• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2014 Benoit Steiner <benoit.steiner.goog@gmail.com>
5 //
6 // This Source Code Form is subject to the terms of the Mozilla
7 // Public License v. 2.0. If a copy of the MPL was not distributed
8 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
9 
10 #ifndef EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
11 #define EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
12 
13 namespace Eigen {
14 
15 /** \class TensorEvaluator
16   * \ingroup CXX11_Tensor_Module
17   *
18   * \brief The tensor evaluator classes.
19   *
20   * These classes are responsible for the evaluation of the tensor expression.
21   *
22   * TODO: add support for more types of expressions, in particular expressions
23   * leading to lvalues (slicing, reshaping, etc...)
24   */
25 
26 // Generic evaluator
27 template<typename Derived, typename Device>
28 struct TensorEvaluator
29 {
30   typedef typename Derived::Index Index;
31   typedef typename Derived::Scalar Scalar;
32   typedef typename Derived::Scalar CoeffReturnType;
33   typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
34   typedef typename Derived::Dimensions Dimensions;
35   typedef Derived XprType;
36   static const int PacketSize =  PacketType<CoeffReturnType, Device>::size;
37   typedef typename internal::traits<Derived>::template MakePointer<Scalar>::Type TensorPointerType;
38   typedef StorageMemory<Scalar, Device> Storage;
39   typedef typename Storage::Type EvaluatorPointerType;
40 
41   // NumDimensions is -1 for variable dim tensors
42   static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ?
43                                internal::traits<Derived>::NumDimensions : 0;
44 
45   enum {
46     IsAligned          = Derived::IsAligned,
47     PacketAccess       = (PacketType<CoeffReturnType, Device>::size > 1),
48     BlockAccess        = internal::is_arithmetic<typename internal::remove_const<Scalar>::type>::value,
49     PreferBlockAccess  = false,
50     Layout             = Derived::Layout,
51     CoordAccess        = NumCoords > 0,
52     RawAccess          = true
53   };
54 
55   typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
56 
57   //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
58   typedef internal::TensorBlockDescriptor<NumCoords, Index> TensorBlockDesc;
59   typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
60 
61   typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumCoords,
62                                                      Layout, Index>
63       TensorBlock;
64   //===--------------------------------------------------------------------===//
65 
TensorEvaluatorTensorEvaluator66   EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device)
67       : m_data(device.get((const_cast<TensorPointerType>(m.data())))),
68         m_dims(m.dimensions()),
69         m_device(device)
70   { }
71 
72 
dimensionsTensorEvaluator73   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; }
74 
evalSubExprsIfNeededTensorEvaluator75   EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType dest) {
76     if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && dest) {
77       m_device.memcpy((void*)(m_device.get(dest)), m_device.get(m_data), m_dims.TotalSize() * sizeof(Scalar));
78       return false;
79     }
80     return true;
81   }
82 
83 #ifdef EIGEN_USE_THREADS
84   template <typename EvalSubExprsCallback>
evalSubExprsIfNeededAsyncTensorEvaluator85   EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
86       EvaluatorPointerType dest, EvalSubExprsCallback done) {
87     // TODO(ezhulenev): ThreadPoolDevice memcpy is blockign operation.
88     done(evalSubExprsIfNeeded(dest));
89   }
90 #endif  // EIGEN_USE_THREADS
91 
cleanupTensorEvaluator92   EIGEN_STRONG_INLINE void cleanup() {}
93 
coeffTensorEvaluator94   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
95     eigen_assert(m_data != NULL);
96     return m_data[index];
97   }
98 
coeffRefTensorEvaluator99   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType& coeffRef(Index index) {
100     eigen_assert(m_data != NULL);
101     return m_data[index];
102   }
103 
104   template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
packetTensorEvaluator105   PacketReturnType packet(Index index) const
106   {
107     return internal::ploadt<PacketReturnType, LoadMode>(m_data + index);
108   }
109 
110   // Return a packet starting at `index` where `umask` specifies which elements
111   // have to be loaded. Type/size of mask depends on PacketReturnType, e.g. for
112   // Packet16f, `umask` is of type uint16_t and if a bit is 1, corresponding
113   // float element will be loaded, otherwise 0 will be loaded.
114   // Function has been templatized to enable Sfinae.
115   template <typename PacketReturnTypeT> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
116   typename internal::enable_if<internal::unpacket_traits<PacketReturnTypeT>::masked_load_available, PacketReturnTypeT>::type
partialPacketTensorEvaluator117   partialPacket(Index index, typename internal::unpacket_traits<PacketReturnTypeT>::mask_t umask) const
118   {
119     return internal::ploadu<PacketReturnTypeT>(m_data + index, umask);
120   }
121 
122   template <int StoreMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
writePacketTensorEvaluator123   void writePacket(Index index, const PacketReturnType& x)
124   {
125     return internal::pstoret<Scalar, PacketReturnType, StoreMode>(m_data + index, x);
126   }
127 
coeffTensorEvaluator128   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const {
129     eigen_assert(m_data != NULL);
130     if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
131       return m_data[m_dims.IndexOfColMajor(coords)];
132     } else {
133       return m_data[m_dims.IndexOfRowMajor(coords)];
134     }
135   }
136 
137   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType&
coeffRefTensorEvaluator138   coeffRef(const array<DenseIndex, NumCoords>& coords) {
139     eigen_assert(m_data != NULL);
140     if (static_cast<int>(Layout) == static_cast<int>(ColMajor)) {
141       return m_data[m_dims.IndexOfColMajor(coords)];
142     } else {
143       return m_data[m_dims.IndexOfRowMajor(coords)];
144     }
145   }
146 
costPerCoeffTensorEvaluator147   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
148     return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
149                         PacketType<CoeffReturnType, Device>::size);
150   }
151 
152   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
getResourceRequirementsTensorEvaluator153   internal::TensorBlockResourceRequirements getResourceRequirements() const {
154     return internal::TensorBlockResourceRequirements::any();
155   }
156 
157   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
158   block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
159           bool /*root_of_expr_ast*/ = false) const {
160     assert(m_data != NULL);
161     return TensorBlock::materialize(m_data, m_dims, desc, scratch);
162   }
163 
164   template<typename TensorBlock>
writeBlockTensorEvaluator165   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void writeBlock(
166       const TensorBlockDesc& desc, const TensorBlock& block) {
167     assert(m_data != NULL);
168 
169     typedef typename TensorBlock::XprType TensorBlockExpr;
170     typedef internal::TensorBlockAssignment<Scalar, NumCoords, TensorBlockExpr,
171                                             Index>
172         TensorBlockAssign;
173 
174     TensorBlockAssign::Run(
175         TensorBlockAssign::target(desc.dimensions(),
176                                   internal::strides<Layout>(m_dims), m_data,
177                                   desc.offset()),
178         block.expr());
179   }
180 
dataTensorEvaluator181   EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_data; }
182 
183 #ifdef EIGEN_USE_SYCL
184   // binding placeholder accessors to a command group handler for SYCL
bindTensorEvaluator185   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
186     m_data.bind(cgh);
187   }
188 #endif
189  protected:
190   EvaluatorPointerType m_data;
191   Dimensions m_dims;
192   const Device EIGEN_DEVICE_REF m_device;
193 };
194 
195 namespace {
196 template <typename T> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
loadConstant(const T * address)197 T loadConstant(const T* address) {
198   return *address;
199 }
200 // Use the texture cache on CUDA devices whenever possible
201 #if defined(EIGEN_CUDA_ARCH) && EIGEN_CUDA_ARCH >= 350
202 template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
loadConstant(const float * address)203 float loadConstant(const float* address) {
204   return __ldg(address);
205 }
206 template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
loadConstant(const double * address)207 double loadConstant(const double* address) {
208   return __ldg(address);
209 }
210 template <> EIGEN_DEVICE_FUNC EIGEN_ALWAYS_INLINE
loadConstant(const Eigen::half * address)211 Eigen::half loadConstant(const Eigen::half* address) {
212   return Eigen::half(half_impl::raw_uint16_to_half(__ldg(&address->x)));
213 }
214 #endif
215 #ifdef EIGEN_USE_SYCL
216 // overload of load constant should be implemented here based on range access
217 template <cl::sycl::access::mode AcMd, typename T>
loadConstant(const Eigen::TensorSycl::internal::RangeAccess<AcMd,T> & address)218 T &loadConstant(const Eigen::TensorSycl::internal::RangeAccess<AcMd, T> &address) {
219   return *address;
220 }
221 #endif
222 }
223 
224 
225 // Default evaluator for rvalues
226 template<typename Derived, typename Device>
227 struct TensorEvaluator<const Derived, Device>
228 {
229   typedef typename Derived::Index Index;
230   typedef typename Derived::Scalar Scalar;
231   typedef typename Derived::Scalar CoeffReturnType;
232   typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
233   typedef typename Derived::Dimensions Dimensions;
234   typedef const Derived XprType;
235   typedef typename internal::traits<Derived>::template MakePointer<const Scalar>::Type TensorPointerType;
236   typedef StorageMemory<const Scalar, Device> Storage;
237   typedef typename Storage::Type EvaluatorPointerType;
238 
239   typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
240 
241   // NumDimensions is -1 for variable dim tensors
242   static const int NumCoords = internal::traits<Derived>::NumDimensions > 0 ?
243                                internal::traits<Derived>::NumDimensions : 0;
244   static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
245 
246   enum {
247     IsAligned         = Derived::IsAligned,
248     PacketAccess      = (PacketType<CoeffReturnType, Device>::size > 1),
249     BlockAccess       = internal::is_arithmetic<ScalarNoConst>::value,
250     PreferBlockAccess = false,
251     Layout            = Derived::Layout,
252     CoordAccess       = NumCoords > 0,
253     RawAccess         = true
254   };
255 
256   //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
257   typedef internal::TensorBlockDescriptor<NumCoords, Index> TensorBlockDesc;
258   typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
259 
260   typedef typename internal::TensorMaterializedBlock<ScalarNoConst, NumCoords,
261                                                      Layout, Index>
262       TensorBlock;
263   //===--------------------------------------------------------------------===//
264 
265   EIGEN_STRONG_INLINE TensorEvaluator(const Derived& m, const Device& device)
266       : m_data(device.get(m.data())), m_dims(m.dimensions()), m_device(device)
267   { }
268 
269   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Dimensions& dimensions() const { return m_dims; }
270 
271   EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType data) {
272     if (!NumTraits<typename internal::remove_const<Scalar>::type>::RequireInitialization && data) {
273       m_device.memcpy((void*)(m_device.get(data)),m_device.get(m_data), m_dims.TotalSize() * sizeof(Scalar));
274       return false;
275     }
276     return true;
277   }
278 
279 #ifdef EIGEN_USE_THREADS
280   template <typename EvalSubExprsCallback>
281   EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
282       EvaluatorPointerType dest, EvalSubExprsCallback done) {
283     // TODO(ezhulenev): ThreadPoolDevice memcpy is a blockign operation.
284     done(evalSubExprsIfNeeded(dest));
285   }
286 #endif  // EIGEN_USE_THREADS
287 
288   EIGEN_STRONG_INLINE void cleanup() { }
289 
290   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(Index index) const {
291     eigen_assert(m_data != NULL);
292     return loadConstant(m_data+index);
293   }
294 
295   template<int LoadMode> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
296   PacketReturnType packet(Index index) const
297   {
298     return internal::ploadt_ro<PacketReturnType, LoadMode>(m_data + index);
299   }
300 
301   // Return a packet starting at `index` where `umask` specifies which elements
302   // have to be loaded. Type/size of mask depends on PacketReturnType, e.g. for
303   // Packet16f, `umask` is of type uint16_t and if a bit is 1, corresponding
304   // float element will be loaded, otherwise 0 will be loaded.
305   // Function has been templatized to enable Sfinae.
306   template <typename PacketReturnTypeT> EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
307   typename internal::enable_if<internal::unpacket_traits<PacketReturnTypeT>::masked_load_available, PacketReturnTypeT>::type
308   partialPacket(Index index, typename internal::unpacket_traits<PacketReturnTypeT>::mask_t umask) const
309   {
310     return internal::ploadu<PacketReturnTypeT>(m_data + index, umask);
311   }
312 
313   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE CoeffReturnType coeff(const array<DenseIndex, NumCoords>& coords) const {
314     eigen_assert(m_data != NULL);
315     const Index index = (static_cast<int>(Layout) == static_cast<int>(ColMajor)) ? m_dims.IndexOfColMajor(coords)
316                         : m_dims.IndexOfRowMajor(coords);
317     return loadConstant(m_data+index);
318   }
319 
320   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
321     return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
322                         PacketType<CoeffReturnType, Device>::size);
323   }
324 
325   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
326   internal::TensorBlockResourceRequirements getResourceRequirements() const {
327     return internal::TensorBlockResourceRequirements::any();
328   }
329 
330   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
331   block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
332           bool /*root_of_expr_ast*/ = false) const {
333     assert(m_data != NULL);
334     return TensorBlock::materialize(m_data, m_dims, desc, scratch);
335   }
336 
337   EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return m_data; }
338 #ifdef EIGEN_USE_SYCL
339   // binding placeholder accessors to a command group handler for SYCL
340   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
341     m_data.bind(cgh);
342   }
343 #endif
344  protected:
345   EvaluatorPointerType m_data;
346   Dimensions m_dims;
347   const Device EIGEN_DEVICE_REF m_device;
348 };
349 
350 
351 
352 
353 // -------------------- CwiseNullaryOp --------------------
354 
355 template<typename NullaryOp, typename ArgType, typename Device>
356 struct TensorEvaluator<const TensorCwiseNullaryOp<NullaryOp, ArgType>, Device>
357 {
358   typedef TensorCwiseNullaryOp<NullaryOp, ArgType> XprType;
359 
360   TensorEvaluator(const XprType& op, const Device& device)
361       : m_functor(op.functor()), m_argImpl(op.nestedExpression(), device), m_wrapper()
362   { }
363 
364   typedef typename XprType::Index Index;
365   typedef typename XprType::Scalar Scalar;
366   typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
367   typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
368   static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
369   typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
370   typedef StorageMemory<CoeffReturnType, Device> Storage;
371   typedef typename Storage::Type EvaluatorPointerType;
372 
373   enum {
374     IsAligned = true,
375     PacketAccess = internal::functor_traits<NullaryOp>::PacketAccess
376     #ifdef EIGEN_USE_SYCL
377     &&  (PacketType<CoeffReturnType, Device>::size >1)
378     #endif
379     ,
380     BlockAccess = false,
381     PreferBlockAccess = false,
382     Layout = TensorEvaluator<ArgType, Device>::Layout,
383     CoordAccess = false,  // to be implemented
384     RawAccess = false
385   };
386 
387   //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
388   typedef internal::TensorBlockNotImplemented TensorBlock;
389   //===--------------------------------------------------------------------===//
390 
391   EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }
392 
393   EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) { return true; }
394 
395 #ifdef EIGEN_USE_THREADS
396   template <typename EvalSubExprsCallback>
397   EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
398       EvaluatorPointerType, EvalSubExprsCallback done) {
399     done(true);
400   }
401 #endif  // EIGEN_USE_THREADS
402 
403   EIGEN_STRONG_INLINE void cleanup() { }
404 
405   EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
406   {
407     return m_wrapper(m_functor, index);
408   }
409 
410   template<int LoadMode>
411   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
412   {
413     return m_wrapper.template packetOp<PacketReturnType, Index>(m_functor, index);
414   }
415 
416   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
417   costPerCoeff(bool vectorized) const {
418     return TensorOpCost(sizeof(CoeffReturnType), 0, 0, vectorized,
419                         PacketType<CoeffReturnType, Device>::size);
420   }
421 
422   EIGEN_DEVICE_FUNC  EvaluatorPointerType data() const { return NULL; }
423 
424 #ifdef EIGEN_USE_SYCL
425    // binding placeholder accessors to a command group handler for SYCL
426   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
427     m_argImpl.bind(cgh);
428   }
429 #endif
430 
431  private:
432   const NullaryOp m_functor;
433   TensorEvaluator<ArgType, Device> m_argImpl;
434   const internal::nullary_wrapper<CoeffReturnType,NullaryOp> m_wrapper;
435 };
436 
437 
438 
439 // -------------------- CwiseUnaryOp --------------------
440 
441 template<typename UnaryOp, typename ArgType, typename Device>
442 struct TensorEvaluator<const TensorCwiseUnaryOp<UnaryOp, ArgType>, Device>
443 {
444   typedef TensorCwiseUnaryOp<UnaryOp, ArgType> XprType;
445 
446   enum {
447     IsAligned          = TensorEvaluator<ArgType, Device>::IsAligned,
448     PacketAccess       = int(TensorEvaluator<ArgType, Device>::PacketAccess) &
449                          int(internal::functor_traits<UnaryOp>::PacketAccess),
450     BlockAccess        = TensorEvaluator<ArgType, Device>::BlockAccess,
451     PreferBlockAccess  = TensorEvaluator<ArgType, Device>::PreferBlockAccess,
452     Layout             = TensorEvaluator<ArgType, Device>::Layout,
453     CoordAccess        = false,  // to be implemented
454     RawAccess          = false
455   };
456 
457   TensorEvaluator(const XprType& op, const Device& device)
458     : m_device(device),
459       m_functor(op.functor()),
460       m_argImpl(op.nestedExpression(), device)
461   { }
462 
463   typedef typename XprType::Index Index;
464   typedef typename XprType::Scalar Scalar;
465   typedef typename internal::remove_const<Scalar>::type ScalarNoConst;
466   typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
467   typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
468   static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
469   typedef typename TensorEvaluator<ArgType, Device>::Dimensions Dimensions;
470   typedef StorageMemory<CoeffReturnType, Device> Storage;
471   typedef typename Storage::Type EvaluatorPointerType;
472   static const int NumDims = internal::array_size<Dimensions>::value;
473 
474   //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
475   typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
476   typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
477 
478   typedef typename TensorEvaluator<const ArgType, Device>::TensorBlock
479       ArgTensorBlock;
480 
481   typedef internal::TensorCwiseUnaryBlock<UnaryOp, ArgTensorBlock>
482       TensorBlock;
483   //===--------------------------------------------------------------------===//
484 
485   EIGEN_DEVICE_FUNC const Dimensions& dimensions() const { return m_argImpl.dimensions(); }
486 
487   EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
488     m_argImpl.evalSubExprsIfNeeded(NULL);
489     return true;
490   }
491 
492 #ifdef EIGEN_USE_THREADS
493   template <typename EvalSubExprsCallback>
494   EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
495       EvaluatorPointerType, EvalSubExprsCallback done) {
496     m_argImpl.evalSubExprsIfNeededAsync(nullptr, [done](bool) { done(true); });
497   }
498 #endif  // EIGEN_USE_THREADS
499 
500   EIGEN_STRONG_INLINE void cleanup() {
501     m_argImpl.cleanup();
502   }
503 
504   EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
505   {
506     return m_functor(m_argImpl.coeff(index));
507   }
508 
509   template<int LoadMode>
510   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
511   {
512     return m_functor.packetOp(m_argImpl.template packet<LoadMode>(index));
513   }
514 
515   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost costPerCoeff(bool vectorized) const {
516     const double functor_cost = internal::functor_traits<UnaryOp>::Cost;
517     return m_argImpl.costPerCoeff(vectorized) +
518         TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
519   }
520 
521   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
522   internal::TensorBlockResourceRequirements getResourceRequirements() const {
523     static const double functor_cost = internal::functor_traits<UnaryOp>::Cost;
524     return m_argImpl.getResourceRequirements().addCostPerCoeff(
525         {0, 0, functor_cost / PacketSize});
526   }
527 
528   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
529   block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
530           bool /*root_of_expr_ast*/ = false) const {
531     return TensorBlock(m_argImpl.block(desc, scratch), m_functor);
532   }
533 
534   EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
535 
536 #ifdef EIGEN_USE_SYCL
537   // binding placeholder accessors to a command group handler for SYCL
538   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const{
539     m_argImpl.bind(cgh);
540   }
541 #endif
542 
543 
544  private:
545   const Device EIGEN_DEVICE_REF m_device;
546   const UnaryOp m_functor;
547   TensorEvaluator<ArgType, Device> m_argImpl;
548 };
549 
550 
551 // -------------------- CwiseBinaryOp --------------------
552 
553 template<typename BinaryOp, typename LeftArgType, typename RightArgType, typename Device>
554 struct TensorEvaluator<const TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType>, Device>
555 {
556   typedef TensorCwiseBinaryOp<BinaryOp, LeftArgType, RightArgType> XprType;
557 
558   enum {
559     IsAligned         = int(TensorEvaluator<LeftArgType, Device>::IsAligned) &
560                         int(TensorEvaluator<RightArgType, Device>::IsAligned),
561     PacketAccess      = int(TensorEvaluator<LeftArgType, Device>::PacketAccess) &
562                         int(TensorEvaluator<RightArgType, Device>::PacketAccess) &
563                         int(internal::functor_traits<BinaryOp>::PacketAccess),
564     BlockAccess       = int(TensorEvaluator<LeftArgType, Device>::BlockAccess) &
565                         int(TensorEvaluator<RightArgType, Device>::BlockAccess),
566     PreferBlockAccess = int(TensorEvaluator<LeftArgType, Device>::PreferBlockAccess) |
567                         int(TensorEvaluator<RightArgType, Device>::PreferBlockAccess),
568     Layout            = TensorEvaluator<LeftArgType, Device>::Layout,
569     CoordAccess       = false,  // to be implemented
570     RawAccess         = false
571   };
572 
573   TensorEvaluator(const XprType& op, const Device& device)
574     : m_device(device),
575       m_functor(op.functor()),
576       m_leftImpl(op.lhsExpression(), device),
577       m_rightImpl(op.rhsExpression(), device)
578   {
579     EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<LeftArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<RightArgType, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
580     eigen_assert(dimensions_match(m_leftImpl.dimensions(), m_rightImpl.dimensions()));
581   }
582 
583   typedef typename XprType::Index Index;
584   typedef typename XprType::Scalar Scalar;
585   typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
586   typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
587   static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
588   typedef typename TensorEvaluator<LeftArgType, Device>::Dimensions Dimensions;
589   typedef StorageMemory<CoeffReturnType, Device> Storage;
590   typedef typename Storage::Type EvaluatorPointerType;
591 
592   static const int NumDims = internal::array_size<
593       typename TensorEvaluator<LeftArgType, Device>::Dimensions>::value;
594 
595   //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
596   typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
597   typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
598 
599   typedef typename TensorEvaluator<const LeftArgType, Device>::TensorBlock
600       LeftTensorBlock;
601   typedef typename TensorEvaluator<const RightArgType, Device>::TensorBlock
602       RightTensorBlock;
603 
604   typedef internal::TensorCwiseBinaryBlock<BinaryOp, LeftTensorBlock,
605                                            RightTensorBlock>
606       TensorBlock;
607   //===--------------------------------------------------------------------===//
608 
609   EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
610   {
611     // TODO: use right impl instead if right impl dimensions are known at compile time.
612     return m_leftImpl.dimensions();
613   }
614 
615   EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
616     m_leftImpl.evalSubExprsIfNeeded(NULL);
617     m_rightImpl.evalSubExprsIfNeeded(NULL);
618     return true;
619   }
620 
621 #ifdef EIGEN_USE_THREADS
622   template <typename EvalSubExprsCallback>
623   EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
624       EvaluatorPointerType, EvalSubExprsCallback done) {
625     // TODO(ezhulenev): Evaluate two expression in parallel?
626     m_leftImpl.evalSubExprsIfNeededAsync(nullptr, [this, done](bool) {
627       m_rightImpl.evalSubExprsIfNeededAsync(nullptr,
628                                             [done](bool) { done(true); });
629     });
630   }
631 #endif  // EIGEN_USE_THREADS
632 
633   EIGEN_STRONG_INLINE void cleanup() {
634     m_leftImpl.cleanup();
635     m_rightImpl.cleanup();
636   }
637 
638   EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
639   {
640     return m_functor(m_leftImpl.coeff(index), m_rightImpl.coeff(index));
641   }
642   template<int LoadMode>
643   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
644   {
645     return m_functor.packetOp(m_leftImpl.template packet<LoadMode>(index), m_rightImpl.template packet<LoadMode>(index));
646   }
647 
648   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
649   costPerCoeff(bool vectorized) const {
650     const double functor_cost = internal::functor_traits<BinaryOp>::Cost;
651     return m_leftImpl.costPerCoeff(vectorized) +
652            m_rightImpl.costPerCoeff(vectorized) +
653            TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
654   }
655 
656   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
657   internal::TensorBlockResourceRequirements getResourceRequirements() const {
658     static const double functor_cost = internal::functor_traits<BinaryOp>::Cost;
659     return internal::TensorBlockResourceRequirements::merge(
660                m_leftImpl.getResourceRequirements(),
661                m_rightImpl.getResourceRequirements())
662         .addCostPerCoeff({0, 0, functor_cost / PacketSize});
663   }
664 
665   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
666   block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
667           bool /*root_of_expr_ast*/ = false) const {
668     desc.DropDestinationBuffer();
669     return TensorBlock(m_leftImpl.block(desc, scratch),
670                          m_rightImpl.block(desc, scratch), m_functor);
671   }
672 
673   EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
674 
675   #ifdef EIGEN_USE_SYCL
676   // binding placeholder accessors to a command group handler for SYCL
677   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
678     m_leftImpl.bind(cgh);
679     m_rightImpl.bind(cgh);
680   }
681   #endif
682  private:
683   const Device EIGEN_DEVICE_REF m_device;
684   const BinaryOp m_functor;
685   TensorEvaluator<LeftArgType, Device> m_leftImpl;
686   TensorEvaluator<RightArgType, Device> m_rightImpl;
687 };
688 
689 // -------------------- CwiseTernaryOp --------------------
690 
691 template<typename TernaryOp, typename Arg1Type, typename Arg2Type, typename Arg3Type, typename Device>
692 struct TensorEvaluator<const TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type>, Device>
693 {
694   typedef TensorCwiseTernaryOp<TernaryOp, Arg1Type, Arg2Type, Arg3Type> XprType;
695 
696   enum {
697     IsAligned = TensorEvaluator<Arg1Type, Device>::IsAligned & TensorEvaluator<Arg2Type, Device>::IsAligned & TensorEvaluator<Arg3Type, Device>::IsAligned,
698     PacketAccess      = TensorEvaluator<Arg1Type, Device>::PacketAccess &&
699                         TensorEvaluator<Arg2Type, Device>::PacketAccess &&
700                         TensorEvaluator<Arg3Type, Device>::PacketAccess &&
701                         internal::functor_traits<TernaryOp>::PacketAccess,
702     BlockAccess       = false,
703     PreferBlockAccess = TensorEvaluator<Arg1Type, Device>::PreferBlockAccess ||
704                         TensorEvaluator<Arg2Type, Device>::PreferBlockAccess ||
705                         TensorEvaluator<Arg3Type, Device>::PreferBlockAccess,
706     Layout            = TensorEvaluator<Arg1Type, Device>::Layout,
707     CoordAccess       = false,  // to be implemented
708     RawAccess         = false
709   };
710 
711   TensorEvaluator(const XprType& op, const Device& device)
712     : m_functor(op.functor()),
713       m_arg1Impl(op.arg1Expression(), device),
714       m_arg2Impl(op.arg2Expression(), device),
715       m_arg3Impl(op.arg3Expression(), device)
716   {
717     EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<Arg1Type, Device>::Layout) == static_cast<int>(TensorEvaluator<Arg3Type, Device>::Layout) || internal::traits<XprType>::NumDimensions <= 1), YOU_MADE_A_PROGRAMMING_MISTAKE);
718 
719     EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind,
720                          typename internal::traits<Arg2Type>::StorageKind>::value),
721                         STORAGE_KIND_MUST_MATCH)
722     EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::StorageKind,
723                          typename internal::traits<Arg3Type>::StorageKind>::value),
724                         STORAGE_KIND_MUST_MATCH)
725     EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index,
726                          typename internal::traits<Arg2Type>::Index>::value),
727                         STORAGE_INDEX_MUST_MATCH)
728     EIGEN_STATIC_ASSERT((internal::is_same<typename internal::traits<Arg1Type>::Index,
729                          typename internal::traits<Arg3Type>::Index>::value),
730                         STORAGE_INDEX_MUST_MATCH)
731 
732     eigen_assert(dimensions_match(m_arg1Impl.dimensions(), m_arg2Impl.dimensions()) && dimensions_match(m_arg1Impl.dimensions(), m_arg3Impl.dimensions()));
733   }
734 
735   typedef typename XprType::Index Index;
736   typedef typename XprType::Scalar Scalar;
737   typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
738   typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
739   static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
740   typedef typename TensorEvaluator<Arg1Type, Device>::Dimensions Dimensions;
741   typedef StorageMemory<CoeffReturnType, Device> Storage;
742   typedef typename Storage::Type EvaluatorPointerType;
743 
744   //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
745   typedef internal::TensorBlockNotImplemented TensorBlock;
746   //===--------------------------------------------------------------------===//
747 
748   EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
749   {
750     // TODO: use arg2 or arg3 dimensions if they are known at compile time.
751     return m_arg1Impl.dimensions();
752   }
753 
754   EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
755     m_arg1Impl.evalSubExprsIfNeeded(NULL);
756     m_arg2Impl.evalSubExprsIfNeeded(NULL);
757     m_arg3Impl.evalSubExprsIfNeeded(NULL);
758     return true;
759   }
760   EIGEN_STRONG_INLINE void cleanup() {
761     m_arg1Impl.cleanup();
762     m_arg2Impl.cleanup();
763     m_arg3Impl.cleanup();
764   }
765 
766   EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
767   {
768     return m_functor(m_arg1Impl.coeff(index), m_arg2Impl.coeff(index), m_arg3Impl.coeff(index));
769   }
770   template<int LoadMode>
771   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE PacketReturnType packet(Index index) const
772   {
773     return m_functor.packetOp(m_arg1Impl.template packet<LoadMode>(index),
774                               m_arg2Impl.template packet<LoadMode>(index),
775                               m_arg3Impl.template packet<LoadMode>(index));
776   }
777 
778   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
779   costPerCoeff(bool vectorized) const {
780     const double functor_cost = internal::functor_traits<TernaryOp>::Cost;
781     return m_arg1Impl.costPerCoeff(vectorized) +
782            m_arg2Impl.costPerCoeff(vectorized) +
783            m_arg3Impl.costPerCoeff(vectorized) +
784            TensorOpCost(0, 0, functor_cost, vectorized, PacketSize);
785   }
786 
787   EIGEN_DEVICE_FUNC EvaluatorPointerType data() const { return NULL; }
788 
789 #ifdef EIGEN_USE_SYCL
790    // binding placeholder accessors to a command group handler for SYCL
791   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
792     m_arg1Impl.bind(cgh);
793     m_arg2Impl.bind(cgh);
794     m_arg3Impl.bind(cgh);
795   }
796 #endif
797 
798  private:
799   const TernaryOp m_functor;
800   TensorEvaluator<Arg1Type, Device> m_arg1Impl;
801   TensorEvaluator<Arg2Type, Device> m_arg2Impl;
802   TensorEvaluator<Arg3Type, Device> m_arg3Impl;
803 };
804 
805 
806 // -------------------- SelectOp --------------------
807 
808 template<typename IfArgType, typename ThenArgType, typename ElseArgType, typename Device>
809 struct TensorEvaluator<const TensorSelectOp<IfArgType, ThenArgType, ElseArgType>, Device>
810 {
811   typedef TensorSelectOp<IfArgType, ThenArgType, ElseArgType> XprType;
812   typedef typename XprType::Scalar Scalar;
813 
814   enum {
815     IsAligned         = TensorEvaluator<ThenArgType, Device>::IsAligned &
816                         TensorEvaluator<ElseArgType, Device>::IsAligned,
817     PacketAccess      = TensorEvaluator<ThenArgType, Device>::PacketAccess &
818                         TensorEvaluator<ElseArgType, Device>::PacketAccess &
819                         PacketType<Scalar, Device>::HasBlend,
820     BlockAccess       = TensorEvaluator<IfArgType, Device>::BlockAccess &&
821                         TensorEvaluator<ThenArgType, Device>::BlockAccess &&
822                         TensorEvaluator<ElseArgType, Device>::BlockAccess,
823     PreferBlockAccess = TensorEvaluator<IfArgType, Device>::PreferBlockAccess ||
824                         TensorEvaluator<ThenArgType, Device>::PreferBlockAccess ||
825                         TensorEvaluator<ElseArgType, Device>::PreferBlockAccess,
826     Layout            = TensorEvaluator<IfArgType, Device>::Layout,
827     CoordAccess       = false,  // to be implemented
828     RawAccess         = false
829   };
830 
831   TensorEvaluator(const XprType& op, const Device& device)
832     : m_condImpl(op.ifExpression(), device),
833       m_thenImpl(op.thenExpression(), device),
834       m_elseImpl(op.elseExpression(), device)
835   {
836     EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ThenArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
837     EIGEN_STATIC_ASSERT((static_cast<int>(TensorEvaluator<IfArgType, Device>::Layout) == static_cast<int>(TensorEvaluator<ElseArgType, Device>::Layout)), YOU_MADE_A_PROGRAMMING_MISTAKE);
838     eigen_assert(dimensions_match(m_condImpl.dimensions(), m_thenImpl.dimensions()));
839     eigen_assert(dimensions_match(m_thenImpl.dimensions(), m_elseImpl.dimensions()));
840   }
841 
842   typedef typename XprType::Index Index;
843   typedef typename internal::traits<XprType>::Scalar CoeffReturnType;
844   typedef typename PacketType<CoeffReturnType, Device>::type PacketReturnType;
845   static const int PacketSize = PacketType<CoeffReturnType, Device>::size;
846   typedef typename TensorEvaluator<IfArgType, Device>::Dimensions Dimensions;
847   typedef StorageMemory<CoeffReturnType, Device> Storage;
848   typedef typename Storage::Type EvaluatorPointerType;
849 
850   static const int NumDims = internal::array_size<Dimensions>::value;
851 
852   //===- Tensor block evaluation strategy (see TensorBlock.h) -------------===//
853     typedef internal::TensorBlockDescriptor<NumDims, Index> TensorBlockDesc;
854   typedef internal::TensorBlockScratchAllocator<Device> TensorBlockScratch;
855 
856   typedef typename TensorEvaluator<const IfArgType, Device>::TensorBlock
857       IfArgTensorBlock;
858   typedef typename TensorEvaluator<const ThenArgType, Device>::TensorBlock
859       ThenArgTensorBlock;
860   typedef typename TensorEvaluator<const ElseArgType, Device>::TensorBlock
861       ElseArgTensorBlock;
862 
863   struct TensorSelectOpBlockFactory {
864     template <typename IfArgXprType, typename ThenArgXprType, typename ElseArgXprType>
865     struct XprType {
866       typedef TensorSelectOp<const IfArgXprType, const ThenArgXprType, const ElseArgXprType> type;
867     };
868 
869     template <typename IfArgXprType, typename ThenArgXprType, typename ElseArgXprType>
870     typename XprType<IfArgXprType, ThenArgXprType, ElseArgXprType>::type expr(
871         const IfArgXprType& if_expr, const ThenArgXprType& then_expr, const ElseArgXprType& else_expr) const {
872       return typename XprType<IfArgXprType, ThenArgXprType, ElseArgXprType>::type(if_expr, then_expr, else_expr);
873     }
874   };
875 
876   typedef internal::TensorTernaryExprBlock<TensorSelectOpBlockFactory,
877                                            IfArgTensorBlock, ThenArgTensorBlock,
878                                            ElseArgTensorBlock>
879       TensorBlock;
880   //===--------------------------------------------------------------------===//
881 
882   EIGEN_DEVICE_FUNC const Dimensions& dimensions() const
883   {
884     // TODO: use then or else impl instead if they happen to be known at compile time.
885     return m_condImpl.dimensions();
886   }
887 
888   EIGEN_STRONG_INLINE bool evalSubExprsIfNeeded(EvaluatorPointerType) {
889     m_condImpl.evalSubExprsIfNeeded(NULL);
890     m_thenImpl.evalSubExprsIfNeeded(NULL);
891     m_elseImpl.evalSubExprsIfNeeded(NULL);
892     return true;
893   }
894 
895 #ifdef EIGEN_USE_THREADS
896   template <typename EvalSubExprsCallback>
897   EIGEN_STRONG_INLINE void evalSubExprsIfNeededAsync(
898       EvaluatorPointerType, EvalSubExprsCallback done) {
899     m_condImpl.evalSubExprsIfNeeded(nullptr, [this, done](bool) {
900       m_thenImpl.evalSubExprsIfNeeded(nullptr, [this, done](bool) {
901         m_elseImpl.evalSubExprsIfNeeded(nullptr, [done](bool) { done(true); });
902       });
903     });
904   }
905 #endif  // EIGEN_USE_THREADS
906 
907   EIGEN_STRONG_INLINE void cleanup() {
908     m_condImpl.cleanup();
909     m_thenImpl.cleanup();
910     m_elseImpl.cleanup();
911   }
912 
913   EIGEN_DEVICE_FUNC CoeffReturnType coeff(Index index) const
914   {
915     return m_condImpl.coeff(index) ? m_thenImpl.coeff(index) : m_elseImpl.coeff(index);
916   }
917   template<int LoadMode>
918   EIGEN_DEVICE_FUNC PacketReturnType packet(Index index) const
919   {
920      internal::Selector<PacketSize> select;
921      EIGEN_UNROLL_LOOP
922      for (Index i = 0; i < PacketSize; ++i) {
923        select.select[i] = m_condImpl.coeff(index+i);
924      }
925      return internal::pblend(select,
926                              m_thenImpl.template packet<LoadMode>(index),
927                              m_elseImpl.template packet<LoadMode>(index));
928 
929   }
930 
931   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorOpCost
932   costPerCoeff(bool vectorized) const {
933     return m_condImpl.costPerCoeff(vectorized) +
934            m_thenImpl.costPerCoeff(vectorized)
935         .cwiseMax(m_elseImpl.costPerCoeff(vectorized));
936   }
937 
938   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE
939   internal::TensorBlockResourceRequirements getResourceRequirements() const {
940     auto then_req = m_thenImpl.getResourceRequirements();
941     auto else_req = m_elseImpl.getResourceRequirements();
942 
943     auto merged_req =
944         internal::TensorBlockResourceRequirements::merge(then_req, else_req);
945     merged_req.cost_per_coeff =
946         then_req.cost_per_coeff.cwiseMax(else_req.cost_per_coeff);
947 
948     return internal::TensorBlockResourceRequirements::merge(
949         m_condImpl.getResourceRequirements(), merged_req);
950   }
951 
952   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE TensorBlock
953   block(TensorBlockDesc& desc, TensorBlockScratch& scratch,
954           bool /*root_of_expr_ast*/ = false) const {
955     // It's unsafe to pass destination buffer to underlying expressions, because
956     // output might be aliased with one of the inputs.
957     desc.DropDestinationBuffer();
958 
959     return TensorBlock(
960         m_condImpl.block(desc, scratch), m_thenImpl.block(desc, scratch),
961         m_elseImpl.block(desc, scratch), TensorSelectOpBlockFactory());
962   }
963 
964   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE EvaluatorPointerType data() const { return NULL; }
965 
966 #ifdef EIGEN_USE_SYCL
967  // binding placeholder accessors to a command group handler for SYCL
968   EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE void bind(cl::sycl::handler &cgh) const {
969     m_condImpl.bind(cgh);
970     m_thenImpl.bind(cgh);
971     m_elseImpl.bind(cgh);
972   }
973 #endif
974  private:
975   TensorEvaluator<IfArgType, Device> m_condImpl;
976   TensorEvaluator<ThenArgType, Device> m_thenImpl;
977   TensorEvaluator<ElseArgType, Device> m_elseImpl;
978 };
979 
980 
981 } // end namespace Eigen
982 
983 #endif // EIGEN_CXX11_TENSOR_TENSOR_EVALUATOR_H
984