument for a non-type, non-template
4522 // template-parameter shall be one of: [...]
4523 //
4524 // -- the address of an object or function with external
4525 // linkage, including function templates and function
4526 // template-ids but excluding non-static class members,
4527 // expressed as & id-expression where the & is optional if
4528 // the name refers to a function or array, or if the
4529 // corresponding template-parameter is a reference; or
4530
4531 // In C++98/03 mode, give an extension warning on any extra parentheses.
4532 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4533 bool ExtraParens = false;
4534 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4535 if (!Invalid && !ExtraParens) {
4536 S.Diag(Arg->getLocStart(),
4537 S.getLangOpts().CPlusPlus11
4538 ? diag::warn_cxx98_compat_template_arg_extra_parens
4539 : diag::ext_template_arg_extra_parens)
4540 << Arg->getSourceRange();
4541 ExtraParens = true;
4542 }
4543
4544 Arg = Parens->getSubExpr();
4545 }
4546
4547 while (SubstNonTypeTemplateParmExpr *subst =
4548 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4549 Arg = subst->getReplacement()->IgnoreImpCasts();
4550
4551 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4552 if (UnOp->getOpcode() == UO_AddrOf) {
4553 Arg = UnOp->getSubExpr();
4554 AddressTaken = true;
4555 AddrOpLoc = UnOp->getOperatorLoc();
4556 }
4557 }
4558
4559 while (SubstNonTypeTemplateParmExpr *subst =
4560 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4561 Arg = subst->getReplacement()->IgnoreImpCasts();
4562 }
4563
4564 DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Arg);
4565 ValueDecl *Entity = DRE ? DRE->getDecl() : nullptr;
4566
4567 // If our parameter has pointer type, check for a null template value.
4568 if (ParamType->isPointerType() || ParamType->isNullPtrType()) {
4569 NullPointerValueKind NPV;
4570 // dllimport'd entities aren't constant but are available inside of template
4571 // arguments.
4572 if (Entity && Entity->hasAttr<DLLImportAttr>())
4573 NPV = NPV_NotNullPointer;
4574 else
4575 NPV = isNullPointerValueTemplateArgument(S, Param, ParamType, ArgIn);
4576 switch (NPV) {
4577 case NPV_NullPointer:
4578 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4579 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
4580 /*isNullPtr=*/true);
4581 return false;
4582
4583 case NPV_Error:
4584 return true;
4585
4586 case NPV_NotNullPointer:
4587 break;
4588 }
4589 }
4590
4591 // Stop checking the precise nature of the argument if it is value dependent,
4592 // it should be checked when instantiated.
4593 if (Arg->isValueDependent()) {
4594 Converted = TemplateArgument(ArgIn);
4595 return false;
4596 }
4597
4598 if (isa<CXXUuidofExpr>(Arg)) {
4599 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType,
4600 ArgIn, Arg, ArgType))
4601 return true;
4602
4603 Converted = TemplateArgument(ArgIn);
4604 return false;
4605 }
4606
4607 if (!DRE) {
4608 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4609 << Arg->getSourceRange();
4610 S.Diag(Param->getLocation(), diag::note_template_param_here);
4611 return true;
4612 }
4613
4614 // Cannot refer to non-static data members
4615 if (isa<FieldDecl>(Entity) || isa<IndirectFieldDecl>(Entity)) {
4616 S.Diag(Arg->getLocStart(), diag::err_template_arg_field)
4617 << Entity << Arg->getSourceRange();
4618 S.Diag(Param->getLocation(), diag::note_template_param_here);
4619 return true;
4620 }
4621
4622 // Cannot refer to non-static member functions
4623 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Entity)) {
4624 if (!Method->isStatic()) {
4625 S.Diag(Arg->getLocStart(), diag::err_template_arg_method)
4626 << Method << Arg->getSourceRange();
4627 S.Diag(Param->getLocation(), diag::note_template_param_here);
4628 return true;
4629 }
4630 }
4631
4632 FunctionDecl *Func = dyn_cast<FunctionDecl>(Entity);
4633 VarDecl *Var = dyn_cast<VarDecl>(Entity);
4634
4635 // A non-type template argument must refer to an object or function.
4636 if (!Func && !Var) {
4637 // We found something, but we don't know specifically what it is.
4638 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_object_or_func)
4639 << Arg->getSourceRange();
4640 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4641 return true;
4642 }
4643
4644 // Address / reference template args must have external linkage in C++98.
4645 if (Entity->getFormalLinkage() == InternalLinkage) {
4646 S.Diag(Arg->getLocStart(), S.getLangOpts().CPlusPlus11 ?
4647 diag::warn_cxx98_compat_template_arg_object_internal :
4648 diag::ext_template_arg_object_internal)
4649 << !Func << Entity << Arg->getSourceRange();
4650 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4651 << !Func;
4652 } else if (!Entity->hasLinkage()) {
4653 S.Diag(Arg->getLocStart(), diag::err_template_arg_object_no_linkage)
4654 << !Func << Entity << Arg->getSourceRange();
4655 S.Diag(Entity->getLocation(), diag::note_template_arg_internal_object)
4656 << !Func;
4657 return true;
4658 }
4659
4660 if (Func) {
4661 // If the template parameter has pointer type, the function decays.
4662 if (ParamType->isPointerType() && !AddressTaken)
4663 ArgType = S.Context.getPointerType(Func->getType());
4664 else if (AddressTaken && ParamType->isReferenceType()) {
4665 // If we originally had an address-of operator, but the
4666 // parameter has reference type, complain and (if things look
4667 // like they will work) drop the address-of operator.
4668 if (!S.Context.hasSameUnqualifiedType(Func->getType(),
4669 ParamType.getNonReferenceType())) {
4670 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4671 << ParamType;
4672 S.Diag(Param->getLocation(), diag::note_template_param_here);
4673 return true;
4674 }
4675
4676 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4677 << ParamType
4678 << FixItHint::CreateRemoval(AddrOpLoc);
4679 S.Diag(Param->getLocation(), diag::note_template_param_here);
4680
4681 ArgType = Func->getType();
4682 }
4683 } else {
4684 // A value of reference type is not an object.
4685 if (Var->getType()->isReferenceType()) {
4686 S.Diag(Arg->getLocStart(),
4687 diag::err_template_arg_reference_var)
4688 << Var->getType() << Arg->getSourceRange();
4689 S.Diag(Param->getLocation(), diag::note_template_param_here);
4690 return true;
4691 }
4692
4693 // A template argument must have static storage duration.
4694 if (Var->getTLSKind()) {
4695 S.Diag(Arg->getLocStart(), diag::err_template_arg_thread_local)
4696 << Arg->getSourceRange();
4697 S.Diag(Var->getLocation(), diag::note_template_arg_refers_here);
4698 return true;
4699 }
4700
4701 // If the template parameter has pointer type, we must have taken
4702 // the address of this object.
4703 if (ParamType->isReferenceType()) {
4704 if (AddressTaken) {
4705 // If we originally had an address-of operator, but the
4706 // parameter has reference type, complain and (if things look
4707 // like they will work) drop the address-of operator.
4708 if (!S.Context.hasSameUnqualifiedType(Var->getType(),
4709 ParamType.getNonReferenceType())) {
4710 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4711 << ParamType;
4712 S.Diag(Param->getLocation(), diag::note_template_param_here);
4713 return true;
4714 }
4715
4716 S.Diag(AddrOpLoc, diag::err_template_arg_address_of_non_pointer)
4717 << ParamType
4718 << FixItHint::CreateRemoval(AddrOpLoc);
4719 S.Diag(Param->getLocation(), diag::note_template_param_here);
4720
4721 ArgType = Var->getType();
4722 }
4723 } else if (!AddressTaken && ParamType->isPointerType()) {
4724 if (Var->getType()->isArrayType()) {
4725 // Array-to-pointer decay.
4726 ArgType = S.Context.getArrayDecayedType(Var->getType());
4727 } else {
4728 // If the template parameter has pointer type but the address of
4729 // this object was not taken, complain and (possibly) recover by
4730 // taking the address of the entity.
4731 ArgType = S.Context.getPointerType(Var->getType());
4732 if (!S.Context.hasSameUnqualifiedType(ArgType, ParamType)) {
4733 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4734 << ParamType;
4735 S.Diag(Param->getLocation(), diag::note_template_param_here);
4736 return true;
4737 }
4738
4739 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_address_of)
4740 << ParamType
4741 << FixItHint::CreateInsertion(Arg->getLocStart(), "&");
4742
4743 S.Diag(Param->getLocation(), diag::note_template_param_here);
4744 }
4745 }
4746 }
4747
4748 if (CheckTemplateArgumentIsCompatibleWithParameter(S, Param, ParamType, ArgIn,
4749 Arg, ArgType))
4750 return true;
4751
4752 // Create the template argument.
4753 Converted =
4754 TemplateArgument(cast<ValueDecl>(Entity->getCanonicalDecl()), ParamType);
4755 S.MarkAnyDeclReferenced(Arg->getLocStart(), Entity, false);
4756 return false;
4757 }
4758
4759 /// \brief Checks whether the given template argument is a pointer to
4760 /// member constant according to C++ [temp.arg.nontype]p1.
CheckTemplateArgumentPointerToMember(Sema & S,NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * & ResultArg,TemplateArgument & Converted)4761 static bool CheckTemplateArgumentPointerToMember(Sema &S,
4762 NonTypeTemplateParmDecl *Param,
4763 QualType ParamType,
4764 Expr *&ResultArg,
4765 TemplateArgument &Converted) {
4766 bool Invalid = false;
4767
4768 // Check for a null pointer value.
4769 Expr *Arg = ResultArg;
4770 switch (isNullPointerValueTemplateArgument(S, Param, ParamType, Arg)) {
4771 case NPV_Error:
4772 return true;
4773 case NPV_NullPointer:
4774 S.Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
4775 Converted = TemplateArgument(S.Context.getCanonicalType(ParamType),
4776 /*isNullPtr*/true);
4777 return false;
4778 case NPV_NotNullPointer:
4779 break;
4780 }
4781
4782 bool ObjCLifetimeConversion;
4783 if (S.IsQualificationConversion(Arg->getType(),
4784 ParamType.getNonReferenceType(),
4785 false, ObjCLifetimeConversion)) {
4786 Arg = S.ImpCastExprToType(Arg, ParamType, CK_NoOp,
4787 Arg->getValueKind()).get();
4788 ResultArg = Arg;
4789 } else if (!S.Context.hasSameUnqualifiedType(Arg->getType(),
4790 ParamType.getNonReferenceType())) {
4791 // We can't perform this conversion.
4792 S.Diag(Arg->getLocStart(), diag::err_template_arg_not_convertible)
4793 << Arg->getType() << ParamType << Arg->getSourceRange();
4794 S.Diag(Param->getLocation(), diag::note_template_param_here);
4795 return true;
4796 }
4797
4798 // See through any implicit casts we added to fix the type.
4799 while (ImplicitCastExpr *Cast = dyn_cast<ImplicitCastExpr>(Arg))
4800 Arg = Cast->getSubExpr();
4801
4802 // C++ [temp.arg.nontype]p1:
4803 //
4804 // A template-argument for a non-type, non-template
4805 // template-parameter shall be one of: [...]
4806 //
4807 // -- a pointer to member expressed as described in 5.3.1.
4808 DeclRefExpr *DRE = nullptr;
4809
4810 // In C++98/03 mode, give an extension warning on any extra parentheses.
4811 // See http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#773
4812 bool ExtraParens = false;
4813 while (ParenExpr *Parens = dyn_cast<ParenExpr>(Arg)) {
4814 if (!Invalid && !ExtraParens) {
4815 S.Diag(Arg->getLocStart(),
4816 S.getLangOpts().CPlusPlus11 ?
4817 diag::warn_cxx98_compat_template_arg_extra_parens :
4818 diag::ext_template_arg_extra_parens)
4819 << Arg->getSourceRange();
4820 ExtraParens = true;
4821 }
4822
4823 Arg = Parens->getSubExpr();
4824 }
4825
4826 while (SubstNonTypeTemplateParmExpr *subst =
4827 dyn_cast<SubstNonTypeTemplateParmExpr>(Arg))
4828 Arg = subst->getReplacement()->IgnoreImpCasts();
4829
4830 // A pointer-to-member constant written &Class::member.
4831 if (UnaryOperator *UnOp = dyn_cast<UnaryOperator>(Arg)) {
4832 if (UnOp->getOpcode() == UO_AddrOf) {
4833 DRE = dyn_cast<DeclRefExpr>(UnOp->getSubExpr());
4834 if (DRE && !DRE->getQualifier())
4835 DRE = nullptr;
4836 }
4837 }
4838 // A constant of pointer-to-member type.
4839 else if ((DRE = dyn_cast<DeclRefExpr>(Arg))) {
4840 if (ValueDecl *VD = dyn_cast<ValueDecl>(DRE->getDecl())) {
4841 if (VD->getType()->isMemberPointerType()) {
4842 if (isa<NonTypeTemplateParmDecl>(VD)) {
4843 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4844 Converted = TemplateArgument(Arg);
4845 } else {
4846 VD = cast<ValueDecl>(VD->getCanonicalDecl());
4847 Converted = TemplateArgument(VD, ParamType);
4848 }
4849 return Invalid;
4850 }
4851 }
4852 }
4853
4854 DRE = nullptr;
4855 }
4856
4857 if (!DRE)
4858 return S.Diag(Arg->getLocStart(),
4859 diag::err_template_arg_not_pointer_to_member_form)
4860 << Arg->getSourceRange();
4861
4862 if (isa<FieldDecl>(DRE->getDecl()) ||
4863 isa<IndirectFieldDecl>(DRE->getDecl()) ||
4864 isa<CXXMethodDecl>(DRE->getDecl())) {
4865 assert((isa<FieldDecl>(DRE->getDecl()) ||
4866 isa<IndirectFieldDecl>(DRE->getDecl()) ||
4867 !cast<CXXMethodDecl>(DRE->getDecl())->isStatic()) &&
4868 "Only non-static member pointers can make it here");
4869
4870 // Okay: this is the address of a non-static member, and therefore
4871 // a member pointer constant.
4872 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
4873 Converted = TemplateArgument(Arg);
4874 } else {
4875 ValueDecl *D = cast<ValueDecl>(DRE->getDecl()->getCanonicalDecl());
4876 Converted = TemplateArgument(D, ParamType);
4877 }
4878 return Invalid;
4879 }
4880
4881 // We found something else, but we don't know specifically what it is.
4882 S.Diag(Arg->getLocStart(),
4883 diag::err_template_arg_not_pointer_to_member_form)
4884 << Arg->getSourceRange();
4885 S.Diag(DRE->getDecl()->getLocation(), diag::note_template_arg_refers_here);
4886 return true;
4887 }
4888
4889 /// \brief Check a template argument against its corresponding
4890 /// non-type template parameter.
4891 ///
4892 /// This routine implements the semantics of C++ [temp.arg.nontype].
4893 /// If an error occurred, it returns ExprError(); otherwise, it
4894 /// returns the converted template argument. \p ParamType is the
4895 /// type of the non-type template parameter after it has been instantiated.
CheckTemplateArgument(NonTypeTemplateParmDecl * Param,QualType ParamType,Expr * Arg,TemplateArgument & Converted,CheckTemplateArgumentKind CTAK)4896 ExprResult Sema::CheckTemplateArgument(NonTypeTemplateParmDecl *Param,
4897 QualType ParamType, Expr *Arg,
4898 TemplateArgument &Converted,
4899 CheckTemplateArgumentKind CTAK) {
4900 SourceLocation StartLoc = Arg->getLocStart();
4901
4902 // If either the parameter has a dependent type or the argument is
4903 // type-dependent, there's nothing we can check now.
4904 if (ParamType->isDependentType() || Arg->isTypeDependent()) {
4905 // FIXME: Produce a cloned, canonical expression?
4906 Converted = TemplateArgument(Arg);
4907 return Arg;
4908 }
4909
4910 // We should have already dropped all cv-qualifiers by now.
4911 assert(!ParamType.hasQualifiers() &&
4912 "non-type template parameter type cannot be qualified");
4913
4914 if (CTAK == CTAK_Deduced &&
4915 !Context.hasSameUnqualifiedType(ParamType, Arg->getType())) {
4916 // C++ [temp.deduct.type]p17:
4917 // If, in the declaration of a function template with a non-type
4918 // template-parameter, the non-type template-parameter is used
4919 // in an expression in the function parameter-list and, if the
4920 // corresponding template-argument is deduced, the
4921 // template-argument type shall match the type of the
4922 // template-parameter exactly, except that a template-argument
4923 // deduced from an array bound may be of any integral type.
4924 Diag(StartLoc, diag::err_deduced_non_type_template_arg_type_mismatch)
4925 << Arg->getType().getUnqualifiedType()
4926 << ParamType.getUnqualifiedType();
4927 Diag(Param->getLocation(), diag::note_template_param_here);
4928 return ExprError();
4929 }
4930
4931 if (getLangOpts().CPlusPlus1z) {
4932 // FIXME: We can do some limited checking for a value-dependent but not
4933 // type-dependent argument.
4934 if (Arg->isValueDependent()) {
4935 Converted = TemplateArgument(Arg);
4936 return Arg;
4937 }
4938
4939 // C++1z [temp.arg.nontype]p1:
4940 // A template-argument for a non-type template parameter shall be
4941 // a converted constant expression of the type of the template-parameter.
4942 APValue Value;
4943 ExprResult ArgResult = CheckConvertedConstantExpression(
4944 Arg, ParamType, Value, CCEK_TemplateArg);
4945 if (ArgResult.isInvalid())
4946 return ExprError();
4947
4948 QualType CanonParamType = Context.getCanonicalType(ParamType);
4949
4950 // Convert the APValue to a TemplateArgument.
4951 switch (Value.getKind()) {
4952 case APValue::Uninitialized:
4953 assert(ParamType->isNullPtrType());
4954 Converted = TemplateArgument(CanonParamType, /*isNullPtr*/true);
4955 break;
4956 case APValue::Int:
4957 assert(ParamType->isIntegralOrEnumerationType());
4958 Converted = TemplateArgument(Context, Value.getInt(), CanonParamType);
4959 break;
4960 case APValue::MemberPointer: {
4961 assert(ParamType->isMemberPointerType());
4962
4963 // FIXME: We need TemplateArgument representation and mangling for these.
4964 if (!Value.getMemberPointerPath().empty()) {
4965 Diag(Arg->getLocStart(),
4966 diag::err_template_arg_member_ptr_base_derived_not_supported)
4967 << Value.getMemberPointerDecl() << ParamType
4968 << Arg->getSourceRange();
4969 return ExprError();
4970 }
4971
4972 auto *VD = const_cast<ValueDecl*>(Value.getMemberPointerDecl());
4973 Converted = VD ? TemplateArgument(VD, CanonParamType)
4974 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
4975 break;
4976 }
4977 case APValue::LValue: {
4978 // For a non-type template-parameter of pointer or reference type,
4979 // the value of the constant expression shall not refer to
4980 assert(ParamType->isPointerType() || ParamType->isReferenceType() ||
4981 ParamType->isNullPtrType());
4982 // -- a temporary object
4983 // -- a string literal
4984 // -- the result of a typeid expression, or
4985 // -- a predefind __func__ variable
4986 if (auto *E = Value.getLValueBase().dyn_cast<const Expr*>()) {
4987 if (isa<CXXUuidofExpr>(E)) {
4988 Converted = TemplateArgument(const_cast<Expr*>(E));
4989 break;
4990 }
4991 Diag(Arg->getLocStart(), diag::err_template_arg_not_decl_ref)
4992 << Arg->getSourceRange();
4993 return ExprError();
4994 }
4995 auto *VD = const_cast<ValueDecl *>(
4996 Value.getLValueBase().dyn_cast<const ValueDecl *>());
4997 // -- a subobject
4998 if (Value.hasLValuePath() && Value.getLValuePath().size() == 1 &&
4999 VD && VD->getType()->isArrayType() &&
5000 Value.getLValuePath()[0].ArrayIndex == 0 &&
5001 !Value.isLValueOnePastTheEnd() && ParamType->isPointerType()) {
5002 // Per defect report (no number yet):
5003 // ... other than a pointer to the first element of a complete array
5004 // object.
5005 } else if (!Value.hasLValuePath() || Value.getLValuePath().size() ||
5006 Value.isLValueOnePastTheEnd()) {
5007 Diag(StartLoc, diag::err_non_type_template_arg_subobject)
5008 << Value.getAsString(Context, ParamType);
5009 return ExprError();
5010 }
5011 assert((VD || !ParamType->isReferenceType()) &&
5012 "null reference should not be a constant expression");
5013 assert((!VD || !ParamType->isNullPtrType()) &&
5014 "non-null value of type nullptr_t?");
5015 Converted = VD ? TemplateArgument(VD, CanonParamType)
5016 : TemplateArgument(CanonParamType, /*isNullPtr*/true);
5017 break;
5018 }
5019 case APValue::AddrLabelDiff:
5020 return Diag(StartLoc, diag::err_non_type_template_arg_addr_label_diff);
5021 case APValue::Float:
5022 case APValue::ComplexInt:
5023 case APValue::ComplexFloat:
5024 case APValue::Vector:
5025 case APValue::Array:
5026 case APValue::Struct:
5027 case APValue::Union:
5028 llvm_unreachable("invalid kind for template argument");
5029 }
5030
5031 return ArgResult.get();
5032 }
5033
5034 // C++ [temp.arg.nontype]p5:
5035 // The following conversions are performed on each expression used
5036 // as a non-type template-argument. If a non-type
5037 // template-argument cannot be converted to the type of the
5038 // corresponding template-parameter then the program is
5039 // ill-formed.
5040 if (ParamType->isIntegralOrEnumerationType()) {
5041 // C++11:
5042 // -- for a non-type template-parameter of integral or
5043 // enumeration type, conversions permitted in a converted
5044 // constant expression are applied.
5045 //
5046 // C++98:
5047 // -- for a non-type template-parameter of integral or
5048 // enumeration type, integral promotions (4.5) and integral
5049 // conversions (4.7) are applied.
5050
5051 if (getLangOpts().CPlusPlus11) {
5052 // We can't check arbitrary value-dependent arguments.
5053 // FIXME: If there's no viable conversion to the template parameter type,
5054 // we should be able to diagnose that prior to instantiation.
5055 if (Arg->isValueDependent()) {
5056 Converted = TemplateArgument(Arg);
5057 return Arg;
5058 }
5059
5060 // C++ [temp.arg.nontype]p1:
5061 // A template-argument for a non-type, non-template template-parameter
5062 // shall be one of:
5063 //
5064 // -- for a non-type template-parameter of integral or enumeration
5065 // type, a converted constant expression of the type of the
5066 // template-parameter; or
5067 llvm::APSInt Value;
5068 ExprResult ArgResult =
5069 CheckConvertedConstantExpression(Arg, ParamType, Value,
5070 CCEK_TemplateArg);
5071 if (ArgResult.isInvalid())
5072 return ExprError();
5073
5074 // Widen the argument value to sizeof(parameter type). This is almost
5075 // always a no-op, except when the parameter type is bool. In
5076 // that case, this may extend the argument from 1 bit to 8 bits.
5077 QualType IntegerType = ParamType;
5078 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5079 IntegerType = Enum->getDecl()->getIntegerType();
5080 Value = Value.extOrTrunc(Context.getTypeSize(IntegerType));
5081
5082 Converted = TemplateArgument(Context, Value,
5083 Context.getCanonicalType(ParamType));
5084 return ArgResult;
5085 }
5086
5087 ExprResult ArgResult = DefaultLvalueConversion(Arg);
5088 if (ArgResult.isInvalid())
5089 return ExprError();
5090 Arg = ArgResult.get();
5091
5092 QualType ArgType = Arg->getType();
5093
5094 // C++ [temp.arg.nontype]p1:
5095 // A template-argument for a non-type, non-template
5096 // template-parameter shall be one of:
5097 //
5098 // -- an integral constant-expression of integral or enumeration
5099 // type; or
5100 // -- the name of a non-type template-parameter; or
5101 SourceLocation NonConstantLoc;
5102 llvm::APSInt Value;
5103 if (!ArgType->isIntegralOrEnumerationType()) {
5104 Diag(Arg->getLocStart(),
5105 diag::err_template_arg_not_integral_or_enumeral)
5106 << ArgType << Arg->getSourceRange();
5107 Diag(Param->getLocation(), diag::note_template_param_here);
5108 return ExprError();
5109 } else if (!Arg->isValueDependent()) {
5110 class TmplArgICEDiagnoser : public VerifyICEDiagnoser {
5111 QualType T;
5112
5113 public:
5114 TmplArgICEDiagnoser(QualType T) : T(T) { }
5115
5116 void diagnoseNotICE(Sema &S, SourceLocation Loc,
5117 SourceRange SR) override {
5118 S.Diag(Loc, diag::err_template_arg_not_ice) << T << SR;
5119 }
5120 } Diagnoser(ArgType);
5121
5122 Arg = VerifyIntegerConstantExpression(Arg, &Value, Diagnoser,
5123 false).get();
5124 if (!Arg)
5125 return ExprError();
5126 }
5127
5128 // From here on out, all we care about is the unqualified form
5129 // of the argument type.
5130 ArgType = ArgType.getUnqualifiedType();
5131
5132 // Try to convert the argument to the parameter's type.
5133 if (Context.hasSameType(ParamType, ArgType)) {
5134 // Okay: no conversion necessary
5135 } else if (ParamType->isBooleanType()) {
5136 // This is an integral-to-boolean conversion.
5137 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralToBoolean).get();
5138 } else if (IsIntegralPromotion(Arg, ArgType, ParamType) ||
5139 !ParamType->isEnumeralType()) {
5140 // This is an integral promotion or conversion.
5141 Arg = ImpCastExprToType(Arg, ParamType, CK_IntegralCast).get();
5142 } else {
5143 // We can't perform this conversion.
5144 Diag(Arg->getLocStart(),
5145 diag::err_template_arg_not_convertible)
5146 << Arg->getType() << ParamType << Arg->getSourceRange();
5147 Diag(Param->getLocation(), diag::note_template_param_here);
5148 return ExprError();
5149 }
5150
5151 // Add the value of this argument to the list of converted
5152 // arguments. We use the bitwidth and signedness of the template
5153 // parameter.
5154 if (Arg->isValueDependent()) {
5155 // The argument is value-dependent. Create a new
5156 // TemplateArgument with the converted expression.
5157 Converted = TemplateArgument(Arg);
5158 return Arg;
5159 }
5160
5161 QualType IntegerType = Context.getCanonicalType(ParamType);
5162 if (const EnumType *Enum = IntegerType->getAs<EnumType>())
5163 IntegerType = Context.getCanonicalType(Enum->getDecl()->getIntegerType());
5164
5165 if (ParamType->isBooleanType()) {
5166 // Value must be zero or one.
5167 Value = Value != 0;
5168 unsigned AllowedBits = Context.getTypeSize(IntegerType);
5169 if (Value.getBitWidth() != AllowedBits)
5170 Value = Value.extOrTrunc(AllowedBits);
5171 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5172 } else {
5173 llvm::APSInt OldValue = Value;
5174
5175 // Coerce the template argument's value to the value it will have
5176 // based on the template parameter's type.
5177 unsigned AllowedBits = Context.getTypeSize(IntegerType);
5178 if (Value.getBitWidth() != AllowedBits)
5179 Value = Value.extOrTrunc(AllowedBits);
5180 Value.setIsSigned(IntegerType->isSignedIntegerOrEnumerationType());
5181
5182 // Complain if an unsigned parameter received a negative value.
5183 if (IntegerType->isUnsignedIntegerOrEnumerationType()
5184 && (OldValue.isSigned() && OldValue.isNegative())) {
5185 Diag(Arg->getLocStart(), diag::warn_template_arg_negative)
5186 << OldValue.toString(10) << Value.toString(10) << Param->getType()
5187 << Arg->getSourceRange();
5188 Diag(Param->getLocation(), diag::note_template_param_here);
5189 }
5190
5191 // Complain if we overflowed the template parameter's type.
5192 unsigned RequiredBits;
5193 if (IntegerType->isUnsignedIntegerOrEnumerationType())
5194 RequiredBits = OldValue.getActiveBits();
5195 else if (OldValue.isUnsigned())
5196 RequiredBits = OldValue.getActiveBits() + 1;
5197 else
5198 RequiredBits = OldValue.getMinSignedBits();
5199 if (RequiredBits > AllowedBits) {
5200 Diag(Arg->getLocStart(),
5201 diag::warn_template_arg_too_large)
5202 << OldValue.toString(10) << Value.toString(10) << Param->getType()
5203 << Arg->getSourceRange();
5204 Diag(Param->getLocation(), diag::note_template_param_here);
5205 }
5206 }
5207
5208 Converted = TemplateArgument(Context, Value,
5209 ParamType->isEnumeralType()
5210 ? Context.getCanonicalType(ParamType)
5211 : IntegerType);
5212 return Arg;
5213 }
5214
5215 QualType ArgType = Arg->getType();
5216 DeclAccessPair FoundResult; // temporary for ResolveOverloadedFunction
5217
5218 // Handle pointer-to-function, reference-to-function, and
5219 // pointer-to-member-function all in (roughly) the same way.
5220 if (// -- For a non-type template-parameter of type pointer to
5221 // function, only the function-to-pointer conversion (4.3) is
5222 // applied. If the template-argument represents a set of
5223 // overloaded functions (or a pointer to such), the matching
5224 // function is selected from the set (13.4).
5225 (ParamType->isPointerType() &&
5226 ParamType->getAs<PointerType>()->getPointeeType()->isFunctionType()) ||
5227 // -- For a non-type template-parameter of type reference to
5228 // function, no conversions apply. If the template-argument
5229 // represents a set of overloaded functions, the matching
5230 // function is selected from the set (13.4).
5231 (ParamType->isReferenceType() &&
5232 ParamType->getAs<ReferenceType>()->getPointeeType()->isFunctionType()) ||
5233 // -- For a non-type template-parameter of type pointer to
5234 // member function, no conversions apply. If the
5235 // template-argument represents a set of overloaded member
5236 // functions, the matching member function is selected from
5237 // the set (13.4).
5238 (ParamType->isMemberPointerType() &&
5239 ParamType->getAs<MemberPointerType>()->getPointeeType()
5240 ->isFunctionType())) {
5241
5242 if (Arg->getType() == Context.OverloadTy) {
5243 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg, ParamType,
5244 true,
5245 FoundResult)) {
5246 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5247 return ExprError();
5248
5249 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5250 ArgType = Arg->getType();
5251 } else
5252 return ExprError();
5253 }
5254
5255 if (!ParamType->isMemberPointerType()) {
5256 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5257 ParamType,
5258 Arg, Converted))
5259 return ExprError();
5260 return Arg;
5261 }
5262
5263 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5264 Converted))
5265 return ExprError();
5266 return Arg;
5267 }
5268
5269 if (ParamType->isPointerType()) {
5270 // -- for a non-type template-parameter of type pointer to
5271 // object, qualification conversions (4.4) and the
5272 // array-to-pointer conversion (4.2) are applied.
5273 // C++0x also allows a value of std::nullptr_t.
5274 assert(ParamType->getPointeeType()->isIncompleteOrObjectType() &&
5275 "Only object pointers allowed here");
5276
5277 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5278 ParamType,
5279 Arg, Converted))
5280 return ExprError();
5281 return Arg;
5282 }
5283
5284 if (const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>()) {
5285 // -- For a non-type template-parameter of type reference to
5286 // object, no conversions apply. The type referred to by the
5287 // reference may be more cv-qualified than the (otherwise
5288 // identical) type of the template-argument. The
5289 // template-parameter is bound directly to the
5290 // template-argument, which must be an lvalue.
5291 assert(ParamRefType->getPointeeType()->isIncompleteOrObjectType() &&
5292 "Only object references allowed here");
5293
5294 if (Arg->getType() == Context.OverloadTy) {
5295 if (FunctionDecl *Fn = ResolveAddressOfOverloadedFunction(Arg,
5296 ParamRefType->getPointeeType(),
5297 true,
5298 FoundResult)) {
5299 if (DiagnoseUseOfDecl(Fn, Arg->getLocStart()))
5300 return ExprError();
5301
5302 Arg = FixOverloadedFunctionReference(Arg, FoundResult, Fn);
5303 ArgType = Arg->getType();
5304 } else
5305 return ExprError();
5306 }
5307
5308 if (CheckTemplateArgumentAddressOfObjectOrFunction(*this, Param,
5309 ParamType,
5310 Arg, Converted))
5311 return ExprError();
5312 return Arg;
5313 }
5314
5315 // Deal with parameters of type std::nullptr_t.
5316 if (ParamType->isNullPtrType()) {
5317 if (Arg->isTypeDependent() || Arg->isValueDependent()) {
5318 Converted = TemplateArgument(Arg);
5319 return Arg;
5320 }
5321
5322 switch (isNullPointerValueTemplateArgument(*this, Param, ParamType, Arg)) {
5323 case NPV_NotNullPointer:
5324 Diag(Arg->getExprLoc(), diag::err_template_arg_not_convertible)
5325 << Arg->getType() << ParamType;
5326 Diag(Param->getLocation(), diag::note_template_param_here);
5327 return ExprError();
5328
5329 case NPV_Error:
5330 return ExprError();
5331
5332 case NPV_NullPointer:
5333 Diag(Arg->getExprLoc(), diag::warn_cxx98_compat_template_arg_null);
5334 Converted = TemplateArgument(Context.getCanonicalType(ParamType),
5335 /*isNullPtr*/true);
5336 return Arg;
5337 }
5338 }
5339
5340 // -- For a non-type template-parameter of type pointer to data
5341 // member, qualification conversions (4.4) are applied.
5342 assert(ParamType->isMemberPointerType() && "Only pointers to members remain");
5343
5344 if (CheckTemplateArgumentPointerToMember(*this, Param, ParamType, Arg,
5345 Converted))
5346 return ExprError();
5347 return Arg;
5348 }
5349
5350 /// \brief Check a template argument against its corresponding
5351 /// template template parameter.
5352 ///
5353 /// This routine implements the semantics of C++ [temp.arg.template].
5354 /// It returns true if an error occurred, and false otherwise.
CheckTemplateArgument(TemplateTemplateParmDecl * Param,TemplateArgumentLoc & Arg,unsigned ArgumentPackIndex)5355 bool Sema::CheckTemplateArgument(TemplateTemplateParmDecl *Param,
5356 TemplateArgumentLoc &Arg,
5357 unsigned ArgumentPackIndex) {
5358 TemplateName Name = Arg.getArgument().getAsTemplateOrTemplatePattern();
5359 TemplateDecl *Template = Name.getAsTemplateDecl();
5360 if (!Template) {
5361 // Any dependent template name is fine.
5362 assert(Name.isDependent() && "Non-dependent template isn't a declaration?");
5363 return false;
5364 }
5365
5366 // C++0x [temp.arg.template]p1:
5367 // A template-argument for a template template-parameter shall be
5368 // the name of a class template or an alias template, expressed as an
5369 // id-expression. When the template-argument names a class template, only
5370 // primary class templates are considered when matching the
5371 // template template argument with the corresponding parameter;
5372 // partial specializations are not considered even if their
5373 // parameter lists match that of the template template parameter.
5374 //
5375 // Note that we also allow template template parameters here, which
5376 // will happen when we are dealing with, e.g., class template
5377 // partial specializations.
5378 if (!isa<ClassTemplateDecl>(Template) &&
5379 !isa<TemplateTemplateParmDecl>(Template) &&
5380 !isa<TypeAliasTemplateDecl>(Template) &&
5381 !isa<BuiltinTemplateDecl>(Template)) {
5382 assert(isa<FunctionTemplateDecl>(Template) &&
5383 "Only function templates are possible here");
5384 Diag(Arg.getLocation(), diag::err_template_arg_not_valid_template);
5385 Diag(Template->getLocation(), diag::note_template_arg_refers_here_func)
5386 << Template;
5387 }
5388
5389 TemplateParameterList *Params = Param->getTemplateParameters();
5390 if (Param->isExpandedParameterPack())
5391 Params = Param->getExpansionTemplateParameters(ArgumentPackIndex);
5392
5393 return !TemplateParameterListsAreEqual(Template->getTemplateParameters(),
5394 Params,
5395 true,
5396 TPL_TemplateTemplateArgumentMatch,
5397 Arg.getLocation());
5398 }
5399
5400 /// \brief Given a non-type template argument that refers to a
5401 /// declaration and the type of its corresponding non-type template
5402 /// parameter, produce an expression that properly refers to that
5403 /// declaration.
5404 ExprResult
BuildExpressionFromDeclTemplateArgument(const TemplateArgument & Arg,QualType ParamType,SourceLocation Loc)5405 Sema::BuildExpressionFromDeclTemplateArgument(const TemplateArgument &Arg,
5406 QualType ParamType,
5407 SourceLocation Loc) {
5408 // C++ [temp.param]p8:
5409 //
5410 // A non-type template-parameter of type "array of T" or
5411 // "function returning T" is adjusted to be of type "pointer to
5412 // T" or "pointer to function returning T", respectively.
5413 if (ParamType->isArrayType())
5414 ParamType = Context.getArrayDecayedType(ParamType);
5415 else if (ParamType->isFunctionType())
5416 ParamType = Context.getPointerType(ParamType);
5417
5418 // For a NULL non-type template argument, return nullptr casted to the
5419 // parameter's type.
5420 if (Arg.getKind() == TemplateArgument::NullPtr) {
5421 return ImpCastExprToType(
5422 new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc),
5423 ParamType,
5424 ParamType->getAs<MemberPointerType>()
5425 ? CK_NullToMemberPointer
5426 : CK_NullToPointer);
5427 }
5428 assert(Arg.getKind() == TemplateArgument::Declaration &&
5429 "Only declaration template arguments permitted here");
5430
5431 ValueDecl *VD = cast<ValueDecl>(Arg.getAsDecl());
5432
5433 if (VD->getDeclContext()->isRecord() &&
5434 (isa<CXXMethodDecl>(VD) || isa<FieldDecl>(VD) ||
5435 isa<IndirectFieldDecl>(VD))) {
5436 // If the value is a class member, we might have a pointer-to-member.
5437 // Determine whether the non-type template template parameter is of
5438 // pointer-to-member type. If so, we need to build an appropriate
5439 // expression for a pointer-to-member, since a "normal" DeclRefExpr
5440 // would refer to the member itself.
5441 if (ParamType->isMemberPointerType()) {
5442 QualType ClassType
5443 = Context.getTypeDeclType(cast<RecordDecl>(VD->getDeclContext()));
5444 NestedNameSpecifier *Qualifier
5445 = NestedNameSpecifier::Create(Context, nullptr, false,
5446 ClassType.getTypePtr());
5447 CXXScopeSpec SS;
5448 SS.MakeTrivial(Context, Qualifier, Loc);
5449
5450 // The actual value-ness of this is unimportant, but for
5451 // internal consistency's sake, references to instance methods
5452 // are r-values.
5453 ExprValueKind VK = VK_LValue;
5454 if (isa<CXXMethodDecl>(VD) && cast<CXXMethodDecl>(VD)->isInstance())
5455 VK = VK_RValue;
5456
5457 ExprResult RefExpr = BuildDeclRefExpr(VD,
5458 VD->getType().getNonReferenceType(),
5459 VK,
5460 Loc,
5461 &SS);
5462 if (RefExpr.isInvalid())
5463 return ExprError();
5464
5465 RefExpr = CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5466
5467 // We might need to perform a trailing qualification conversion, since
5468 // the element type on the parameter could be more qualified than the
5469 // element type in the expression we constructed.
5470 bool ObjCLifetimeConversion;
5471 if (IsQualificationConversion(((Expr*) RefExpr.get())->getType(),
5472 ParamType.getUnqualifiedType(), false,
5473 ObjCLifetimeConversion))
5474 RefExpr = ImpCastExprToType(RefExpr.get(), ParamType.getUnqualifiedType(), CK_NoOp);
5475
5476 assert(!RefExpr.isInvalid() &&
5477 Context.hasSameType(((Expr*) RefExpr.get())->getType(),
5478 ParamType.getUnqualifiedType()));
5479 return RefExpr;
5480 }
5481 }
5482
5483 QualType T = VD->getType().getNonReferenceType();
5484
5485 if (ParamType->isPointerType()) {
5486 // When the non-type template parameter is a pointer, take the
5487 // address of the declaration.
5488 ExprResult RefExpr = BuildDeclRefExpr(VD, T, VK_LValue, Loc);
5489 if (RefExpr.isInvalid())
5490 return ExprError();
5491
5492 if (T->isFunctionType() || T->isArrayType()) {
5493 // Decay functions and arrays.
5494 RefExpr = DefaultFunctionArrayConversion(RefExpr.get());
5495 if (RefExpr.isInvalid())
5496 return ExprError();
5497
5498 return RefExpr;
5499 }
5500
5501 // Take the address of everything else
5502 return CreateBuiltinUnaryOp(Loc, UO_AddrOf, RefExpr.get());
5503 }
5504
5505 ExprValueKind VK = VK_RValue;
5506
5507 // If the non-type template parameter has reference type, qualify the
5508 // resulting declaration reference with the extra qualifiers on the
5509 // type that the reference refers to.
5510 if (const ReferenceType *TargetRef = ParamType->getAs<ReferenceType>()) {
5511 VK = VK_LValue;
5512 T = Context.getQualifiedType(T,
5513 TargetRef->getPointeeType().getQualifiers());
5514 } else if (isa<FunctionDecl>(VD)) {
5515 // References to functions are always lvalues.
5516 VK = VK_LValue;
5517 }
5518
5519 return BuildDeclRefExpr(VD, T, VK, Loc);
5520 }
5521
5522 /// \brief Construct a new expression that refers to the given
5523 /// integral template argument with the given source-location
5524 /// information.
5525 ///
5526 /// This routine takes care of the mapping from an integral template
5527 /// argument (which may have any integral type) to the appropriate
5528 /// literal value.
5529 ExprResult
BuildExpressionFromIntegralTemplateArgument(const TemplateArgument & Arg,SourceLocation Loc)5530 Sema::BuildExpressionFromIntegralTemplateArgument(const TemplateArgument &Arg,
5531 SourceLocation Loc) {
5532 assert(Arg.getKind() == TemplateArgument::Integral &&
5533 "Operation is only valid for integral template arguments");
5534 QualType OrigT = Arg.getIntegralType();
5535
5536 // If this is an enum type that we're instantiating, we need to use an integer
5537 // type the same size as the enumerator. We don't want to build an
5538 // IntegerLiteral with enum type. The integer type of an enum type can be of
5539 // any integral type with C++11 enum classes, make sure we create the right
5540 // type of literal for it.
5541 QualType T = OrigT;
5542 if (const EnumType *ET = OrigT->getAs<EnumType>())
5543 T = ET->getDecl()->getIntegerType();
5544
5545 Expr *E;
5546 if (T->isAnyCharacterType()) {
5547 // This does not need to handle u8 character literals because those are
5548 // of type char, and so can also be covered by an ASCII character literal.
5549 CharacterLiteral::CharacterKind Kind;
5550 if (T->isWideCharType())
5551 Kind = CharacterLiteral::Wide;
5552 else if (T->isChar16Type())
5553 Kind = CharacterLiteral::UTF16;
5554 else if (T->isChar32Type())
5555 Kind = CharacterLiteral::UTF32;
5556 else
5557 Kind = CharacterLiteral::Ascii;
5558
5559 E = new (Context) CharacterLiteral(Arg.getAsIntegral().getZExtValue(),
5560 Kind, T, Loc);
5561 } else if (T->isBooleanType()) {
5562 E = new (Context) CXXBoolLiteralExpr(Arg.getAsIntegral().getBoolValue(),
5563 T, Loc);
5564 } else if (T->isNullPtrType()) {
5565 E = new (Context) CXXNullPtrLiteralExpr(Context.NullPtrTy, Loc);
5566 } else {
5567 E = IntegerLiteral::Create(Context, Arg.getAsIntegral(), T, Loc);
5568 }
5569
5570 if (OrigT->isEnumeralType()) {
5571 // FIXME: This is a hack. We need a better way to handle substituted
5572 // non-type template parameters.
5573 E = CStyleCastExpr::Create(Context, OrigT, VK_RValue, CK_IntegralCast, E,
5574 nullptr,
5575 Context.getTrivialTypeSourceInfo(OrigT, Loc),
5576 Loc, Loc);
5577 }
5578
5579 return E;
5580 }
5581
5582 /// \brief Match two template parameters within template parameter lists.
MatchTemplateParameterKind(Sema & S,NamedDecl * New,NamedDecl * Old,bool Complain,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5583 static bool MatchTemplateParameterKind(Sema &S, NamedDecl *New, NamedDecl *Old,
5584 bool Complain,
5585 Sema::TemplateParameterListEqualKind Kind,
5586 SourceLocation TemplateArgLoc) {
5587 // Check the actual kind (type, non-type, template).
5588 if (Old->getKind() != New->getKind()) {
5589 if (Complain) {
5590 unsigned NextDiag = diag::err_template_param_different_kind;
5591 if (TemplateArgLoc.isValid()) {
5592 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5593 NextDiag = diag::note_template_param_different_kind;
5594 }
5595 S.Diag(New->getLocation(), NextDiag)
5596 << (Kind != Sema::TPL_TemplateMatch);
5597 S.Diag(Old->getLocation(), diag::note_template_prev_declaration)
5598 << (Kind != Sema::TPL_TemplateMatch);
5599 }
5600
5601 return false;
5602 }
5603
5604 // Check that both are parameter packs are neither are parameter packs.
5605 // However, if we are matching a template template argument to a
5606 // template template parameter, the template template parameter can have
5607 // a parameter pack where the template template argument does not.
5608 if (Old->isTemplateParameterPack() != New->isTemplateParameterPack() &&
5609 !(Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5610 Old->isTemplateParameterPack())) {
5611 if (Complain) {
5612 unsigned NextDiag = diag::err_template_parameter_pack_non_pack;
5613 if (TemplateArgLoc.isValid()) {
5614 S.Diag(TemplateArgLoc,
5615 diag::err_template_arg_template_params_mismatch);
5616 NextDiag = diag::note_template_parameter_pack_non_pack;
5617 }
5618
5619 unsigned ParamKind = isa<TemplateTypeParmDecl>(New)? 0
5620 : isa<NonTypeTemplateParmDecl>(New)? 1
5621 : 2;
5622 S.Diag(New->getLocation(), NextDiag)
5623 << ParamKind << New->isParameterPack();
5624 S.Diag(Old->getLocation(), diag::note_template_parameter_pack_here)
5625 << ParamKind << Old->isParameterPack();
5626 }
5627
5628 return false;
5629 }
5630
5631 // For non-type template parameters, check the type of the parameter.
5632 if (NonTypeTemplateParmDecl *OldNTTP
5633 = dyn_cast<NonTypeTemplateParmDecl>(Old)) {
5634 NonTypeTemplateParmDecl *NewNTTP = cast<NonTypeTemplateParmDecl>(New);
5635
5636 // If we are matching a template template argument to a template
5637 // template parameter and one of the non-type template parameter types
5638 // is dependent, then we must wait until template instantiation time
5639 // to actually compare the arguments.
5640 if (Kind == Sema::TPL_TemplateTemplateArgumentMatch &&
5641 (OldNTTP->getType()->isDependentType() ||
5642 NewNTTP->getType()->isDependentType()))
5643 return true;
5644
5645 if (!S.Context.hasSameType(OldNTTP->getType(), NewNTTP->getType())) {
5646 if (Complain) {
5647 unsigned NextDiag = diag::err_template_nontype_parm_different_type;
5648 if (TemplateArgLoc.isValid()) {
5649 S.Diag(TemplateArgLoc,
5650 diag::err_template_arg_template_params_mismatch);
5651 NextDiag = diag::note_template_nontype_parm_different_type;
5652 }
5653 S.Diag(NewNTTP->getLocation(), NextDiag)
5654 << NewNTTP->getType()
5655 << (Kind != Sema::TPL_TemplateMatch);
5656 S.Diag(OldNTTP->getLocation(),
5657 diag::note_template_nontype_parm_prev_declaration)
5658 << OldNTTP->getType();
5659 }
5660
5661 return false;
5662 }
5663
5664 return true;
5665 }
5666
5667 // For template template parameters, check the template parameter types.
5668 // The template parameter lists of template template
5669 // parameters must agree.
5670 if (TemplateTemplateParmDecl *OldTTP
5671 = dyn_cast<TemplateTemplateParmDecl>(Old)) {
5672 TemplateTemplateParmDecl *NewTTP = cast<TemplateTemplateParmDecl>(New);
5673 return S.TemplateParameterListsAreEqual(NewTTP->getTemplateParameters(),
5674 OldTTP->getTemplateParameters(),
5675 Complain,
5676 (Kind == Sema::TPL_TemplateMatch
5677 ? Sema::TPL_TemplateTemplateParmMatch
5678 : Kind),
5679 TemplateArgLoc);
5680 }
5681
5682 return true;
5683 }
5684
5685 /// \brief Diagnose a known arity mismatch when comparing template argument
5686 /// lists.
5687 static
DiagnoseTemplateParameterListArityMismatch(Sema & S,TemplateParameterList * New,TemplateParameterList * Old,Sema::TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5688 void DiagnoseTemplateParameterListArityMismatch(Sema &S,
5689 TemplateParameterList *New,
5690 TemplateParameterList *Old,
5691 Sema::TemplateParameterListEqualKind Kind,
5692 SourceLocation TemplateArgLoc) {
5693 unsigned NextDiag = diag::err_template_param_list_different_arity;
5694 if (TemplateArgLoc.isValid()) {
5695 S.Diag(TemplateArgLoc, diag::err_template_arg_template_params_mismatch);
5696 NextDiag = diag::note_template_param_list_different_arity;
5697 }
5698 S.Diag(New->getTemplateLoc(), NextDiag)
5699 << (New->size() > Old->size())
5700 << (Kind != Sema::TPL_TemplateMatch)
5701 << SourceRange(New->getTemplateLoc(), New->getRAngleLoc());
5702 S.Diag(Old->getTemplateLoc(), diag::note_template_prev_declaration)
5703 << (Kind != Sema::TPL_TemplateMatch)
5704 << SourceRange(Old->getTemplateLoc(), Old->getRAngleLoc());
5705 }
5706
5707 /// \brief Determine whether the given template parameter lists are
5708 /// equivalent.
5709 ///
5710 /// \param New The new template parameter list, typically written in the
5711 /// source code as part of a new template declaration.
5712 ///
5713 /// \param Old The old template parameter list, typically found via
5714 /// name lookup of the template declared with this template parameter
5715 /// list.
5716 ///
5717 /// \param Complain If true, this routine will produce a diagnostic if
5718 /// the template parameter lists are not equivalent.
5719 ///
5720 /// \param Kind describes how we are to match the template parameter lists.
5721 ///
5722 /// \param TemplateArgLoc If this source location is valid, then we
5723 /// are actually checking the template parameter list of a template
5724 /// argument (New) against the template parameter list of its
5725 /// corresponding template template parameter (Old). We produce
5726 /// slightly different diagnostics in this scenario.
5727 ///
5728 /// \returns True if the template parameter lists are equal, false
5729 /// otherwise.
5730 bool
TemplateParameterListsAreEqual(TemplateParameterList * New,TemplateParameterList * Old,bool Complain,TemplateParameterListEqualKind Kind,SourceLocation TemplateArgLoc)5731 Sema::TemplateParameterListsAreEqual(TemplateParameterList *New,
5732 TemplateParameterList *Old,
5733 bool Complain,
5734 TemplateParameterListEqualKind Kind,
5735 SourceLocation TemplateArgLoc) {
5736 if (Old->size() != New->size() && Kind != TPL_TemplateTemplateArgumentMatch) {
5737 if (Complain)
5738 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5739 TemplateArgLoc);
5740
5741 return false;
5742 }
5743
5744 // C++0x [temp.arg.template]p3:
5745 // A template-argument matches a template template-parameter (call it P)
5746 // when each of the template parameters in the template-parameter-list of
5747 // the template-argument's corresponding class template or alias template
5748 // (call it A) matches the corresponding template parameter in the
5749 // template-parameter-list of P. [...]
5750 TemplateParameterList::iterator NewParm = New->begin();
5751 TemplateParameterList::iterator NewParmEnd = New->end();
5752 for (TemplateParameterList::iterator OldParm = Old->begin(),
5753 OldParmEnd = Old->end();
5754 OldParm != OldParmEnd; ++OldParm) {
5755 if (Kind != TPL_TemplateTemplateArgumentMatch ||
5756 !(*OldParm)->isTemplateParameterPack()) {
5757 if (NewParm == NewParmEnd) {
5758 if (Complain)
5759 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5760 TemplateArgLoc);
5761
5762 return false;
5763 }
5764
5765 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5766 Kind, TemplateArgLoc))
5767 return false;
5768
5769 ++NewParm;
5770 continue;
5771 }
5772
5773 // C++0x [temp.arg.template]p3:
5774 // [...] When P's template- parameter-list contains a template parameter
5775 // pack (14.5.3), the template parameter pack will match zero or more
5776 // template parameters or template parameter packs in the
5777 // template-parameter-list of A with the same type and form as the
5778 // template parameter pack in P (ignoring whether those template
5779 // parameters are template parameter packs).
5780 for (; NewParm != NewParmEnd; ++NewParm) {
5781 if (!MatchTemplateParameterKind(*this, *NewParm, *OldParm, Complain,
5782 Kind, TemplateArgLoc))
5783 return false;
5784 }
5785 }
5786
5787 // Make sure we exhausted all of the arguments.
5788 if (NewParm != NewParmEnd) {
5789 if (Complain)
5790 DiagnoseTemplateParameterListArityMismatch(*this, New, Old, Kind,
5791 TemplateArgLoc);
5792
5793 return false;
5794 }
5795
5796 return true;
5797 }
5798
5799 /// \brief Check whether a template can be declared within this scope.
5800 ///
5801 /// If the template declaration is valid in this scope, returns
5802 /// false. Otherwise, issues a diagnostic and returns true.
5803 bool
CheckTemplateDeclScope(Scope * S,TemplateParameterList * TemplateParams)5804 Sema::CheckTemplateDeclScope(Scope *S, TemplateParameterList *TemplateParams) {
5805 if (!S)
5806 return false;
5807
5808 // Find the nearest enclosing declaration scope.
5809 while ((S->getFlags() & Scope::DeclScope) == 0 ||
5810 (S->getFlags() & Scope::TemplateParamScope) != 0)
5811 S = S->getParent();
5812
5813 // C++ [temp]p4:
5814 // A template [...] shall not have C linkage.
5815 DeclContext *Ctx = S->getEntity();
5816 if (Ctx && Ctx->isExternCContext())
5817 return Diag(TemplateParams->getTemplateLoc(), diag::err_template_linkage)
5818 << TemplateParams->getSourceRange();
5819
5820 while (Ctx && isa<LinkageSpecDecl>(Ctx))
5821 Ctx = Ctx->getParent();
5822
5823 // C++ [temp]p2:
5824 // A template-declaration can appear only as a namespace scope or
5825 // class scope declaration.
5826 if (Ctx) {
5827 if (Ctx->isFileContext())
5828 return false;
5829 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Ctx)) {
5830 // C++ [temp.mem]p2:
5831 // A local class shall not have member templates.
5832 if (RD->isLocalClass())
5833 return Diag(TemplateParams->getTemplateLoc(),
5834 diag::err_template_inside_local_class)
5835 << TemplateParams->getSourceRange();
5836 else
5837 return false;
5838 }
5839 }
5840
5841 return Diag(TemplateParams->getTemplateLoc(),
5842 diag::err_template_outside_namespace_or_class_scope)
5843 << TemplateParams->getSourceRange();
5844 }
5845
5846 /// \brief Determine what kind of template specialization the given declaration
5847 /// is.
getTemplateSpecializationKind(Decl * D)5848 static TemplateSpecializationKind getTemplateSpecializationKind(Decl *D) {
5849 if (!D)
5850 return TSK_Undeclared;
5851
5852 if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(D))
5853 return Record->getTemplateSpecializationKind();
5854 if (FunctionDecl *Function = dyn_cast<FunctionDecl>(D))
5855 return Function->getTemplateSpecializationKind();
5856 if (VarDecl *Var = dyn_cast<VarDecl>(D))
5857 return Var->getTemplateSpecializationKind();
5858
5859 return TSK_Undeclared;
5860 }
5861
5862 /// \brief Check whether a specialization is well-formed in the current
5863 /// context.
5864 ///
5865 /// This routine determines whether a template specialization can be declared
5866 /// in the current context (C++ [temp.expl.spec]p2).
5867 ///
5868 /// \param S the semantic analysis object for which this check is being
5869 /// performed.
5870 ///
5871 /// \param Specialized the entity being specialized or instantiated, which
5872 /// may be a kind of template (class template, function template, etc.) or
5873 /// a member of a class template (member function, static data member,
5874 /// member class).
5875 ///
5876 /// \param PrevDecl the previous declaration of this entity, if any.
5877 ///
5878 /// \param Loc the location of the explicit specialization or instantiation of
5879 /// this entity.
5880 ///
5881 /// \param IsPartialSpecialization whether this is a partial specialization of
5882 /// a class template.
5883 ///
5884 /// \returns true if there was an error that we cannot recover from, false
5885 /// otherwise.
CheckTemplateSpecializationScope(Sema & S,NamedDecl * Specialized,NamedDecl * PrevDecl,SourceLocation Loc,bool IsPartialSpecialization)5886 static bool CheckTemplateSpecializationScope(Sema &S,
5887 NamedDecl *Specialized,
5888 NamedDecl *PrevDecl,
5889 SourceLocation Loc,
5890 bool IsPartialSpecialization) {
5891 // Keep these "kind" numbers in sync with the %select statements in the
5892 // various diagnostics emitted by this routine.
5893 int EntityKind = 0;
5894 if (isa<ClassTemplateDecl>(Specialized))
5895 EntityKind = IsPartialSpecialization? 1 : 0;
5896 else if (isa<VarTemplateDecl>(Specialized))
5897 EntityKind = IsPartialSpecialization ? 3 : 2;
5898 else if (isa<FunctionTemplateDecl>(Specialized))
5899 EntityKind = 4;
5900 else if (isa<CXXMethodDecl>(Specialized))
5901 EntityKind = 5;
5902 else if (isa<VarDecl>(Specialized))
5903 EntityKind = 6;
5904 else if (isa<RecordDecl>(Specialized))
5905 EntityKind = 7;
5906 else if (isa<EnumDecl>(Specialized) && S.getLangOpts().CPlusPlus11)
5907 EntityKind = 8;
5908 else {
5909 S.Diag(Loc, diag::err_template_spec_unknown_kind)
5910 << S.getLangOpts().CPlusPlus11;
5911 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5912 return true;
5913 }
5914
5915 // C++ [temp.expl.spec]p2:
5916 // An explicit specialization shall be declared in the namespace
5917 // of which the template is a member, or, for member templates, in
5918 // the namespace of which the enclosing class or enclosing class
5919 // template is a member. An explicit specialization of a member
5920 // function, member class or static data member of a class
5921 // template shall be declared in the namespace of which the class
5922 // template is a member. Such a declaration may also be a
5923 // definition. If the declaration is not a definition, the
5924 // specialization may be defined later in the name- space in which
5925 // the explicit specialization was declared, or in a namespace
5926 // that encloses the one in which the explicit specialization was
5927 // declared.
5928 if (S.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5929 S.Diag(Loc, diag::err_template_spec_decl_function_scope)
5930 << Specialized;
5931 return true;
5932 }
5933
5934 if (S.CurContext->isRecord() && !IsPartialSpecialization) {
5935 if (S.getLangOpts().MicrosoftExt) {
5936 // Do not warn for class scope explicit specialization during
5937 // instantiation, warning was already emitted during pattern
5938 // semantic analysis.
5939 if (!S.ActiveTemplateInstantiations.size())
5940 S.Diag(Loc, diag::ext_function_specialization_in_class)
5941 << Specialized;
5942 } else {
5943 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5944 << Specialized;
5945 return true;
5946 }
5947 }
5948
5949 if (S.CurContext->isRecord() &&
5950 !S.CurContext->Equals(Specialized->getDeclContext())) {
5951 // Make sure that we're specializing in the right record context.
5952 // Otherwise, things can go horribly wrong.
5953 S.Diag(Loc, diag::err_template_spec_decl_class_scope)
5954 << Specialized;
5955 return true;
5956 }
5957
5958 // C++ [temp.class.spec]p6:
5959 // A class template partial specialization may be declared or redeclared
5960 // in any namespace scope in which its definition may be defined (14.5.1
5961 // and 14.5.2).
5962 DeclContext *SpecializedContext
5963 = Specialized->getDeclContext()->getEnclosingNamespaceContext();
5964 DeclContext *DC = S.CurContext->getEnclosingNamespaceContext();
5965
5966 // Make sure that this redeclaration (or definition) occurs in an enclosing
5967 // namespace.
5968 // Note that HandleDeclarator() performs this check for explicit
5969 // specializations of function templates, static data members, and member
5970 // functions, so we skip the check here for those kinds of entities.
5971 // FIXME: HandleDeclarator's diagnostics aren't quite as good, though.
5972 // Should we refactor that check, so that it occurs later?
5973 if (!DC->Encloses(SpecializedContext) &&
5974 !(isa<FunctionTemplateDecl>(Specialized) ||
5975 isa<FunctionDecl>(Specialized) ||
5976 isa<VarTemplateDecl>(Specialized) ||
5977 isa<VarDecl>(Specialized))) {
5978 if (isa<TranslationUnitDecl>(SpecializedContext))
5979 S.Diag(Loc, diag::err_template_spec_redecl_global_scope)
5980 << EntityKind << Specialized;
5981 else if (isa<NamespaceDecl>(SpecializedContext)) {
5982 int Diag = diag::err_template_spec_redecl_out_of_scope;
5983 if (S.getLangOpts().MicrosoftExt)
5984 Diag = diag::ext_ms_template_spec_redecl_out_of_scope;
5985 S.Diag(Loc, Diag) << EntityKind << Specialized
5986 << cast<NamedDecl>(SpecializedContext);
5987 } else
5988 llvm_unreachable("unexpected namespace context for specialization");
5989
5990 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
5991 } else if ((!PrevDecl ||
5992 getTemplateSpecializationKind(PrevDecl) == TSK_Undeclared ||
5993 getTemplateSpecializationKind(PrevDecl) ==
5994 TSK_ImplicitInstantiation)) {
5995 // C++ [temp.exp.spec]p2:
5996 // An explicit specialization shall be declared in the namespace of which
5997 // the template is a member, or, for member templates, in the namespace
5998 // of which the enclosing class or enclosing class template is a member.
5999 // An explicit specialization of a member function, member class or
6000 // static data member of a class template shall be declared in the
6001 // namespace of which the class template is a member.
6002 //
6003 // C++11 [temp.expl.spec]p2:
6004 // An explicit specialization shall be declared in a namespace enclosing
6005 // the specialized template.
6006 // C++11 [temp.explicit]p3:
6007 // An explicit instantiation shall appear in an enclosing namespace of its
6008 // template.
6009 if (!DC->InEnclosingNamespaceSetOf(SpecializedContext)) {
6010 bool IsCPlusPlus11Extension = DC->Encloses(SpecializedContext);
6011 if (isa<TranslationUnitDecl>(SpecializedContext)) {
6012 assert(!IsCPlusPlus11Extension &&
6013 "DC encloses TU but isn't in enclosing namespace set");
6014 S.Diag(Loc, diag::err_template_spec_decl_out_of_scope_global)
6015 << EntityKind << Specialized;
6016 } else if (isa<NamespaceDecl>(SpecializedContext)) {
6017 int Diag;
6018 if (!IsCPlusPlus11Extension)
6019 Diag = diag::err_template_spec_decl_out_of_scope;
6020 else if (!S.getLangOpts().CPlusPlus11)
6021 Diag = diag::ext_template_spec_decl_out_of_scope;
6022 else
6023 Diag = diag::warn_cxx98_compat_template_spec_decl_out_of_scope;
6024 S.Diag(Loc, Diag)
6025 << EntityKind << Specialized << cast<NamedDecl>(SpecializedContext);
6026 }
6027
6028 S.Diag(Specialized->getLocation(), diag::note_specialized_entity);
6029 }
6030 }
6031
6032 return false;
6033 }
6034
findTemplateParameter(unsigned Depth,Expr * E)6035 static SourceRange findTemplateParameter(unsigned Depth, Expr *E) {
6036 if (!E->isInstantiationDependent())
6037 return SourceLocation();
6038 DependencyChecker Checker(Depth);
6039 Checker.TraverseStmt(E);
6040 if (Checker.Match && Checker.MatchLoc.isInvalid())
6041 return E->getSourceRange();
6042 return Checker.MatchLoc;
6043 }
6044
findTemplateParameter(unsigned Depth,TypeLoc TL)6045 static SourceRange findTemplateParameter(unsigned Depth, TypeLoc TL) {
6046 if (!TL.getType()->isDependentType())
6047 return SourceLocation();
6048 DependencyChecker Checker(Depth);
6049 Checker.TraverseTypeLoc(TL);
6050 if (Checker.Match && Checker.MatchLoc.isInvalid())
6051 return TL.getSourceRange();
6052 return Checker.MatchLoc;
6053 }
6054
6055 /// \brief Subroutine of Sema::CheckTemplatePartialSpecializationArgs
6056 /// that checks non-type template partial specialization arguments.
CheckNonTypeTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,NonTypeTemplateParmDecl * Param,const TemplateArgument * Args,unsigned NumArgs,bool IsDefaultArgument)6057 static bool CheckNonTypeTemplatePartialSpecializationArgs(
6058 Sema &S, SourceLocation TemplateNameLoc, NonTypeTemplateParmDecl *Param,
6059 const TemplateArgument *Args, unsigned NumArgs, bool IsDefaultArgument) {
6060 for (unsigned I = 0; I != NumArgs; ++I) {
6061 if (Args[I].getKind() == TemplateArgument::Pack) {
6062 if (CheckNonTypeTemplatePartialSpecializationArgs(
6063 S, TemplateNameLoc, Param, Args[I].pack_begin(),
6064 Args[I].pack_size(), IsDefaultArgument))
6065 return true;
6066
6067 continue;
6068 }
6069
6070 if (Args[I].getKind() != TemplateArgument::Expression)
6071 continue;
6072
6073 Expr *ArgExpr = Args[I].getAsExpr();
6074
6075 // We can have a pack expansion of any of the bullets below.
6076 if (PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(ArgExpr))
6077 ArgExpr = Expansion->getPattern();
6078
6079 // Strip off any implicit casts we added as part of type checking.
6080 while (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(ArgExpr))
6081 ArgExpr = ICE->getSubExpr();
6082
6083 // C++ [temp.class.spec]p8:
6084 // A non-type argument is non-specialized if it is the name of a
6085 // non-type parameter. All other non-type arguments are
6086 // specialized.
6087 //
6088 // Below, we check the two conditions that only apply to
6089 // specialized non-type arguments, so skip any non-specialized
6090 // arguments.
6091 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ArgExpr))
6092 if (isa<NonTypeTemplateParmDecl>(DRE->getDecl()))
6093 continue;
6094
6095 // C++ [temp.class.spec]p9:
6096 // Within the argument list of a class template partial
6097 // specialization, the following restrictions apply:
6098 // -- A partially specialized non-type argument expression
6099 // shall not involve a template parameter of the partial
6100 // specialization except when the argument expression is a
6101 // simple identifier.
6102 SourceRange ParamUseRange =
6103 findTemplateParameter(Param->getDepth(), ArgExpr);
6104 if (ParamUseRange.isValid()) {
6105 if (IsDefaultArgument) {
6106 S.Diag(TemplateNameLoc,
6107 diag::err_dependent_non_type_arg_in_partial_spec);
6108 S.Diag(ParamUseRange.getBegin(),
6109 diag::note_dependent_non_type_default_arg_in_partial_spec)
6110 << ParamUseRange;
6111 } else {
6112 S.Diag(ParamUseRange.getBegin(),
6113 diag::err_dependent_non_type_arg_in_partial_spec)
6114 << ParamUseRange;
6115 }
6116 return true;
6117 }
6118
6119 // -- The type of a template parameter corresponding to a
6120 // specialized non-type argument shall not be dependent on a
6121 // parameter of the specialization.
6122 //
6123 // FIXME: We need to delay this check until instantiation in some cases:
6124 //
6125 // template<template<typename> class X> struct A {
6126 // template<typename T, X<T> N> struct B;
6127 // template<typename T> struct B<T, 0>;
6128 // };
6129 // template<typename> using X = int;
6130 // A<X>::B<int, 0> b;
6131 ParamUseRange = findTemplateParameter(
6132 Param->getDepth(), Param->getTypeSourceInfo()->getTypeLoc());
6133 if (ParamUseRange.isValid()) {
6134 S.Diag(IsDefaultArgument ? TemplateNameLoc : ArgExpr->getLocStart(),
6135 diag::err_dependent_typed_non_type_arg_in_partial_spec)
6136 << Param->getType() << ParamUseRange;
6137 S.Diag(Param->getLocation(), diag::note_template_param_here)
6138 << (IsDefaultArgument ? ParamUseRange : SourceRange());
6139 return true;
6140 }
6141 }
6142
6143 return false;
6144 }
6145
6146 /// \brief Check the non-type template arguments of a class template
6147 /// partial specialization according to C++ [temp.class.spec]p9.
6148 ///
6149 /// \param TemplateNameLoc the location of the template name.
6150 /// \param TemplateParams the template parameters of the primary class
6151 /// template.
6152 /// \param NumExplicit the number of explicitly-specified template arguments.
6153 /// \param TemplateArgs the template arguments of the class template
6154 /// partial specialization.
6155 ///
6156 /// \returns \c true if there was an error, \c false otherwise.
CheckTemplatePartialSpecializationArgs(Sema & S,SourceLocation TemplateNameLoc,TemplateParameterList * TemplateParams,unsigned NumExplicit,SmallVectorImpl<TemplateArgument> & TemplateArgs)6157 static bool CheckTemplatePartialSpecializationArgs(
6158 Sema &S, SourceLocation TemplateNameLoc,
6159 TemplateParameterList *TemplateParams, unsigned NumExplicit,
6160 SmallVectorImpl<TemplateArgument> &TemplateArgs) {
6161 const TemplateArgument *ArgList = TemplateArgs.data();
6162
6163 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
6164 NonTypeTemplateParmDecl *Param
6165 = dyn_cast<NonTypeTemplateParmDecl>(TemplateParams->getParam(I));
6166 if (!Param)
6167 continue;
6168
6169 if (CheckNonTypeTemplatePartialSpecializationArgs(
6170 S, TemplateNameLoc, Param, &ArgList[I], 1, I >= NumExplicit))
6171 return true;
6172 }
6173
6174 return false;
6175 }
6176
6177 DeclResult
ActOnClassTemplateSpecialization(Scope * S,unsigned TagSpec,TagUseKind TUK,SourceLocation KWLoc,SourceLocation ModulePrivateLoc,TemplateIdAnnotation & TemplateId,AttributeList * Attr,MultiTemplateParamsArg TemplateParameterLists,SkipBodyInfo * SkipBody)6178 Sema::ActOnClassTemplateSpecialization(Scope *S, unsigned TagSpec,
6179 TagUseKind TUK,
6180 SourceLocation KWLoc,
6181 SourceLocation ModulePrivateLoc,
6182 TemplateIdAnnotation &TemplateId,
6183 AttributeList *Attr,
6184 MultiTemplateParamsArg
6185 TemplateParameterLists,
6186 SkipBodyInfo *SkipBody) {
6187 assert(TUK != TUK_Reference && "References are not specializations");
6188
6189 CXXScopeSpec &SS = TemplateId.SS;
6190
6191 // NOTE: KWLoc is the location of the tag keyword. This will instead
6192 // store the location of the outermost template keyword in the declaration.
6193 SourceLocation TemplateKWLoc = TemplateParameterLists.size() > 0
6194 ? TemplateParameterLists[0]->getTemplateLoc() : KWLoc;
6195 SourceLocation TemplateNameLoc = TemplateId.TemplateNameLoc;
6196 SourceLocation LAngleLoc = TemplateId.LAngleLoc;
6197 SourceLocation RAngleLoc = TemplateId.RAngleLoc;
6198
6199 // Find the class template we're specializing
6200 TemplateName Name = TemplateId.Template.get();
6201 ClassTemplateDecl *ClassTemplate
6202 = dyn_cast_or_null<ClassTemplateDecl>(Name.getAsTemplateDecl());
6203
6204 if (!ClassTemplate) {
6205 Diag(TemplateNameLoc, diag::err_not_class_template_specialization)
6206 << (Name.getAsTemplateDecl() &&
6207 isa<TemplateTemplateParmDecl>(Name.getAsTemplateDecl()));
6208 return true;
6209 }
6210
6211 bool isExplicitSpecialization = false;
6212 bool isPartialSpecialization = false;
6213
6214 // Check the validity of the template headers that introduce this
6215 // template.
6216 // FIXME: We probably shouldn't complain about these headers for
6217 // friend declarations.
6218 bool Invalid = false;
6219 TemplateParameterList *TemplateParams =
6220 MatchTemplateParametersToScopeSpecifier(
6221 KWLoc, TemplateNameLoc, SS, &TemplateId,
6222 TemplateParameterLists, TUK == TUK_Friend, isExplicitSpecialization,
6223 Invalid);
6224 if (Invalid)
6225 return true;
6226
6227 if (TemplateParams && TemplateParams->size() > 0) {
6228 isPartialSpecialization = true;
6229
6230 if (TUK == TUK_Friend) {
6231 Diag(KWLoc, diag::err_partial_specialization_friend)
6232 << SourceRange(LAngleLoc, RAngleLoc);
6233 return true;
6234 }
6235
6236 // C++ [temp.class.spec]p10:
6237 // The template parameter list of a specialization shall not
6238 // contain default template argument values.
6239 for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
6240 Decl *Param = TemplateParams->getParam(I);
6241 if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(Param)) {
6242 if (TTP->hasDefaultArgument()) {
6243 Diag(TTP->getDefaultArgumentLoc(),
6244 diag::err_default_arg_in_partial_spec);
6245 TTP->removeDefaultArgument();
6246 }
6247 } else if (NonTypeTemplateParmDecl *NTTP
6248 = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
6249 if (Expr *DefArg = NTTP->getDefaultArgument()) {
6250 Diag(NTTP->getDefaultArgumentLoc(),
6251 diag::err_default_arg_in_partial_spec)
6252 << DefArg->getSourceRange();
6253 NTTP->removeDefaultArgument();
6254 }
6255 } else {
6256 TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(Param);
6257 if (TTP->hasDefaultArgument()) {
6258 Diag(TTP->getDefaultArgument().getLocation(),
6259 diag::err_default_arg_in_partial_spec)
6260 << TTP->getDefaultArgument().getSourceRange();
6261 TTP->removeDefaultArgument();
6262 }
6263 }
6264 }
6265 } else if (TemplateParams) {
6266 if (TUK == TUK_Friend)
6267 Diag(KWLoc, diag::err_template_spec_friend)
6268 << FixItHint::CreateRemoval(
6269 SourceRange(TemplateParams->getTemplateLoc(),
6270 TemplateParams->getRAngleLoc()))
6271 << SourceRange(LAngleLoc, RAngleLoc);
6272 else
6273 isExplicitSpecialization = true;
6274 } else {
6275 assert(TUK == TUK_Friend && "should have a 'template<>' for this decl");
6276 }
6277
6278 // Check that the specialization uses the same tag kind as the
6279 // original template.
6280 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6281 assert(Kind != TTK_Enum && "Invalid enum tag in class template spec!");
6282 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
6283 Kind, TUK == TUK_Definition, KWLoc,
6284 ClassTemplate->getIdentifier())) {
6285 Diag(KWLoc, diag::err_use_with_wrong_tag)
6286 << ClassTemplate
6287 << FixItHint::CreateReplacement(KWLoc,
6288 ClassTemplate->getTemplatedDecl()->getKindName());
6289 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
6290 diag::note_previous_use);
6291 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
6292 }
6293
6294 // Translate the parser's template argument list in our AST format.
6295 TemplateArgumentListInfo TemplateArgs =
6296 makeTemplateArgumentListInfo(*this, TemplateId);
6297
6298 // Check for unexpanded parameter packs in any of the template arguments.
6299 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
6300 if (DiagnoseUnexpandedParameterPack(TemplateArgs[I],
6301 UPPC_PartialSpecialization))
6302 return true;
6303
6304 // Check that the template argument list is well-formed for this
6305 // template.
6306 SmallVector<TemplateArgument, 4> Converted;
6307 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
6308 TemplateArgs, false, Converted))
6309 return true;
6310
6311 // Find the class template (partial) specialization declaration that
6312 // corresponds to these arguments.
6313 if (isPartialSpecialization) {
6314 if (CheckTemplatePartialSpecializationArgs(
6315 *this, TemplateNameLoc, ClassTemplate->getTemplateParameters(),
6316 TemplateArgs.size(), Converted))
6317 return true;
6318
6319 bool InstantiationDependent;
6320 if (!Name.isDependent() &&
6321 !TemplateSpecializationType::anyDependentTemplateArguments(
6322 TemplateArgs.arguments(), InstantiationDependent)) {
6323 Diag(TemplateNameLoc, diag::err_partial_spec_fully_specialized)
6324 << ClassTemplate->getDeclName();
6325 isPartialSpecialization = false;
6326 }
6327 }
6328
6329 void *InsertPos = nullptr;
6330 ClassTemplateSpecializationDecl *PrevDecl = nullptr;
6331
6332 if (isPartialSpecialization)
6333 // FIXME: Template parameter list matters, too
6334 PrevDecl = ClassTemplate->findPartialSpecialization(Converted, InsertPos);
6335 else
6336 PrevDecl = ClassTemplate->findSpecialization(Converted, InsertPos);
6337
6338 ClassTemplateSpecializationDecl *Specialization = nullptr;
6339
6340 // Check whether we can declare a class template specialization in
6341 // the current scope.
6342 if (TUK != TUK_Friend &&
6343 CheckTemplateSpecializationScope(*this, ClassTemplate, PrevDecl,
6344 TemplateNameLoc,
6345 isPartialSpecialization))
6346 return true;
6347
6348 // The canonical type
6349 QualType CanonType;
6350 if (isPartialSpecialization) {
6351 // Build the canonical type that describes the converted template
6352 // arguments of the class template partial specialization.
6353 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
6354 CanonType = Context.getTemplateSpecializationType(CanonTemplate,
6355 Converted);
6356
6357 if (Context.hasSameType(CanonType,
6358 ClassTemplate->getInjectedClassNameSpecialization())) {
6359 // C++ [temp.class.spec]p9b3:
6360 //
6361 // -- The argument list of the specialization shall not be identical
6362 // to the implicit argument list of the primary template.
6363 Diag(TemplateNameLoc, diag::err_partial_spec_args_match_primary_template)
6364 << /*class template*/0 << (TUK == TUK_Definition)
6365 << FixItHint::CreateRemoval(SourceRange(LAngleLoc, RAngleLoc));
6366 return CheckClassTemplate(S, TagSpec, TUK, KWLoc, SS,
6367 ClassTemplate->getIdentifier(),
6368 TemplateNameLoc,
6369 Attr,
6370 TemplateParams,
6371 AS_none, /*ModulePrivateLoc=*/SourceLocation(),
6372 /*FriendLoc*/SourceLocation(),
6373 TemplateParameterLists.size() - 1,
6374 TemplateParameterLists.data());
6375 }
6376
6377 // Create a new class template partial specialization declaration node.
6378 ClassTemplatePartialSpecializationDecl *PrevPartial
6379 = cast_or_null<ClassTemplatePartialSpecializationDecl>(PrevDecl);
6380 ClassTemplatePartialSpecializationDecl *Partial
6381 = ClassTemplatePartialSpecializationDecl::Create(Context, Kind,
6382 ClassTemplate->getDeclContext(),
6383 KWLoc, TemplateNameLoc,
6384 TemplateParams,
6385 ClassTemplate,
6386 Converted,
6387 TemplateArgs,
6388 CanonType,
6389 PrevPartial);
6390 SetNestedNameSpecifier(Partial, SS);
6391 if (TemplateParameterLists.size() > 1 && SS.isSet()) {
6392 Partial->setTemplateParameterListsInfo(
6393 Context, TemplateParameterLists.drop_back(1));
6394 }
6395
6396 if (!PrevPartial)
6397 ClassTemplate->AddPartialSpecialization(Partial, InsertPos);
6398 Specialization = Partial;
6399
6400 // If we are providing an explicit specialization of a member class
6401 // template specialization, make a note of that.
6402 if (PrevPartial && PrevPartial->getInstantiatedFromMember())
6403 PrevPartial->setMemberSpecialization();
6404
6405 // Check that all of the template parameters of the class template
6406 // partial specialization are deducible from the template
6407 // arguments. If not, this class template partial specialization
6408 // will never be used.
6409 llvm::SmallBitVector DeducibleParams(TemplateParams->size());
6410 MarkUsedTemplateParameters(Partial->getTemplateArgs(), true,
6411 TemplateParams->getDepth(),
6412 DeducibleParams);
6413
6414 if (!DeducibleParams.all()) {
6415 unsigned NumNonDeducible = DeducibleParams.size()-DeducibleParams.count();
6416 Diag(TemplateNameLoc, diag::warn_partial_specs_not_deducible)
6417 << /*class template*/0 << (NumNonDeducible > 1)
6418 << SourceRange(TemplateNameLoc, RAngleLoc);
6419 for (unsigned I = 0, N = DeducibleParams.size(); I != N; ++I) {
6420 if (!DeducibleParams[I]) {
6421 NamedDecl *Param = cast<NamedDecl>(TemplateParams->getParam(I));
6422 if (Param->getDeclName())
6423 Diag(Param->getLocation(),
6424 diag::note_partial_spec_unused_parameter)
6425 << Param->getDeclName();
6426 else
6427 Diag(Param->getLocation(),
6428 diag::note_partial_spec_unused_parameter)
6429 << "(anonymous)";
6430 }
6431 }
6432 }
6433 } else {
6434 // Create a new class template specialization declaration node for
6435 // this explicit specialization or friend declaration.
6436 Specialization
6437 = ClassTemplateSpecializationDecl::Create(Context, Kind,
6438 ClassTemplate->getDeclContext(),
6439 KWLoc, TemplateNameLoc,
6440 ClassTemplate,
6441 Converted,
6442 PrevDecl);
6443 SetNestedNameSpecifier(Specialization, SS);
6444 if (TemplateParameterLists.size() > 0) {
6445 Specialization->setTemplateParameterListsInfo(Context,
6446 TemplateParameterLists);
6447 }
6448
6449 if (!PrevDecl)
6450 ClassTemplate->AddSpecialization(Specialization, InsertPos);
6451
6452 if (CurContext->isDependentContext()) {
6453 // -fms-extensions permits specialization of nested classes without
6454 // fully specializing the outer class(es).
6455 assert(getLangOpts().MicrosoftExt &&
6456 "Only possible with -fms-extensions!");
6457 TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
6458 CanonType = Context.getTemplateSpecializationType(
6459 CanonTemplate, Converted);
6460 } else {
6461 CanonType = Context.getTypeDeclType(Specialization);
6462 }
6463 }
6464
6465 // C++ [temp.expl.spec]p6:
6466 // If a template, a member template or the member of a class template is
6467 // explicitly specialized then that specialization shall be declared
6468 // before the first use of that specialization that would cause an implicit
6469 // instantiation to take place, in every translation unit in which such a
6470 // use occurs; no diagnostic is required.
6471 if (PrevDecl && PrevDecl->getPointOfInstantiation().isValid()) {
6472 bool Okay = false;
6473 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6474 // Is there any previous explicit specialization declaration?
6475 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6476 Okay = true;
6477 break;
6478 }
6479 }
6480
6481 if (!Okay) {
6482 SourceRange Range(TemplateNameLoc, RAngleLoc);
6483 Diag(TemplateNameLoc, diag::err_specialization_after_instantiation)
6484 << Context.getTypeDeclType(Specialization) << Range;
6485
6486 Diag(PrevDecl->getPointOfInstantiation(),
6487 diag::note_instantiation_required_here)
6488 << (PrevDecl->getTemplateSpecializationKind()
6489 != TSK_ImplicitInstantiation);
6490 return true;
6491 }
6492 }
6493
6494 // If this is not a friend, note that this is an explicit specialization.
6495 if (TUK != TUK_Friend)
6496 Specialization->setSpecializationKind(TSK_ExplicitSpecialization);
6497
6498 // Check that this isn't a redefinition of this specialization.
6499 if (TUK == TUK_Definition) {
6500 RecordDecl *Def = Specialization->getDefinition();
6501 NamedDecl *Hidden = nullptr;
6502 if (Def && SkipBody && !hasVisibleDefinition(Def, &Hidden)) {
6503 SkipBody->ShouldSkip = true;
6504 makeMergedDefinitionVisible(Hidden, KWLoc);
6505 // From here on out, treat this as just a redeclaration.
6506 TUK = TUK_Declaration;
6507 } else if (Def) {
6508 SourceRange Range(TemplateNameLoc, RAngleLoc);
6509 Diag(TemplateNameLoc, diag::err_redefinition)
6510 << Context.getTypeDeclType(Specialization) << Range;
6511 Diag(Def->getLocation(), diag::note_previous_definition);
6512 Specialization->setInvalidDecl();
6513 return true;
6514 }
6515 }
6516
6517 if (Attr)
6518 ProcessDeclAttributeList(S, Specialization, Attr);
6519
6520 // Add alignment attributes if necessary; these attributes are checked when
6521 // the ASTContext lays out the structure.
6522 if (TUK == TUK_Definition) {
6523 AddAlignmentAttributesForRecord(Specialization);
6524 AddMsStructLayoutForRecord(Specialization);
6525 }
6526
6527 if (ModulePrivateLoc.isValid())
6528 Diag(Specialization->getLocation(), diag::err_module_private_specialization)
6529 << (isPartialSpecialization? 1 : 0)
6530 << FixItHint::CreateRemoval(ModulePrivateLoc);
6531
6532 // Build the fully-sugared type for this class template
6533 // specialization as the user wrote in the specialization
6534 // itself. This means that we'll pretty-print the type retrieved
6535 // from the specialization's declaration the way that the user
6536 // actually wrote the specialization, rather than formatting the
6537 // name based on the "canonical" representation used to store the
6538 // template arguments in the specialization.
6539 TypeSourceInfo *WrittenTy
6540 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
6541 TemplateArgs, CanonType);
6542 if (TUK != TUK_Friend) {
6543 Specialization->setTypeAsWritten(WrittenTy);
6544 Specialization->setTemplateKeywordLoc(TemplateKWLoc);
6545 }
6546
6547 // C++ [temp.expl.spec]p9:
6548 // A template explicit specialization is in the scope of the
6549 // namespace in which the template was defined.
6550 //
6551 // We actually implement this paragraph where we set the semantic
6552 // context (in the creation of the ClassTemplateSpecializationDecl),
6553 // but we also maintain the lexical context where the actual
6554 // definition occurs.
6555 Specialization->setLexicalDeclContext(CurContext);
6556
6557 // We may be starting the definition of this specialization.
6558 if (TUK == TUK_Definition)
6559 Specialization->startDefinition();
6560
6561 if (TUK == TUK_Friend) {
6562 FriendDecl *Friend = FriendDecl::Create(Context, CurContext,
6563 TemplateNameLoc,
6564 WrittenTy,
6565 /*FIXME:*/KWLoc);
6566 Friend->setAccess(AS_public);
6567 CurContext->addDecl(Friend);
6568 } else {
6569 // Add the specialization into its lexical context, so that it can
6570 // be seen when iterating through the list of declarations in that
6571 // context. However, specializations are not found by name lookup.
6572 CurContext->addDecl(Specialization);
6573 }
6574 return Specialization;
6575 }
6576
ActOnTemplateDeclarator(Scope * S,MultiTemplateParamsArg TemplateParameterLists,Declarator & D)6577 Decl *Sema::ActOnTemplateDeclarator(Scope *S,
6578 MultiTemplateParamsArg TemplateParameterLists,
6579 Declarator &D) {
6580 Decl *NewDecl = HandleDeclarator(S, D, TemplateParameterLists);
6581 ActOnDocumentableDecl(NewDecl);
6582 return NewDecl;
6583 }
6584
6585 /// \brief Strips various properties off an implicit instantiation
6586 /// that has just been explicitly specialized.
StripImplicitInstantiation(NamedDecl * D)6587 static void StripImplicitInstantiation(NamedDecl *D) {
6588 D->dropAttr<DLLImportAttr>();
6589 D->dropAttr<DLLExportAttr>();
6590
6591 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
6592 FD->setInlineSpecified(false);
6593 }
6594
6595 /// \brief Compute the diagnostic location for an explicit instantiation
6596 // declaration or definition.
DiagLocForExplicitInstantiation(NamedDecl * D,SourceLocation PointOfInstantiation)6597 static SourceLocation DiagLocForExplicitInstantiation(
6598 NamedDecl* D, SourceLocation PointOfInstantiation) {
6599 // Explicit instantiations following a specialization have no effect and
6600 // hence no PointOfInstantiation. In that case, walk decl backwards
6601 // until a valid name loc is found.
6602 SourceLocation PrevDiagLoc = PointOfInstantiation;
6603 for (Decl *Prev = D; Prev && !PrevDiagLoc.isValid();
6604 Prev = Prev->getPreviousDecl()) {
6605 PrevDiagLoc = Prev->getLocation();
6606 }
6607 assert(PrevDiagLoc.isValid() &&
6608 "Explicit instantiation without point of instantiation?");
6609 return PrevDiagLoc;
6610 }
6611
6612 /// \brief Diagnose cases where we have an explicit template specialization
6613 /// before/after an explicit template instantiation, producing diagnostics
6614 /// for those cases where they are required and determining whether the
6615 /// new specialization/instantiation will have any effect.
6616 ///
6617 /// \param NewLoc the location of the new explicit specialization or
6618 /// instantiation.
6619 ///
6620 /// \param NewTSK the kind of the new explicit specialization or instantiation.
6621 ///
6622 /// \param PrevDecl the previous declaration of the entity.
6623 ///
6624 /// \param PrevTSK the kind of the old explicit specialization or instantiatin.
6625 ///
6626 /// \param PrevPointOfInstantiation if valid, indicates where the previus
6627 /// declaration was instantiated (either implicitly or explicitly).
6628 ///
6629 /// \param HasNoEffect will be set to true to indicate that the new
6630 /// specialization or instantiation has no effect and should be ignored.
6631 ///
6632 /// \returns true if there was an error that should prevent the introduction of
6633 /// the new declaration into the AST, false otherwise.
6634 bool
CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,TemplateSpecializationKind NewTSK,NamedDecl * PrevDecl,TemplateSpecializationKind PrevTSK,SourceLocation PrevPointOfInstantiation,bool & HasNoEffect)6635 Sema::CheckSpecializationInstantiationRedecl(SourceLocation NewLoc,
6636 TemplateSpecializationKind NewTSK,
6637 NamedDecl *PrevDecl,
6638 TemplateSpecializationKind PrevTSK,
6639 SourceLocation PrevPointOfInstantiation,
6640 bool &HasNoEffect) {
6641 HasNoEffect = false;
6642
6643 switch (NewTSK) {
6644 case TSK_Undeclared:
6645 case TSK_ImplicitInstantiation:
6646 assert(
6647 (PrevTSK == TSK_Undeclared || PrevTSK == TSK_ImplicitInstantiation) &&
6648 "previous declaration must be implicit!");
6649 return false;
6650
6651 case TSK_ExplicitSpecialization:
6652 switch (PrevTSK) {
6653 case TSK_Undeclared:
6654 case TSK_ExplicitSpecialization:
6655 // Okay, we're just specializing something that is either already
6656 // explicitly specialized or has merely been mentioned without any
6657 // instantiation.
6658 return false;
6659
6660 case TSK_ImplicitInstantiation:
6661 if (PrevPointOfInstantiation.isInvalid()) {
6662 // The declaration itself has not actually been instantiated, so it is
6663 // still okay to specialize it.
6664 StripImplicitInstantiation(PrevDecl);
6665 return false;
6666 }
6667 // Fall through
6668
6669 case TSK_ExplicitInstantiationDeclaration:
6670 case TSK_ExplicitInstantiationDefinition:
6671 assert((PrevTSK == TSK_ImplicitInstantiation ||
6672 PrevPointOfInstantiation.isValid()) &&
6673 "Explicit instantiation without point of instantiation?");
6674
6675 // C++ [temp.expl.spec]p6:
6676 // If a template, a member template or the member of a class template
6677 // is explicitly specialized then that specialization shall be declared
6678 // before the first use of that specialization that would cause an
6679 // implicit instantiation to take place, in every translation unit in
6680 // which such a use occurs; no diagnostic is required.
6681 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6682 // Is there any previous explicit specialization declaration?
6683 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization)
6684 return false;
6685 }
6686
6687 Diag(NewLoc, diag::err_specialization_after_instantiation)
6688 << PrevDecl;
6689 Diag(PrevPointOfInstantiation, diag::note_instantiation_required_here)
6690 << (PrevTSK != TSK_ImplicitInstantiation);
6691
6692 return true;
6693 }
6694
6695 case TSK_ExplicitInstantiationDeclaration:
6696 switch (PrevTSK) {
6697 case TSK_ExplicitInstantiationDeclaration:
6698 // This explicit instantiation declaration is redundant (that's okay).
6699 HasNoEffect = true;
6700 return false;
6701
6702 case TSK_Undeclared:
6703 case TSK_ImplicitInstantiation:
6704 // We're explicitly instantiating something that may have already been
6705 // implicitly instantiated; that's fine.
6706 return false;
6707
6708 case TSK_ExplicitSpecialization:
6709 // C++0x [temp.explicit]p4:
6710 // For a given set of template parameters, if an explicit instantiation
6711 // of a template appears after a declaration of an explicit
6712 // specialization for that template, the explicit instantiation has no
6713 // effect.
6714 HasNoEffect = true;
6715 return false;
6716
6717 case TSK_ExplicitInstantiationDefinition:
6718 // C++0x [temp.explicit]p10:
6719 // If an entity is the subject of both an explicit instantiation
6720 // declaration and an explicit instantiation definition in the same
6721 // translation unit, the definition shall follow the declaration.
6722 Diag(NewLoc,
6723 diag::err_explicit_instantiation_declaration_after_definition);
6724
6725 // Explicit instantiations following a specialization have no effect and
6726 // hence no PrevPointOfInstantiation. In that case, walk decl backwards
6727 // until a valid name loc is found.
6728 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6729 diag::note_explicit_instantiation_definition_here);
6730 HasNoEffect = true;
6731 return false;
6732 }
6733
6734 case TSK_ExplicitInstantiationDefinition:
6735 switch (PrevTSK) {
6736 case TSK_Undeclared:
6737 case TSK_ImplicitInstantiation:
6738 // We're explicitly instantiating something that may have already been
6739 // implicitly instantiated; that's fine.
6740 return false;
6741
6742 case TSK_ExplicitSpecialization:
6743 // C++ DR 259, C++0x [temp.explicit]p4:
6744 // For a given set of template parameters, if an explicit
6745 // instantiation of a template appears after a declaration of
6746 // an explicit specialization for that template, the explicit
6747 // instantiation has no effect.
6748 //
6749 // In C++98/03 mode, we only give an extension warning here, because it
6750 // is not harmful to try to explicitly instantiate something that
6751 // has been explicitly specialized.
6752 Diag(NewLoc, getLangOpts().CPlusPlus11 ?
6753 diag::warn_cxx98_compat_explicit_instantiation_after_specialization :
6754 diag::ext_explicit_instantiation_after_specialization)
6755 << PrevDecl;
6756 Diag(PrevDecl->getLocation(),
6757 diag::note_previous_template_specialization);
6758 HasNoEffect = true;
6759 return false;
6760
6761 case TSK_ExplicitInstantiationDeclaration:
6762 // We're explicity instantiating a definition for something for which we
6763 // were previously asked to suppress instantiations. That's fine.
6764
6765 // C++0x [temp.explicit]p4:
6766 // For a given set of template parameters, if an explicit instantiation
6767 // of a template appears after a declaration of an explicit
6768 // specialization for that template, the explicit instantiation has no
6769 // effect.
6770 for (Decl *Prev = PrevDecl; Prev; Prev = Prev->getPreviousDecl()) {
6771 // Is there any previous explicit specialization declaration?
6772 if (getTemplateSpecializationKind(Prev) == TSK_ExplicitSpecialization) {
6773 HasNoEffect = true;
6774 break;
6775 }
6776 }
6777
6778 return false;
6779
6780 case TSK_ExplicitInstantiationDefinition:
6781 // C++0x [temp.spec]p5:
6782 // For a given template and a given set of template-arguments,
6783 // - an explicit instantiation definition shall appear at most once
6784 // in a program,
6785
6786 // MSVCCompat: MSVC silently ignores duplicate explicit instantiations.
6787 Diag(NewLoc, (getLangOpts().MSVCCompat)
6788 ? diag::ext_explicit_instantiation_duplicate
6789 : diag::err_explicit_instantiation_duplicate)
6790 << PrevDecl;
6791 Diag(DiagLocForExplicitInstantiation(PrevDecl, PrevPointOfInstantiation),
6792 diag::note_previous_explicit_instantiation);
6793 HasNoEffect = true;
6794 return false;
6795 }
6796 }
6797
6798 llvm_unreachable("Missing specialization/instantiation case?");
6799 }
6800
6801 /// \brief Perform semantic analysis for the given dependent function
6802 /// template specialization.
6803 ///
6804 /// The only possible way to get a dependent function template specialization
6805 /// is with a friend declaration, like so:
6806 ///
6807 /// \code
6808 /// template \<class T> void foo(T);
6809 /// template \<class T> class A {
6810 /// friend void foo<>(T);
6811 /// };
6812 /// \endcode
6813 ///
6814 /// There really isn't any useful analysis we can do here, so we
6815 /// just store the information.
6816 bool
CheckDependentFunctionTemplateSpecialization(FunctionDecl * FD,const TemplateArgumentListInfo & ExplicitTemplateArgs,LookupResult & Previous)6817 Sema::CheckDependentFunctionTemplateSpecialization(FunctionDecl *FD,
6818 const TemplateArgumentListInfo &ExplicitTemplateArgs,
6819 LookupResult &Previous) {
6820 // Remove anything from Previous that isn't a function template in
6821 // the correct context.
6822 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6823 LookupResult::Filter F = Previous.makeFilter();
6824 while (F.hasNext()) {
6825 NamedDecl *D = F.next()->getUnderlyingDecl();
6826 if (!isa<FunctionTemplateDecl>(D) ||
6827 !FDLookupContext->InEnclosingNamespaceSetOf(
6828 D->getDeclContext()->getRedeclContext()))
6829 F.erase();
6830 }
6831 F.done();
6832
6833 // Should this be diagnosed here?
6834 if (Previous.empty()) return true;
6835
6836 FD->setDependentTemplateSpecialization(Context, Previous.asUnresolvedSet(),
6837 ExplicitTemplateArgs);
6838 return false;
6839 }
6840
6841 /// \brief Perform semantic analysis for the given function template
6842 /// specialization.
6843 ///
6844 /// This routine performs all of the semantic analysis required for an
6845 /// explicit function template specialization. On successful completion,
6846 /// the function declaration \p FD will become a function template
6847 /// specialization.
6848 ///
6849 /// \param FD the function declaration, which will be updated to become a
6850 /// function template specialization.
6851 ///
6852 /// \param ExplicitTemplateArgs the explicitly-provided template arguments,
6853 /// if any. Note that this may be valid info even when 0 arguments are
6854 /// explicitly provided as in, e.g., \c void sort<>(char*, char*);
6855 /// as it anyway contains info on the angle brackets locations.
6856 ///
6857 /// \param Previous the set of declarations that may be specialized by
6858 /// this function specialization.
CheckFunctionTemplateSpecialization(FunctionDecl * FD,TemplateArgumentListInfo * ExplicitTemplateArgs,LookupResult & Previous)6859 bool Sema::CheckFunctionTemplateSpecialization(
6860 FunctionDecl *FD, TemplateArgumentListInfo *ExplicitTemplateArgs,
6861 LookupResult &Previous) {
6862 // The set of function template specializations that could match this
6863 // explicit function template specialization.
6864 UnresolvedSet<8> Candidates;
6865 TemplateSpecCandidateSet FailedCandidates(FD->getLocation(),
6866 /*ForTakingAddress=*/false);
6867
6868 llvm::SmallDenseMap<FunctionDecl *, TemplateArgumentListInfo, 8>
6869 ConvertedTemplateArgs;
6870
6871 DeclContext *FDLookupContext = FD->getDeclContext()->getRedeclContext();
6872 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6873 I != E; ++I) {
6874 NamedDecl *Ovl = (*I)->getUnderlyingDecl();
6875 if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Ovl)) {
6876 // Only consider templates found within the same semantic lookup scope as
6877 // FD.
6878 if (!FDLookupContext->InEnclosingNamespaceSetOf(
6879 Ovl->getDeclContext()->getRedeclContext()))
6880 continue;
6881
6882 // When matching a constexpr member function template specialization
6883 // against the primary template, we don't yet know whether the
6884 // specialization has an implicit 'const' (because we don't know whether
6885 // it will be a static member function until we know which template it
6886 // specializes), so adjust it now assuming it specializes this template.
6887 QualType FT = FD->getType();
6888 if (FD->isConstexpr()) {
6889 CXXMethodDecl *OldMD =
6890 dyn_cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl());
6891 if (OldMD && OldMD->isConst()) {
6892 const FunctionProtoType *FPT = FT->castAs<FunctionProtoType>();
6893 FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6894 EPI.TypeQuals |= Qualifiers::Const;
6895 FT = Context.getFunctionType(FPT->getReturnType(),
6896 FPT->getParamTypes(), EPI);
6897 }
6898 }
6899
6900 TemplateArgumentListInfo Args;
6901 if (ExplicitTemplateArgs)
6902 Args = *ExplicitTemplateArgs;
6903
6904 // C++ [temp.expl.spec]p11:
6905 // A trailing template-argument can be left unspecified in the
6906 // template-id naming an explicit function template specialization
6907 // provided it can be deduced from the function argument type.
6908 // Perform template argument deduction to determine whether we may be
6909 // specializing this template.
6910 // FIXME: It is somewhat wasteful to build
6911 TemplateDeductionInfo Info(FailedCandidates.getLocation());
6912 FunctionDecl *Specialization = nullptr;
6913 if (TemplateDeductionResult TDK = DeduceTemplateArguments(
6914 cast<FunctionTemplateDecl>(FunTmpl->getFirstDecl()),
6915 ExplicitTemplateArgs ? &Args : nullptr, FT, Specialization,
6916 Info)) {
6917 // Template argument deduction failed; record why it failed, so
6918 // that we can provide nifty diagnostics.
6919 FailedCandidates.addCandidate().set(
6920 I.getPair(), FunTmpl->getTemplatedDecl(),
6921 MakeDeductionFailureInfo(Context, TDK, Info));
6922 (void)TDK;
6923 continue;
6924 }
6925
6926 // Record this candidate.
6927 if (ExplicitTemplateArgs)
6928 ConvertedTemplateArgs[Specialization] = std::move(Args);
6929 Candidates.addDecl(Specialization, I.getAccess());
6930 }
6931 }
6932
6933 // Find the most specialized function template.
6934 UnresolvedSetIterator Result = getMostSpecialized(
6935 Candidates.begin(), Candidates.end(), FailedCandidates,
6936 FD->getLocation(),
6937 PDiag(diag::err_function_template_spec_no_match) << FD->getDeclName(),
6938 PDiag(diag::err_function_template_spec_ambiguous)
6939 << FD->getDeclName() << (ExplicitTemplateArgs != nullptr),
6940 PDiag(diag::note_function_template_spec_matched));
6941
6942 if (Result == Candidates.end())
6943 return true;
6944
6945 // Ignore access information; it doesn't figure into redeclaration checking.
6946 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
6947
6948 // C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare [...]
6949 // an explicit specialization (14.8.3) [...] of a concept definition.
6950 if (Specialization->getPrimaryTemplate()->isConcept()) {
6951 Diag(FD->getLocation(), diag::err_concept_specialized)
6952 << 0 /*function*/ << 1 /*explicitly specialized*/;
6953 Diag(Specialization->getLocation(), diag::note_previous_declaration);
6954 return true;
6955 }
6956
6957 FunctionTemplateSpecializationInfo *SpecInfo
6958 = Specialization->getTemplateSpecializationInfo();
6959 assert(SpecInfo && "Function template specialization info missing?");
6960
6961 // Note: do not overwrite location info if previous template
6962 // specialization kind was explicit.
6963 TemplateSpecializationKind TSK = SpecInfo->getTemplateSpecializationKind();
6964 if (TSK == TSK_Undeclared || TSK == TSK_ImplicitInstantiation) {
6965 Specialization->setLocation(FD->getLocation());
6966 // C++11 [dcl.constexpr]p1: An explicit specialization of a constexpr
6967 // function can differ from the template declaration with respect to
6968 // the constexpr specifier.
6969 Specialization->setConstexpr(FD->isConstexpr());
6970 }
6971
6972 // FIXME: Check if the prior specialization has a point of instantiation.
6973 // If so, we have run afoul of .
6974
6975 // If this is a friend declaration, then we're not really declaring
6976 // an explicit specialization.
6977 bool isFriend = (FD->getFriendObjectKind() != Decl::FOK_None);
6978
6979 // Check the scope of this explicit specialization.
6980 if (!isFriend &&
6981 CheckTemplateSpecializationScope(*this,
6982 Specialization->getPrimaryTemplate(),
6983 Specialization, FD->getLocation(),
6984 false))
6985 return true;
6986
6987 // C++ [temp.expl.spec]p6:
6988 // If a template, a member template or the member of a class template is
6989 // explicitly specialized then that specialization shall be declared
6990 // before the first use of that specialization that would cause an implicit
6991 // instantiation to take place, in every translation unit in which such a
6992 // use occurs; no diagnostic is required.
6993 bool HasNoEffect = false;
6994 if (!isFriend &&
6995 CheckSpecializationInstantiationRedecl(FD->getLocation(),
6996 TSK_ExplicitSpecialization,
6997 Specialization,
6998 SpecInfo->getTemplateSpecializationKind(),
6999 SpecInfo->getPointOfInstantiation(),
7000 HasNoEffect))
7001 return true;
7002
7003 // Mark the prior declaration as an explicit specialization, so that later
7004 // clients know that this is an explicit specialization.
7005 if (!isFriend) {
7006 // Since explicit specializations do not inherit '=delete' from their
7007 // primary function template - check if the 'specialization' that was
7008 // implicitly generated (during template argument deduction for partial
7009 // ordering) from the most specialized of all the function templates that
7010 // 'FD' could have been specializing, has a 'deleted' definition. If so,
7011 // first check that it was implicitly generated during template argument
7012 // deduction by making sure it wasn't referenced, and then reset the deleted
7013 // flag to not-deleted, so that we can inherit that information from 'FD'.
7014 if (Specialization->isDeleted() && !SpecInfo->isExplicitSpecialization() &&
7015 !Specialization->getCanonicalDecl()->isReferenced()) {
7016 assert(
7017 Specialization->getCanonicalDecl() == Specialization &&
7018 "This must be the only existing declaration of this specialization");
7019 Specialization->setDeletedAsWritten(false);
7020 }
7021 SpecInfo->setTemplateSpecializationKind(TSK_ExplicitSpecialization);
7022 MarkUnusedFileScopedDecl(Specialization);
7023 }
7024
7025 // Turn the given function declaration into a function template
7026 // specialization, with the template arguments from the previous
7027 // specialization.
7028 // Take copies of (semantic and syntactic) template argument lists.
7029 const TemplateArgumentList* TemplArgs = new (Context)
7030 TemplateArgumentList(Specialization->getTemplateSpecializationArgs());
7031 FD->setFunctionTemplateSpecialization(
7032 Specialization->getPrimaryTemplate(), TemplArgs, /*InsertPos=*/nullptr,
7033 SpecInfo->getTemplateSpecializationKind(),
7034 ExplicitTemplateArgs ? &ConvertedTemplateArgs[Specialization] : nullptr);
7035
7036 // The "previous declaration" for this function template specialization is
7037 // the prior function template specialization.
7038 Previous.clear();
7039 Previous.addDecl(Specialization);
7040 return false;
7041 }
7042
7043 /// \brief Perform semantic analysis for the given non-template member
7044 /// specialization.
7045 ///
7046 /// This routine performs all of the semantic analysis required for an
7047 /// explicit member function specialization. On successful completion,
7048 /// the function declaration \p FD will become a member function
7049 /// specialization.
7050 ///
7051 /// \param Member the member declaration, which will be updated to become a
7052 /// specialization.
7053 ///
7054 /// \param Previous the set of declarations, one of which may be specialized
7055 /// by this function specialization; the set will be modified to contain the
7056 /// redeclared member.
7057 bool
CheckMemberSpecialization(NamedDecl * Member,LookupResult & Previous)7058 Sema::CheckMemberSpecialization(NamedDecl *Member, LookupResult &Previous) {
7059 assert(!isa<TemplateDecl>(Member) && "Only for non-template members");
7060
7061 // Try to find the member we are instantiating.
7062 NamedDecl *FoundInstantiation = nullptr;
7063 NamedDecl *Instantiation = nullptr;
7064 NamedDecl *InstantiatedFrom = nullptr;
7065 MemberSpecializationInfo *MSInfo = nullptr;
7066
7067 if (Previous.empty()) {
7068 // Nowhere to look anyway.
7069 } else if (FunctionDecl *Function = dyn_cast<FunctionDecl>(Member)) {
7070 for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
7071 I != E; ++I) {
7072 NamedDecl *D = (*I)->getUnderlyingDecl();
7073 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
7074 QualType Adjusted = Function->getType();
7075 if (!hasExplicitCallingConv(Adjusted))
7076 Adjusted = adjustCCAndNoReturn(Adjusted, Method->getType());
7077 if (Context.hasSameType(Adjusted, Method->getType())) {
7078 FoundInstantiation = *I;
7079 Instantiation = Method;
7080 InstantiatedFrom = Method->getInstantiatedFromMemberFunction();
7081 MSInfo = Method->getMemberSpecializationInfo();
7082 break;
7083 }
7084 }
7085 }
7086 } else if (isa<VarDecl>(Member)) {
7087 VarDecl *PrevVar;
7088 if (Previous.isSingleResult() &&
7089 (PrevVar = dyn_cast<VarDecl>(Previous.getFoundDecl())))
7090 if (PrevVar->isStaticDataMember()) {
7091 FoundInstantiation = Previous.getRepresentativeDecl();
7092 Instantiation = PrevVar;
7093 InstantiatedFrom = PrevVar->getInstantiatedFromStaticDataMember();
7094 MSInfo = PrevVar->getMemberSpecializationInfo();
7095 }
7096 } else if (isa<RecordDecl>(Member)) {
7097 CXXRecordDecl *PrevRecord;
7098 if (Previous.isSingleResult() &&
7099 (PrevRecord = dyn_cast<CXXRecordDecl>(Previous.getFoundDecl()))) {
7100 FoundInstantiation = Previous.getRepresentativeDecl();
7101 Instantiation = PrevRecord;
7102 InstantiatedFrom = PrevRecord->getInstantiatedFromMemberClass();
7103 MSInfo = PrevRecord->getMemberSpecializationInfo();
7104 }
7105 } else if (isa<EnumDecl>(Member)) {
7106 EnumDecl *PrevEnum;
7107 if (Previous.isSingleResult() &&
7108 (PrevEnum = dyn_cast<EnumDecl>(Previous.getFoundDecl()))) {
7109 FoundInstantiation = Previous.getRepresentativeDecl();
7110 Instantiation = PrevEnum;
7111 InstantiatedFrom = PrevEnum->getInstantiatedFromMemberEnum();
7112 MSInfo = PrevEnum->getMemberSpecializationInfo();
7113 }
7114 }
7115
7116 if (!Instantiation) {
7117 // There is no previous declaration that matches. Since member
7118 // specializations are always out-of-line, the caller will complain about
7119 // this mismatch later.
7120 return false;
7121 }
7122
7123 // If this is a friend, just bail out here before we start turning
7124 // things into explicit specializations.
7125 if (Member->getFriendObjectKind() != Decl::FOK_None) {
7126 // Preserve instantiation information.
7127 if (InstantiatedFrom && isa<CXXMethodDecl>(Member)) {
7128 cast<CXXMethodDecl>(Member)->setInstantiationOfMemberFunction(
7129 cast<CXXMethodDecl>(InstantiatedFrom),
7130 cast<CXXMethodDecl>(Instantiation)->getTemplateSpecializationKind());
7131 } else if (InstantiatedFrom && isa<CXXRecordDecl>(Member)) {
7132 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
7133 cast<CXXRecordDecl>(InstantiatedFrom),
7134 cast<CXXRecordDecl>(Instantiation)->getTemplateSpecializationKind());
7135 }
7136
7137 Previous.clear();
7138 Previous.addDecl(FoundInstantiation);
7139 return false;
7140 }
7141
7142 // Make sure that this is a specialization of a member.
7143 if (!InstantiatedFrom) {
7144 Diag(Member->getLocation(), diag::err_spec_member_not_instantiated)
7145 << Member;
7146 Diag(Instantiation->getLocation(), diag::note_specialized_decl);
7147 return true;
7148 }
7149
7150 // C++ [temp.expl.spec]p6:
7151 // If a template, a member template or the member of a class template is
7152 // explicitly specialized then that specialization shall be declared
7153 // before the first use of that specialization that would cause an implicit
7154 // instantiation to take place, in every translation unit in which such a
7155 // use occurs; no diagnostic is required.
7156 assert(MSInfo && "Member specialization info missing?");
7157
7158 bool HasNoEffect = false;
7159 if (CheckSpecializationInstantiationRedecl(Member->getLocation(),
7160 TSK_ExplicitSpecialization,
7161 Instantiation,
7162 MSInfo->getTemplateSpecializationKind(),
7163 MSInfo->getPointOfInstantiation(),
7164 HasNoEffect))
7165 return true;
7166
7167 // Check the scope of this explicit specialization.
7168 if (CheckTemplateSpecializationScope(*this,
7169 InstantiatedFrom,
7170 Instantiation, Member->getLocation(),
7171 false))
7172 return true;
7173
7174 // Note that this is an explicit instantiation of a member.
7175 // the original declaration to note that it is an explicit specialization
7176 // (if it was previously an implicit instantiation). This latter step
7177 // makes bookkeeping easier.
7178 if (isa<FunctionDecl>(Member)) {
7179 FunctionDecl *InstantiationFunction = cast<FunctionDecl>(Instantiation);
7180 if (InstantiationFunction->getTemplateSpecializationKind() ==
7181 TSK_ImplicitInstantiation) {
7182 InstantiationFunction->setTemplateSpecializationKind(
7183 TSK_ExplicitSpecialization);
7184 InstantiationFunction->setLocation(Member->getLocation());
7185 // Explicit specializations of member functions of class templates do not
7186 // inherit '=delete' from the member function they are specializing.
7187 if (InstantiationFunction->isDeleted()) {
7188 assert(InstantiationFunction->getCanonicalDecl() ==
7189 InstantiationFunction);
7190 InstantiationFunction->setDeletedAsWritten(false);
7191 }
7192 }
7193
7194 cast<FunctionDecl>(Member)->setInstantiationOfMemberFunction(
7195 cast<CXXMethodDecl>(InstantiatedFrom),
7196 TSK_ExplicitSpecialization);
7197 MarkUnusedFileScopedDecl(InstantiationFunction);
7198 } else if (isa<VarDecl>(Member)) {
7199 VarDecl *InstantiationVar = cast<VarDecl>(Instantiation);
7200 if (InstantiationVar->getTemplateSpecializationKind() ==
7201 TSK_ImplicitInstantiation) {
7202 InstantiationVar->setTemplateSpecializationKind(
7203 TSK_ExplicitSpecialization);
7204 InstantiationVar->setLocation(Member->getLocation());
7205 }
7206
7207 cast<VarDecl>(Member)->setInstantiationOfStaticDataMember(
7208 cast<VarDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
7209 MarkUnusedFileScopedDecl(InstantiationVar);
7210 } else if (isa<CXXRecordDecl>(Member)) {
7211 CXXRecordDecl *InstantiationClass = cast<CXXRecordDecl>(Instantiation);
7212 if (InstantiationClass->getTemplateSpecializationKind() ==
7213 TSK_ImplicitInstantiation) {
7214 InstantiationClass->setTemplateSpecializationKind(
7215 TSK_ExplicitSpecialization);
7216 InstantiationClass->setLocation(Member->getLocation());
7217 }
7218
7219 cast<CXXRecordDecl>(Member)->setInstantiationOfMemberClass(
7220 cast<CXXRecordDecl>(InstantiatedFrom),
7221 TSK_ExplicitSpecialization);
7222 } else {
7223 assert(isa<EnumDecl>(Member) && "Only member enums remain");
7224 EnumDecl *InstantiationEnum = cast<EnumDecl>(Instantiation);
7225 if (InstantiationEnum->getTemplateSpecializationKind() ==
7226 TSK_ImplicitInstantiation) {
7227 InstantiationEnum->setTemplateSpecializationKind(
7228 TSK_ExplicitSpecialization);
7229 InstantiationEnum->setLocation(Member->getLocation());
7230 }
7231
7232 cast<EnumDecl>(Member)->setInstantiationOfMemberEnum(
7233 cast<EnumDecl>(InstantiatedFrom), TSK_ExplicitSpecialization);
7234 }
7235
7236 // Save the caller the trouble of having to figure out which declaration
7237 // this specialization matches.
7238 Previous.clear();
7239 Previous.addDecl(FoundInstantiation);
7240 return false;
7241 }
7242
7243 /// \brief Check the scope of an explicit instantiation.
7244 ///
7245 /// \returns true if a serious error occurs, false otherwise.
CheckExplicitInstantiationScope(Sema & S,NamedDecl * D,SourceLocation InstLoc,bool WasQualifiedName)7246 static bool CheckExplicitInstantiationScope(Sema &S, NamedDecl *D,
7247 SourceLocation InstLoc,
7248 bool WasQualifiedName) {
7249 DeclContext *OrigContext= D->getDeclContext()->getEnclosingNamespaceContext();
7250 DeclContext *CurContext = S.CurContext->getRedeclContext();
7251
7252 if (CurContext->isRecord()) {
7253 S.Diag(InstLoc, diag::err_explicit_instantiation_in_class)
7254 << D;
7255 return true;
7256 }
7257
7258 // C++11 [temp.explicit]p3:
7259 // An explicit instantiation shall appear in an enclosing namespace of its
7260 // template. If the name declared in the explicit instantiation is an
7261 // unqualified name, the explicit instantiation shall appear in the
7262 // namespace where its template is declared or, if that namespace is inline
7263 // (7.3.1), any namespace from its enclosing namespace set.
7264 //
7265 // This is DR275, which we do not retroactively apply to C++98/03.
7266 if (WasQualifiedName) {
7267 if (CurContext->Encloses(OrigContext))
7268 return false;
7269 } else {
7270 if (CurContext->InEnclosingNamespaceSetOf(OrigContext))
7271 return false;
7272 }
7273
7274 if (NamespaceDecl *NS = dyn_cast<NamespaceDecl>(OrigContext)) {
7275 if (WasQualifiedName)
7276 S.Diag(InstLoc,
7277 S.getLangOpts().CPlusPlus11?
7278 diag::err_explicit_instantiation_out_of_scope :
7279 diag::warn_explicit_instantiation_out_of_scope_0x)
7280 << D << NS;
7281 else
7282 S.Diag(InstLoc,
7283 S.getLangOpts().CPlusPlus11?
7284 diag::err_explicit_instantiation_unqualified_wrong_namespace :
7285 diag::warn_explicit_instantiation_unqualified_wrong_namespace_0x)
7286 << D << NS;
7287 } else
7288 S.Diag(InstLoc,
7289 S.getLangOpts().CPlusPlus11?
7290 diag::err_explicit_instantiation_must_be_global :
7291 diag::warn_explicit_instantiation_must_be_global_0x)
7292 << D;
7293 S.Diag(D->getLocation(), diag::note_explicit_instantiation_here);
7294 return false;
7295 }
7296
7297 /// \brief Determine whether the given scope specifier has a template-id in it.
ScopeSpecifierHasTemplateId(const CXXScopeSpec & SS)7298 static bool ScopeSpecifierHasTemplateId(const CXXScopeSpec &SS) {
7299 if (!SS.isSet())
7300 return false;
7301
7302 // C++11 [temp.explicit]p3:
7303 // If the explicit instantiation is for a member function, a member class
7304 // or a static data member of a class template specialization, the name of
7305 // the class template specialization in the qualified-id for the member
7306 // name shall be a simple-template-id.
7307 //
7308 // C++98 has the same restriction, just worded differently.
7309 for (NestedNameSpecifier *NNS = SS.getScopeRep(); NNS;
7310 NNS = NNS->getPrefix())
7311 if (const Type *T = NNS->getAsType())
7312 if (isa<TemplateSpecializationType>(T))
7313 return true;
7314
7315 return false;
7316 }
7317
7318 // Explicit instantiation of a class template specialization
7319 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,const CXXScopeSpec & SS,TemplateTy TemplateD,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc,AttributeList * Attr)7320 Sema::ActOnExplicitInstantiation(Scope *S,
7321 SourceLocation ExternLoc,
7322 SourceLocation TemplateLoc,
7323 unsigned TagSpec,
7324 SourceLocation KWLoc,
7325 const CXXScopeSpec &SS,
7326 TemplateTy TemplateD,
7327 SourceLocation TemplateNameLoc,
7328 SourceLocation LAngleLoc,
7329 ASTTemplateArgsPtr TemplateArgsIn,
7330 SourceLocation RAngleLoc,
7331 AttributeList *Attr) {
7332 // Find the class template we're specializing
7333 TemplateName Name = TemplateD.get();
7334 TemplateDecl *TD = Name.getAsTemplateDecl();
7335 // Check that the specialization uses the same tag kind as the
7336 // original template.
7337 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7338 assert(Kind != TTK_Enum &&
7339 "Invalid enum tag in class template explicit instantiation!");
7340
7341 ClassTemplateDecl *ClassTemplate = dyn_cast<ClassTemplateDecl>(TD);
7342
7343 if (!ClassTemplate) {
7344 unsigned ErrorKind = 0;
7345 if (isa<TypeAliasTemplateDecl>(TD)) {
7346 ErrorKind = 4;
7347 } else if (isa<TemplateTemplateParmDecl>(TD)) {
7348 ErrorKind = 5;
7349 }
7350
7351 Diag(TemplateNameLoc, diag::err_tag_reference_non_tag) << ErrorKind;
7352 Diag(TD->getLocation(), diag::note_previous_use);
7353 return true;
7354 }
7355
7356 if (!isAcceptableTagRedeclaration(ClassTemplate->getTemplatedDecl(),
7357 Kind, /*isDefinition*/false, KWLoc,
7358 ClassTemplate->getIdentifier())) {
7359 Diag(KWLoc, diag::err_use_with_wrong_tag)
7360 << ClassTemplate
7361 << FixItHint::CreateReplacement(KWLoc,
7362 ClassTemplate->getTemplatedDecl()->getKindName());
7363 Diag(ClassTemplate->getTemplatedDecl()->getLocation(),
7364 diag::note_previous_use);
7365 Kind = ClassTemplate->getTemplatedDecl()->getTagKind();
7366 }
7367
7368 // C++0x [temp.explicit]p2:
7369 // There are two forms of explicit instantiation: an explicit instantiation
7370 // definition and an explicit instantiation declaration. An explicit
7371 // instantiation declaration begins with the extern keyword. [...]
7372 TemplateSpecializationKind TSK = ExternLoc.isInvalid()
7373 ? TSK_ExplicitInstantiationDefinition
7374 : TSK_ExplicitInstantiationDeclaration;
7375
7376 if (TSK == TSK_ExplicitInstantiationDeclaration) {
7377 // Check for dllexport class template instantiation declarations.
7378 for (AttributeList *A = Attr; A; A = A->getNext()) {
7379 if (A->getKind() == AttributeList::AT_DLLExport) {
7380 Diag(ExternLoc,
7381 diag::warn_attribute_dllexport_explicit_instantiation_decl);
7382 Diag(A->getLoc(), diag::note_attribute);
7383 break;
7384 }
7385 }
7386
7387 if (auto *A = ClassTemplate->getTemplatedDecl()->getAttr<DLLExportAttr>()) {
7388 Diag(ExternLoc,
7389 diag::warn_attribute_dllexport_explicit_instantiation_decl);
7390 Diag(A->getLocation(), diag::note_attribute);
7391 }
7392 }
7393
7394 // In MSVC mode, dllimported explicit instantiation definitions are treated as
7395 // instantiation declarations for most purposes.
7396 bool DLLImportExplicitInstantiationDef = false;
7397 if (TSK == TSK_ExplicitInstantiationDefinition &&
7398 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
7399 // Check for dllimport class template instantiation definitions.
7400 bool DLLImport =
7401 ClassTemplate->getTemplatedDecl()->getAttr<DLLImportAttr>();
7402 for (AttributeList *A = Attr; A; A = A->getNext()) {
7403 if (A->getKind() == AttributeList::AT_DLLImport)
7404 DLLImport = true;
7405 if (A->getKind() == AttributeList::AT_DLLExport) {
7406 // dllexport trumps dllimport here.
7407 DLLImport = false;
7408 break;
7409 }
7410 }
7411 if (DLLImport) {
7412 TSK = TSK_ExplicitInstantiationDeclaration;
7413 DLLImportExplicitInstantiationDef = true;
7414 }
7415 }
7416
7417 // Translate the parser's template argument list in our AST format.
7418 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
7419 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
7420
7421 // Check that the template argument list is well-formed for this
7422 // template.
7423 SmallVector<TemplateArgument, 4> Converted;
7424 if (CheckTemplateArgumentList(ClassTemplate, TemplateNameLoc,
7425 TemplateArgs, false, Converted))
7426 return true;
7427
7428 // Find the class template specialization declaration that
7429 // corresponds to these arguments.
7430 void *InsertPos = nullptr;
7431 ClassTemplateSpecializationDecl *PrevDecl
7432 = ClassTemplate->findSpecialization(Converted, InsertPos);
7433
7434 TemplateSpecializationKind PrevDecl_TSK
7435 = PrevDecl ? PrevDecl->getTemplateSpecializationKind() : TSK_Undeclared;
7436
7437 // C++0x [temp.explicit]p2:
7438 // [...] An explicit instantiation shall appear in an enclosing
7439 // namespace of its template. [...]
7440 //
7441 // This is C++ DR 275.
7442 if (CheckExplicitInstantiationScope(*this, ClassTemplate, TemplateNameLoc,
7443 SS.isSet()))
7444 return true;
7445
7446 ClassTemplateSpecializationDecl *Specialization = nullptr;
7447
7448 bool HasNoEffect = false;
7449 if (PrevDecl) {
7450 if (CheckSpecializationInstantiationRedecl(TemplateNameLoc, TSK,
7451 PrevDecl, PrevDecl_TSK,
7452 PrevDecl->getPointOfInstantiation(),
7453 HasNoEffect))
7454 return PrevDecl;
7455
7456 // Even though HasNoEffect == true means that this explicit instantiation
7457 // has no effect on semantics, we go on to put its syntax in the AST.
7458
7459 if (PrevDecl_TSK == TSK_ImplicitInstantiation ||
7460 PrevDecl_TSK == TSK_Undeclared) {
7461 // Since the only prior class template specialization with these
7462 // arguments was referenced but not declared, reuse that
7463 // declaration node as our own, updating the source location
7464 // for the template name to reflect our new declaration.
7465 // (Other source locations will be updated later.)
7466 Specialization = PrevDecl;
7467 Specialization->setLocation(TemplateNameLoc);
7468 PrevDecl = nullptr;
7469 }
7470
7471 if (PrevDecl_TSK == TSK_ExplicitInstantiationDeclaration &&
7472 DLLImportExplicitInstantiationDef) {
7473 // The new specialization might add a dllimport attribute.
7474 HasNoEffect = false;
7475 }
7476 }
7477
7478 if (!Specialization) {
7479 // Create a new class template specialization declaration node for
7480 // this explicit specialization.
7481 Specialization
7482 = ClassTemplateSpecializationDecl::Create(Context, Kind,
7483 ClassTemplate->getDeclContext(),
7484 KWLoc, TemplateNameLoc,
7485 ClassTemplate,
7486 Converted,
7487 PrevDecl);
7488 SetNestedNameSpecifier(Specialization, SS);
7489
7490 if (!HasNoEffect && !PrevDecl) {
7491 // Insert the new specialization.
7492 ClassTemplate->AddSpecialization(Specialization, InsertPos);
7493 }
7494 }
7495
7496 // Build the fully-sugared type for this explicit instantiation as
7497 // the user wrote in the explicit instantiation itself. This means
7498 // that we'll pretty-print the type retrieved from the
7499 // specialization's declaration the way that the user actually wrote
7500 // the explicit instantiation, rather than formatting the name based
7501 // on the "canonical" representation used to store the template
7502 // arguments in the specialization.
7503 TypeSourceInfo *WrittenTy
7504 = Context.getTemplateSpecializationTypeInfo(Name, TemplateNameLoc,
7505 TemplateArgs,
7506 Context.getTypeDeclType(Specialization));
7507 Specialization->setTypeAsWritten(WrittenTy);
7508
7509 // Set source locations for keywords.
7510 Specialization->setExternLoc(ExternLoc);
7511 Specialization->setTemplateKeywordLoc(TemplateLoc);
7512 Specialization->setRBraceLoc(SourceLocation());
7513
7514 if (Attr)
7515 ProcessDeclAttributeList(S, Specialization, Attr);
7516
7517 // Add the explicit instantiation into its lexical context. However,
7518 // since explicit instantiations are never found by name lookup, we
7519 // just put it into the declaration context directly.
7520 Specialization->setLexicalDeclContext(CurContext);
7521 CurContext->addDecl(Specialization);
7522
7523 // Syntax is now OK, so return if it has no other effect on semantics.
7524 if (HasNoEffect) {
7525 // Set the template specialization kind.
7526 Specialization->setTemplateSpecializationKind(TSK);
7527 return Specialization;
7528 }
7529
7530 // C++ [temp.explicit]p3:
7531 // A definition of a class template or class member template
7532 // shall be in scope at the point of the explicit instantiation of
7533 // the class template or class member template.
7534 //
7535 // This check comes when we actually try to perform the
7536 // instantiation.
7537 ClassTemplateSpecializationDecl *Def
7538 = cast_or_null<ClassTemplateSpecializationDecl>(
7539 Specialization->getDefinition());
7540 if (!Def)
7541 InstantiateClassTemplateSpecialization(TemplateNameLoc, Specialization, TSK);
7542 else if (TSK == TSK_ExplicitInstantiationDefinition) {
7543 MarkVTableUsed(TemplateNameLoc, Specialization, true);
7544 Specialization->setPointOfInstantiation(Def->getPointOfInstantiation());
7545 }
7546
7547 // Instantiate the members of this class template specialization.
7548 Def = cast_or_null<ClassTemplateSpecializationDecl>(
7549 Specialization->getDefinition());
7550 if (Def) {
7551 TemplateSpecializationKind Old_TSK = Def->getTemplateSpecializationKind();
7552 // Fix a TSK_ExplicitInstantiationDeclaration followed by a
7553 // TSK_ExplicitInstantiationDefinition
7554 if (Old_TSK == TSK_ExplicitInstantiationDeclaration &&
7555 (TSK == TSK_ExplicitInstantiationDefinition ||
7556 DLLImportExplicitInstantiationDef)) {
7557 // FIXME: Need to notify the ASTMutationListener that we did this.
7558 Def->setTemplateSpecializationKind(TSK);
7559
7560 if (!getDLLAttr(Def) && getDLLAttr(Specialization) &&
7561 Context.getTargetInfo().getCXXABI().isMicrosoft()) {
7562 // In the MS ABI, an explicit instantiation definition can add a dll
7563 // attribute to a template with a previous instantiation declaration.
7564 // MinGW doesn't allow this.
7565 auto *A = cast<InheritableAttr>(
7566 getDLLAttr(Specialization)->clone(getASTContext()));
7567 A->setInherited(true);
7568 Def->addAttr(A);
7569
7570 // We reject explicit instantiations in class scope, so there should
7571 // never be any delayed exported classes to worry about.
7572 assert(DelayedDllExportClasses.empty() &&
7573 "delayed exports present at explicit instantiation");
7574 checkClassLevelDLLAttribute(Def);
7575 referenceDLLExportedClassMethods();
7576
7577 // Propagate attribute to base class templates.
7578 for (auto &B : Def->bases()) {
7579 if (auto *BT = dyn_cast_or_null<ClassTemplateSpecializationDecl>(
7580 B.getType()->getAsCXXRecordDecl()))
7581 propagateDLLAttrToBaseClassTemplate(Def, A, BT, B.getLocStart());
7582 }
7583 }
7584 }
7585
7586 // Set the template specialization kind. Make sure it is set before
7587 // instantiating the members which will trigger ASTConsumer callbacks.
7588 Specialization->setTemplateSpecializationKind(TSK);
7589 InstantiateClassTemplateSpecializationMembers(TemplateNameLoc, Def, TSK);
7590 } else {
7591
7592 // Set the template specialization kind.
7593 Specialization->setTemplateSpecializationKind(TSK);
7594 }
7595
7596 return Specialization;
7597 }
7598
7599 // Explicit instantiation of a member class of a class template.
7600 DeclResult
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,unsigned TagSpec,SourceLocation KWLoc,CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation NameLoc,AttributeList * Attr)7601 Sema::ActOnExplicitInstantiation(Scope *S,
7602 SourceLocation ExternLoc,
7603 SourceLocation TemplateLoc,
7604 unsigned TagSpec,
7605 SourceLocation KWLoc,
7606 CXXScopeSpec &SS,
7607 IdentifierInfo *Name,
7608 SourceLocation NameLoc,
7609 AttributeList *Attr) {
7610
7611 bool Owned = false;
7612 bool IsDependent = false;
7613 Decl *TagD = ActOnTag(S, TagSpec, Sema::TUK_Reference,
7614 KWLoc, SS, Name, NameLoc, Attr, AS_none,
7615 /*ModulePrivateLoc=*/SourceLocation(),
7616 MultiTemplateParamsArg(), Owned, IsDependent,
7617 SourceLocation(), false, TypeResult(),
7618 /*IsTypeSpecifier*/false);
7619 assert(!IsDependent && "explicit instantiation of dependent name not yet handled");
7620
7621 if (!TagD)
7622 return true;
7623
7624 TagDecl *Tag = cast<TagDecl>(TagD);
7625 assert(!Tag->isEnum() && "shouldn't see enumerations here");
7626
7627 if (Tag->isInvalidDecl())
7628 return true;
7629
7630 CXXRecordDecl *Record = cast<CXXRecordDecl>(Tag);
7631 CXXRecordDecl *Pattern = Record->getInstantiatedFromMemberClass();
7632 if (!Pattern) {
7633 Diag(TemplateLoc, diag::err_explicit_instantiation_nontemplate_type)
7634 << Context.getTypeDeclType(Record);
7635 Diag(Record->getLocation(), diag::note_nontemplate_decl_here);
7636 return true;
7637 }
7638
7639 // C++0x [temp.explicit]p2:
7640 // If the explicit instantiation is for a class or member class, the
7641 // elaborated-type-specifier in the declaration shall include a
7642 // simple-template-id.
7643 //
7644 // C++98 has the same restriction, just worded differently.
7645 if (!ScopeSpecifierHasTemplateId(SS))
7646 Diag(TemplateLoc, diag::ext_explicit_instantiation_without_qualified_id)
7647 << Record << SS.getRange();
7648
7649 // C++0x [temp.explicit]p2:
7650 // There are two forms of explicit instantiation: an explicit instantiation
7651 // definition and an explicit instantiation declaration. An explicit
7652 // instantiation declaration begins with the extern keyword. [...]
7653 TemplateSpecializationKind TSK
7654 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7655 : TSK_ExplicitInstantiationDeclaration;
7656
7657 // C++0x [temp.explicit]p2:
7658 // [...] An explicit instantiation shall appear in an enclosing
7659 // namespace of its template. [...]
7660 //
7661 // This is C++ DR 275.
7662 CheckExplicitInstantiationScope(*this, Record, NameLoc, true);
7663
7664 // Verify that it is okay to explicitly instantiate here.
7665 CXXRecordDecl *PrevDecl
7666 = cast_or_null<CXXRecordDecl>(Record->getPreviousDecl());
7667 if (!PrevDecl && Record->getDefinition())
7668 PrevDecl = Record;
7669 if (PrevDecl) {
7670 MemberSpecializationInfo *MSInfo = PrevDecl->getMemberSpecializationInfo();
7671 bool HasNoEffect = false;
7672 assert(MSInfo && "No member specialization information?");
7673 if (CheckSpecializationInstantiationRedecl(TemplateLoc, TSK,
7674 PrevDecl,
7675 MSInfo->getTemplateSpecializationKind(),
7676 MSInfo->getPointOfInstantiation(),
7677 HasNoEffect))
7678 return true;
7679 if (HasNoEffect)
7680 return TagD;
7681 }
7682
7683 CXXRecordDecl *RecordDef
7684 = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7685 if (!RecordDef) {
7686 // C++ [temp.explicit]p3:
7687 // A definition of a member class of a class template shall be in scope
7688 // at the point of an explicit instantiation of the member class.
7689 CXXRecordDecl *Def
7690 = cast_or_null<CXXRecordDecl>(Pattern->getDefinition());
7691 if (!Def) {
7692 Diag(TemplateLoc, diag::err_explicit_instantiation_undefined_member)
7693 << 0 << Record->getDeclName() << Record->getDeclContext();
7694 Diag(Pattern->getLocation(), diag::note_forward_declaration)
7695 << Pattern;
7696 return true;
7697 } else {
7698 if (InstantiateClass(NameLoc, Record, Def,
7699 getTemplateInstantiationArgs(Record),
7700 TSK))
7701 return true;
7702
7703 RecordDef = cast_or_null<CXXRecordDecl>(Record->getDefinition());
7704 if (!RecordDef)
7705 return true;
7706 }
7707 }
7708
7709 // Instantiate all of the members of the class.
7710 InstantiateClassMembers(NameLoc, RecordDef,
7711 getTemplateInstantiationArgs(Record), TSK);
7712
7713 if (TSK == TSK_ExplicitInstantiationDefinition)
7714 MarkVTableUsed(NameLoc, RecordDef, true);
7715
7716 // FIXME: We don't have any representation for explicit instantiations of
7717 // member classes. Such a representation is not needed for compilation, but it
7718 // should be available for clients that want to see all of the declarations in
7719 // the source code.
7720 return TagD;
7721 }
7722
ActOnExplicitInstantiation(Scope * S,SourceLocation ExternLoc,SourceLocation TemplateLoc,Declarator & D)7723 DeclResult Sema::ActOnExplicitInstantiation(Scope *S,
7724 SourceLocation ExternLoc,
7725 SourceLocation TemplateLoc,
7726 Declarator &D) {
7727 // Explicit instantiations always require a name.
7728 // TODO: check if/when DNInfo should replace Name.
7729 DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
7730 DeclarationName Name = NameInfo.getName();
7731 if (!Name) {
7732 if (!D.isInvalidType())
7733 Diag(D.getDeclSpec().getLocStart(),
7734 diag::err_explicit_instantiation_requires_name)
7735 << D.getDeclSpec().getSourceRange()
7736 << D.getSourceRange();
7737
7738 return true;
7739 }
7740
7741 // The scope passed in may not be a decl scope. Zip up the scope tree until
7742 // we find one that is.
7743 while ((S->getFlags() & Scope::DeclScope) == 0 ||
7744 (S->getFlags() & Scope::TemplateParamScope) != 0)
7745 S = S->getParent();
7746
7747 // Determine the type of the declaration.
7748 TypeSourceInfo *T = GetTypeForDeclarator(D, S);
7749 QualType R = T->getType();
7750 if (R.isNull())
7751 return true;
7752
7753 // C++ [dcl.stc]p1:
7754 // A storage-class-specifier shall not be specified in [...] an explicit
7755 // instantiation (14.7.2) directive.
7756 if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
7757 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_of_typedef)
7758 << Name;
7759 return true;
7760 } else if (D.getDeclSpec().getStorageClassSpec()
7761 != DeclSpec::SCS_unspecified) {
7762 // Complain about then remove the storage class specifier.
7763 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_storage_class)
7764 << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
7765
7766 D.getMutableDeclSpec().ClearStorageClassSpecs();
7767 }
7768
7769 // C++0x [temp.explicit]p1:
7770 // [...] An explicit instantiation of a function template shall not use the
7771 // inline or constexpr specifiers.
7772 // Presumably, this also applies to member functions of class templates as
7773 // well.
7774 if (D.getDeclSpec().isInlineSpecified())
7775 Diag(D.getDeclSpec().getInlineSpecLoc(),
7776 getLangOpts().CPlusPlus11 ?
7777 diag::err_explicit_instantiation_inline :
7778 diag::warn_explicit_instantiation_inline_0x)
7779 << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
7780 if (D.getDeclSpec().isConstexprSpecified() && R->isFunctionType())
7781 // FIXME: Add a fix-it to remove the 'constexpr' and add a 'const' if one is
7782 // not already specified.
7783 Diag(D.getDeclSpec().getConstexprSpecLoc(),
7784 diag::err_explicit_instantiation_constexpr);
7785
7786 // C++ Concepts TS [dcl.spec.concept]p1: The concept specifier shall be
7787 // applied only to the definition of a function template or variable template,
7788 // declared in namespace scope.
7789 if (D.getDeclSpec().isConceptSpecified()) {
7790 Diag(D.getDeclSpec().getConceptSpecLoc(),
7791 diag::err_concept_specified_specialization) << 0;
7792 return true;
7793 }
7794
7795 // C++0x [temp.explicit]p2:
7796 // There are two forms of explicit instantiation: an explicit instantiation
7797 // definition and an explicit instantiation declaration. An explicit
7798 // instantiation declaration begins with the extern keyword. [...]
7799 TemplateSpecializationKind TSK
7800 = ExternLoc.isInvalid()? TSK_ExplicitInstantiationDefinition
7801 : TSK_ExplicitInstantiationDeclaration;
7802
7803 LookupResult Previous(*this, NameInfo, LookupOrdinaryName);
7804 LookupParsedName(Previous, S, &D.getCXXScopeSpec());
7805
7806 if (!R->isFunctionType()) {
7807 // C++ [temp.explicit]p1:
7808 // A [...] static data member of a class template can be explicitly
7809 // instantiated from the member definition associated with its class
7810 // template.
7811 // C++1y [temp.explicit]p1:
7812 // A [...] variable [...] template specialization can be explicitly
7813 // instantiated from its template.
7814 if (Previous.isAmbiguous())
7815 return true;
7816
7817 VarDecl *Prev = Previous.getAsSingle<VarDecl>();
7818 VarTemplateDecl *PrevTemplate = Previous.getAsSingle<VarTemplateDecl>();
7819
7820 if (!PrevTemplate) {
7821 if (!Prev || !Prev->isStaticDataMember()) {
7822 // We expect to see a data data member here.
7823 Diag(D.getIdentifierLoc(), diag::err_explicit_instantiation_not_known)
7824 << Name;
7825 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7826 P != PEnd; ++P)
7827 Diag((*P)->getLocation(), diag::note_explicit_instantiation_here);
7828 return true;
7829 }
7830
7831 if (!Prev->getInstantiatedFromStaticDataMember()) {
7832 // FIXME: Check for explicit specialization?
7833 Diag(D.getIdentifierLoc(),
7834 diag::err_explicit_instantiation_data_member_not_instantiated)
7835 << Prev;
7836 Diag(Prev->getLocation(), diag::note_explicit_instantiation_here);
7837 // FIXME: Can we provide a note showing where this was declared?
7838 return true;
7839 }
7840 } else {
7841 // Explicitly instantiate a variable template.
7842
7843 // C++1y [dcl.spec.auto]p6:
7844 // ... A program that uses auto or decltype(auto) in a context not
7845 // explicitly allowed in this section is ill-formed.
7846 //
7847 // This includes auto-typed variable template instantiations.
7848 if (R->isUndeducedType()) {
7849 Diag(T->getTypeLoc().getLocStart(),
7850 diag::err_auto_not_allowed_var_inst);
7851 return true;
7852 }
7853
7854 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
7855 // C++1y [temp.explicit]p3:
7856 // If the explicit instantiation is for a variable, the unqualified-id
7857 // in the declaration shall be a template-id.
7858 Diag(D.getIdentifierLoc(),
7859 diag::err_explicit_instantiation_without_template_id)
7860 << PrevTemplate;
7861 Diag(PrevTemplate->getLocation(),
7862 diag::note_explicit_instantiation_here);
7863 return true;
7864 }
7865
7866 // C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare an
7867 // explicit instantiation (14.8.2) [...] of a concept definition.
7868 if (PrevTemplate->isConcept()) {
7869 Diag(D.getIdentifierLoc(), diag::err_concept_specialized)
7870 << 1 /*variable*/ << 0 /*explicitly instantiated*/;
7871 Diag(PrevTemplate->getLocation(), diag::note_previous_declaration);
7872 return true;
7873 }
7874
7875 // Translate the parser's template argument list into our AST format.
7876 TemplateArgumentListInfo TemplateArgs =
7877 makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7878
7879 DeclResult Res = CheckVarTemplateId(PrevTemplate, TemplateLoc,
7880 D.getIdentifierLoc(), TemplateArgs);
7881 if (Res.isInvalid())
7882 return true;
7883
7884 // Ignore access control bits, we don't need them for redeclaration
7885 // checking.
7886 Prev = cast<VarDecl>(Res.get());
7887 }
7888
7889 // C++0x [temp.explicit]p2:
7890 // If the explicit instantiation is for a member function, a member class
7891 // or a static data member of a class template specialization, the name of
7892 // the class template specialization in the qualified-id for the member
7893 // name shall be a simple-template-id.
7894 //
7895 // C++98 has the same restriction, just worded differently.
7896 //
7897 // This does not apply to variable template specializations, where the
7898 // template-id is in the unqualified-id instead.
7899 if (!ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()) && !PrevTemplate)
7900 Diag(D.getIdentifierLoc(),
7901 diag::ext_explicit_instantiation_without_qualified_id)
7902 << Prev << D.getCXXScopeSpec().getRange();
7903
7904 // Check the scope of this explicit instantiation.
7905 CheckExplicitInstantiationScope(*this, Prev, D.getIdentifierLoc(), true);
7906
7907 // Verify that it is okay to explicitly instantiate here.
7908 TemplateSpecializationKind PrevTSK = Prev->getTemplateSpecializationKind();
7909 SourceLocation POI = Prev->getPointOfInstantiation();
7910 bool HasNoEffect = false;
7911 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK, Prev,
7912 PrevTSK, POI, HasNoEffect))
7913 return true;
7914
7915 if (!HasNoEffect) {
7916 // Instantiate static data member or variable template.
7917
7918 Prev->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
7919 if (PrevTemplate) {
7920 // Merge attributes.
7921 if (AttributeList *Attr = D.getDeclSpec().getAttributes().getList())
7922 ProcessDeclAttributeList(S, Prev, Attr);
7923 }
7924 if (TSK == TSK_ExplicitInstantiationDefinition)
7925 InstantiateVariableDefinition(D.getIdentifierLoc(), Prev);
7926 }
7927
7928 // Check the new variable specialization against the parsed input.
7929 if (PrevTemplate && Prev && !Context.hasSameType(Prev->getType(), R)) {
7930 Diag(T->getTypeLoc().getLocStart(),
7931 diag::err_invalid_var_template_spec_type)
7932 << 0 << PrevTemplate << R << Prev->getType();
7933 Diag(PrevTemplate->getLocation(), diag::note_template_declared_here)
7934 << 2 << PrevTemplate->getDeclName();
7935 return true;
7936 }
7937
7938 // FIXME: Create an ExplicitInstantiation node?
7939 return (Decl*) nullptr;
7940 }
7941
7942 // If the declarator is a template-id, translate the parser's template
7943 // argument list into our AST format.
7944 bool HasExplicitTemplateArgs = false;
7945 TemplateArgumentListInfo TemplateArgs;
7946 if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
7947 TemplateArgs = makeTemplateArgumentListInfo(*this, *D.getName().TemplateId);
7948 HasExplicitTemplateArgs = true;
7949 }
7950
7951 // C++ [temp.explicit]p1:
7952 // A [...] function [...] can be explicitly instantiated from its template.
7953 // A member function [...] of a class template can be explicitly
7954 // instantiated from the member definition associated with its class
7955 // template.
7956 UnresolvedSet<8> Matches;
7957 TemplateSpecCandidateSet FailedCandidates(D.getIdentifierLoc());
7958 for (LookupResult::iterator P = Previous.begin(), PEnd = Previous.end();
7959 P != PEnd; ++P) {
7960 NamedDecl *Prev = *P;
7961 if (!HasExplicitTemplateArgs) {
7962 if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Prev)) {
7963 QualType Adjusted = adjustCCAndNoReturn(R, Method->getType());
7964 if (Context.hasSameUnqualifiedType(Method->getType(), Adjusted)) {
7965 Matches.clear();
7966
7967 Matches.addDecl(Method, P.getAccess());
7968 if (Method->getTemplateSpecializationKind() == TSK_Undeclared)
7969 break;
7970 }
7971 }
7972 }
7973
7974 FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(Prev);
7975 if (!FunTmpl)
7976 continue;
7977
7978 TemplateDeductionInfo Info(FailedCandidates.getLocation());
7979 FunctionDecl *Specialization = nullptr;
7980 if (TemplateDeductionResult TDK
7981 = DeduceTemplateArguments(FunTmpl,
7982 (HasExplicitTemplateArgs ? &TemplateArgs
7983 : nullptr),
7984 R, Specialization, Info)) {
7985 // Keep track of almost-matches.
7986 FailedCandidates.addCandidate()
7987 .set(P.getPair(), FunTmpl->getTemplatedDecl(),
7988 MakeDeductionFailureInfo(Context, TDK, Info));
7989 (void)TDK;
7990 continue;
7991 }
7992
7993 Matches.addDecl(Specialization, P.getAccess());
7994 }
7995
7996 // Find the most specialized function template specialization.
7997 UnresolvedSetIterator Result = getMostSpecialized(
7998 Matches.begin(), Matches.end(), FailedCandidates,
7999 D.getIdentifierLoc(),
8000 PDiag(diag::err_explicit_instantiation_not_known) << Name,
8001 PDiag(diag::err_explicit_instantiation_ambiguous) << Name,
8002 PDiag(diag::note_explicit_instantiation_candidate));
8003
8004 if (Result == Matches.end())
8005 return true;
8006
8007 // Ignore access control bits, we don't need them for redeclaration checking.
8008 FunctionDecl *Specialization = cast<FunctionDecl>(*Result);
8009
8010 // C++11 [except.spec]p4
8011 // In an explicit instantiation an exception-specification may be specified,
8012 // but is not required.
8013 // If an exception-specification is specified in an explicit instantiation
8014 // directive, it shall be compatible with the exception-specifications of
8015 // other declarations of that function.
8016 if (auto *FPT = R->getAs<FunctionProtoType>())
8017 if (FPT->hasExceptionSpec()) {
8018 unsigned DiagID =
8019 diag::err_mismatched_exception_spec_explicit_instantiation;
8020 if (getLangOpts().MicrosoftExt)
8021 DiagID = diag::ext_mismatched_exception_spec_explicit_instantiation;
8022 bool Result = CheckEquivalentExceptionSpec(
8023 PDiag(DiagID) << Specialization->getType(),
8024 PDiag(diag::note_explicit_instantiation_here),
8025 Specialization->getType()->getAs<FunctionProtoType>(),
8026 Specialization->getLocation(), FPT, D.getLocStart());
8027 // In Microsoft mode, mismatching exception specifications just cause a
8028 // warning.
8029 if (!getLangOpts().MicrosoftExt && Result)
8030 return true;
8031 }
8032
8033 if (Specialization->getTemplateSpecializationKind() == TSK_Undeclared) {
8034 Diag(D.getIdentifierLoc(),
8035 diag::err_explicit_instantiation_member_function_not_instantiated)
8036 << Specialization
8037 << (Specialization->getTemplateSpecializationKind() ==
8038 TSK_ExplicitSpecialization);
8039 Diag(Specialization->getLocation(), diag::note_explicit_instantiation_here);
8040 return true;
8041 }
8042
8043 FunctionDecl *PrevDecl = Specialization->getPreviousDecl();
8044 if (!PrevDecl && Specialization->isThisDeclarationADefinition())
8045 PrevDecl = Specialization;
8046
8047 if (PrevDecl) {
8048 bool HasNoEffect = false;
8049 if (CheckSpecializationInstantiationRedecl(D.getIdentifierLoc(), TSK,
8050 PrevDecl,
8051 PrevDecl->getTemplateSpecializationKind(),
8052 PrevDecl->getPointOfInstantiation(),
8053 HasNoEffect))
8054 return true;
8055
8056 // FIXME: We may still want to build some representation of this
8057 // explicit specialization.
8058 if (HasNoEffect)
8059 return (Decl*) nullptr;
8060 }
8061
8062 Specialization->setTemplateSpecializationKind(TSK, D.getIdentifierLoc());
8063 AttributeList *Attr = D.getDeclSpec().getAttributes().getList();
8064 if (Attr)
8065 ProcessDeclAttributeList(S, Specialization, Attr);
8066
8067 if (Specialization->isDefined()) {
8068 // Let the ASTConsumer know that this function has been explicitly
8069 // instantiated now, and its linkage might have changed.
8070 Consumer.HandleTopLevelDecl(DeclGroupRef(Specialization));
8071 } else if (TSK == TSK_ExplicitInstantiationDefinition)
8072 InstantiateFunctionDefinition(D.getIdentifierLoc(), Specialization);
8073
8074 // C++0x [temp.explicit]p2:
8075 // If the explicit instantiation is for a member function, a member class
8076 // or a static data member of a class template specialization, the name of
8077 // the class template specialization in the qualified-id for the member
8078 // name shall be a simple-template-id.
8079 //
8080 // C++98 has the same restriction, just worded differently.
8081 FunctionTemplateDecl *FunTmpl = Specialization->getPrimaryTemplate();
8082 if (D.getName().getKind() != UnqualifiedId::IK_TemplateId && !FunTmpl &&
8083 D.getCXXScopeSpec().isSet() &&
8084 !ScopeSpecifierHasTemplateId(D.getCXXScopeSpec()))
8085 Diag(D.getIdentifierLoc(),
8086 diag::ext_explicit_instantiation_without_qualified_id)
8087 << Specialization << D.getCXXScopeSpec().getRange();
8088
8089 // C++ Concepts TS [dcl.spec.concept]p7: A program shall not declare an
8090 // explicit instantiation (14.8.2) [...] of a concept definition.
8091 if (FunTmpl && FunTmpl->isConcept() &&
8092 !D.getDeclSpec().isConceptSpecified()) {
8093 Diag(D.getIdentifierLoc(), diag::err_concept_specialized)
8094 << 0 /*function*/ << 0 /*explicitly instantiated*/;
8095 Diag(FunTmpl->getLocation(), diag::note_previous_declaration);
8096 return true;
8097 }
8098
8099 CheckExplicitInstantiationScope(*this,
8100 FunTmpl? (NamedDecl *)FunTmpl
8101 : Specialization->getInstantiatedFromMemberFunction(),
8102 D.getIdentifierLoc(),
8103 D.getCXXScopeSpec().isSet());
8104
8105 // FIXME: Create some kind of ExplicitInstantiationDecl here.
8106 return (Decl*) nullptr;
8107 }
8108
8109 TypeResult
ActOnDependentTag(Scope * S,unsigned TagSpec,TagUseKind TUK,const CXXScopeSpec & SS,IdentifierInfo * Name,SourceLocation TagLoc,SourceLocation NameLoc)8110 Sema::ActOnDependentTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8111 const CXXScopeSpec &SS, IdentifierInfo *Name,
8112 SourceLocation TagLoc, SourceLocation NameLoc) {
8113 // This has to hold, because SS is expected to be defined.
8114 assert(Name && "Expected a name in a dependent tag");
8115
8116 NestedNameSpecifier *NNS = SS.getScopeRep();
8117 if (!NNS)
8118 return true;
8119
8120 TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8121
8122 if (TUK == TUK_Declaration || TUK == TUK_Definition) {
8123 Diag(NameLoc, diag::err_dependent_tag_decl)
8124 << (TUK == TUK_Definition) << Kind << SS.getRange();
8125 return true;
8126 }
8127
8128 // Create the resulting type.
8129 ElaboratedTypeKeyword Kwd = TypeWithKeyword::getKeywordForTagTypeKind(Kind);
8130 QualType Result = Context.getDependentNameType(Kwd, NNS, Name);
8131
8132 // Create type-source location information for this type.
8133 TypeLocBuilder TLB;
8134 DependentNameTypeLoc TL = TLB.push<DependentNameTypeLoc>(Result);
8135 TL.setElaboratedKeywordLoc(TagLoc);
8136 TL.setQualifierLoc(SS.getWithLocInContext(Context));
8137 TL.setNameLoc(NameLoc);
8138 return CreateParsedType(Result, TLB.getTypeSourceInfo(Context, Result));
8139 }
8140
8141 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,const IdentifierInfo & II,SourceLocation IdLoc)8142 Sema::ActOnTypenameType(Scope *S, SourceLocation TypenameLoc,
8143 const CXXScopeSpec &SS, const IdentifierInfo &II,
8144 SourceLocation IdLoc) {
8145 if (SS.isInvalid())
8146 return true;
8147
8148 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
8149 Diag(TypenameLoc,
8150 getLangOpts().CPlusPlus11 ?
8151 diag::warn_cxx98_compat_typename_outside_of_template :
8152 diag::ext_typename_outside_of_template)
8153 << FixItHint::CreateRemoval(TypenameLoc);
8154
8155 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8156 QualType T = CheckTypenameType(TypenameLoc.isValid()? ETK_Typename : ETK_None,
8157 TypenameLoc, QualifierLoc, II, IdLoc);
8158 if (T.isNull())
8159 return true;
8160
8161 TypeSourceInfo *TSI = Context.CreateTypeSourceInfo(T);
8162 if (isa<DependentNameType>(T)) {
8163 DependentNameTypeLoc TL = TSI->getTypeLoc().castAs<DependentNameTypeLoc>();
8164 TL.setElaboratedKeywordLoc(TypenameLoc);
8165 TL.setQualifierLoc(QualifierLoc);
8166 TL.setNameLoc(IdLoc);
8167 } else {
8168 ElaboratedTypeLoc TL = TSI->getTypeLoc().castAs<ElaboratedTypeLoc>();
8169 TL.setElaboratedKeywordLoc(TypenameLoc);
8170 TL.setQualifierLoc(QualifierLoc);
8171 TL.getNamedTypeLoc().castAs<TypeSpecTypeLoc>().setNameLoc(IdLoc);
8172 }
8173
8174 return CreateParsedType(T, TSI);
8175 }
8176
8177 TypeResult
ActOnTypenameType(Scope * S,SourceLocation TypenameLoc,const CXXScopeSpec & SS,SourceLocation TemplateKWLoc,TemplateTy TemplateIn,SourceLocation TemplateNameLoc,SourceLocation LAngleLoc,ASTTemplateArgsPtr TemplateArgsIn,SourceLocation RAngleLoc)8178 Sema::ActOnTypenameType(Scope *S,
8179 SourceLocation TypenameLoc,
8180 const CXXScopeSpec &SS,
8181 SourceLocation TemplateKWLoc,
8182 TemplateTy TemplateIn,
8183 SourceLocation TemplateNameLoc,
8184 SourceLocation LAngleLoc,
8185 ASTTemplateArgsPtr TemplateArgsIn,
8186 SourceLocation RAngleLoc) {
8187 if (TypenameLoc.isValid() && S && !S->getTemplateParamParent())
8188 Diag(TypenameLoc,
8189 getLangOpts().CPlusPlus11 ?
8190 diag::warn_cxx98_compat_typename_outside_of_template :
8191 diag::ext_typename_outside_of_template)
8192 << FixItHint::CreateRemoval(TypenameLoc);
8193
8194 // Translate the parser's template argument list in our AST format.
8195 TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
8196 translateTemplateArguments(TemplateArgsIn, TemplateArgs);
8197
8198 TemplateName Template = TemplateIn.get();
8199 if (DependentTemplateName *DTN = Template.getAsDependentTemplateName()) {
8200 // Construct a dependent template specialization type.
8201 assert(DTN && "dependent template has non-dependent name?");
8202 assert(DTN->getQualifier() == SS.getScopeRep());
8203 QualType T = Context.getDependentTemplateSpecializationType(ETK_Typename,
8204 DTN->getQualifier(),
8205 DTN->getIdentifier(),
8206 TemplateArgs);
8207
8208 // Create source-location information for this type.
8209 TypeLocBuilder Builder;
8210 DependentTemplateSpecializationTypeLoc SpecTL
8211 = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
8212 SpecTL.setElaboratedKeywordLoc(TypenameLoc);
8213 SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
8214 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
8215 SpecTL.setTemplateNameLoc(TemplateNameLoc);
8216 SpecTL.setLAngleLoc(LAngleLoc);
8217 SpecTL.setRAngleLoc(RAngleLoc);
8218 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8219 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
8220 return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
8221 }
8222
8223 QualType T = CheckTemplateIdType(Template, TemplateNameLoc, TemplateArgs);
8224 if (T.isNull())
8225 return true;
8226
8227 // Provide source-location information for the template specialization type.
8228 TypeLocBuilder Builder;
8229 TemplateSpecializationTypeLoc SpecTL
8230 = Builder.push<TemplateSpecializationTypeLoc>(T);
8231 SpecTL.setTemplateKeywordLoc(TemplateKWLoc);
8232 SpecTL.setTemplateNameLoc(TemplateNameLoc);
8233 SpecTL.setLAngleLoc(LAngleLoc);
8234 SpecTL.setRAngleLoc(RAngleLoc);
8235 for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
8236 SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
8237
8238 T = Context.getElaboratedType(ETK_Typename, SS.getScopeRep(), T);
8239 ElaboratedTypeLoc TL = Builder.push<ElaboratedTypeLoc>(T);
8240 TL.setElaboratedKeywordLoc(TypenameLoc);
8241 TL.setQualifierLoc(SS.getWithLocInContext(Context));
8242
8243 TypeSourceInfo *TSI = Builder.getTypeSourceInfo(Context, T);
8244 return CreateParsedType(T, TSI);
8245 }
8246
8247
8248 /// Determine whether this failed name lookup should be treated as being
8249 /// disabled by a usage of std::enable_if.
isEnableIf(NestedNameSpecifierLoc NNS,const IdentifierInfo & II,SourceRange & CondRange)8250 static bool isEnableIf(NestedNameSpecifierLoc NNS, const IdentifierInfo &II,
8251 SourceRange &CondRange) {
8252 // We must be looking for a ::type...
8253 if (!II.isStr("type"))
8254 return false;
8255
8256 // ... within an explicitly-written template specialization...
8257 if (!NNS || !NNS.getNestedNameSpecifier()->getAsType())
8258 return false;
8259 TypeLoc EnableIfTy = NNS.getTypeLoc();
8260 TemplateSpecializationTypeLoc EnableIfTSTLoc =
8261 EnableIfTy.getAs<TemplateSpecializationTypeLoc>();
8262 if (!EnableIfTSTLoc || EnableIfTSTLoc.getNumArgs() == 0)
8263 return false;
8264 const TemplateSpecializationType *EnableIfTST =
8265 cast<TemplateSpecializationType>(EnableIfTSTLoc.getTypePtr());
8266
8267 // ... which names a complete class template declaration...
8268 const TemplateDecl *EnableIfDecl =
8269 EnableIfTST->getTemplateName().getAsTemplateDecl();
8270 if (!EnableIfDecl || EnableIfTST->isIncompleteType())
8271 return false;
8272
8273 // ... called "enable_if".
8274 const IdentifierInfo *EnableIfII =
8275 EnableIfDecl->getDeclName().getAsIdentifierInfo();
8276 if (!EnableIfII || !EnableIfII->isStr("enable_if"))
8277 return false;
8278
8279 // Assume the first template argument is the condition.
8280 CondRange = EnableIfTSTLoc.getArgLoc(0).getSourceRange();
8281 return true;
8282 }
8283
8284 /// \brief Build the type that describes a C++ typename specifier,
8285 /// e.g., "typename T::type".
8286 QualType
CheckTypenameType(ElaboratedTypeKeyword Keyword,SourceLocation KeywordLoc,NestedNameSpecifierLoc QualifierLoc,const IdentifierInfo & II,SourceLocation IILoc)8287 Sema::CheckTypenameType(ElaboratedTypeKeyword Keyword,
8288 SourceLocation KeywordLoc,
8289 NestedNameSpecifierLoc QualifierLoc,
8290 const IdentifierInfo &II,
8291 SourceLocation IILoc) {
8292 CXXScopeSpec SS;
8293 SS.Adopt(QualifierLoc);
8294
8295 DeclContext *Ctx = computeDeclContext(SS);
8296 if (!Ctx) {
8297 // If the nested-name-specifier is dependent and couldn't be
8298 // resolved to a type, build a typename type.
8299 assert(QualifierLoc.getNestedNameSpecifier()->isDependent());
8300 return Context.getDependentNameType(Keyword,
8301 QualifierLoc.getNestedNameSpecifier(),
8302 &II);
8303 }
8304
8305 // If the nested-name-specifier refers to the current instantiation,
8306 // the "typename" keyword itself is superfluous. In C++03, the
8307 // program is actually ill-formed. However, DR 382 (in C++0x CD1)
8308 // allows such extraneous "typename" keywords, and we retroactively
8309 // apply this DR to C++03 code with only a warning. In any case we continue.
8310
8311 if (RequireCompleteDeclContext(SS, Ctx))
8312 return QualType();
8313
8314 DeclarationName Name(&II);
8315 LookupResult Result(*this, Name, IILoc, LookupOrdinaryName);
8316 LookupQualifiedName(Result, Ctx, SS);
8317 unsigned DiagID = 0;
8318 Decl *Referenced = nullptr;
8319 switch (Result.getResultKind()) {
8320 case LookupResult::NotFound: {
8321 // If we're looking up 'type' within a template named 'enable_if', produce
8322 // a more specific diagnostic.
8323 SourceRange CondRange;
8324 if (isEnableIf(QualifierLoc, II, CondRange)) {
8325 Diag(CondRange.getBegin(), diag::err_typename_nested_not_found_enable_if)
8326 << Ctx << CondRange;
8327 return QualType();
8328 }
8329
8330 DiagID = diag::err_typename_nested_not_found;
8331 break;
8332 }
8333
8334 case LookupResult::FoundUnresolvedValue: {
8335 // We found a using declaration that is a value. Most likely, the using
8336 // declaration itself is meant to have the 'typename' keyword.
8337 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
8338 IILoc);
8339 Diag(IILoc, diag::err_typename_refers_to_using_value_decl)
8340 << Name << Ctx << FullRange;
8341 if (UnresolvedUsingValueDecl *Using
8342 = dyn_cast<UnresolvedUsingValueDecl>(Result.getRepresentativeDecl())){
8343 SourceLocation Loc = Using->getQualifierLoc().getBeginLoc();
8344 Diag(Loc, diag::note_using_value_decl_missing_typename)
8345 << FixItHint::CreateInsertion(Loc, "typename ");
8346 }
8347 }
8348 // Fall through to create a dependent typename type, from which we can recover
8349 // better.
8350
8351 case LookupResult::NotFoundInCurrentInstantiation:
8352 // Okay, it's a member of an unknown instantiation.
8353 return Context.getDependentNameType(Keyword,
8354 QualifierLoc.getNestedNameSpecifier(),
8355 &II);
8356
8357 case LookupResult::Found:
8358 if (TypeDecl *Type = dyn_cast<TypeDecl>(Result.getFoundDecl())) {
8359 // We found a type. Build an ElaboratedType, since the
8360 // typename-specifier was just sugar.
8361 MarkAnyDeclReferenced(Type->getLocation(), Type, /*OdrUse=*/false);
8362 return Context.getElaboratedType(ETK_Typename,
8363 QualifierLoc.getNestedNameSpecifier(),
8364 Context.getTypeDeclType(Type));
8365 }
8366
8367 DiagID = diag::err_typename_nested_not_type;
8368 Referenced = Result.getFoundDecl();
8369 break;
8370
8371 case LookupResult::FoundOverloaded:
8372 DiagID = diag::err_typename_nested_not_type;
8373 Referenced = *Result.begin();
8374 break;
8375
8376 case LookupResult::Ambiguous:
8377 return QualType();
8378 }
8379
8380 // If we get here, it's because name lookup did not find a
8381 // type. Emit an appropriate diagnostic and return an error.
8382 SourceRange FullRange(KeywordLoc.isValid() ? KeywordLoc : SS.getBeginLoc(),
8383 IILoc);
8384 Diag(IILoc, DiagID) << FullRange << Name << Ctx;
8385 if (Referenced)
8386 Diag(Referenced->getLocation(), diag::note_typename_refers_here)
8387 << Name;
8388 return QualType();
8389 }
8390
8391 namespace {
8392 // See Sema::RebuildTypeInCurrentInstantiation
8393 class CurrentInstantiationRebuilder
8394 : public TreeTransform<CurrentInstantiationRebuilder> {
8395 SourceLocation Loc;
8396 DeclarationName Entity;
8397
8398 public:
8399 typedef TreeTransform<CurrentInstantiationRebuilder> inherited;
8400
CurrentInstantiationRebuilder(Sema & SemaRef,SourceLocation Loc,DeclarationName Entity)8401 CurrentInstantiationRebuilder(Sema &SemaRef,
8402 SourceLocation Loc,
8403 DeclarationName Entity)
8404 : TreeTransform<CurrentInstantiationRebuilder>(SemaRef),
8405 Loc(Loc), Entity(Entity) { }
8406
8407 /// \brief Determine whether the given type \p T has already been
8408 /// transformed.
8409 ///
8410 /// For the purposes of type reconstruction, a type has already been
8411 /// transformed if it is NULL or if it is not dependent.
AlreadyTransformed(QualType T)8412 bool AlreadyTransformed(QualType T) {
8413 return T.isNull() || !T->isDependentType();
8414 }
8415
8416 /// \brief Returns the location of the entity whose type is being
8417 /// rebuilt.
getBaseLocation()8418 SourceLocation getBaseLocation() { return Loc; }
8419
8420 /// \brief Returns the name of the entity whose type is being rebuilt.
getBaseEntity()8421 DeclarationName getBaseEntity() { return Entity; }
8422
8423 /// \brief Sets the "base" location and entity when that
8424 /// information is known based on another transformation.
setBase(SourceLocation Loc,DeclarationName Entity)8425 void setBase(SourceLocation Loc, DeclarationName Entity) {
8426 this->Loc = Loc;
8427 this->Entity = Entity;
8428 }
8429
TransformLambdaExpr(LambdaExpr * E)8430 ExprResult TransformLambdaExpr(LambdaExpr *E) {
8431 // Lambdas never need to be transformed.
8432 return E;
8433 }
8434 };
8435 } // end anonymous namespace
8436
8437 /// \brief Rebuilds a type within the context of the current instantiation.
8438 ///
8439 /// The type \p T is part of the type of an out-of-line member definition of
8440 /// a class template (or class template partial specialization) that was parsed
8441 /// and constructed before we entered the scope of the class template (or
8442 /// partial specialization thereof). This routine will rebuild that type now
8443 /// that we have entered the declarator's scope, which may produce different
8444 /// canonical types, e.g.,
8445 ///
8446 /// \code
8447 /// template<typename T>
8448 /// struct X {
8449 /// typedef T* pointer;
8450 /// pointer data();
8451 /// };
8452 ///
8453 /// template<typename T>
8454 /// typename X<T>::pointer X<T>::data() { ... }
8455 /// \endcode
8456 ///
8457 /// Here, the type "typename X<T>::pointer" will be created as a DependentNameType,
8458 /// since we do not know that we can look into X<T> when we parsed the type.
8459 /// This function will rebuild the type, performing the lookup of "pointer"
8460 /// in X<T> and returning an ElaboratedType whose canonical type is the same
8461 /// as the canonical type of T*, allowing the return types of the out-of-line
8462 /// definition and the declaration to match.
RebuildTypeInCurrentInstantiation(TypeSourceInfo * T,SourceLocation Loc,DeclarationName Name)8463 TypeSourceInfo *Sema::RebuildTypeInCurrentInstantiation(TypeSourceInfo *T,
8464 SourceLocation Loc,
8465 DeclarationName Name) {
8466 if (!T || !T->getType()->isDependentType())
8467 return T;
8468
8469 CurrentInstantiationRebuilder Rebuilder(*this, Loc, Name);
8470 return Rebuilder.TransformType(T);
8471 }
8472
RebuildExprInCurrentInstantiation(Expr * E)8473 ExprResult Sema::RebuildExprInCurrentInstantiation(Expr *E) {
8474 CurrentInstantiationRebuilder Rebuilder(*this, E->getExprLoc(),
8475 DeclarationName());
8476 return Rebuilder.TransformExpr(E);
8477 }
8478
RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec & SS)8479 bool Sema::RebuildNestedNameSpecifierInCurrentInstantiation(CXXScopeSpec &SS) {
8480 if (SS.isInvalid())
8481 return true;
8482
8483 NestedNameSpecifierLoc QualifierLoc = SS.getWithLocInContext(Context);
8484 CurrentInstantiationRebuilder Rebuilder(*this, SS.getRange().getBegin(),
8485 DeclarationName());
8486 NestedNameSpecifierLoc Rebuilt
8487 = Rebuilder.TransformNestedNameSpecifierLoc(QualifierLoc);
8488 if (!Rebuilt)
8489 return true;
8490
8491 SS.Adopt(Rebuilt);
8492 return false;
8493 }
8494
8495 /// \brief Rebuild the template parameters now that we know we're in a current
8496 /// instantiation.
RebuildTemplateParamsInCurrentInstantiation(TemplateParameterList * Params)8497 bool Sema::RebuildTemplateParamsInCurrentInstantiation(
8498 TemplateParameterList *Params) {
8499 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8500 Decl *Param = Params->getParam(I);
8501
8502 // There is nothing to rebuild in a type parameter.
8503 if (isa<TemplateTypeParmDecl>(Param))
8504 continue;
8505
8506 // Rebuild the template parameter list of a template template parameter.
8507 if (TemplateTemplateParmDecl *TTP
8508 = dyn_cast<TemplateTemplateParmDecl>(Param)) {
8509 if (RebuildTemplateParamsInCurrentInstantiation(
8510 TTP->getTemplateParameters()))
8511 return true;
8512
8513 continue;
8514 }
8515
8516 // Rebuild the type of a non-type template parameter.
8517 NonTypeTemplateParmDecl *NTTP = cast<NonTypeTemplateParmDecl>(Param);
8518 TypeSourceInfo *NewTSI
8519 = RebuildTypeInCurrentInstantiation(NTTP->getTypeSourceInfo(),
8520 NTTP->getLocation(),
8521 NTTP->getDeclName());
8522 if (!NewTSI)
8523 return true;
8524
8525 if (NewTSI != NTTP->getTypeSourceInfo()) {
8526 NTTP->setTypeSourceInfo(NewTSI);
8527 NTTP->setType(NewTSI->getType());
8528 }
8529 }
8530
8531 return false;
8532 }
8533
8534 /// \brief Produces a formatted string that describes the binding of
8535 /// template parameters to template arguments.
8536 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgumentList & Args)8537 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8538 const TemplateArgumentList &Args) {
8539 return getTemplateArgumentBindingsText(Params, Args.data(), Args.size());
8540 }
8541
8542 std::string
getTemplateArgumentBindingsText(const TemplateParameterList * Params,const TemplateArgument * Args,unsigned NumArgs)8543 Sema::getTemplateArgumentBindingsText(const TemplateParameterList *Params,
8544 const TemplateArgument *Args,
8545 unsigned NumArgs) {
8546 SmallString<128> Str;
8547 llvm::raw_svector_ostream Out(Str);
8548
8549 if (!Params || Params->size() == 0 || NumArgs == 0)
8550 return std::string();
8551
8552 for (unsigned I = 0, N = Params->size(); I != N; ++I) {
8553 if (I >= NumArgs)
8554 break;
8555
8556 if (I == 0)
8557 Out << "[with ";
8558 else
8559 Out << ", ";
8560
8561 if (const IdentifierInfo *Id = Params->getParam(I)->getIdentifier()) {
8562 Out << Id->getName();
8563 } else {
8564 Out << '$' << I;
8565 }
8566
8567 Out << " = ";
8568 Args[I].print(getPrintingPolicy(), Out);
8569 }
8570
8571 Out << ']';
8572 return Out.str();
8573 }
8574
MarkAsLateParsedTemplate(FunctionDecl * FD,Decl * FnD,CachedTokens & Toks)8575 void Sema::MarkAsLateParsedTemplate(FunctionDecl *FD, Decl *FnD,
8576 CachedTokens &Toks) {
8577 if (!FD)
8578 return;
8579
8580 LateParsedTemplate *LPT = new LateParsedTemplate;
8581
8582 // Take tokens to avoid allocations
8583 LPT->Toks.swap(Toks);
8584 LPT->D = FnD;
8585 LateParsedTemplateMap.insert(std::make_pair(FD, LPT));
8586
8587 FD->setLateTemplateParsed(true);
8588 }
8589
UnmarkAsLateParsedTemplate(FunctionDecl * FD)8590 void Sema::UnmarkAsLateParsedTemplate(FunctionDecl *FD) {
8591 if (!FD)
8592 return;
8593 FD->setLateTemplateParsed(false);
8594 }
8595
IsInsideALocalClassWithinATemplateFunction()8596 bool Sema::IsInsideALocalClassWithinATemplateFunction() {
8597 DeclContext *DC = CurContext;
8598
8599 while (DC) {
8600 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(CurContext)) {
8601 const FunctionDecl *FD = RD->isLocalClass();
8602 return (FD && FD->getTemplatedKind() != FunctionDecl::TK_NonTemplate);
8603 } else if (DC->isTranslationUnit() || DC->isNamespace())
8604 return false;
8605
8606 DC = DC->getParent();
8607 }
8608 return false;
8609 }
8610
8611 /// \brief Walk the path from which a declaration was instantiated, and check
8612 /// that every explicit specialization along that path is visible. This enforces
8613 /// C++ [temp.expl.spec]/6:
8614 ///
8615 /// If a template, a member template or a member of a class template is
8616 /// explicitly specialized then that specialization shall be declared before
8617 /// the first use of that specialization that would cause an implicit
8618 /// instantiation to take place, in every translation unit in which such a
8619 /// use occurs; no diagnostic is required.
8620 ///
8621 /// and also C++ [temp.class.spec]/1:
8622 ///
8623 /// A partial specialization shall be declared before the first use of a
8624 /// class template specialization that would make use of the partial
8625 /// specialization as the result of an implicit or explicit instantiation
8626 /// in every translation unit in which such a use occurs; no diagnostic is
8627 /// required.
8628 class ExplicitSpecializationVisibilityChecker {
8629 Sema &S;
8630 SourceLocation Loc;
8631 llvm::SmallVector<Module *, 8> Modules;
8632
8633 public:
ExplicitSpecializationVisibilityChecker(Sema & S,SourceLocation Loc)8634 ExplicitSpecializationVisibilityChecker(Sema &S, SourceLocation Loc)
8635 : S(S), Loc(Loc) {}
8636
check(NamedDecl * ND)8637 void check(NamedDecl *ND) {
8638 if (auto *FD = dyn_cast<FunctionDecl>(ND))
8639 return checkImpl(FD);
8640 if (auto *RD = dyn_cast<CXXRecordDecl>(ND))
8641 return checkImpl(RD);
8642 if (auto *VD = dyn_cast<VarDecl>(ND))
8643 return checkImpl(VD);
8644 if (auto *ED = dyn_cast<EnumDecl>(ND))
8645 return checkImpl(ED);
8646 }
8647
8648 private:
diagnose(NamedDecl * D,bool IsPartialSpec)8649 void diagnose(NamedDecl *D, bool IsPartialSpec) {
8650 auto Kind = IsPartialSpec ? Sema::MissingImportKind::PartialSpecialization
8651 : Sema::MissingImportKind::ExplicitSpecialization;
8652 const bool Recover = true;
8653
8654 // If we got a custom set of modules (because only a subset of the
8655 // declarations are interesting), use them, otherwise let
8656 // diagnoseMissingImport intelligently pick some.
8657 if (Modules.empty())
8658 S.diagnoseMissingImport(Loc, D, Kind, Recover);
8659 else
8660 S.diagnoseMissingImport(Loc, D, D->getLocation(), Modules, Kind, Recover);
8661 }
8662
8663 // Check a specific declaration. There are three problematic cases:
8664 //
8665 // 1) The declaration is an explicit specialization of a template
8666 // specialization.
8667 // 2) The declaration is an explicit specialization of a member of an
8668 // templated class.
8669 // 3) The declaration is an instantiation of a template, and that template
8670 // is an explicit specialization of a member of a templated class.
8671 //
8672 // We don't need to go any deeper than that, as the instantiation of the
8673 // surrounding class / etc is not triggered by whatever triggered this
8674 // instantiation, and thus should be checked elsewhere.
8675 template<typename SpecDecl>
checkImpl(SpecDecl * Spec)8676 void checkImpl(SpecDecl *Spec) {
8677 bool IsHiddenExplicitSpecialization = false;
8678 if (Spec->getTemplateSpecializationKind() == TSK_ExplicitSpecialization) {
8679 IsHiddenExplicitSpecialization =
8680 Spec->getMemberSpecializationInfo()
8681 ? !S.hasVisibleMemberSpecialization(Spec, &Modules)
8682 : !S.hasVisibleDeclaration(Spec);
8683 } else {
8684 checkInstantiated(Spec);
8685 }
8686
8687 if (IsHiddenExplicitSpecialization)
8688 diagnose(Spec->getMostRecentDecl(), false);
8689 }
8690
checkInstantiated(FunctionDecl * FD)8691 void checkInstantiated(FunctionDecl *FD) {
8692 if (auto *TD = FD->getPrimaryTemplate())
8693 checkTemplate(TD);
8694 }
8695
checkInstantiated(CXXRecordDecl * RD)8696 void checkInstantiated(CXXRecordDecl *RD) {
8697 auto *SD = dyn_cast<ClassTemplateSpecializationDecl>(RD);
8698 if (!SD)
8699 return;
8700
8701 auto From = SD->getSpecializedTemplateOrPartial();
8702 if (auto *TD = From.dyn_cast<ClassTemplateDecl *>())
8703 checkTemplate(TD);
8704 else if (auto *TD =
8705 From.dyn_cast<ClassTemplatePartialSpecializationDecl *>()) {
8706 if (!S.hasVisibleDeclaration(TD))
8707 diagnose(TD, true);
8708 checkTemplate(TD);
8709 }
8710 }
8711
checkInstantiated(VarDecl * RD)8712 void checkInstantiated(VarDecl *RD) {
8713 auto *SD = dyn_cast<VarTemplateSpecializationDecl>(RD);
8714 if (!SD)
8715 return;
8716
8717 auto From = SD->getSpecializedTemplateOrPartial();
8718 if (auto *TD = From.dyn_cast<VarTemplateDecl *>())
8719 checkTemplate(TD);
8720 else if (auto *TD =
8721 From.dyn_cast<VarTemplatePartialSpecializationDecl *>()) {
8722 if (!S.hasVisibleDeclaration(TD))
8723 diagnose(TD, true);
8724 checkTemplate(TD);
8725 }
8726 }
8727
checkInstantiated(EnumDecl * FD)8728 void checkInstantiated(EnumDecl *FD) {}
8729
8730 template<typename TemplDecl>
checkTemplate(TemplDecl * TD)8731 void checkTemplate(TemplDecl *TD) {
8732 if (TD->isMemberSpecialization()) {
8733 if (!S.hasVisibleMemberSpecialization(TD, &Modules))
8734 diagnose(TD->getMostRecentDecl(), false);
8735 }
8736 }
8737 };
8738
checkSpecializationVisibility(SourceLocation Loc,NamedDecl * Spec)8739 void Sema::checkSpecializationVisibility(SourceLocation Loc, NamedDecl *Spec) {
8740 if (!getLangOpts().Modules)
8741 return;
8742
8743 ExplicitSpecializationVisibilityChecker(*this, Loc).check(Spec);
8744 }
8745
8746 /// \brief Check whether a template partial specialization that we've discovered
8747 /// is hidden, and produce suitable diagnostics if so.
checkPartialSpecializationVisibility(SourceLocation Loc,NamedDecl * Spec)8748 void Sema::checkPartialSpecializationVisibility(SourceLocation Loc,
8749 NamedDecl *Spec) {
8750 llvm::SmallVector<Module *, 8> Modules;
8751 if (!hasVisibleDeclaration(Spec, &Modules))
8752 diagnoseMissingImport(Loc, Spec, Spec->getLocation(), Modules,
8753 MissingImportKind::PartialSpecialization,
8754 /*Recover*/true);
8755 }
8756