• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (c) 2017 The Khronos Group Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 //    http://www.apache.org/licenses/LICENSE-2.0
9 //
10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 
17 #include "common.h"
18 #include "function_list.h"
19 #include "test_functions.h"
20 #include "utility.h"
21 
22 #include <cinttypes>
23 #include <climits>
24 #include <cstring>
25 
26 namespace {
27 
BuildKernel(const char * name,int vectorSize,cl_kernel * k,cl_program * p,bool relaxedMode)28 int BuildKernel(const char *name, int vectorSize, cl_kernel *k, cl_program *p,
29                 bool relaxedMode)
30 {
31     const char *c[] = { "__kernel void math_kernel",
32                         sizeNames[vectorSize],
33                         "( __global float",
34                         sizeNames[vectorSize],
35                         "* out, __global int",
36                         sizeNames[vectorSize],
37                         "* out2, __global float",
38                         sizeNames[vectorSize],
39                         "* in )\n"
40                         "{\n"
41                         "   size_t i = get_global_id(0);\n"
42                         "   out[i] = ",
43                         name,
44                         "( in[i], out2 + i );\n"
45                         "}\n" };
46 
47     const char *c3[] = {
48         "__kernel void math_kernel",
49         sizeNames[vectorSize],
50         "( __global float* out, __global int* out2, __global float* in)\n"
51         "{\n"
52         "   size_t i = get_global_id(0);\n"
53         "   if( i + 1 < get_global_size(0) )\n"
54         "   {\n"
55         "       float3 f0 = vload3( 0, in + 3 * i );\n"
56         "       int3 iout = INT_MIN;\n"
57         "       f0 = ",
58         name,
59         "( f0, &iout );\n"
60         "       vstore3( f0, 0, out + 3*i );\n"
61         "       vstore3( iout, 0, out2 + 3*i );\n"
62         "   }\n"
63         "   else\n"
64         "   {\n"
65         "       size_t parity = i & 1;   // Figure out how many elements are "
66         "left over after BUFFER_SIZE % (3*sizeof(float)). Assume power of two "
67         "buffer size \n"
68         "       int3 iout = INT_MIN;\n"
69         "       float3 f0;\n"
70         "       switch( parity )\n"
71         "       {\n"
72         "           case 1:\n"
73         "               f0 = (float3)( in[3*i], NAN, NAN ); \n"
74         "               break;\n"
75         "           case 0:\n"
76         "               f0 = (float3)( in[3*i], in[3*i+1], NAN ); \n"
77         "               break;\n"
78         "       }\n"
79         "       f0 = ",
80         name,
81         "( f0, &iout );\n"
82         "       switch( parity )\n"
83         "       {\n"
84         "           case 0:\n"
85         "               out[3*i+1] = f0.y; \n"
86         "               out2[3*i+1] = iout.y; \n"
87         "               // fall through\n"
88         "           case 1:\n"
89         "               out[3*i] = f0.x; \n"
90         "               out2[3*i] = iout.x; \n"
91         "               break;\n"
92         "       }\n"
93         "   }\n"
94         "}\n"
95     };
96 
97     const char **kern = c;
98     size_t kernSize = sizeof(c) / sizeof(c[0]);
99 
100     if (sizeValues[vectorSize] == 3)
101     {
102         kern = c3;
103         kernSize = sizeof(c3) / sizeof(c3[0]);
104     }
105 
106     char testName[32];
107     snprintf(testName, sizeof(testName) - 1, "math_kernel%s",
108              sizeNames[vectorSize]);
109 
110     return MakeKernel(kern, (cl_uint)kernSize, testName, k, p, relaxedMode);
111 }
112 
113 struct BuildKernelInfo2
114 {
115     cl_kernel *kernels;
116     Programs &programs;
117     const char *nameInCode;
118     bool relaxedMode; // Whether to build with -cl-fast-relaxed-math.
119 };
120 
BuildKernelFn(cl_uint job_id,cl_uint thread_id UNUSED,void * p)121 cl_int BuildKernelFn(cl_uint job_id, cl_uint thread_id UNUSED, void *p)
122 {
123     BuildKernelInfo2 *info = (BuildKernelInfo2 *)p;
124     cl_uint vectorSize = gMinVectorSizeIndex + job_id;
125     return BuildKernel(info->nameInCode, vectorSize, info->kernels + vectorSize,
126                        &(info->programs[vectorSize]), info->relaxedMode);
127 }
128 
abs_cl_long(cl_long i)129 cl_ulong abs_cl_long(cl_long i)
130 {
131     cl_long mask = i >> 63;
132     return (i ^ mask) - mask;
133 }
134 
135 } // anonymous namespace
136 
TestFunc_FloatI_Float(const Func * f,MTdata d,bool relaxedMode)137 int TestFunc_FloatI_Float(const Func *f, MTdata d, bool relaxedMode)
138 {
139     int error;
140     Programs programs;
141     cl_kernel kernels[VECTOR_SIZE_COUNT];
142     float maxError = 0.0f;
143     int64_t maxError2 = 0;
144     int ftz = f->ftz || gForceFTZ || 0 == (CL_FP_DENORM & gFloatCapabilities);
145     float maxErrorVal = 0.0f;
146     float maxErrorVal2 = 0.0f;
147     uint64_t step = getTestStep(sizeof(float), BUFFER_SIZE);
148     int scale = (int)((1ULL << 32) / (16 * BUFFER_SIZE / sizeof(float)) + 1);
149     cl_ulong maxiError;
150 
151     logFunctionInfo(f->name, sizeof(cl_float), relaxedMode);
152 
153     float float_ulps;
154     if (gIsEmbedded)
155         float_ulps = f->float_embedded_ulps;
156     else
157         float_ulps = f->float_ulps;
158 
159     maxiError = float_ulps == INFINITY ? CL_ULONG_MAX : 0;
160 
161     // Init the kernels
162     {
163         BuildKernelInfo2 build_info{ kernels, programs, f->nameInCode,
164                                      relaxedMode };
165         if ((error = ThreadPool_Do(BuildKernelFn,
166                                    gMaxVectorSizeIndex - gMinVectorSizeIndex,
167                                    &build_info)))
168             return error;
169     }
170 
171     for (uint64_t i = 0; i < (1ULL << 32); i += step)
172     {
173         // Init input array
174         uint32_t *p = (uint32_t *)gIn;
175         if (gWimpyMode)
176         {
177             for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
178                 p[j] = (uint32_t)i + j * scale;
179         }
180         else
181         {
182             for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
183                 p[j] = (uint32_t)i + j;
184         }
185         if ((error = clEnqueueWriteBuffer(gQueue, gInBuffer, CL_FALSE, 0,
186                                           BUFFER_SIZE, gIn, 0, NULL, NULL)))
187         {
188             vlog_error("\n*** Error %d in clEnqueueWriteBuffer ***\n", error);
189             return error;
190         }
191 
192         // write garbage into output arrays
193         for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
194         {
195             uint32_t pattern = 0xffffdead;
196             memset_pattern4(gOut[j], &pattern, BUFFER_SIZE);
197             if ((error =
198                      clEnqueueWriteBuffer(gQueue, gOutBuffer[j], CL_FALSE, 0,
199                                           BUFFER_SIZE, gOut[j], 0, NULL, NULL)))
200             {
201                 vlog_error("\n*** Error %d in clEnqueueWriteBuffer2(%d) ***\n",
202                            error, j);
203                 goto exit;
204             }
205 
206             memset_pattern4(gOut2[j], &pattern, BUFFER_SIZE);
207             if ((error = clEnqueueWriteBuffer(gQueue, gOutBuffer2[j], CL_FALSE,
208                                               0, BUFFER_SIZE, gOut2[j], 0, NULL,
209                                               NULL)))
210             {
211                 vlog_error("\n*** Error %d in clEnqueueWriteBuffer2b(%d) ***\n",
212                            error, j);
213                 goto exit;
214             }
215         }
216 
217         // Run the kernels
218         for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
219         {
220             size_t vectorSize = sizeValues[j] * sizeof(cl_float);
221             size_t localCount = (BUFFER_SIZE + vectorSize - 1) / vectorSize;
222             if ((error = clSetKernelArg(kernels[j], 0, sizeof(gOutBuffer[j]),
223                                         &gOutBuffer[j])))
224             {
225                 LogBuildError(programs[j]);
226                 goto exit;
227             }
228             if ((error = clSetKernelArg(kernels[j], 1, sizeof(gOutBuffer2[j]),
229                                         &gOutBuffer2[j])))
230             {
231                 LogBuildError(programs[j]);
232                 goto exit;
233             }
234             if ((error = clSetKernelArg(kernels[j], 2, sizeof(gInBuffer),
235                                         &gInBuffer)))
236             {
237                 LogBuildError(programs[j]);
238                 goto exit;
239             }
240 
241             if ((error =
242                      clEnqueueNDRangeKernel(gQueue, kernels[j], 1, NULL,
243                                             &localCount, NULL, 0, NULL, NULL)))
244             {
245                 vlog_error("FAILED -- could not execute kernel\n");
246                 goto exit;
247             }
248         }
249 
250         // Get that moving
251         if ((error = clFlush(gQueue))) vlog("clFlush failed\n");
252 
253         // Calculate the correctly rounded reference result
254         float *r = (float *)gOut_Ref;
255         int *r2 = (int *)gOut_Ref2;
256         float *s = (float *)gIn;
257         for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
258             r[j] = (float)f->func.f_fpI(s[j], r2 + j);
259 
260         // Read the data back
261         for (auto j = gMinVectorSizeIndex; j < gMaxVectorSizeIndex; j++)
262         {
263             if ((error =
264                      clEnqueueReadBuffer(gQueue, gOutBuffer[j], CL_TRUE, 0,
265                                          BUFFER_SIZE, gOut[j], 0, NULL, NULL)))
266             {
267                 vlog_error("ReadArray failed %d\n", error);
268                 goto exit;
269             }
270             if ((error =
271                      clEnqueueReadBuffer(gQueue, gOutBuffer2[j], CL_TRUE, 0,
272                                          BUFFER_SIZE, gOut2[j], 0, NULL, NULL)))
273             {
274                 vlog_error("ReadArray2 failed %d\n", error);
275                 goto exit;
276             }
277         }
278 
279         if (gSkipCorrectnessTesting) break;
280 
281         // Verify data
282         uint32_t *t = (uint32_t *)gOut_Ref;
283         int32_t *t2 = (int32_t *)gOut_Ref2;
284         for (size_t j = 0; j < BUFFER_SIZE / sizeof(float); j++)
285         {
286             for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
287             {
288                 uint32_t *q = (uint32_t *)(gOut[k]);
289                 int32_t *q2 = (int32_t *)(gOut2[k]);
290 
291                 // If we aren't getting the correctly rounded result
292                 if (t[j] != q[j] || t2[j] != q2[j])
293                 {
294                     float test = ((float *)q)[j];
295                     int correct2 = INT_MIN;
296                     double correct = f->func.f_fpI(s[j], &correct2);
297                     float err = Ulp_Error(test, correct);
298                     cl_long iErr = (int64_t)q2[j] - (int64_t)correct2;
299                     int fail = !(fabsf(err) <= float_ulps
300                                  && abs_cl_long(iErr) <= maxiError);
301                     if (ftz || relaxedMode)
302                     {
303                         // retry per section 6.5.3.2
304                         if (IsFloatResultSubnormal(correct, float_ulps))
305                         {
306                             fail = fail && !(test == 0.0f && iErr == 0);
307                             if (!fail) err = 0.0f;
308                         }
309 
310                         // retry per section 6.5.3.3
311                         if (IsFloatSubnormal(s[j]))
312                         {
313                             int correct5, correct6;
314                             double correct3 = f->func.f_fpI(0.0, &correct5);
315                             double correct4 = f->func.f_fpI(-0.0, &correct6);
316                             float err2 = Ulp_Error(test, correct3);
317                             float err3 = Ulp_Error(test, correct4);
318                             cl_long iErr2 =
319                                 (long long)q2[j] - (long long)correct5;
320                             cl_long iErr3 =
321                                 (long long)q2[j] - (long long)correct6;
322 
323                             // Did +0 work?
324                             if (fabsf(err2) <= float_ulps
325                                 && abs_cl_long(iErr2) <= maxiError)
326                             {
327                                 err = err2;
328                                 iErr = iErr2;
329                                 fail = 0;
330                             }
331                             // Did -0 work?
332                             else if (fabsf(err3) <= float_ulps
333                                      && abs_cl_long(iErr3) <= maxiError)
334                             {
335                                 err = err3;
336                                 iErr = iErr3;
337                                 fail = 0;
338                             }
339 
340                             // retry per section 6.5.3.4
341                             if (fail
342                                 && (IsFloatResultSubnormal(correct2, float_ulps)
343                                     || IsFloatResultSubnormal(correct3,
344                                                               float_ulps)))
345                             {
346                                 fail = fail
347                                     && !(test == 0.0f
348                                          && (abs_cl_long(iErr2) <= maxiError
349                                              || abs_cl_long(iErr3)
350                                                  <= maxiError));
351                                 if (!fail)
352                                 {
353                                     err = 0.0f;
354                                     iErr = 0;
355                                 }
356                             }
357                         }
358                     }
359                     if (fabsf(err) > maxError)
360                     {
361                         maxError = fabsf(err);
362                         maxErrorVal = s[j];
363                     }
364                     if (llabs(iErr) > maxError2)
365                     {
366                         maxError2 = llabs(iErr);
367                         maxErrorVal2 = s[j];
368                     }
369 
370                     if (fail)
371                     {
372                         vlog_error("\nERROR: %s%s: {%f, %d} ulp error at %a: "
373                                    "*{%a, %d} vs. {%a, %d}\n",
374                                    f->name, sizeNames[k], err, (int)iErr,
375                                    ((float *)gIn)[j], ((float *)gOut_Ref)[j],
376                                    ((int *)gOut_Ref2)[j], test, q2[j]);
377                         error = -1;
378                         goto exit;
379                     }
380                 }
381             }
382         }
383 
384         if (0 == (i & 0x0fffffff))
385         {
386             if (gVerboseBruteForce)
387             {
388                 vlog("base:%14" PRIu64 " step:%10" PRIu64
389                      "  bufferSize:%10d \n",
390                      i, step, BUFFER_SIZE);
391             }
392             else
393             {
394                 vlog(".");
395             }
396             fflush(stdout);
397         }
398     }
399 
400     if (!gSkipCorrectnessTesting)
401     {
402         if (gWimpyMode)
403             vlog("Wimp pass");
404         else
405             vlog("passed");
406 
407         vlog("\t{%8.2f, %" PRId64 "} @ {%a, %a}", maxError, maxError2,
408              maxErrorVal, maxErrorVal2);
409     }
410 
411     vlog("\n");
412 
413 exit:
414     // Release
415     for (auto k = gMinVectorSizeIndex; k < gMaxVectorSizeIndex; k++)
416     {
417         clReleaseKernel(kernels[k]);
418     }
419 
420     return error;
421 }
422