• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2 
3 Licensed under the Apache License, Version 2.0 (the "License");
4 you may not use this file except in compliance with the License.
5 You may obtain a copy of the License at
6 
7     http://www.apache.org/licenses/LICENSE-2.0
8 
9 Unless required by applicable law or agreed to in writing, software
10 distributed under the License is distributed on an "AS IS" BASIS,
11 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 See the License for the specific language governing permissions and
13 limitations under the License.
14 ==============================================================================*/
15 
16 #ifndef TENSORFLOW_C_EAGER_C_API_H_
17 #define TENSORFLOW_C_EAGER_C_API_H_
18 
19 // C API extensions to experiment with eager execution of kernels.
20 // WARNING: Unlike tensorflow/c/c_api.h, the API here is not guaranteed to be
21 // stable and can change without notice.
22 
23 #include "tensorflow/c/c_api.h"
24 
25 // Macro to control visibility of exported symbols in the shared library (.so,
26 // .dylib, .dll).
27 // This duplicates the TF_EXPORT macro definition in
28 // tensorflow/core/platform/macros.h in order to keep this .h file independent
29 // of any other includes.$a
30 #ifdef SWIG
31 #define TF_CAPI_EXPORT
32 #else
33 #if defined(_WIN32)
34 #ifdef TF_COMPILE_LIBRARY
35 #define TF_CAPI_EXPORT __declspec(dllexport)
36 #else
37 #define TF_CAPI_EXPORT __declspec(dllimport)
38 #endif  // TF_COMPILE_LIBRARY
39 #else
40 #define TF_CAPI_EXPORT __attribute__((visibility("default")))
41 #endif  // _WIN32
42 #endif  // SWIG
43 
44 #ifdef __cplusplus
45 extern "C" {
46 #endif
47 
48 typedef struct TFE_ContextOptions TFE_ContextOptions;
49 
50 // Return a new options object.
51 TF_CAPI_EXPORT extern TFE_ContextOptions* TFE_NewContextOptions(void);
52 
53 // Set the config in TF_ContextOptions.options.
54 // config should be a serialized tensorflow.ConfigProto proto.
55 // If config was not parsed successfully as a ConfigProto, record the
56 // error information in *status.
57 TF_CAPI_EXPORT extern void TFE_ContextOptionsSetConfig(
58     TFE_ContextOptions* options, const void* proto, size_t proto_len,
59     TF_Status* status);
60 
61 // Controls how to act when we try to run an operation on a given device but
62 // some input tensors are not on that device.
63 // LINT.IfChange
64 // Note: Keep in sync with internal copy of enum in eager/context.h.
65 typedef enum TFE_ContextDevicePlacementPolicy {
66   // Running operations with input tensors on the wrong device will fail.
67   TFE_DEVICE_PLACEMENT_EXPLICIT = 0,
68   // Copy the tensor to the right device but log a warning.
69   TFE_DEVICE_PLACEMENT_WARN = 1,
70   // Silently copy the tensor, which has a performance cost since the operation
71   // will be blocked till the copy completes. This is the default placement
72   // policy.
73   TFE_DEVICE_PLACEMENT_SILENT = 2,
74   // Placement policy which silently copies int32 tensors but not other dtypes.
75   TFE_DEVICE_PLACEMENT_SILENT_FOR_INT32 = 3,
76 } TFE_ContextDevicePlacementPolicy;
77 // LINT.ThenChange(//tensorflow/c/eager/immediate_execution_context.h)
78 
79 // Sets the default execution mode (sync/async). Note that this can be
80 // overridden per thread using TFE_ContextSetExecutorForThread.
81 TF_CAPI_EXPORT extern void TFE_ContextOptionsSetAsync(TFE_ContextOptions*,
82                                                       unsigned char enable);
83 
84 TF_CAPI_EXPORT extern void TFE_ContextOptionsSetDevicePlacementPolicy(
85     TFE_ContextOptions*, TFE_ContextDevicePlacementPolicy);
86 
87 // Destroy an options object.
88 TF_CAPI_EXPORT extern void TFE_DeleteContextOptions(TFE_ContextOptions*);
89 
90 // "Context" under which operations/functions are executed. It encapsulates
91 // things like the available devices, resource manager etc.
92 // TFE_Context must outlive all tensor handles created using it. In other
93 // words, TFE_DeleteContext() must be called after all tensor handles have
94 // been deleted (with TFE_DeleteTensorHandle).
95 //
96 // TODO(ashankar): Merge with TF_Session?
97 typedef struct TFE_Context TFE_Context;
98 
99 TF_CAPI_EXPORT extern TFE_Context* TFE_NewContext(
100     const TFE_ContextOptions* opts, TF_Status* status);
101 TF_CAPI_EXPORT extern void TFE_DeleteContext(TFE_Context* ctx);
102 TF_CAPI_EXPORT extern TF_DeviceList* TFE_ContextListDevices(TFE_Context* ctx,
103                                                             TF_Status* status);
104 
105 // Clears the internal caches in the TFE context. Useful when reseeding random
106 // ops.
107 TF_CAPI_EXPORT extern void TFE_ContextClearCaches(TFE_Context* ctx);
108 
109 // Sets a thread-local device placement policy. After this call, other calls to
110 // TFE_Execute in the same thread will use the device policy specified here
111 // instead of the device policy used to construct the context. This has no
112 // effect on the device policy used by other program threads.
113 TF_CAPI_EXPORT extern void TFE_ContextSetThreadLocalDevicePlacementPolicy(
114     TFE_Context* ctx, TFE_ContextDevicePlacementPolicy policy);
115 
116 // Returns the device placement policy to be used by this context in the current
117 // thread.
118 TF_CAPI_EXPORT extern TFE_ContextDevicePlacementPolicy
119 TFE_ContextGetDevicePlacementPolicy(TFE_Context* ctx);
120 
121 // A tensorflow.ServerDef specifies remote workers (in addition to the current
122 // workers name). Operations created in this context can then be executed on
123 // any of these remote workers by setting an appropriate device.
124 //
125 // If the following is set, all servers identified by the
126 // ServerDef must be up when the context is created.
127 TF_CAPI_EXPORT extern void TFE_ContextSetServerDef(TFE_Context* ctx,
128                                                    int keep_alive_secs,
129                                                    const void* proto,
130                                                    size_t proto_len,
131                                                    TF_Status* status);
132 
133 // A handle to a tensor on a device.
134 //
135 // Like a TF_Tensor, a TFE_TensorHandle refers to a tensor with a value, shape,
136 // type etc. Unlike a TF_Tensor, a TFE_TensorHandle may refer to such tensors
137 // placed in the memory of different devices or remote address spaces.
138 typedef struct TFE_TensorHandle TFE_TensorHandle;
139 
140 TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_NewTensorHandle(const TF_Tensor* t,
141                                                             TF_Status* status);
142 // Indicates that the caller will not be using `h` any more.
143 TF_CAPI_EXPORT extern void TFE_DeleteTensorHandle(TFE_TensorHandle* h);
144 TF_CAPI_EXPORT extern TF_DataType TFE_TensorHandleDataType(TFE_TensorHandle* h);
145 // This function will block till the operation that produces `h` has completed.
146 TF_CAPI_EXPORT extern int TFE_TensorHandleNumDims(TFE_TensorHandle* h,
147                                                   TF_Status* status);
148 TF_CAPI_EXPORT extern int64_t TFE_TensorHandleNumElements(TFE_TensorHandle* h,
149                                                           TF_Status* status);
150 // This function will block till the operation that produces `h` has completed.
151 TF_CAPI_EXPORT extern int64_t TFE_TensorHandleDim(TFE_TensorHandle* h,
152                                                   int dim_index,
153                                                   TF_Status* status);
154 
155 // Returns the device of the operation that produced `h`. If `h` was produced by
156 // a copy, returns the destination device of the copy. Note that the returned
157 // device name is not always the device holding the tensor handle's memory. If
158 // you want the latter, use TFE_TensorHandleBackingDeviceName. This function
159 // will block till the operation that produces `h` has completed.
160 TF_CAPI_EXPORT extern const char* TFE_TensorHandleDeviceName(
161     TFE_TensorHandle* h, TF_Status* status);
162 
163 // Returns the name of the device in whose memory `h` resides.
164 //
165 // This function will block till the operation that produces `h` has completed.
166 TF_CAPI_EXPORT extern const char* TFE_TensorHandleBackingDeviceName(
167     TFE_TensorHandle* h, TF_Status* status);
168 
169 // Return a pointer to a new TFE_TensorHandle that shares the underlying tensor
170 // with `h`. On success, `status` is set to OK. On failure, `status` reflects
171 // the error and a nullptr is returned.
172 TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_TensorHandleCopySharingTensor(
173     TFE_TensorHandle* h, TF_Status* status);
174 
175 // This function will block till the operation that produces `h` has
176 // completed. The memory returned might alias the internal memory used by
177 // TensorFlow. Hence, callers should not mutate this memory (for example by
178 // modifying the memory region pointed to by TF_TensorData() on the returned
179 // TF_Tensor).
180 TF_CAPI_EXPORT extern TF_Tensor* TFE_TensorHandleResolve(TFE_TensorHandle* h,
181                                                          TF_Status* status);
182 
183 // Create a new TFE_TensorHandle with the same contents as 'h' but placed
184 // in the memory of the device name 'device_name'.
185 // If source and destination are the same device, then this creates a new handle
186 // that shares the underlying buffer. Otherwise, it currently requires at least
187 // one of the source or destination devices to be CPU (i.e., for the source or
188 // destination tensor to be placed in host memory).
189 // If async execution is enabled, the copy may be enqueued and the call will
190 // return "non-ready" handle. Else, this function returns after the copy has
191 // been done.
192 TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_TensorHandleCopyToDevice(
193     TFE_TensorHandle* h, TFE_Context* ctx, const char* device_name,
194     TF_Status* status);
195 
196 // Debugging/Profiling information for TFE_TensorHandle
197 //
198 // TFE_TensorDebugInfo contains information useful for debugging and
199 // profiling tensors.
200 typedef struct TFE_TensorDebugInfo TFE_TensorDebugInfo;
201 
202 // Retrieves TFE_TensorDebugInfo for `handle`.
203 // If TFE_TensorHandleTensorDebugInfo succeeds, `status` is set to OK and caller
204 // is responsible for deleting returned TFE_TensorDebugInfo.
205 // If TFE_TensorHandleTensorDebugInfo fails, `status` is set to appropriate
206 // error and nullptr is returned. This function can block till the operation
207 // that produces `handle` has completed.
208 TF_CAPI_EXPORT extern TFE_TensorDebugInfo* TFE_TensorHandleTensorDebugInfo(
209     TFE_TensorHandle* h, TF_Status* status);
210 
211 // Deletes `debug_info`.
212 TF_CAPI_EXPORT extern void TFE_DeleteTensorDebugInfo(
213     TFE_TensorDebugInfo* debug_info);
214 
215 // Returns the number of dimensions used to represent the tensor on its device.
216 // The number of dimensions used to represent the tensor on device can be
217 // different from the number returned by TFE_TensorHandleNumDims.
218 // The return value was current at the time of TFE_TensorDebugInfo creation.
219 TF_CAPI_EXPORT extern int TFE_TensorDebugInfoOnDeviceNumDims(
220     TFE_TensorDebugInfo* debug_info);
221 
222 // Returns the number of elements in dimension `dim_index`.
223 // Tensor representation on device can be transposed from its representation
224 // on host. The data contained in dimension `dim_index` on device
225 // can correspond to the data contained in another dimension in on-host
226 // representation. The dimensions are indexed using the standard TensorFlow
227 // major-to-minor order (slowest varying dimension first),
228 // not the XLA's minor-to-major order.
229 // On-device dimensions can be padded. TFE_TensorDebugInfoOnDeviceDim returns
230 // the number of elements in a dimension after padding.
231 // The return value was current at the time of TFE_TensorDebugInfo creation.
232 TF_CAPI_EXPORT extern int64_t TFE_TensorDebugInfoOnDeviceDim(
233     TFE_TensorDebugInfo* debug_info, int dim_index);
234 
235 // Description of the TensorFlow op to execute.
236 //
237 // Assumes that the provided 'ctx' outlives the returned TFE_Op, i.e.,
238 // TFE_DeleteOp() is called before TFE_DeleteContext().
239 //
240 // Very similar to TF_OperationDescription with some differences:
241 // (1) TF_Output or TFE_TensorHandle* as arguments to TF_AddInput,
242 //     TF_AddInputList
243 // (2) TF_ColocateWith, TF_AddControlInput etc. do not make sense.
244 // (3) Implementation detail: Avoid use of NodeBuilder/NodeDefBuilder since
245 //     the additional sanity checks there seem unnecessary;
246 typedef struct TFE_Op TFE_Op;
247 
248 TF_CAPI_EXPORT extern TFE_Op* TFE_NewOp(TFE_Context* ctx,
249                                         const char* op_or_function_name,
250                                         TF_Status* status);
251 TF_CAPI_EXPORT extern void TFE_DeleteOp(TFE_Op* op);
252 
253 // Returns the op or function name `op` will execute.
254 //
255 // The returned string remains valid throughout the lifetime of 'op'.
256 TF_CAPI_EXPORT extern const char* TFE_OpGetName(const TFE_Op* op,
257                                                 TF_Status* status);
258 TF_CAPI_EXPORT extern TFE_Context* TFE_OpGetContext(const TFE_Op* op,
259                                                     TF_Status* status);
260 
261 TF_CAPI_EXPORT extern void TFE_OpSetDevice(TFE_Op* op, const char* device_name,
262                                            TF_Status* status);
263 // The returned string remains valid throughout the lifetime of 'op'.
264 TF_CAPI_EXPORT extern const char* TFE_OpGetDevice(const TFE_Op* op,
265                                                   TF_Status* status);
266 
267 TF_CAPI_EXPORT extern void TFE_OpAddInput(TFE_Op* op, TFE_TensorHandle* input,
268                                           TF_Status* status);
269 
270 TF_CAPI_EXPORT extern void TFE_OpAddInputList(TFE_Op* op,
271                                               TFE_TensorHandle** inputs,
272                                               int num_inputs,
273                                               TF_Status* status);
274 
275 // Fetches the current number of inputs attached to `op`.
276 //
277 // Does not use the operation's definition to determine how many inputs should
278 // be attached. It is intended for use with TFE_OpGetFlatInput to inspect an
279 // already-finalized operation.
280 //
281 // Note that TFE_OpGetFlatInputCount and TFE_OpGetFlatInput operate on a flat
282 // sequence of inputs, unlike TFE_OpGetInputLength (for getting the length of a
283 // particular named input list, which may only be part of the op's inputs).
284 TF_CAPI_EXPORT extern int TFE_OpGetFlatInputCount(const TFE_Op* op,
285                                                   TF_Status* status);
286 // Returns a borrowed reference to one of `op`'s inputs. Use
287 // `TFE_TensorHandleCopySharingTensor` to make a new reference.
288 TF_CAPI_EXPORT extern TFE_TensorHandle* TFE_OpGetFlatInput(const TFE_Op* op,
289                                                            int index,
290                                                            TF_Status* status);
291 
292 TF_CAPI_EXPORT extern TF_AttrType TFE_OpGetAttrType(TFE_Op* op,
293                                                     const char* attr_name,
294                                                     unsigned char* is_list,
295                                                     TF_Status* status);
296 // Get an attribute type given an op name; a fusion of TFE_NewOp and
297 // TFE_OpGetAttrType for use from Python without the overhead of the individual
298 // calls and memory management of TFE_Op.
299 TF_CAPI_EXPORT extern TF_AttrType TFE_OpNameGetAttrType(
300     TFE_Context* ctx, const char* op_or_function_name, const char* attr_name,
301     unsigned char* is_list, TF_Status* status);
302 
303 TF_CAPI_EXPORT extern void TFE_OpSetAttrString(TFE_Op* op,
304                                                const char* attr_name,
305                                                const void* value,
306                                                size_t length);
307 TF_CAPI_EXPORT extern void TFE_OpSetAttrInt(TFE_Op* op, const char* attr_name,
308                                             int64_t value);
309 TF_CAPI_EXPORT extern void TFE_OpSetAttrFloat(TFE_Op* op, const char* attr_name,
310                                               float value);
311 TF_CAPI_EXPORT extern void TFE_OpSetAttrBool(TFE_Op* op, const char* attr_name,
312                                              unsigned char value);
313 TF_CAPI_EXPORT extern void TFE_OpSetAttrType(TFE_Op* op, const char* attr_name,
314                                              TF_DataType value);
315 // If the number of dimensions is unknown, `num_dims` must be set to
316 // -1 and `dims` can be null.  If a dimension is unknown, the
317 // corresponding entry in the `dims` array must be -1.
318 TF_CAPI_EXPORT extern void TFE_OpSetAttrShape(TFE_Op* op, const char* attr_name,
319                                               const int64_t* dims,
320                                               const int num_dims,
321                                               TF_Status* out_status);
322 
323 // Sets the attribute attr_name to be a function specified by 'function'.
324 //
325 // TODO(ashankar,iga): Add this functionality to the C API for graph
326 // construction. Perhaps we want an AttrValueMap equivalent in the C API?
327 TF_CAPI_EXPORT extern void TFE_OpSetAttrFunction(TFE_Op* op,
328                                                  const char* attr_name,
329                                                  const TFE_Op* value);
330 
331 TF_CAPI_EXPORT void TFE_OpSetAttrFunctionName(TFE_Op* op, const char* attr_name,
332                                               const char* data, size_t length);
333 
334 TF_CAPI_EXPORT extern void TFE_OpSetAttrTensor(TFE_Op* op,
335                                                const char* attr_name,
336                                                TF_Tensor* tensor,
337                                                TF_Status* status);
338 
339 TF_CAPI_EXPORT extern void TFE_OpSetAttrStringList(TFE_Op* op,
340                                                    const char* attr_name,
341                                                    const void* const* values,
342                                                    const size_t* lengths,
343                                                    int num_values);
344 TF_CAPI_EXPORT extern void TFE_OpSetAttrIntList(TFE_Op* op,
345                                                 const char* attr_name,
346                                                 const int64_t* values,
347                                                 int num_values);
348 TF_CAPI_EXPORT extern void TFE_OpSetAttrFloatList(TFE_Op* op,
349                                                   const char* attr_name,
350                                                   const float* values,
351                                                   int num_values);
352 TF_CAPI_EXPORT extern void TFE_OpSetAttrBoolList(TFE_Op* op,
353                                                  const char* attr_name,
354                                                  const unsigned char* values,
355                                                  int num_values);
356 TF_CAPI_EXPORT extern void TFE_OpSetAttrTypeList(TFE_Op* op,
357                                                  const char* attr_name,
358                                                  const TF_DataType* values,
359                                                  int num_values);
360 TF_CAPI_EXPORT extern void TFE_OpSetAttrShapeList(
361     TFE_Op* op, const char* attr_name, const int64_t** dims,
362     const int* num_dims, int num_values, TF_Status* out_status);
363 TF_CAPI_EXPORT extern void TFE_OpSetAttrFunctionList(TFE_Op* op,
364                                                      const char* attr_name,
365                                                      const TFE_Op** value,
366                                                      int num_values);
367 
368 // Returns the length (number of tensors) of the input argument `input_name`
369 // found in the provided `op`.
370 TF_CAPI_EXPORT extern int TFE_OpGetInputLength(TFE_Op* op,
371                                                const char* input_name,
372                                                TF_Status* status);
373 
374 // Returns the length (number of tensors) of the output argument `output_name`
375 // found in the provided `op`.
376 TF_CAPI_EXPORT extern int TFE_OpGetOutputLength(TFE_Op* op,
377                                                 const char* output_name,
378                                                 TF_Status* status);
379 
380 // Execute the operation defined by 'op' and return handles to computed
381 // tensors in `retvals`.
382 //
383 // 'retvals' must point to a pre-allocated array of TFE_TensorHandle* and
384 // '*num_retvals' should be set to the size of this array. It is an error if
385 // the size of 'retvals' is less than the number of outputs. This call sets
386 // *num_retvals to the number of outputs.
387 //
388 // If async execution is enabled, the call may simply enqueue the execution
389 // and return "non-ready" handles in `retvals`. Note that any handles contained
390 // in 'op' should not be mutated till the kernel execution actually finishes.
391 //
392 // For sync execution, if any of the inputs to `op` are not ready, this call
393 // will block till they become ready and then return when the kernel execution
394 // is done.
395 // TODO(agarwal): change num_retvals to int from int*.
396 TF_CAPI_EXPORT extern void TFE_Execute(TFE_Op* op, TFE_TensorHandle** retvals,
397                                        int* num_retvals, TF_Status* status);
398 
399 // Add a function (serialized FunctionDef protocol buffer) to ctx so
400 // that it can be invoked using TFE_Execute.
401 TF_CAPI_EXPORT extern void TFE_ContextAddFunctionDef(
402     TFE_Context* ctx, const char* serialized_function_def, size_t size,
403     TF_Status* status);
404 
405 // Adds a function (created from TF_GraphToFunction or
406 // TF_FunctionImportFunctionDef) to the context, allowing it to be executed with
407 // TFE_Execute by creating an op with the same name as the function.
408 TF_CAPI_EXPORT extern void TFE_ContextAddFunction(TFE_Context* ctx,
409                                                   TF_Function* function,
410                                                   TF_Status* status);
411 
412 // Removes a function from the context. Once removed, you can no longer
413 // TFE_Execute it or TFE_Execute any TFE_Op which has it as an attribute or any
414 // other function which calls it as an attribute.
415 TF_CAPI_EXPORT extern void TFE_ContextRemoveFunction(TFE_Context* ctx,
416                                                      const char* name,
417                                                      TF_Status* status);
418 
419 // Checks whether a function is registered under `name`.
420 TF_CAPI_EXPORT unsigned char TFE_ContextHasFunction(TFE_Context* ctx,
421                                                     const char* name);
422 
423 // Enables tracing of RunMetadata on the ops executed from this context.
424 TF_CAPI_EXPORT extern void TFE_ContextEnableRunMetadata(TFE_Context* ctx);
425 
426 // Disables tracing of RunMetadata on the ops executed from this context.
427 TF_CAPI_EXPORT extern void TFE_ContextDisableRunMetadata(TFE_Context* ctx);
428 
429 // Populates the passed-in buffer with a serialized RunMetadata protocol buffer
430 // containing any run metadata information accumulated so far and clears this
431 // information.
432 // If async mode is enabled, this call blocks till all currently pending ops are
433 // done.
434 TF_CAPI_EXPORT extern void TFE_ContextExportRunMetadata(TFE_Context* ctx,
435                                                         TF_Buffer* buf,
436                                                         TF_Status* status);
437 
438 // Some TF ops need a step container to be set to limit the lifetime of some
439 // resources (mostly TensorArray and Stack, used in while loop gradients in
440 // graph mode). Calling this on a context tells it to start a step.
441 TF_CAPI_EXPORT extern void TFE_ContextStartStep(TFE_Context* ctx);
442 
443 // Ends a step. When there is no active step (that is, every started step has
444 // been ended) step containers will be cleared. Note: it is not safe to call
445 // TFE_ContextEndStep while ops that rely on the step container may be running.
446 TF_CAPI_EXPORT extern void TFE_ContextEndStep(TFE_Context* ctx);
447 
448 #ifdef __cplusplus
449 } /* end extern "C" */
450 #endif
451 
452 #ifdef __cplusplus
453 // A workaround to ease conversion to and from numpy objects and
454 // TFE_TensorHandle's.
455 //
456 // TODO(ashankar): Figure out an alternative scheme that precludes the need for
457 // these API-boundary breaking methods.
458 namespace tensorflow {
459 class Tensor;
460 }  // namespace tensorflow
461 
462 TFE_TensorHandle* TFE_NewTensorHandle(const tensorflow::Tensor& t,
463                                       TF_Status* status);
464 #endif
465 
466 #endif  // TENSORFLOW_C_EAGER_C_API_H_
467