• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_AV1_COMMON_INT_H_
13 #define AOM_AV1_COMMON_AV1_COMMON_INT_H_
14 
15 #include "config/aom_config.h"
16 #include "config/av1_rtcd.h"
17 
18 #include "aom/internal/aom_codec_internal.h"
19 #include "aom_util/aom_thread.h"
20 #include "av1/common/alloccommon.h"
21 #include "av1/common/av1_loopfilter.h"
22 #include "av1/common/entropy.h"
23 #include "av1/common/entropymode.h"
24 #include "av1/common/entropymv.h"
25 #include "av1/common/enums.h"
26 #include "av1/common/frame_buffers.h"
27 #include "av1/common/mv.h"
28 #include "av1/common/quant_common.h"
29 #include "av1/common/restoration.h"
30 #include "av1/common/tile_common.h"
31 #include "av1/common/timing.h"
32 #include "aom_dsp/grain_params.h"
33 #include "aom_dsp/grain_table.h"
34 #include "aom_dsp/odintrin.h"
35 #ifdef __cplusplus
36 extern "C" {
37 #endif
38 
39 #if defined(__clang__) && defined(__has_warning)
40 #if __has_feature(cxx_attributes) && __has_warning("-Wimplicit-fallthrough")
41 #define AOM_FALLTHROUGH_INTENDED [[clang::fallthrough]]  // NOLINT
42 #endif
43 #elif defined(__GNUC__) && __GNUC__ >= 7
44 #define AOM_FALLTHROUGH_INTENDED __attribute__((fallthrough))  // NOLINT
45 #endif
46 
47 #ifndef AOM_FALLTHROUGH_INTENDED
48 #define AOM_FALLTHROUGH_INTENDED \
49   do {                           \
50   } while (0)
51 #endif
52 
53 #define CDEF_MAX_STRENGTHS 16
54 
55 /* Constant values while waiting for the sequence header */
56 #define FRAME_ID_LENGTH 15
57 #define DELTA_FRAME_ID_LENGTH 14
58 
59 #define FRAME_CONTEXTS (FRAME_BUFFERS + 1)
60 // Extra frame context which is always kept at default values
61 #define FRAME_CONTEXT_DEFAULTS (FRAME_CONTEXTS - 1)
62 #define PRIMARY_REF_BITS 3
63 #define PRIMARY_REF_NONE 7
64 
65 #define NUM_PING_PONG_BUFFERS 2
66 
67 #define MAX_NUM_TEMPORAL_LAYERS 8
68 #define MAX_NUM_SPATIAL_LAYERS 4
69 /* clang-format off */
70 // clang-format seems to think this is a pointer dereference and not a
71 // multiplication.
72 #define MAX_NUM_OPERATING_POINTS \
73   (MAX_NUM_TEMPORAL_LAYERS * MAX_NUM_SPATIAL_LAYERS)
74 /* clang-format on */
75 
76 // TODO(jingning): Turning this on to set up transform coefficient
77 // processing timer.
78 #define TXCOEFF_TIMER 0
79 #define TXCOEFF_COST_TIMER 0
80 
81 /*!\cond */
82 
83 enum {
84   SINGLE_REFERENCE = 0,
85   COMPOUND_REFERENCE = 1,
86   REFERENCE_MODE_SELECT = 2,
87   REFERENCE_MODES = 3,
88 } UENUM1BYTE(REFERENCE_MODE);
89 
90 enum {
91   /**
92    * Frame context updates are disabled
93    */
94   REFRESH_FRAME_CONTEXT_DISABLED,
95   /**
96    * Update frame context to values resulting from backward probability
97    * updates based on entropy/counts in the decoded frame
98    */
99   REFRESH_FRAME_CONTEXT_BACKWARD,
100 } UENUM1BYTE(REFRESH_FRAME_CONTEXT_MODE);
101 
102 #define MFMV_STACK_SIZE 3
103 typedef struct {
104   int_mv mfmv0;
105   uint8_t ref_frame_offset;
106 } TPL_MV_REF;
107 
108 typedef struct {
109   int_mv mv;
110   MV_REFERENCE_FRAME ref_frame;
111 } MV_REF;
112 
113 typedef struct RefCntBuffer {
114   // For a RefCntBuffer, the following are reference-holding variables:
115   // - cm->ref_frame_map[]
116   // - cm->cur_frame
117   // - cm->scaled_ref_buf[] (encoder only)
118   // - pbi->output_frame_index[] (decoder only)
119   // With that definition, 'ref_count' is the number of reference-holding
120   // variables that are currently referencing this buffer.
121   // For example:
122   // - suppose this buffer is at index 'k' in the buffer pool, and
123   // - Total 'n' of the variables / array elements above have value 'k' (that
124   // is, they are pointing to buffer at index 'k').
125   // Then, pool->frame_bufs[k].ref_count = n.
126   int ref_count;
127 
128   unsigned int order_hint;
129   unsigned int ref_order_hints[INTER_REFS_PER_FRAME];
130 
131   // These variables are used only in encoder and compare the absolute
132   // display order hint to compute the relative distance and overcome
133   // the limitation of get_relative_dist() which returns incorrect
134   // distance when a very old frame is used as a reference.
135   unsigned int display_order_hint;
136   unsigned int ref_display_order_hint[INTER_REFS_PER_FRAME];
137   // Frame's level within the hierarchical structure.
138   unsigned int pyramid_level;
139   MV_REF *mvs;
140   uint8_t *seg_map;
141   struct segmentation seg;
142   int mi_rows;
143   int mi_cols;
144   // Width and height give the size of the buffer (before any upscaling, unlike
145   // the sizes that can be derived from the buf structure)
146   int width;
147   int height;
148   WarpedMotionParams global_motion[REF_FRAMES];
149   int showable_frame;  // frame can be used as show existing frame in future
150   uint8_t film_grain_params_present;
151   aom_film_grain_t film_grain_params;
152   aom_codec_frame_buffer_t raw_frame_buffer;
153   YV12_BUFFER_CONFIG buf;
154   int temporal_id;  // Temporal layer ID of the frame
155   int spatial_id;   // Spatial layer ID of the frame
156   FRAME_TYPE frame_type;
157 
158   // This is only used in the encoder but needs to be indexed per ref frame
159   // so it's extremely convenient to keep it here.
160   int interp_filter_selected[SWITCHABLE];
161 
162   // Inter frame reference frame delta for loop filter
163   int8_t ref_deltas[REF_FRAMES];
164 
165   // 0 = ZERO_MV, MV
166   int8_t mode_deltas[MAX_MODE_LF_DELTAS];
167 
168   FRAME_CONTEXT frame_context;
169 } RefCntBuffer;
170 
171 typedef struct BufferPool {
172 // Protect BufferPool from being accessed by several FrameWorkers at
173 // the same time during frame parallel decode.
174 // TODO(hkuang): Try to use atomic variable instead of locking the whole pool.
175 // TODO(wtc): Remove this. See
176 // https://chromium-review.googlesource.com/c/webm/libvpx/+/560630.
177 #if CONFIG_MULTITHREAD
178   pthread_mutex_t pool_mutex;
179 #endif
180 
181   // Private data associated with the frame buffer callbacks.
182   void *cb_priv;
183 
184   aom_get_frame_buffer_cb_fn_t get_fb_cb;
185   aom_release_frame_buffer_cb_fn_t release_fb_cb;
186 
187   RefCntBuffer frame_bufs[FRAME_BUFFERS];
188 
189   // Frame buffers allocated internally by the codec.
190   InternalFrameBufferList int_frame_buffers;
191 } BufferPool;
192 
193 /*!\endcond */
194 
195 /*!\brief Parameters related to CDEF */
196 typedef struct {
197   //! CDEF column line buffer
198   uint16_t *colbuf[MAX_MB_PLANE];
199   //! CDEF top & bottom line buffer
200   uint16_t *linebuf[MAX_MB_PLANE];
201   //! CDEF intermediate buffer
202   uint16_t *srcbuf;
203   //! CDEF column line buffer sizes
204   size_t allocated_colbuf_size[MAX_MB_PLANE];
205   //! CDEF top and bottom line buffer sizes
206   size_t allocated_linebuf_size[MAX_MB_PLANE];
207   //! CDEF intermediate buffer size
208   size_t allocated_srcbuf_size;
209   //! CDEF damping factor
210   int cdef_damping;
211   //! Number of CDEF strength values
212   int nb_cdef_strengths;
213   //! CDEF strength values for luma
214   int cdef_strengths[CDEF_MAX_STRENGTHS];
215   //! CDEF strength values for chroma
216   int cdef_uv_strengths[CDEF_MAX_STRENGTHS];
217   //! Number of CDEF strength values in bits
218   int cdef_bits;
219   //! Number of rows in the frame in 4 pixel
220   int allocated_mi_rows;
221   //! Number of CDEF workers
222   int allocated_num_workers;
223 } CdefInfo;
224 
225 /*!\cond */
226 
227 typedef struct {
228   int delta_q_present_flag;
229   // Resolution of delta quant
230   int delta_q_res;
231   int delta_lf_present_flag;
232   // Resolution of delta lf level
233   int delta_lf_res;
234   // This is a flag for number of deltas of loop filter level
235   // 0: use 1 delta, for y_vertical, y_horizontal, u, and v
236   // 1: use separate deltas for each filter level
237   int delta_lf_multi;
238 } DeltaQInfo;
239 
240 typedef struct {
241   int enable_order_hint;        // 0 - disable order hint, and related tools
242   int order_hint_bits_minus_1;  // dist_wtd_comp, ref_frame_mvs,
243                                 // frame_sign_bias
244                                 // if 0, enable_dist_wtd_comp and
245                                 // enable_ref_frame_mvs must be set as 0.
246   int enable_dist_wtd_comp;     // 0 - disable dist-wtd compound modes
247                                 // 1 - enable it
248   int enable_ref_frame_mvs;     // 0 - disable ref frame mvs
249                                 // 1 - enable it
250 } OrderHintInfo;
251 
252 // Sequence header structure.
253 // Note: All syntax elements of sequence_header_obu that need to be
254 // bit-identical across multiple sequence headers must be part of this struct,
255 // so that consistency is checked by are_seq_headers_consistent() function.
256 // One exception is the last member 'op_params' that is ignored by
257 // are_seq_headers_consistent() function.
258 typedef struct SequenceHeader {
259   int num_bits_width;
260   int num_bits_height;
261   int max_frame_width;
262   int max_frame_height;
263   // Whether current and reference frame IDs are signaled in the bitstream.
264   // Frame id numbers are additional information that do not affect the
265   // decoding process, but provide decoders with a way of detecting missing
266   // reference frames so that appropriate action can be taken.
267   uint8_t frame_id_numbers_present_flag;
268   int frame_id_length;
269   int delta_frame_id_length;
270   BLOCK_SIZE sb_size;  // Size of the superblock used for this frame
271   int mib_size;        // Size of the superblock in units of MI blocks
272   int mib_size_log2;   // Log 2 of above.
273 
274   OrderHintInfo order_hint_info;
275 
276   uint8_t force_screen_content_tools;  // 0 - force off
277                                        // 1 - force on
278                                        // 2 - adaptive
279   uint8_t still_picture;               // Video is a single frame still picture
280   uint8_t reduced_still_picture_hdr;   // Use reduced header for still picture
281   uint8_t force_integer_mv;            // 0 - Don't force. MV can use subpel
282                                        // 1 - force to integer
283                                        // 2 - adaptive
284   uint8_t enable_filter_intra;         // enables/disables filterintra
285   uint8_t enable_intra_edge_filter;    // enables/disables edge upsampling
286   uint8_t enable_interintra_compound;  // enables/disables interintra_compound
287   uint8_t enable_masked_compound;      // enables/disables masked compound
288   uint8_t enable_dual_filter;          // 0 - disable dual interpolation filter
289                                        // 1 - enable vert/horz filter selection
290   uint8_t enable_warped_motion;        // 0 - disable warp for the sequence
291                                        // 1 - enable warp for the sequence
292   uint8_t enable_superres;             // 0 - Disable superres for the sequence
293                                        //     and no frame level superres flag
294                                        // 1 - Enable superres for the sequence
295                                        //     enable per-frame superres flag
296   uint8_t enable_cdef;                 // To turn on/off CDEF
297   uint8_t enable_restoration;          // To turn on/off loop restoration
298   BITSTREAM_PROFILE profile;
299 
300   // Color config.
301   aom_bit_depth_t bit_depth;  // AOM_BITS_8 in profile 0 or 1,
302                               // AOM_BITS_10 or AOM_BITS_12 in profile 2 or 3.
303   uint8_t use_highbitdepth;   // If true, we need to use 16bit frame buffers.
304   uint8_t monochrome;         // Monochrome video
305   aom_color_primaries_t color_primaries;
306   aom_transfer_characteristics_t transfer_characteristics;
307   aom_matrix_coefficients_t matrix_coefficients;
308   int color_range;
309   int subsampling_x;  // Chroma subsampling for x
310   int subsampling_y;  // Chroma subsampling for y
311   aom_chroma_sample_position_t chroma_sample_position;
312   uint8_t separate_uv_delta_q;
313   uint8_t film_grain_params_present;
314 
315   // Operating point info.
316   int operating_points_cnt_minus_1;
317   int operating_point_idc[MAX_NUM_OPERATING_POINTS];
318   int timing_info_present;
319   aom_timing_info_t timing_info;
320   uint8_t decoder_model_info_present_flag;
321   aom_dec_model_info_t decoder_model_info;
322   uint8_t display_model_info_present_flag;
323   AV1_LEVEL seq_level_idx[MAX_NUM_OPERATING_POINTS];
324   uint8_t tier[MAX_NUM_OPERATING_POINTS];  // seq_tier in spec. One bit: 0 or 1.
325 
326   // IMPORTANT: the op_params member must be at the end of the struct so that
327   // are_seq_headers_consistent() can be implemented with a memcmp() call.
328   // TODO(urvang): We probably don't need the +1 here.
329   aom_dec_model_op_parameters_t op_params[MAX_NUM_OPERATING_POINTS + 1];
330 } SequenceHeader;
331 
332 typedef struct {
333   int skip_mode_allowed;
334   int skip_mode_flag;
335   int ref_frame_idx_0;
336   int ref_frame_idx_1;
337 } SkipModeInfo;
338 
339 typedef struct {
340   FRAME_TYPE frame_type;
341   REFERENCE_MODE reference_mode;
342 
343   unsigned int order_hint;
344   unsigned int display_order_hint;
345   // Frame's level within the hierarchical structure.
346   unsigned int pyramid_level;
347   unsigned int frame_number;
348   SkipModeInfo skip_mode_info;
349   int refresh_frame_flags;  // Which ref frames are overwritten by this frame
350   int frame_refs_short_signaling;
351 } CurrentFrame;
352 
353 /*!\endcond */
354 
355 /*!
356  * \brief Frame level features.
357  */
358 typedef struct {
359   /*!
360    * If true, CDF update in the symbol encoding/decoding process is disabled.
361    */
362   bool disable_cdf_update;
363   /*!
364    * If true, motion vectors are specified to eighth pel precision; and
365    * if false, motion vectors are specified to quarter pel precision.
366    */
367   bool allow_high_precision_mv;
368   /*!
369    * If true, force integer motion vectors; if false, use the default.
370    */
371   bool cur_frame_force_integer_mv;
372   /*!
373    * If true, palette tool and/or intra block copy tools may be used.
374    */
375   bool allow_screen_content_tools;
376   bool allow_intrabc;       /*!< If true, intra block copy tool may be used. */
377   bool allow_warped_motion; /*!< If true, frame may use warped motion mode. */
378   /*!
379    * If true, using previous frames' motion vectors for prediction is allowed.
380    */
381   bool allow_ref_frame_mvs;
382   /*!
383    * If true, frame is fully lossless at coded resolution.
384    * */
385   bool coded_lossless;
386   /*!
387    * If true, frame is fully lossless at upscaled resolution.
388    */
389   bool all_lossless;
390   /*!
391    * If true, the frame is restricted to a reduced subset of the full set of
392    * transform types.
393    */
394   bool reduced_tx_set_used;
395   /*!
396    * If true, error resilient mode is enabled.
397    * Note: Error resilient mode allows the syntax of a frame to be parsed
398    * independently of previously decoded frames.
399    */
400   bool error_resilient_mode;
401   /*!
402    * If false, only MOTION_MODE that may be used is SIMPLE_TRANSLATION;
403    * if true, all MOTION_MODES may be used.
404    */
405   bool switchable_motion_mode;
406   TX_MODE tx_mode;            /*!< Transform mode at frame level. */
407   InterpFilter interp_filter; /*!< Interpolation filter at frame level. */
408   /*!
409    * The reference frame that contains the CDF values and other state that
410    * should be loaded at the start of the frame.
411    */
412   int primary_ref_frame;
413   /*!
414    * Byte alignment of the planes in the reference buffers.
415    */
416   int byte_alignment;
417   /*!
418    * Flag signaling how frame contexts should be updated at the end of
419    * a frame decode.
420    */
421   REFRESH_FRAME_CONTEXT_MODE refresh_frame_context;
422 } FeatureFlags;
423 
424 /*!
425  * \brief Params related to tiles.
426  */
427 typedef struct CommonTileParams {
428   int cols;          /*!< number of tile columns that frame is divided into */
429   int rows;          /*!< number of tile rows that frame is divided into */
430   int max_width_sb;  /*!< maximum tile width in superblock units. */
431   int max_height_sb; /*!< maximum tile height in superblock units. */
432 
433   /*!
434    * Min width of non-rightmost tile in MI units. Only valid if cols > 1.
435    */
436   int min_inner_width;
437 
438   /*!
439    * If true, tiles are uniformly spaced with power-of-two number of rows and
440    * columns.
441    * If false, tiles have explicitly configured widths and heights.
442    */
443   int uniform_spacing;
444 
445   /**
446    * \name Members only valid when uniform_spacing == 1
447    */
448   /**@{*/
449   int log2_cols; /*!< log2 of 'cols'. */
450   int log2_rows; /*!< log2 of 'rows'. */
451   int width;     /*!< tile width in MI units */
452   int height;    /*!< tile height in MI units */
453   /**@}*/
454 
455   /*!
456    * Min num of tile columns possible based on 'max_width_sb' and frame width.
457    */
458   int min_log2_cols;
459   /*!
460    * Min num of tile rows possible based on 'max_height_sb' and frame height.
461    */
462   int min_log2_rows;
463   /*!
464    * Max num of tile columns possible based on frame width.
465    */
466   int max_log2_cols;
467   /*!
468    * Max num of tile rows possible based on frame height.
469    */
470   int max_log2_rows;
471   /*!
472    * log2 of min number of tiles (same as min_log2_cols + min_log2_rows).
473    */
474   int min_log2;
475   /*!
476    * col_start_sb[i] is the start position of tile column i in superblock units.
477    * valid for 0 <= i <= cols
478    */
479   int col_start_sb[MAX_TILE_COLS + 1];
480   /*!
481    * row_start_sb[i] is the start position of tile row i in superblock units.
482    * valid for 0 <= i <= rows
483    */
484   int row_start_sb[MAX_TILE_ROWS + 1];
485   /*!
486    * If true, we are using large scale tile mode.
487    */
488   unsigned int large_scale;
489   /*!
490    * Only relevant when large_scale == 1.
491    * If true, the independent decoding of a single tile or a section of a frame
492    * is allowed.
493    */
494   unsigned int single_tile_decoding;
495 } CommonTileParams;
496 
497 typedef struct CommonModeInfoParams CommonModeInfoParams;
498 /*!
499  * \brief Params related to MB_MODE_INFO arrays and related info.
500  */
501 struct CommonModeInfoParams {
502   /*!
503    * Number of rows in the frame in 16 pixel units.
504    * This is computed from frame height aligned to a multiple of 8.
505    */
506   int mb_rows;
507   /*!
508    * Number of cols in the frame in 16 pixel units.
509    * This is computed from frame width aligned to a multiple of 8.
510    */
511   int mb_cols;
512 
513   /*!
514    * Total MBs = mb_rows * mb_cols.
515    */
516   int MBs;
517 
518   /*!
519    * Number of rows in the frame in 4 pixel (MB_MODE_INFO) units.
520    * This is computed from frame height aligned to a multiple of 8.
521    */
522   int mi_rows;
523   /*!
524    * Number of cols in the frame in 4 pixel (MB_MODE_INFO) units.
525    * This is computed from frame width aligned to a multiple of 8.
526    */
527   int mi_cols;
528 
529   /*!
530    * An array of MB_MODE_INFO structs for every 'mi_alloc_bsize' sized block
531    * in the frame.
532    * Note: This array should be treated like a scratch memory, and should NOT be
533    * accessed directly, in most cases. Please use 'mi_grid_base' array instead.
534    */
535   MB_MODE_INFO *mi_alloc;
536   /*!
537    * Number of allocated elements in 'mi_alloc'.
538    */
539   int mi_alloc_size;
540   /*!
541    * Stride for 'mi_alloc' array.
542    */
543   int mi_alloc_stride;
544   /*!
545    * The minimum block size that each element in 'mi_alloc' can correspond to.
546    * For decoder, this is always BLOCK_4X4.
547    * For encoder, this is BLOCK_8X8 for resolution >= 4k case or REALTIME mode
548    * case. Otherwise, this is BLOCK_4X4.
549    */
550   BLOCK_SIZE mi_alloc_bsize;
551 
552   /*!
553    * Grid of pointers to 4x4 MB_MODE_INFO structs allocated in 'mi_alloc'.
554    * It's possible that:
555    * - Multiple pointers in the grid point to the same element in 'mi_alloc'
556    * (for example, for all 4x4 blocks that belong to the same partition block).
557    * - Some pointers can be NULL (for example, for blocks outside visible area).
558    */
559   MB_MODE_INFO **mi_grid_base;
560   /*!
561    * Number of allocated elements in 'mi_grid_base' (and 'tx_type_map' also).
562    */
563   int mi_grid_size;
564   /*!
565    * Stride for 'mi_grid_base' (and 'tx_type_map' also).
566    */
567   int mi_stride;
568 
569   /*!
570    * An array of tx types for each 4x4 block in the frame.
571    * Number of allocated elements is same as 'mi_grid_size', and stride is
572    * same as 'mi_grid_size'. So, indexing into 'tx_type_map' is same as that of
573    * 'mi_grid_base'.
574    */
575   TX_TYPE *tx_type_map;
576 
577   /**
578    * \name Function pointers to allow separate logic for encoder and decoder.
579    */
580   /**@{*/
581   /*!
582    * Free the memory allocated to arrays in 'mi_params'.
583    * \param[in,out]   mi_params   object containing common mode info parameters
584    */
585   void (*free_mi)(struct CommonModeInfoParams *mi_params);
586   /*!
587    * Initialize / reset appropriate arrays in 'mi_params'.
588    * \param[in,out]   mi_params   object containing common mode info parameters
589    */
590   void (*setup_mi)(struct CommonModeInfoParams *mi_params);
591   /*!
592    * Allocate required memory for arrays in 'mi_params'.
593    * \param[in,out]   mi_params           object containing common mode info
594    *                                      parameters
595    * \param           width               frame width
596    * \param           height              frame height
597    * \param           min_partition_size  minimum partition size allowed while
598    *                                      encoding
599    */
600   void (*set_mb_mi)(struct CommonModeInfoParams *mi_params, int width,
601                     int height, BLOCK_SIZE min_partition_size);
602   /**@}*/
603 };
604 
605 typedef struct CommonQuantParams CommonQuantParams;
606 /*!
607  * \brief Parameters related to quantization at the frame level.
608  */
609 struct CommonQuantParams {
610   /*!
611    * Base qindex of the frame in the range 0 to 255.
612    */
613   int base_qindex;
614 
615   /*!
616    * Delta of qindex (from base_qindex) for Y plane DC coefficient.
617    * Note: y_ac_delta_q is implicitly 0.
618    */
619   int y_dc_delta_q;
620 
621   /*!
622    * Delta of qindex (from base_qindex) for U plane DC coefficients.
623    */
624   int u_dc_delta_q;
625   /*!
626    * Delta of qindex (from base_qindex) for U plane AC coefficients.
627    */
628   int v_dc_delta_q;
629 
630   /*!
631    * Delta of qindex (from base_qindex) for V plane DC coefficients.
632    * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
633    */
634   int u_ac_delta_q;
635   /*!
636    * Delta of qindex (from base_qindex) for V plane AC coefficients.
637    * Same as those for U plane if cm->seq_params->separate_uv_delta_q == 0.
638    */
639   int v_ac_delta_q;
640 
641   /*
642    * Note: The qindex per superblock may have a delta from the qindex obtained
643    * at frame level from parameters above, based on 'cm->delta_q_info'.
644    */
645 
646   /**
647    * \name True dequantizers.
648    * The dequantizers below are true dequantizers used only in the
649    * dequantization process.  They have the same coefficient
650    * shift/scale as TX.
651    */
652   /**@{*/
653   int16_t y_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for Y plane */
654   int16_t u_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for U plane */
655   int16_t v_dequant_QTX[MAX_SEGMENTS][2]; /*!< Dequant for V plane */
656   /**@}*/
657 
658   /**
659    * \name Global quantization matrix tables.
660    */
661   /**@{*/
662   /*!
663    * Global dequantization matrix table.
664    */
665   const qm_val_t *giqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
666   /*!
667    * Global quantization matrix table.
668    */
669   const qm_val_t *gqmatrix[NUM_QM_LEVELS][3][TX_SIZES_ALL];
670   /**@}*/
671 
672   /**
673    * \name Local dequantization matrix tables for each frame.
674    */
675   /**@{*/
676   /*!
677    * Local dequant matrix for Y plane.
678    */
679   const qm_val_t *y_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
680   /*!
681    * Local dequant matrix for U plane.
682    */
683   const qm_val_t *u_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
684   /*!
685    * Local dequant matrix for V plane.
686    */
687   const qm_val_t *v_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
688   /**@}*/
689 
690   /*!
691    * Flag indicating whether quantization matrices are being used:
692    *  - If true, qm_level_y, qm_level_u and qm_level_v indicate the level
693    *    indices to be used to access appropriate global quant matrix tables.
694    *  - If false, we implicitly use level index 'NUM_QM_LEVELS - 1'.
695    */
696   bool using_qmatrix;
697   /**
698    * \name Valid only when using_qmatrix == true
699    * Indicate the level indices to be used to access appropriate global quant
700    * matrix tables.
701    */
702   /**@{*/
703   int qmatrix_level_y; /*!< Level index for Y plane */
704   int qmatrix_level_u; /*!< Level index for U plane */
705   int qmatrix_level_v; /*!< Level index for V plane */
706   /**@}*/
707 };
708 
709 typedef struct CommonContexts CommonContexts;
710 /*!
711  * \brief Contexts used for transmitting various symbols in the bitstream.
712  */
713 struct CommonContexts {
714   /*!
715    * Context used by 'FRAME_CONTEXT.partition_cdf' to transmit partition type.
716    * partition[i][j] is the context for ith tile row, jth mi_col.
717    */
718   PARTITION_CONTEXT **partition;
719 
720   /*!
721    * Context used to derive context for multiple symbols:
722    * - 'TXB_CTX.txb_skip_ctx' used by 'FRAME_CONTEXT.txb_skip_cdf' to transmit
723    * to transmit skip_txfm flag.
724    * - 'TXB_CTX.dc_sign_ctx' used by 'FRAME_CONTEXT.dc_sign_cdf' to transmit
725    * sign.
726    * entropy[i][j][k] is the context for ith plane, jth tile row, kth mi_col.
727    */
728   ENTROPY_CONTEXT **entropy[MAX_MB_PLANE];
729 
730   /*!
731    * Context used to derive context for 'FRAME_CONTEXT.txfm_partition_cdf' to
732    * transmit 'is_split' flag to indicate if this transform block should be
733    * split into smaller sub-blocks.
734    * txfm[i][j] is the context for ith tile row, jth mi_col.
735    */
736   TXFM_CONTEXT **txfm;
737 
738   /*!
739    * Dimensions that were used to allocate the arrays above.
740    * If these dimensions change, the arrays may have to be re-allocated.
741    */
742   int num_planes;    /*!< Corresponds to av1_num_planes(cm) */
743   int num_tile_rows; /*!< Corresponds to cm->tiles.row */
744   int num_mi_cols;   /*!< Corresponds to cm->mi_params.mi_cols */
745 };
746 
747 /*!
748  * \brief Top level common structure used by both encoder and decoder.
749  */
750 typedef struct AV1Common {
751   /*!
752    * Information about the current frame that is being coded.
753    */
754   CurrentFrame current_frame;
755   /*!
756    * Code and details about current error status.
757    */
758   struct aom_internal_error_info *error;
759 
760   /*!
761    * AV1 allows two types of frame scaling operations:
762    * 1. Frame super-resolution: that allows coding a frame at lower resolution
763    * and after decoding the frame, normatively scales and restores the frame --
764    * inside the coding loop.
765    * 2. Frame resize: that allows coding frame at lower/higher resolution, and
766    * then non-normatively upscale the frame at the time of rendering -- outside
767    * the coding loop.
768    * Hence, the need for 3 types of dimensions.
769    */
770 
771   /**
772    * \name Coded frame dimensions.
773    */
774   /**@{*/
775   int width;  /*!< Coded frame width */
776   int height; /*!< Coded frame height */
777   /**@}*/
778 
779   /**
780    * \name Rendered frame dimensions.
781    * Dimensions after applying both super-resolution and resize to the coded
782    * frame. Different from coded dimensions if super-resolution and/or resize
783    * are being used for this frame.
784    */
785   /**@{*/
786   int render_width;  /*!< Rendered frame width */
787   int render_height; /*!< Rendered frame height */
788   /**@}*/
789 
790   /**
791    * \name Super-resolved frame dimensions.
792    * Frame dimensions after applying super-resolution to the coded frame (if
793    * present), but before applying resize.
794    * Larger than the coded dimensions if super-resolution is being used for
795    * this frame.
796    * Different from rendered dimensions if resize is being used for this frame.
797    */
798   /**@{*/
799   int superres_upscaled_width;  /*!< Super-resolved frame width */
800   int superres_upscaled_height; /*!< Super-resolved frame height */
801   /**@}*/
802 
803   /*!
804    * The denominator of the superres scale used by this frame.
805    * Note: The numerator is fixed to be SCALE_NUMERATOR.
806    */
807   uint8_t superres_scale_denominator;
808 
809   /*!
810    * buffer_removal_times[op_num] specifies the frame removal time in units of
811    * DecCT clock ticks counted from the removal time of the last random access
812    * point for operating point op_num.
813    * TODO(urvang): We probably don't need the +1 here.
814    */
815   uint32_t buffer_removal_times[MAX_NUM_OPERATING_POINTS + 1];
816   /*!
817    * Presentation time of the frame in clock ticks DispCT counted from the
818    * removal time of the last random access point for the operating point that
819    * is being decoded.
820    */
821   uint32_t frame_presentation_time;
822 
823   /*!
824    * Buffer where previous frame is stored.
825    */
826   RefCntBuffer *prev_frame;
827 
828   /*!
829    * Buffer into which the current frame will be stored and other related info.
830    * TODO(hkuang): Combine this with cur_buf in macroblockd.
831    */
832   RefCntBuffer *cur_frame;
833 
834   /*!
835    * For encoder, we have a two-level mapping from reference frame type to the
836    * corresponding buffer in the buffer pool:
837    * * 'remapped_ref_idx[i - 1]' maps reference type 'i' (range: LAST_FRAME ...
838    * EXTREF_FRAME) to a remapped index 'j' (in range: 0 ... REF_FRAMES - 1)
839    * * Later, 'cm->ref_frame_map[j]' maps the remapped index 'j' to a pointer to
840    * the reference counted buffer structure RefCntBuffer, taken from the buffer
841    * pool cm->buffer_pool->frame_bufs.
842    *
843    * LAST_FRAME,                        ...,      EXTREF_FRAME
844    *      |                                           |
845    *      v                                           v
846    * remapped_ref_idx[LAST_FRAME - 1],  ...,  remapped_ref_idx[EXTREF_FRAME - 1]
847    *      |                                           |
848    *      v                                           v
849    * ref_frame_map[],                   ...,     ref_frame_map[]
850    *
851    * Note: INTRA_FRAME always refers to the current frame, so there's no need to
852    * have a remapped index for the same.
853    */
854   int remapped_ref_idx[REF_FRAMES];
855 
856   /*!
857    * Scale of the current frame with respect to itself.
858    * This is currently used for intra block copy, which behaves like an inter
859    * prediction mode, where the reference frame is the current frame itself.
860    */
861   struct scale_factors sf_identity;
862 
863   /*!
864    * Scale factors of the reference frame with respect to the current frame.
865    * This is required for generating inter prediction and will be non-identity
866    * for a reference frame, if it has different dimensions than the coded
867    * dimensions of the current frame.
868    */
869   struct scale_factors ref_scale_factors[REF_FRAMES];
870 
871   /*!
872    * For decoder, ref_frame_map[i] maps reference type 'i' to a pointer to
873    * the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
874    * For encoder, ref_frame_map[j] (where j = remapped_ref_idx[i]) maps
875    * remapped reference index 'j' (that is, original reference type 'i') to
876    * a pointer to the buffer in the buffer pool 'cm->buffer_pool.frame_bufs'.
877    */
878   RefCntBuffer *ref_frame_map[REF_FRAMES];
879 
880   /*!
881    * If true, this frame is actually shown after decoding.
882    * If false, this frame is coded in the bitstream, but not shown. It is only
883    * used as a reference for other frames coded later.
884    */
885   int show_frame;
886 
887   /*!
888    * If true, this frame can be used as a show-existing frame for other frames
889    * coded later.
890    * When 'show_frame' is true, this is always true for all non-keyframes.
891    * When 'show_frame' is false, this value is transmitted in the bitstream.
892    */
893   int showable_frame;
894 
895   /*!
896    * If true, show an existing frame coded before, instead of actually coding a
897    * frame. The existing frame comes from one of the existing reference buffers,
898    * as signaled in the bitstream.
899    */
900   int show_existing_frame;
901 
902   /*!
903    * Whether some features are allowed or not.
904    */
905   FeatureFlags features;
906 
907   /*!
908    * Params related to MB_MODE_INFO arrays and related info.
909    */
910   CommonModeInfoParams mi_params;
911 
912 #if CONFIG_ENTROPY_STATS
913   /*!
914    * Context type used by token CDFs, in the range 0 .. (TOKEN_CDF_Q_CTXS - 1).
915    */
916   int coef_cdf_category;
917 #endif  // CONFIG_ENTROPY_STATS
918 
919   /*!
920    * Quantization params.
921    */
922   CommonQuantParams quant_params;
923 
924   /*!
925    * Segmentation info for current frame.
926    */
927   struct segmentation seg;
928 
929   /*!
930    * Segmentation map for previous frame.
931    */
932   uint8_t *last_frame_seg_map;
933 
934   /**
935    * \name Deblocking filter parameters.
936    */
937   /**@{*/
938   loop_filter_info_n lf_info; /*!< Loop filter info */
939   struct loopfilter lf;       /*!< Loop filter parameters */
940   /**@}*/
941 
942   /**
943    * \name Loop Restoration filter parameters.
944    */
945   /**@{*/
946   RestorationInfo rst_info[MAX_MB_PLANE]; /*!< Loop Restoration filter info */
947   int32_t *rst_tmpbuf; /*!< Scratch buffer for self-guided restoration */
948   RestorationLineBuffers *rlbs; /*!< Line buffers needed by loop restoration */
949   YV12_BUFFER_CONFIG rst_frame; /*!< Stores the output of loop restoration */
950   /**@}*/
951 
952   /*!
953    * CDEF (Constrained Directional Enhancement Filter) parameters.
954    */
955   CdefInfo cdef_info;
956 
957   /*!
958    * Parameters for film grain synthesis.
959    */
960   aom_film_grain_t film_grain_params;
961 
962   /*!
963    * Parameters for delta quantization and delta loop filter level.
964    */
965   DeltaQInfo delta_q_info;
966 
967   /*!
968    * Global motion parameters for each reference frame.
969    */
970   WarpedMotionParams global_motion[REF_FRAMES];
971 
972   /*!
973    * Elements part of the sequence header, that are applicable for all the
974    * frames in the video.
975    */
976   SequenceHeader *seq_params;
977 
978   /*!
979    * Current CDFs of all the symbols for the current frame.
980    */
981   FRAME_CONTEXT *fc;
982   /*!
983    * Default CDFs used when features.primary_ref_frame = PRIMARY_REF_NONE
984    * (e.g. for a keyframe). These default CDFs are defined by the bitstream and
985    * copied from default CDF tables for each symbol.
986    */
987   FRAME_CONTEXT *default_frame_context;
988 
989   /*!
990    * Parameters related to tiling.
991    */
992   CommonTileParams tiles;
993 
994   /*!
995    * External BufferPool passed from outside.
996    */
997   BufferPool *buffer_pool;
998 
999   /*!
1000    * Above context buffers and their sizes.
1001    * Note: above contexts are allocated in this struct, as their size is
1002    * dependent on frame width, while left contexts are declared and allocated in
1003    * MACROBLOCKD struct, as they have a fixed size.
1004    */
1005   CommonContexts above_contexts;
1006 
1007   /**
1008    * \name Signaled when cm->seq_params->frame_id_numbers_present_flag == 1
1009    */
1010   /**@{*/
1011   int current_frame_id;         /*!< frame ID for the current frame. */
1012   int ref_frame_id[REF_FRAMES]; /*!< frame IDs for the reference frames. */
1013   /**@}*/
1014 
1015   /*!
1016    * Motion vectors provided by motion field estimation.
1017    * tpl_mvs[row * stride + col] stores MV for block at [mi_row, mi_col] where:
1018    * mi_row = 2 * row,
1019    * mi_col = 2 * col, and
1020    * stride = cm->mi_params.mi_stride / 2
1021    */
1022   TPL_MV_REF *tpl_mvs;
1023   /*!
1024    * Allocated size of 'tpl_mvs' array. Refer to 'ensure_mv_buffer()' function.
1025    */
1026   int tpl_mvs_mem_size;
1027   /*!
1028    * ref_frame_sign_bias[k] is 1 if relative distance between reference 'k' and
1029    * current frame is positive; and 0 otherwise.
1030    */
1031   int ref_frame_sign_bias[REF_FRAMES];
1032   /*!
1033    * ref_frame_side[k] is 1 if relative distance between reference 'k' and
1034    * current frame is positive, -1 if relative distance is 0; and 0 otherwise.
1035    * TODO(jingning): This can be combined with sign_bias later.
1036    */
1037   int8_t ref_frame_side[REF_FRAMES];
1038 
1039   /*!
1040    * Temporal layer ID of this frame
1041    * (in the range 0 ... (number_temporal_layers - 1)).
1042    */
1043   int temporal_layer_id;
1044 
1045   /*!
1046    * Spatial layer ID of this frame
1047    * (in the range 0 ... (number_spatial_layers - 1)).
1048    */
1049   int spatial_layer_id;
1050 
1051 #if TXCOEFF_TIMER
1052   int64_t cum_txcoeff_timer;
1053   int64_t txcoeff_timer;
1054   int txb_count;
1055 #endif  // TXCOEFF_TIMER
1056 
1057 #if TXCOEFF_COST_TIMER
1058   int64_t cum_txcoeff_cost_timer;
1059   int64_t txcoeff_cost_timer;
1060   int64_t txcoeff_cost_count;
1061 #endif  // TXCOEFF_COST_TIMER
1062 } AV1_COMMON;
1063 
1064 /*!\cond */
1065 
1066 // TODO(hkuang): Don't need to lock the whole pool after implementing atomic
1067 // frame reference count.
lock_buffer_pool(BufferPool * const pool)1068 static void lock_buffer_pool(BufferPool *const pool) {
1069 #if CONFIG_MULTITHREAD
1070   pthread_mutex_lock(&pool->pool_mutex);
1071 #else
1072   (void)pool;
1073 #endif
1074 }
1075 
unlock_buffer_pool(BufferPool * const pool)1076 static void unlock_buffer_pool(BufferPool *const pool) {
1077 #if CONFIG_MULTITHREAD
1078   pthread_mutex_unlock(&pool->pool_mutex);
1079 #else
1080   (void)pool;
1081 #endif
1082 }
1083 
get_ref_frame(AV1_COMMON * cm,int index)1084 static INLINE YV12_BUFFER_CONFIG *get_ref_frame(AV1_COMMON *cm, int index) {
1085   if (index < 0 || index >= REF_FRAMES) return NULL;
1086   if (cm->ref_frame_map[index] == NULL) return NULL;
1087   return &cm->ref_frame_map[index]->buf;
1088 }
1089 
get_free_fb(AV1_COMMON * cm)1090 static INLINE int get_free_fb(AV1_COMMON *cm) {
1091   RefCntBuffer *const frame_bufs = cm->buffer_pool->frame_bufs;
1092   int i;
1093 
1094   lock_buffer_pool(cm->buffer_pool);
1095   for (i = 0; i < FRAME_BUFFERS; ++i)
1096     if (frame_bufs[i].ref_count == 0) break;
1097 
1098   if (i != FRAME_BUFFERS) {
1099     if (frame_bufs[i].buf.use_external_reference_buffers) {
1100       // If this frame buffer's y_buffer, u_buffer, and v_buffer point to the
1101       // external reference buffers. Restore the buffer pointers to point to the
1102       // internally allocated memory.
1103       YV12_BUFFER_CONFIG *ybf = &frame_bufs[i].buf;
1104       ybf->y_buffer = ybf->store_buf_adr[0];
1105       ybf->u_buffer = ybf->store_buf_adr[1];
1106       ybf->v_buffer = ybf->store_buf_adr[2];
1107       ybf->use_external_reference_buffers = 0;
1108     }
1109 
1110     frame_bufs[i].ref_count = 1;
1111   } else {
1112     // We should never run out of free buffers. If this assertion fails, there
1113     // is a reference leak.
1114     assert(0 && "Ran out of free frame buffers. Likely a reference leak.");
1115     // Reset i to be INVALID_IDX to indicate no free buffer found.
1116     i = INVALID_IDX;
1117   }
1118 
1119   unlock_buffer_pool(cm->buffer_pool);
1120   return i;
1121 }
1122 
assign_cur_frame_new_fb(AV1_COMMON * const cm)1123 static INLINE RefCntBuffer *assign_cur_frame_new_fb(AV1_COMMON *const cm) {
1124   // Release the previously-used frame-buffer
1125   if (cm->cur_frame != NULL) {
1126     --cm->cur_frame->ref_count;
1127     cm->cur_frame = NULL;
1128   }
1129 
1130   // Assign a new framebuffer
1131   const int new_fb_idx = get_free_fb(cm);
1132   if (new_fb_idx == INVALID_IDX) return NULL;
1133 
1134   cm->cur_frame = &cm->buffer_pool->frame_bufs[new_fb_idx];
1135   cm->cur_frame->buf.buf_8bit_valid = 0;
1136   av1_zero(cm->cur_frame->interp_filter_selected);
1137   return cm->cur_frame;
1138 }
1139 
1140 // Modify 'lhs_ptr' to reference the buffer at 'rhs_ptr', and update the ref
1141 // counts accordingly.
assign_frame_buffer_p(RefCntBuffer ** lhs_ptr,RefCntBuffer * rhs_ptr)1142 static INLINE void assign_frame_buffer_p(RefCntBuffer **lhs_ptr,
1143                                          RefCntBuffer *rhs_ptr) {
1144   RefCntBuffer *const old_ptr = *lhs_ptr;
1145   if (old_ptr != NULL) {
1146     assert(old_ptr->ref_count > 0);
1147     // One less reference to the buffer at 'old_ptr', so decrease ref count.
1148     --old_ptr->ref_count;
1149   }
1150 
1151   *lhs_ptr = rhs_ptr;
1152   // One more reference to the buffer at 'rhs_ptr', so increase ref count.
1153   ++rhs_ptr->ref_count;
1154 }
1155 
frame_is_intra_only(const AV1_COMMON * const cm)1156 static INLINE int frame_is_intra_only(const AV1_COMMON *const cm) {
1157   return cm->current_frame.frame_type == KEY_FRAME ||
1158          cm->current_frame.frame_type == INTRA_ONLY_FRAME;
1159 }
1160 
frame_is_sframe(const AV1_COMMON * cm)1161 static INLINE int frame_is_sframe(const AV1_COMMON *cm) {
1162   return cm->current_frame.frame_type == S_FRAME;
1163 }
1164 
1165 // These functions take a reference frame label between LAST_FRAME and
1166 // EXTREF_FRAME inclusive.  Note that this is different to the indexing
1167 // previously used by the frame_refs[] array.
get_ref_frame_map_idx(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1168 static INLINE int get_ref_frame_map_idx(const AV1_COMMON *const cm,
1169                                         const MV_REFERENCE_FRAME ref_frame) {
1170   return (ref_frame >= LAST_FRAME && ref_frame <= EXTREF_FRAME)
1171              ? cm->remapped_ref_idx[ref_frame - LAST_FRAME]
1172              : INVALID_IDX;
1173 }
1174 
get_ref_frame_buf(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1175 static INLINE RefCntBuffer *get_ref_frame_buf(
1176     const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1177   const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1178   return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1179 }
1180 
1181 // Both const and non-const versions of this function are provided so that it
1182 // can be used with a const AV1_COMMON if needed.
get_ref_scale_factors_const(const AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1183 static INLINE const struct scale_factors *get_ref_scale_factors_const(
1184     const AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1185   const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1186   return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1187 }
1188 
get_ref_scale_factors(AV1_COMMON * const cm,const MV_REFERENCE_FRAME ref_frame)1189 static INLINE struct scale_factors *get_ref_scale_factors(
1190     AV1_COMMON *const cm, const MV_REFERENCE_FRAME ref_frame) {
1191   const int map_idx = get_ref_frame_map_idx(cm, ref_frame);
1192   return (map_idx != INVALID_IDX) ? &cm->ref_scale_factors[map_idx] : NULL;
1193 }
1194 
get_primary_ref_frame_buf(const AV1_COMMON * const cm)1195 static INLINE RefCntBuffer *get_primary_ref_frame_buf(
1196     const AV1_COMMON *const cm) {
1197   const int primary_ref_frame = cm->features.primary_ref_frame;
1198   if (primary_ref_frame == PRIMARY_REF_NONE) return NULL;
1199   const int map_idx = get_ref_frame_map_idx(cm, primary_ref_frame + 1);
1200   return (map_idx != INVALID_IDX) ? cm->ref_frame_map[map_idx] : NULL;
1201 }
1202 
1203 // Returns 1 if this frame might allow mvs from some reference frame.
frame_might_allow_ref_frame_mvs(const AV1_COMMON * cm)1204 static INLINE int frame_might_allow_ref_frame_mvs(const AV1_COMMON *cm) {
1205   return !cm->features.error_resilient_mode &&
1206          cm->seq_params->order_hint_info.enable_ref_frame_mvs &&
1207          cm->seq_params->order_hint_info.enable_order_hint &&
1208          !frame_is_intra_only(cm);
1209 }
1210 
1211 // Returns 1 if this frame might use warped_motion
frame_might_allow_warped_motion(const AV1_COMMON * cm)1212 static INLINE int frame_might_allow_warped_motion(const AV1_COMMON *cm) {
1213   return !cm->features.error_resilient_mode && !frame_is_intra_only(cm) &&
1214          cm->seq_params->enable_warped_motion;
1215 }
1216 
ensure_mv_buffer(RefCntBuffer * buf,AV1_COMMON * cm)1217 static INLINE void ensure_mv_buffer(RefCntBuffer *buf, AV1_COMMON *cm) {
1218   const int buf_rows = buf->mi_rows;
1219   const int buf_cols = buf->mi_cols;
1220   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1221 
1222   if (buf->mvs == NULL || buf_rows != mi_params->mi_rows ||
1223       buf_cols != mi_params->mi_cols) {
1224     aom_free(buf->mvs);
1225     buf->mi_rows = mi_params->mi_rows;
1226     buf->mi_cols = mi_params->mi_cols;
1227     CHECK_MEM_ERROR(cm, buf->mvs,
1228                     (MV_REF *)aom_calloc(((mi_params->mi_rows + 1) >> 1) *
1229                                              ((mi_params->mi_cols + 1) >> 1),
1230                                          sizeof(*buf->mvs)));
1231     aom_free(buf->seg_map);
1232     CHECK_MEM_ERROR(
1233         cm, buf->seg_map,
1234         (uint8_t *)aom_calloc(mi_params->mi_rows * mi_params->mi_cols,
1235                               sizeof(*buf->seg_map)));
1236   }
1237 
1238   const int mem_size =
1239       ((mi_params->mi_rows + MAX_MIB_SIZE) >> 1) * (mi_params->mi_stride >> 1);
1240   int realloc = cm->tpl_mvs == NULL;
1241   if (cm->tpl_mvs) realloc |= cm->tpl_mvs_mem_size < mem_size;
1242 
1243   if (realloc) {
1244     aom_free(cm->tpl_mvs);
1245     CHECK_MEM_ERROR(cm, cm->tpl_mvs,
1246                     (TPL_MV_REF *)aom_calloc(mem_size, sizeof(*cm->tpl_mvs)));
1247     cm->tpl_mvs_mem_size = mem_size;
1248   }
1249 }
1250 
1251 void cfl_init(CFL_CTX *cfl, const SequenceHeader *seq_params);
1252 
av1_num_planes(const AV1_COMMON * cm)1253 static INLINE int av1_num_planes(const AV1_COMMON *cm) {
1254   return cm->seq_params->monochrome ? 1 : MAX_MB_PLANE;
1255 }
1256 
av1_init_above_context(CommonContexts * above_contexts,int num_planes,int tile_row,MACROBLOCKD * xd)1257 static INLINE void av1_init_above_context(CommonContexts *above_contexts,
1258                                           int num_planes, int tile_row,
1259                                           MACROBLOCKD *xd) {
1260   for (int i = 0; i < num_planes; ++i) {
1261     xd->above_entropy_context[i] = above_contexts->entropy[i][tile_row];
1262   }
1263   xd->above_partition_context = above_contexts->partition[tile_row];
1264   xd->above_txfm_context = above_contexts->txfm[tile_row];
1265 }
1266 
av1_init_macroblockd(AV1_COMMON * cm,MACROBLOCKD * xd)1267 static INLINE void av1_init_macroblockd(AV1_COMMON *cm, MACROBLOCKD *xd) {
1268   const int num_planes = av1_num_planes(cm);
1269   const CommonQuantParams *const quant_params = &cm->quant_params;
1270 
1271   for (int i = 0; i < num_planes; ++i) {
1272     if (xd->plane[i].plane_type == PLANE_TYPE_Y) {
1273       memcpy(xd->plane[i].seg_dequant_QTX, quant_params->y_dequant_QTX,
1274              sizeof(quant_params->y_dequant_QTX));
1275       memcpy(xd->plane[i].seg_iqmatrix, quant_params->y_iqmatrix,
1276              sizeof(quant_params->y_iqmatrix));
1277 
1278     } else {
1279       if (i == AOM_PLANE_U) {
1280         memcpy(xd->plane[i].seg_dequant_QTX, quant_params->u_dequant_QTX,
1281                sizeof(quant_params->u_dequant_QTX));
1282         memcpy(xd->plane[i].seg_iqmatrix, quant_params->u_iqmatrix,
1283                sizeof(quant_params->u_iqmatrix));
1284       } else {
1285         memcpy(xd->plane[i].seg_dequant_QTX, quant_params->v_dequant_QTX,
1286                sizeof(quant_params->v_dequant_QTX));
1287         memcpy(xd->plane[i].seg_iqmatrix, quant_params->v_iqmatrix,
1288                sizeof(quant_params->v_iqmatrix));
1289       }
1290     }
1291   }
1292   xd->mi_stride = cm->mi_params.mi_stride;
1293   xd->error_info = cm->error;
1294   cfl_init(&xd->cfl, cm->seq_params);
1295 }
1296 
set_entropy_context(MACROBLOCKD * xd,int mi_row,int mi_col,const int num_planes)1297 static INLINE void set_entropy_context(MACROBLOCKD *xd, int mi_row, int mi_col,
1298                                        const int num_planes) {
1299   int i;
1300   int row_offset = mi_row;
1301   int col_offset = mi_col;
1302   for (i = 0; i < num_planes; ++i) {
1303     struct macroblockd_plane *const pd = &xd->plane[i];
1304     // Offset the buffer pointer
1305     const BLOCK_SIZE bsize = xd->mi[0]->bsize;
1306     if (pd->subsampling_y && (mi_row & 0x01) && (mi_size_high[bsize] == 1))
1307       row_offset = mi_row - 1;
1308     if (pd->subsampling_x && (mi_col & 0x01) && (mi_size_wide[bsize] == 1))
1309       col_offset = mi_col - 1;
1310     int above_idx = col_offset;
1311     int left_idx = row_offset & MAX_MIB_MASK;
1312     pd->above_entropy_context =
1313         &xd->above_entropy_context[i][above_idx >> pd->subsampling_x];
1314     pd->left_entropy_context =
1315         &xd->left_entropy_context[i][left_idx >> pd->subsampling_y];
1316   }
1317 }
1318 
calc_mi_size(int len)1319 static INLINE int calc_mi_size(int len) {
1320   // len is in mi units. Align to a multiple of SBs.
1321   return ALIGN_POWER_OF_TWO(len, MAX_MIB_SIZE_LOG2);
1322 }
1323 
set_plane_n4(MACROBLOCKD * const xd,int bw,int bh,const int num_planes)1324 static INLINE void set_plane_n4(MACROBLOCKD *const xd, int bw, int bh,
1325                                 const int num_planes) {
1326   int i;
1327   for (i = 0; i < num_planes; i++) {
1328     xd->plane[i].width = (bw * MI_SIZE) >> xd->plane[i].subsampling_x;
1329     xd->plane[i].height = (bh * MI_SIZE) >> xd->plane[i].subsampling_y;
1330 
1331     xd->plane[i].width = AOMMAX(xd->plane[i].width, 4);
1332     xd->plane[i].height = AOMMAX(xd->plane[i].height, 4);
1333   }
1334 }
1335 
set_mi_row_col(MACROBLOCKD * xd,const TileInfo * const tile,int mi_row,int bh,int mi_col,int bw,int mi_rows,int mi_cols)1336 static INLINE void set_mi_row_col(MACROBLOCKD *xd, const TileInfo *const tile,
1337                                   int mi_row, int bh, int mi_col, int bw,
1338                                   int mi_rows, int mi_cols) {
1339   xd->mb_to_top_edge = -GET_MV_SUBPEL(mi_row * MI_SIZE);
1340   xd->mb_to_bottom_edge = GET_MV_SUBPEL((mi_rows - bh - mi_row) * MI_SIZE);
1341   xd->mb_to_left_edge = -GET_MV_SUBPEL((mi_col * MI_SIZE));
1342   xd->mb_to_right_edge = GET_MV_SUBPEL((mi_cols - bw - mi_col) * MI_SIZE);
1343 
1344   xd->mi_row = mi_row;
1345   xd->mi_col = mi_col;
1346 
1347   // Are edges available for intra prediction?
1348   xd->up_available = (mi_row > tile->mi_row_start);
1349 
1350   const int ss_x = xd->plane[1].subsampling_x;
1351   const int ss_y = xd->plane[1].subsampling_y;
1352 
1353   xd->left_available = (mi_col > tile->mi_col_start);
1354   xd->chroma_up_available = xd->up_available;
1355   xd->chroma_left_available = xd->left_available;
1356   if (ss_x && bw < mi_size_wide[BLOCK_8X8])
1357     xd->chroma_left_available = (mi_col - 1) > tile->mi_col_start;
1358   if (ss_y && bh < mi_size_high[BLOCK_8X8])
1359     xd->chroma_up_available = (mi_row - 1) > tile->mi_row_start;
1360   if (xd->up_available) {
1361     xd->above_mbmi = xd->mi[-xd->mi_stride];
1362   } else {
1363     xd->above_mbmi = NULL;
1364   }
1365 
1366   if (xd->left_available) {
1367     xd->left_mbmi = xd->mi[-1];
1368   } else {
1369     xd->left_mbmi = NULL;
1370   }
1371 
1372   const int chroma_ref = ((mi_row & 0x01) || !(bh & 0x01) || !ss_y) &&
1373                          ((mi_col & 0x01) || !(bw & 0x01) || !ss_x);
1374   xd->is_chroma_ref = chroma_ref;
1375   if (chroma_ref) {
1376     // To help calculate the "above" and "left" chroma blocks, note that the
1377     // current block may cover multiple luma blocks (e.g., if partitioned into
1378     // 4x4 luma blocks).
1379     // First, find the top-left-most luma block covered by this chroma block
1380     MB_MODE_INFO **base_mi =
1381         &xd->mi[-(mi_row & ss_y) * xd->mi_stride - (mi_col & ss_x)];
1382 
1383     // Then, we consider the luma region covered by the left or above 4x4 chroma
1384     // prediction. We want to point to the chroma reference block in that
1385     // region, which is the bottom-right-most mi unit.
1386     // This leads to the following offsets:
1387     MB_MODE_INFO *chroma_above_mi =
1388         xd->chroma_up_available ? base_mi[-xd->mi_stride + ss_x] : NULL;
1389     xd->chroma_above_mbmi = chroma_above_mi;
1390 
1391     MB_MODE_INFO *chroma_left_mi =
1392         xd->chroma_left_available ? base_mi[ss_y * xd->mi_stride - 1] : NULL;
1393     xd->chroma_left_mbmi = chroma_left_mi;
1394   }
1395 
1396   xd->height = bh;
1397   xd->width = bw;
1398 
1399   xd->is_last_vertical_rect = 0;
1400   if (xd->width < xd->height) {
1401     if (!((mi_col + xd->width) & (xd->height - 1))) {
1402       xd->is_last_vertical_rect = 1;
1403     }
1404   }
1405 
1406   xd->is_first_horizontal_rect = 0;
1407   if (xd->width > xd->height)
1408     if (!(mi_row & (xd->width - 1))) xd->is_first_horizontal_rect = 1;
1409 }
1410 
get_y_mode_cdf(FRAME_CONTEXT * tile_ctx,const MB_MODE_INFO * above_mi,const MB_MODE_INFO * left_mi)1411 static INLINE aom_cdf_prob *get_y_mode_cdf(FRAME_CONTEXT *tile_ctx,
1412                                            const MB_MODE_INFO *above_mi,
1413                                            const MB_MODE_INFO *left_mi) {
1414   const PREDICTION_MODE above = av1_above_block_mode(above_mi);
1415   const PREDICTION_MODE left = av1_left_block_mode(left_mi);
1416   const int above_ctx = intra_mode_context[above];
1417   const int left_ctx = intra_mode_context[left];
1418   return tile_ctx->kf_y_cdf[above_ctx][left_ctx];
1419 }
1420 
update_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize)1421 static INLINE void update_partition_context(MACROBLOCKD *xd, int mi_row,
1422                                             int mi_col, BLOCK_SIZE subsize,
1423                                             BLOCK_SIZE bsize) {
1424   PARTITION_CONTEXT *const above_ctx = xd->above_partition_context + mi_col;
1425   PARTITION_CONTEXT *const left_ctx =
1426       xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1427 
1428   const int bw = mi_size_wide[bsize];
1429   const int bh = mi_size_high[bsize];
1430   memset(above_ctx, partition_context_lookup[subsize].above, bw);
1431   memset(left_ctx, partition_context_lookup[subsize].left, bh);
1432 }
1433 
is_chroma_reference(int mi_row,int mi_col,BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1434 static INLINE int is_chroma_reference(int mi_row, int mi_col, BLOCK_SIZE bsize,
1435                                       int subsampling_x, int subsampling_y) {
1436   assert(bsize < BLOCK_SIZES_ALL);
1437   const int bw = mi_size_wide[bsize];
1438   const int bh = mi_size_high[bsize];
1439   int ref_pos = ((mi_row & 0x01) || !(bh & 0x01) || !subsampling_y) &&
1440                 ((mi_col & 0x01) || !(bw & 0x01) || !subsampling_x);
1441   return ref_pos;
1442 }
1443 
cdf_element_prob(const aom_cdf_prob * cdf,size_t element)1444 static INLINE aom_cdf_prob cdf_element_prob(const aom_cdf_prob *cdf,
1445                                             size_t element) {
1446   assert(cdf != NULL);
1447   return (element > 0 ? cdf[element - 1] : CDF_PROB_TOP) - cdf[element];
1448 }
1449 
partition_gather_horz_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)1450 static INLINE void partition_gather_horz_alike(aom_cdf_prob *out,
1451                                                const aom_cdf_prob *const in,
1452                                                BLOCK_SIZE bsize) {
1453   (void)bsize;
1454   out[0] = CDF_PROB_TOP;
1455   out[0] -= cdf_element_prob(in, PARTITION_HORZ);
1456   out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1457   out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1458   out[0] -= cdf_element_prob(in, PARTITION_HORZ_B);
1459   out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1460   if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_HORZ_4);
1461   out[0] = AOM_ICDF(out[0]);
1462   out[1] = AOM_ICDF(CDF_PROB_TOP);
1463 }
1464 
partition_gather_vert_alike(aom_cdf_prob * out,const aom_cdf_prob * const in,BLOCK_SIZE bsize)1465 static INLINE void partition_gather_vert_alike(aom_cdf_prob *out,
1466                                                const aom_cdf_prob *const in,
1467                                                BLOCK_SIZE bsize) {
1468   (void)bsize;
1469   out[0] = CDF_PROB_TOP;
1470   out[0] -= cdf_element_prob(in, PARTITION_VERT);
1471   out[0] -= cdf_element_prob(in, PARTITION_SPLIT);
1472   out[0] -= cdf_element_prob(in, PARTITION_HORZ_A);
1473   out[0] -= cdf_element_prob(in, PARTITION_VERT_A);
1474   out[0] -= cdf_element_prob(in, PARTITION_VERT_B);
1475   if (bsize != BLOCK_128X128) out[0] -= cdf_element_prob(in, PARTITION_VERT_4);
1476   out[0] = AOM_ICDF(out[0]);
1477   out[1] = AOM_ICDF(CDF_PROB_TOP);
1478 }
1479 
update_ext_partition_context(MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE subsize,BLOCK_SIZE bsize,PARTITION_TYPE partition)1480 static INLINE void update_ext_partition_context(MACROBLOCKD *xd, int mi_row,
1481                                                 int mi_col, BLOCK_SIZE subsize,
1482                                                 BLOCK_SIZE bsize,
1483                                                 PARTITION_TYPE partition) {
1484   if (bsize >= BLOCK_8X8) {
1485     const int hbs = mi_size_wide[bsize] / 2;
1486     BLOCK_SIZE bsize2 = get_partition_subsize(bsize, PARTITION_SPLIT);
1487     switch (partition) {
1488       case PARTITION_SPLIT:
1489         if (bsize != BLOCK_8X8) break;
1490         AOM_FALLTHROUGH_INTENDED;
1491       case PARTITION_NONE:
1492       case PARTITION_HORZ:
1493       case PARTITION_VERT:
1494       case PARTITION_HORZ_4:
1495       case PARTITION_VERT_4:
1496         update_partition_context(xd, mi_row, mi_col, subsize, bsize);
1497         break;
1498       case PARTITION_HORZ_A:
1499         update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1500         update_partition_context(xd, mi_row + hbs, mi_col, subsize, subsize);
1501         break;
1502       case PARTITION_HORZ_B:
1503         update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1504         update_partition_context(xd, mi_row + hbs, mi_col, bsize2, subsize);
1505         break;
1506       case PARTITION_VERT_A:
1507         update_partition_context(xd, mi_row, mi_col, bsize2, subsize);
1508         update_partition_context(xd, mi_row, mi_col + hbs, subsize, subsize);
1509         break;
1510       case PARTITION_VERT_B:
1511         update_partition_context(xd, mi_row, mi_col, subsize, subsize);
1512         update_partition_context(xd, mi_row, mi_col + hbs, bsize2, subsize);
1513         break;
1514       default: assert(0 && "Invalid partition type");
1515     }
1516   }
1517 }
1518 
partition_plane_context(const MACROBLOCKD * xd,int mi_row,int mi_col,BLOCK_SIZE bsize)1519 static INLINE int partition_plane_context(const MACROBLOCKD *xd, int mi_row,
1520                                           int mi_col, BLOCK_SIZE bsize) {
1521   const PARTITION_CONTEXT *above_ctx = xd->above_partition_context + mi_col;
1522   const PARTITION_CONTEXT *left_ctx =
1523       xd->left_partition_context + (mi_row & MAX_MIB_MASK);
1524   // Minimum partition point is 8x8. Offset the bsl accordingly.
1525   const int bsl = mi_size_wide_log2[bsize] - mi_size_wide_log2[BLOCK_8X8];
1526   int above = (*above_ctx >> bsl) & 1, left = (*left_ctx >> bsl) & 1;
1527 
1528   assert(mi_size_wide_log2[bsize] == mi_size_high_log2[bsize]);
1529   assert(bsl >= 0);
1530 
1531   return (left * 2 + above) + bsl * PARTITION_PLOFFSET;
1532 }
1533 
1534 // Return the number of elements in the partition CDF when
1535 // partitioning the (square) block with luma block size of bsize.
partition_cdf_length(BLOCK_SIZE bsize)1536 static INLINE int partition_cdf_length(BLOCK_SIZE bsize) {
1537   if (bsize <= BLOCK_8X8)
1538     return PARTITION_TYPES;
1539   else if (bsize == BLOCK_128X128)
1540     return EXT_PARTITION_TYPES - 2;
1541   else
1542     return EXT_PARTITION_TYPES;
1543 }
1544 
max_block_wide(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1545 static INLINE int max_block_wide(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1546                                  int plane) {
1547   assert(bsize < BLOCK_SIZES_ALL);
1548   int max_blocks_wide = block_size_wide[bsize];
1549 
1550   if (xd->mb_to_right_edge < 0) {
1551     const struct macroblockd_plane *const pd = &xd->plane[plane];
1552     max_blocks_wide += xd->mb_to_right_edge >> (3 + pd->subsampling_x);
1553   }
1554 
1555   // Scale the width in the transform block unit.
1556   return max_blocks_wide >> MI_SIZE_LOG2;
1557 }
1558 
max_block_high(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1559 static INLINE int max_block_high(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1560                                  int plane) {
1561   int max_blocks_high = block_size_high[bsize];
1562 
1563   if (xd->mb_to_bottom_edge < 0) {
1564     const struct macroblockd_plane *const pd = &xd->plane[plane];
1565     max_blocks_high += xd->mb_to_bottom_edge >> (3 + pd->subsampling_y);
1566   }
1567 
1568   // Scale the height in the transform block unit.
1569   return max_blocks_high >> MI_SIZE_LOG2;
1570 }
1571 
av1_zero_above_context(AV1_COMMON * const cm,const MACROBLOCKD * xd,int mi_col_start,int mi_col_end,const int tile_row)1572 static INLINE void av1_zero_above_context(AV1_COMMON *const cm,
1573                                           const MACROBLOCKD *xd,
1574                                           int mi_col_start, int mi_col_end,
1575                                           const int tile_row) {
1576   const SequenceHeader *const seq_params = cm->seq_params;
1577   const int num_planes = av1_num_planes(cm);
1578   const int width = mi_col_end - mi_col_start;
1579   const int aligned_width =
1580       ALIGN_POWER_OF_TWO(width, seq_params->mib_size_log2);
1581   const int offset_y = mi_col_start;
1582   const int width_y = aligned_width;
1583   const int offset_uv = offset_y >> seq_params->subsampling_x;
1584   const int width_uv = width_y >> seq_params->subsampling_x;
1585   CommonContexts *const above_contexts = &cm->above_contexts;
1586 
1587   av1_zero_array(above_contexts->entropy[0][tile_row] + offset_y, width_y);
1588   if (num_planes > 1) {
1589     if (above_contexts->entropy[1][tile_row] &&
1590         above_contexts->entropy[2][tile_row]) {
1591       av1_zero_array(above_contexts->entropy[1][tile_row] + offset_uv,
1592                      width_uv);
1593       av1_zero_array(above_contexts->entropy[2][tile_row] + offset_uv,
1594                      width_uv);
1595     } else {
1596       aom_internal_error(xd->error_info, AOM_CODEC_CORRUPT_FRAME,
1597                          "Invalid value of planes");
1598     }
1599   }
1600 
1601   av1_zero_array(above_contexts->partition[tile_row] + mi_col_start,
1602                  aligned_width);
1603 
1604   memset(above_contexts->txfm[tile_row] + mi_col_start,
1605          tx_size_wide[TX_SIZES_LARGEST], aligned_width * sizeof(TXFM_CONTEXT));
1606 }
1607 
av1_zero_left_context(MACROBLOCKD * const xd)1608 static INLINE void av1_zero_left_context(MACROBLOCKD *const xd) {
1609   av1_zero(xd->left_entropy_context);
1610   av1_zero(xd->left_partition_context);
1611 
1612   memset(xd->left_txfm_context_buffer, tx_size_high[TX_SIZES_LARGEST],
1613          sizeof(xd->left_txfm_context_buffer));
1614 }
1615 
1616 // Disable array-bounds checks as the TX_SIZE enum contains values larger than
1617 // TX_SIZES_ALL (TX_INVALID) which make extending the array as a workaround
1618 // infeasible. The assert is enough for static analysis and this or other tools
1619 // asan, valgrind would catch oob access at runtime.
1620 #if defined(__GNUC__) && __GNUC__ >= 4
1621 #pragma GCC diagnostic ignored "-Warray-bounds"
1622 #endif
1623 
1624 #if defined(__GNUC__) && __GNUC__ >= 4
1625 #pragma GCC diagnostic warning "-Warray-bounds"
1626 #endif
1627 
set_txfm_ctx(TXFM_CONTEXT * txfm_ctx,uint8_t txs,int len)1628 static INLINE void set_txfm_ctx(TXFM_CONTEXT *txfm_ctx, uint8_t txs, int len) {
1629   int i;
1630   for (i = 0; i < len; ++i) txfm_ctx[i] = txs;
1631 }
1632 
set_txfm_ctxs(TX_SIZE tx_size,int n4_w,int n4_h,int skip,const MACROBLOCKD * xd)1633 static INLINE void set_txfm_ctxs(TX_SIZE tx_size, int n4_w, int n4_h, int skip,
1634                                  const MACROBLOCKD *xd) {
1635   uint8_t bw = tx_size_wide[tx_size];
1636   uint8_t bh = tx_size_high[tx_size];
1637 
1638   if (skip) {
1639     bw = n4_w * MI_SIZE;
1640     bh = n4_h * MI_SIZE;
1641   }
1642 
1643   set_txfm_ctx(xd->above_txfm_context, bw, n4_w);
1644   set_txfm_ctx(xd->left_txfm_context, bh, n4_h);
1645 }
1646 
get_mi_grid_idx(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col)1647 static INLINE int get_mi_grid_idx(const CommonModeInfoParams *const mi_params,
1648                                   int mi_row, int mi_col) {
1649   return mi_row * mi_params->mi_stride + mi_col;
1650 }
1651 
get_alloc_mi_idx(const CommonModeInfoParams * const mi_params,int mi_row,int mi_col)1652 static INLINE int get_alloc_mi_idx(const CommonModeInfoParams *const mi_params,
1653                                    int mi_row, int mi_col) {
1654   const int mi_alloc_size_1d = mi_size_wide[mi_params->mi_alloc_bsize];
1655   const int mi_alloc_row = mi_row / mi_alloc_size_1d;
1656   const int mi_alloc_col = mi_col / mi_alloc_size_1d;
1657 
1658   return mi_alloc_row * mi_params->mi_alloc_stride + mi_alloc_col;
1659 }
1660 
1661 // For this partition block, set pointers in mi_params->mi_grid_base and xd->mi.
set_mi_offsets(const CommonModeInfoParams * const mi_params,MACROBLOCKD * const xd,int mi_row,int mi_col)1662 static INLINE void set_mi_offsets(const CommonModeInfoParams *const mi_params,
1663                                   MACROBLOCKD *const xd, int mi_row,
1664                                   int mi_col) {
1665   // 'mi_grid_base' should point to appropriate memory in 'mi'.
1666   const int mi_grid_idx = get_mi_grid_idx(mi_params, mi_row, mi_col);
1667   const int mi_alloc_idx = get_alloc_mi_idx(mi_params, mi_row, mi_col);
1668   mi_params->mi_grid_base[mi_grid_idx] = &mi_params->mi_alloc[mi_alloc_idx];
1669   // 'xd->mi' should point to an offset in 'mi_grid_base';
1670   xd->mi = mi_params->mi_grid_base + mi_grid_idx;
1671   // 'xd->tx_type_map' should point to an offset in 'mi_params->tx_type_map'.
1672   xd->tx_type_map = mi_params->tx_type_map + mi_grid_idx;
1673   xd->tx_type_map_stride = mi_params->mi_stride;
1674 }
1675 
txfm_partition_update(TXFM_CONTEXT * above_ctx,TXFM_CONTEXT * left_ctx,TX_SIZE tx_size,TX_SIZE txb_size)1676 static INLINE void txfm_partition_update(TXFM_CONTEXT *above_ctx,
1677                                          TXFM_CONTEXT *left_ctx,
1678                                          TX_SIZE tx_size, TX_SIZE txb_size) {
1679   BLOCK_SIZE bsize = txsize_to_bsize[txb_size];
1680   int bh = mi_size_high[bsize];
1681   int bw = mi_size_wide[bsize];
1682   uint8_t txw = tx_size_wide[tx_size];
1683   uint8_t txh = tx_size_high[tx_size];
1684   int i;
1685   for (i = 0; i < bh; ++i) left_ctx[i] = txh;
1686   for (i = 0; i < bw; ++i) above_ctx[i] = txw;
1687 }
1688 
get_sqr_tx_size(int tx_dim)1689 static INLINE TX_SIZE get_sqr_tx_size(int tx_dim) {
1690   switch (tx_dim) {
1691     case 128:
1692     case 64: return TX_64X64; break;
1693     case 32: return TX_32X32; break;
1694     case 16: return TX_16X16; break;
1695     case 8: return TX_8X8; break;
1696     default: return TX_4X4;
1697   }
1698 }
1699 
get_tx_size(int width,int height)1700 static INLINE TX_SIZE get_tx_size(int width, int height) {
1701   if (width == height) {
1702     return get_sqr_tx_size(width);
1703   }
1704   if (width < height) {
1705     if (width + width == height) {
1706       switch (width) {
1707         case 4: return TX_4X8; break;
1708         case 8: return TX_8X16; break;
1709         case 16: return TX_16X32; break;
1710         case 32: return TX_32X64; break;
1711       }
1712     } else {
1713       switch (width) {
1714         case 4: return TX_4X16; break;
1715         case 8: return TX_8X32; break;
1716         case 16: return TX_16X64; break;
1717       }
1718     }
1719   } else {
1720     if (height + height == width) {
1721       switch (height) {
1722         case 4: return TX_8X4; break;
1723         case 8: return TX_16X8; break;
1724         case 16: return TX_32X16; break;
1725         case 32: return TX_64X32; break;
1726       }
1727     } else {
1728       switch (height) {
1729         case 4: return TX_16X4; break;
1730         case 8: return TX_32X8; break;
1731         case 16: return TX_64X16; break;
1732       }
1733     }
1734   }
1735   assert(0);
1736   return TX_4X4;
1737 }
1738 
txfm_partition_context(const TXFM_CONTEXT * const above_ctx,const TXFM_CONTEXT * const left_ctx,BLOCK_SIZE bsize,TX_SIZE tx_size)1739 static INLINE int txfm_partition_context(const TXFM_CONTEXT *const above_ctx,
1740                                          const TXFM_CONTEXT *const left_ctx,
1741                                          BLOCK_SIZE bsize, TX_SIZE tx_size) {
1742   const uint8_t txw = tx_size_wide[tx_size];
1743   const uint8_t txh = tx_size_high[tx_size];
1744   const int above = *above_ctx < txw;
1745   const int left = *left_ctx < txh;
1746   int category = TXFM_PARTITION_CONTEXTS;
1747 
1748   // dummy return, not used by others.
1749   if (tx_size <= TX_4X4) return 0;
1750 
1751   TX_SIZE max_tx_size =
1752       get_sqr_tx_size(AOMMAX(block_size_wide[bsize], block_size_high[bsize]));
1753 
1754   if (max_tx_size >= TX_8X8) {
1755     category =
1756         (txsize_sqr_up_map[tx_size] != max_tx_size && max_tx_size > TX_8X8) +
1757         (TX_SIZES - 1 - max_tx_size) * 2;
1758   }
1759   assert(category != TXFM_PARTITION_CONTEXTS);
1760   return category * 3 + above + left;
1761 }
1762 
1763 // Compute the next partition in the direction of the sb_type stored in the mi
1764 // array, starting with bsize.
get_partition(const AV1_COMMON * const cm,int mi_row,int mi_col,BLOCK_SIZE bsize)1765 static INLINE PARTITION_TYPE get_partition(const AV1_COMMON *const cm,
1766                                            int mi_row, int mi_col,
1767                                            BLOCK_SIZE bsize) {
1768   const CommonModeInfoParams *const mi_params = &cm->mi_params;
1769   if (mi_row >= mi_params->mi_rows || mi_col >= mi_params->mi_cols)
1770     return PARTITION_INVALID;
1771 
1772   const int offset = mi_row * mi_params->mi_stride + mi_col;
1773   MB_MODE_INFO **mi = mi_params->mi_grid_base + offset;
1774   const BLOCK_SIZE subsize = mi[0]->bsize;
1775 
1776   assert(bsize < BLOCK_SIZES_ALL);
1777 
1778   if (subsize == bsize) return PARTITION_NONE;
1779 
1780   const int bhigh = mi_size_high[bsize];
1781   const int bwide = mi_size_wide[bsize];
1782   const int sshigh = mi_size_high[subsize];
1783   const int sswide = mi_size_wide[subsize];
1784 
1785   if (bsize > BLOCK_8X8 && mi_row + bwide / 2 < mi_params->mi_rows &&
1786       mi_col + bhigh / 2 < mi_params->mi_cols) {
1787     // In this case, the block might be using an extended partition
1788     // type.
1789     const MB_MODE_INFO *const mbmi_right = mi[bwide / 2];
1790     const MB_MODE_INFO *const mbmi_below = mi[bhigh / 2 * mi_params->mi_stride];
1791 
1792     if (sswide == bwide) {
1793       // Smaller height but same width. Is PARTITION_HORZ_4, PARTITION_HORZ or
1794       // PARTITION_HORZ_B. To distinguish the latter two, check if the lower
1795       // half was split.
1796       if (sshigh * 4 == bhigh) return PARTITION_HORZ_4;
1797       assert(sshigh * 2 == bhigh);
1798 
1799       if (mbmi_below->bsize == subsize)
1800         return PARTITION_HORZ;
1801       else
1802         return PARTITION_HORZ_B;
1803     } else if (sshigh == bhigh) {
1804       // Smaller width but same height. Is PARTITION_VERT_4, PARTITION_VERT or
1805       // PARTITION_VERT_B. To distinguish the latter two, check if the right
1806       // half was split.
1807       if (sswide * 4 == bwide) return PARTITION_VERT_4;
1808       assert(sswide * 2 == bhigh);
1809 
1810       if (mbmi_right->bsize == subsize)
1811         return PARTITION_VERT;
1812       else
1813         return PARTITION_VERT_B;
1814     } else {
1815       // Smaller width and smaller height. Might be PARTITION_SPLIT or could be
1816       // PARTITION_HORZ_A or PARTITION_VERT_A. If subsize isn't halved in both
1817       // dimensions, we immediately know this is a split (which will recurse to
1818       // get to subsize). Otherwise look down and to the right. With
1819       // PARTITION_VERT_A, the right block will have height bhigh; with
1820       // PARTITION_HORZ_A, the lower block with have width bwide. Otherwise
1821       // it's PARTITION_SPLIT.
1822       if (sswide * 2 != bwide || sshigh * 2 != bhigh) return PARTITION_SPLIT;
1823 
1824       if (mi_size_wide[mbmi_below->bsize] == bwide) return PARTITION_HORZ_A;
1825       if (mi_size_high[mbmi_right->bsize] == bhigh) return PARTITION_VERT_A;
1826 
1827       return PARTITION_SPLIT;
1828     }
1829   }
1830   const int vert_split = sswide < bwide;
1831   const int horz_split = sshigh < bhigh;
1832   const int split_idx = (vert_split << 1) | horz_split;
1833   assert(split_idx != 0);
1834 
1835   static const PARTITION_TYPE base_partitions[4] = {
1836     PARTITION_INVALID, PARTITION_HORZ, PARTITION_VERT, PARTITION_SPLIT
1837   };
1838 
1839   return base_partitions[split_idx];
1840 }
1841 
set_sb_size(SequenceHeader * const seq_params,BLOCK_SIZE sb_size)1842 static INLINE void set_sb_size(SequenceHeader *const seq_params,
1843                                BLOCK_SIZE sb_size) {
1844   seq_params->sb_size = sb_size;
1845   seq_params->mib_size = mi_size_wide[seq_params->sb_size];
1846   seq_params->mib_size_log2 = mi_size_wide_log2[seq_params->sb_size];
1847 }
1848 
1849 // Returns true if the frame is fully lossless at the coded resolution.
1850 // Note: If super-resolution is used, such a frame will still NOT be lossless at
1851 // the upscaled resolution.
is_coded_lossless(const AV1_COMMON * cm,const MACROBLOCKD * xd)1852 static INLINE int is_coded_lossless(const AV1_COMMON *cm,
1853                                     const MACROBLOCKD *xd) {
1854   int coded_lossless = 1;
1855   if (cm->seg.enabled) {
1856     for (int i = 0; i < MAX_SEGMENTS; ++i) {
1857       if (!xd->lossless[i]) {
1858         coded_lossless = 0;
1859         break;
1860       }
1861     }
1862   } else {
1863     coded_lossless = xd->lossless[0];
1864   }
1865   return coded_lossless;
1866 }
1867 
is_valid_seq_level_idx(AV1_LEVEL seq_level_idx)1868 static INLINE int is_valid_seq_level_idx(AV1_LEVEL seq_level_idx) {
1869   return seq_level_idx == SEQ_LEVEL_MAX ||
1870          (seq_level_idx < SEQ_LEVELS &&
1871           // The following levels are currently undefined.
1872           seq_level_idx != SEQ_LEVEL_2_2 && seq_level_idx != SEQ_LEVEL_2_3 &&
1873           seq_level_idx != SEQ_LEVEL_3_2 && seq_level_idx != SEQ_LEVEL_3_3 &&
1874           seq_level_idx != SEQ_LEVEL_4_2 && seq_level_idx != SEQ_LEVEL_4_3);
1875 }
1876 
1877 /*!\endcond */
1878 
1879 #ifdef __cplusplus
1880 }  // extern "C"
1881 #endif
1882 
1883 #endif  // AOM_AV1_COMMON_AV1_COMMON_INT_H_
1884