• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2005 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 //
18 // Definitions of resource data structures.
19 //
20 #ifndef _LIBS_UTILS_RESOURCE_TYPES_H
21 #define _LIBS_UTILS_RESOURCE_TYPES_H
22 
23 #include <android-base/expected.h>
24 #include <android-base/unique_fd.h>
25 
26 #include <androidfw/Asset.h>
27 #include <androidfw/Errors.h>
28 #include <androidfw/LocaleData.h>
29 #include <androidfw/StringPiece.h>
30 #include <utils/ByteOrder.h>
31 #include <utils/Errors.h>
32 #include <utils/String16.h>
33 #include <utils/Vector.h>
34 #include <utils/KeyedVector.h>
35 
36 #include <utils/threads.h>
37 
38 #include <stdint.h>
39 #include <sys/types.h>
40 
41 #include <android/configuration.h>
42 
43 #include <array>
44 #include <map>
45 #include <memory>
46 
47 namespace android {
48 
49 constexpr const uint32_t kIdmapMagic = 0x504D4449u;
50 constexpr const uint32_t kIdmapCurrentVersion = 0x00000009u;
51 
52 // This must never change.
53 constexpr const uint32_t kFabricatedOverlayMagic = 0x4f525246; // FRRO (big endian)
54 
55 // The version should only be changed when a backwards-incompatible change must be made to the
56 // fabricated overlay file format. Old fabricated overlays must be migrated to the new file format
57 // to prevent losing fabricated overlay data.
58 constexpr const uint32_t kFabricatedOverlayCurrentVersion = 3;
59 
60 // Returns whether or not the path represents a fabricated overlay.
61 bool IsFabricatedOverlay(const std::string& path);
62 bool IsFabricatedOverlay(const char* path);
63 bool IsFabricatedOverlay(android::base::borrowed_fd fd);
64 
65 /**
66  * In C++11, char16_t is defined as *at least* 16 bits. We do a lot of
67  * casting on raw data and expect char16_t to be exactly 16 bits.
68  */
69 #if __cplusplus >= 201103L
70 struct __assertChar16Size {
71     static_assert(sizeof(char16_t) == sizeof(uint16_t), "char16_t is not 16 bits");
72     static_assert(alignof(char16_t) == alignof(uint16_t), "char16_t is not 16-bit aligned");
73 };
74 #endif
75 
76 /** ********************************************************************
77  *  PNG Extensions
78  *
79  *  New private chunks that may be placed in PNG images.
80  *
81  *********************************************************************** */
82 
83 /**
84  * This chunk specifies how to split an image into segments for
85  * scaling.
86  *
87  * There are J horizontal and K vertical segments.  These segments divide
88  * the image into J*K regions as follows (where J=4 and K=3):
89  *
90  *      F0   S0    F1     S1
91  *   +-----+----+------+-------+
92  * S2|  0  |  1 |  2   |   3   |
93  *   +-----+----+------+-------+
94  *   |     |    |      |       |
95  *   |     |    |      |       |
96  * F2|  4  |  5 |  6   |   7   |
97  *   |     |    |      |       |
98  *   |     |    |      |       |
99  *   +-----+----+------+-------+
100  * S3|  8  |  9 |  10  |   11  |
101  *   +-----+----+------+-------+
102  *
103  * Each horizontal and vertical segment is considered to by either
104  * stretchable (marked by the Sx labels) or fixed (marked by the Fy
105  * labels), in the horizontal or vertical axis, respectively. In the
106  * above example, the first is horizontal segment (F0) is fixed, the
107  * next is stretchable and then they continue to alternate. Note that
108  * the segment list for each axis can begin or end with a stretchable
109  * or fixed segment.
110  *
111  * The relative sizes of the stretchy segments indicates the relative
112  * amount of stretchiness of the regions bordered by the segments.  For
113  * example, regions 3, 7 and 11 above will take up more horizontal space
114  * than regions 1, 5 and 9 since the horizontal segment associated with
115  * the first set of regions is larger than the other set of regions.  The
116  * ratios of the amount of horizontal (or vertical) space taken by any
117  * two stretchable slices is exactly the ratio of their corresponding
118  * segment lengths.
119  *
120  * xDivs and yDivs are arrays of horizontal and vertical pixel
121  * indices.  The first pair of Divs (in either array) indicate the
122  * starting and ending points of the first stretchable segment in that
123  * axis. The next pair specifies the next stretchable segment, etc. So
124  * in the above example xDiv[0] and xDiv[1] specify the horizontal
125  * coordinates for the regions labeled 1, 5 and 9.  xDiv[2] and
126  * xDiv[3] specify the coordinates for regions 3, 7 and 11. Note that
127  * the leftmost slices always start at x=0 and the rightmost slices
128  * always end at the end of the image. So, for example, the regions 0,
129  * 4 and 8 (which are fixed along the X axis) start at x value 0 and
130  * go to xDiv[0] and slices 2, 6 and 10 start at xDiv[1] and end at
131  * xDiv[2].
132  *
133  * The colors array contains hints for each of the regions. They are
134  * ordered according left-to-right and top-to-bottom as indicated above.
135  * For each segment that is a solid color the array entry will contain
136  * that color value; otherwise it will contain NO_COLOR. Segments that
137  * are completely transparent will always have the value TRANSPARENT_COLOR.
138  *
139  * The PNG chunk type is "npTc".
140  */
141 struct alignas(uintptr_t) Res_png_9patch
142 {
Res_png_9patchRes_png_9patch143     Res_png_9patch() : wasDeserialized(false), xDivsOffset(0),
144                        yDivsOffset(0), colorsOffset(0) { }
145 
146     int8_t wasDeserialized;
147     uint8_t numXDivs;
148     uint8_t numYDivs;
149     uint8_t numColors;
150 
151     // The offset (from the start of this structure) to the xDivs & yDivs
152     // array for this 9patch. To get a pointer to this array, call
153     // getXDivs or getYDivs. Note that the serialized form for 9patches places
154     // the xDivs, yDivs and colors arrays immediately after the location
155     // of the Res_png_9patch struct.
156     uint32_t xDivsOffset;
157     uint32_t yDivsOffset;
158 
159     int32_t paddingLeft, paddingRight;
160     int32_t paddingTop, paddingBottom;
161 
162     enum {
163         // The 9 patch segment is not a solid color.
164         NO_COLOR = 0x00000001,
165 
166         // The 9 patch segment is completely transparent.
167         TRANSPARENT_COLOR = 0x00000000
168     };
169 
170     // The offset (from the start of this structure) to the colors array
171     // for this 9patch.
172     uint32_t colorsOffset;
173 
174     // Convert data from device representation to PNG file representation.
175     void deviceToFile();
176     // Convert data from PNG file representation to device representation.
177     void fileToDevice();
178 
179     // Serialize/Marshall the patch data into a newly malloc-ed block.
180     static void* serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs,
181                            const int32_t* yDivs, const uint32_t* colors);
182     // Serialize/Marshall the patch data into |outData|.
183     static void serialize(const Res_png_9patch& patchHeader, const int32_t* xDivs,
184                            const int32_t* yDivs, const uint32_t* colors, void* outData);
185     // Deserialize/Unmarshall the patch data
186     static Res_png_9patch* deserialize(void* data);
187     // Compute the size of the serialized data structure
188     size_t serializedSize() const;
189 
190     // These tell where the next section of a patch starts.
191     // For example, the first patch includes the pixels from
192     // 0 to xDivs[0]-1 and the second patch includes the pixels
193     // from xDivs[0] to xDivs[1]-1.
getXDivsRes_png_9patch194     inline int32_t* getXDivs() const {
195         return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + xDivsOffset);
196     }
getYDivsRes_png_9patch197     inline int32_t* getYDivs() const {
198         return reinterpret_cast<int32_t*>(reinterpret_cast<uintptr_t>(this) + yDivsOffset);
199     }
getColorsRes_png_9patch200     inline uint32_t* getColors() const {
201         return reinterpret_cast<uint32_t*>(reinterpret_cast<uintptr_t>(this) + colorsOffset);
202     }
203 
204 } __attribute__((packed));
205 
206 /** ********************************************************************
207  *  Base Types
208  *
209  *  These are standard types that are shared between multiple specific
210  *  resource types.
211  *
212  *********************************************************************** */
213 
214 /**
215  * Header that appears at the front of every data chunk in a resource.
216  */
217 struct ResChunk_header
218 {
219     // Type identifier for this chunk.  The meaning of this value depends
220     // on the containing chunk.
221     uint16_t type;
222 
223     // Size of the chunk header (in bytes).  Adding this value to
224     // the address of the chunk allows you to find its associated data
225     // (if any).
226     uint16_t headerSize;
227 
228     // Total size of this chunk (in bytes).  This is the chunkSize plus
229     // the size of any data associated with the chunk.  Adding this value
230     // to the chunk allows you to completely skip its contents (including
231     // any child chunks).  If this value is the same as chunkSize, there is
232     // no data associated with the chunk.
233     uint32_t size;
234 };
235 
236 enum {
237     RES_NULL_TYPE                     = 0x0000,
238     RES_STRING_POOL_TYPE              = 0x0001,
239     RES_TABLE_TYPE                    = 0x0002,
240     RES_XML_TYPE                      = 0x0003,
241 
242     // Chunk types in RES_XML_TYPE
243     RES_XML_FIRST_CHUNK_TYPE          = 0x0100,
244     RES_XML_START_NAMESPACE_TYPE      = 0x0100,
245     RES_XML_END_NAMESPACE_TYPE        = 0x0101,
246     RES_XML_START_ELEMENT_TYPE        = 0x0102,
247     RES_XML_END_ELEMENT_TYPE          = 0x0103,
248     RES_XML_CDATA_TYPE                = 0x0104,
249     RES_XML_LAST_CHUNK_TYPE           = 0x017f,
250     // This contains a uint32_t array mapping strings in the string
251     // pool back to resource identifiers.  It is optional.
252     RES_XML_RESOURCE_MAP_TYPE         = 0x0180,
253 
254     // Chunk types in RES_TABLE_TYPE
255     RES_TABLE_PACKAGE_TYPE            = 0x0200,
256     RES_TABLE_TYPE_TYPE               = 0x0201,
257     RES_TABLE_TYPE_SPEC_TYPE          = 0x0202,
258     RES_TABLE_LIBRARY_TYPE            = 0x0203,
259     RES_TABLE_OVERLAYABLE_TYPE        = 0x0204,
260     RES_TABLE_OVERLAYABLE_POLICY_TYPE = 0x0205,
261     RES_TABLE_STAGED_ALIAS_TYPE       = 0x0206,
262 };
263 
264 /**
265  * Macros for building/splitting resource identifiers.
266  */
267 #define Res_VALIDID(resid) (resid != 0)
268 #define Res_CHECKID(resid) ((resid&0xFFFF0000) != 0)
269 #define Res_MAKEID(package, type, entry) \
270     (((package+1)<<24) | (((type+1)&0xFF)<<16) | (entry&0xFFFF))
271 #define Res_GETPACKAGE(id) ((id>>24)-1)
272 #define Res_GETTYPE(id) (((id>>16)&0xFF)-1)
273 #define Res_GETENTRY(id) (id&0xFFFF)
274 
275 #define Res_INTERNALID(resid) ((resid&0xFFFF0000) != 0 && (resid&0xFF0000) == 0)
276 #define Res_MAKEINTERNAL(entry) (0x01000000 | (entry&0xFFFF))
277 #define Res_MAKEARRAY(entry) (0x02000000 | (entry&0xFFFF))
278 
279 static const size_t Res_MAXPACKAGE = 255;
280 static const size_t Res_MAXTYPE = 255;
281 
282 /**
283  * Representation of a value in a resource, supplying type
284  * information.
285  */
286 struct Res_value
287 {
288     // Number of bytes in this structure.
289     uint16_t size;
290 
291     // Always set to 0.
292     uint8_t res0;
293 
294     // Type of the data value.
295     enum : uint8_t {
296         // The 'data' is either 0 or 1, specifying this resource is either
297         // undefined or empty, respectively.
298         TYPE_NULL = 0x00,
299         // The 'data' holds a ResTable_ref, a reference to another resource
300         // table entry.
301         TYPE_REFERENCE = 0x01,
302         // The 'data' holds an attribute resource identifier.
303         TYPE_ATTRIBUTE = 0x02,
304         // The 'data' holds an index into the containing resource table's
305         // global value string pool.
306         TYPE_STRING = 0x03,
307         // The 'data' holds a single-precision floating point number.
308         TYPE_FLOAT = 0x04,
309         // The 'data' holds a complex number encoding a dimension value,
310         // such as "100in".
311         TYPE_DIMENSION = 0x05,
312         // The 'data' holds a complex number encoding a fraction of a
313         // container.
314         TYPE_FRACTION = 0x06,
315         // The 'data' holds a dynamic ResTable_ref, which needs to be
316         // resolved before it can be used like a TYPE_REFERENCE.
317         TYPE_DYNAMIC_REFERENCE = 0x07,
318         // The 'data' holds an attribute resource identifier, which needs to be resolved
319         // before it can be used like a TYPE_ATTRIBUTE.
320         TYPE_DYNAMIC_ATTRIBUTE = 0x08,
321 
322         // Beginning of integer flavors...
323         TYPE_FIRST_INT = 0x10,
324 
325         // The 'data' is a raw integer value of the form n..n.
326         TYPE_INT_DEC = 0x10,
327         // The 'data' is a raw integer value of the form 0xn..n.
328         TYPE_INT_HEX = 0x11,
329         // The 'data' is either 0 or 1, for input "false" or "true" respectively.
330         TYPE_INT_BOOLEAN = 0x12,
331 
332         // Beginning of color integer flavors...
333         TYPE_FIRST_COLOR_INT = 0x1c,
334 
335         // The 'data' is a raw integer value of the form #aarrggbb.
336         TYPE_INT_COLOR_ARGB8 = 0x1c,
337         // The 'data' is a raw integer value of the form #rrggbb.
338         TYPE_INT_COLOR_RGB8 = 0x1d,
339         // The 'data' is a raw integer value of the form #argb.
340         TYPE_INT_COLOR_ARGB4 = 0x1e,
341         // The 'data' is a raw integer value of the form #rgb.
342         TYPE_INT_COLOR_RGB4 = 0x1f,
343 
344         // ...end of integer flavors.
345         TYPE_LAST_COLOR_INT = 0x1f,
346 
347         // ...end of integer flavors.
348         TYPE_LAST_INT = 0x1f
349     };
350     uint8_t dataType;
351 
352     // Structure of complex data values (TYPE_UNIT and TYPE_FRACTION)
353     enum {
354         // Where the unit type information is.  This gives us 16 possible
355         // types, as defined below.
356         COMPLEX_UNIT_SHIFT = 0,
357         COMPLEX_UNIT_MASK = 0xf,
358 
359         // TYPE_DIMENSION: Value is raw pixels.
360         COMPLEX_UNIT_PX = 0,
361         // TYPE_DIMENSION: Value is Device Independent Pixels.
362         COMPLEX_UNIT_DIP = 1,
363         // TYPE_DIMENSION: Value is a Scaled device independent Pixels.
364         COMPLEX_UNIT_SP = 2,
365         // TYPE_DIMENSION: Value is in points.
366         COMPLEX_UNIT_PT = 3,
367         // TYPE_DIMENSION: Value is in inches.
368         COMPLEX_UNIT_IN = 4,
369         // TYPE_DIMENSION: Value is in millimeters.
370         COMPLEX_UNIT_MM = 5,
371 
372         // TYPE_FRACTION: A basic fraction of the overall size.
373         COMPLEX_UNIT_FRACTION = 0,
374         // TYPE_FRACTION: A fraction of the parent size.
375         COMPLEX_UNIT_FRACTION_PARENT = 1,
376 
377         // Where the radix information is, telling where the decimal place
378         // appears in the mantissa.  This give us 4 possible fixed point
379         // representations as defined below.
380         COMPLEX_RADIX_SHIFT = 4,
381         COMPLEX_RADIX_MASK = 0x3,
382 
383         // The mantissa is an integral number -- i.e., 0xnnnnnn.0
384         COMPLEX_RADIX_23p0 = 0,
385         // The mantissa magnitude is 16 bits -- i.e, 0xnnnn.nn
386         COMPLEX_RADIX_16p7 = 1,
387         // The mantissa magnitude is 8 bits -- i.e, 0xnn.nnnn
388         COMPLEX_RADIX_8p15 = 2,
389         // The mantissa magnitude is 0 bits -- i.e, 0x0.nnnnnn
390         COMPLEX_RADIX_0p23 = 3,
391 
392         // Where the actual value is.  This gives us 23 bits of
393         // precision.  The top bit is the sign.
394         COMPLEX_MANTISSA_SHIFT = 8,
395         COMPLEX_MANTISSA_MASK = 0xffffff
396     };
397 
398     // Possible data values for TYPE_NULL.
399     enum {
400         // The value is not defined.
401         DATA_NULL_UNDEFINED = 0,
402         // The value is explicitly defined as empty.
403         DATA_NULL_EMPTY = 1
404     };
405 
406     // The data for this item, as interpreted according to dataType.
407     typedef uint32_t data_type;
408     data_type data;
409 
410     void copyFrom_dtoh(const Res_value& src);
411 };
412 
413 /**
414  *  This is a reference to a unique entry (a ResTable_entry structure)
415  *  in a resource table.  The value is structured as: 0xpptteeee,
416  *  where pp is the package index, tt is the type index in that
417  *  package, and eeee is the entry index in that type.  The package
418  *  and type values start at 1 for the first item, to help catch cases
419  *  where they have not been supplied.
420  */
421 struct ResTable_ref
422 {
423     uint32_t ident;
424 };
425 
426 /**
427  * Reference to a string in a string pool.
428  */
429 struct ResStringPool_ref
430 {
431     // Index into the string pool table (uint32_t-offset from the indices
432     // immediately after ResStringPool_header) at which to find the location
433     // of the string data in the pool.
434     uint32_t index;
435 };
436 
437 /** ********************************************************************
438  *  String Pool
439  *
440  *  A set of strings that can be references by others through a
441  *  ResStringPool_ref.
442  *
443  *********************************************************************** */
444 
445 /**
446  * Definition for a pool of strings.  The data of this chunk is an
447  * array of uint32_t providing indices into the pool, relative to
448  * stringsStart.  At stringsStart are all of the UTF-16 strings
449  * concatenated together; each starts with a uint16_t of the string's
450  * length and each ends with a 0x0000 terminator.  If a string is >
451  * 32767 characters, the high bit of the length is set meaning to take
452  * those 15 bits as a high word and it will be followed by another
453  * uint16_t containing the low word.
454  *
455  * If styleCount is not zero, then immediately following the array of
456  * uint32_t indices into the string table is another array of indices
457  * into a style table starting at stylesStart.  Each entry in the
458  * style table is an array of ResStringPool_span structures.
459  */
460 struct ResStringPool_header
461 {
462     struct ResChunk_header header;
463 
464     // Number of strings in this pool (number of uint32_t indices that follow
465     // in the data).
466     uint32_t stringCount;
467 
468     // Number of style span arrays in the pool (number of uint32_t indices
469     // follow the string indices).
470     uint32_t styleCount;
471 
472     // Flags.
473     enum {
474         // If set, the string index is sorted by the string values (based
475         // on strcmp16()).
476         SORTED_FLAG = 1<<0,
477 
478         // String pool is encoded in UTF-8
479         UTF8_FLAG = 1<<8
480     };
481     uint32_t flags;
482 
483     // Index from header of the string data.
484     uint32_t stringsStart;
485 
486     // Index from header of the style data.
487     uint32_t stylesStart;
488 };
489 
490 /**
491  * This structure defines a span of style information associated with
492  * a string in the pool.
493  */
494 struct ResStringPool_span
495 {
496     enum {
497         END = 0xFFFFFFFF
498     };
499 
500     // This is the name of the span -- that is, the name of the XML
501     // tag that defined it.  The special value END (0xFFFFFFFF) indicates
502     // the end of an array of spans.
503     ResStringPool_ref name;
504 
505     // The range of characters in the string that this span applies to.
506     uint32_t firstChar, lastChar;
507 };
508 
509 /**
510  * Convenience class for accessing data in a ResStringPool resource.
511  */
512 class ResStringPool
513 {
514 public:
515     ResStringPool();
516     ResStringPool(const void* data, size_t size, bool copyData=false);
517     virtual ~ResStringPool();
518 
519     void setToEmpty();
520     status_t setTo(incfs::map_ptr<void> data, size_t size, bool copyData=false);
521 
522     status_t getError() const;
523 
524     void uninit();
525 
526     // Return string entry as UTF16; if the pool is UTF8, the string will
527     // be converted before returning.
stringAt(const ResStringPool_ref & ref)528     inline base::expected<StringPiece16, NullOrIOError> stringAt(
529             const ResStringPool_ref& ref) const {
530         return stringAt(ref.index);
531     }
532     virtual base::expected<StringPiece16, NullOrIOError> stringAt(size_t idx) const;
533 
534     // Note: returns null if the string pool is not UTF8.
535     virtual base::expected<StringPiece, NullOrIOError> string8At(size_t idx) const;
536 
537     // Return string whether the pool is UTF8 or UTF16.  Does not allow you
538     // to distinguish null.
539     base::expected<String8, IOError> string8ObjectAt(size_t idx) const;
540 
541     base::expected<incfs::map_ptr<ResStringPool_span>, NullOrIOError> styleAt(
542         const ResStringPool_ref& ref) const;
543     base::expected<incfs::map_ptr<ResStringPool_span>, NullOrIOError> styleAt(size_t idx) const;
544 
545     base::expected<size_t, NullOrIOError> indexOfString(const char16_t* str, size_t strLen) const;
546 
547     virtual size_t size() const;
548     size_t styleCount() const;
549     size_t bytes() const;
550     incfs::map_ptr<void> data() const;
551 
552     bool isSorted() const;
553     bool isUTF8() const;
554 
555 private:
556     status_t                                      mError;
557     void*                                         mOwnedData;
558     incfs::verified_map_ptr<ResStringPool_header> mHeader;
559     size_t                                        mSize;
560     mutable Mutex                                 mDecodeLock;
561     incfs::map_ptr<uint32_t>                      mEntries;
562     incfs::map_ptr<uint32_t>                      mEntryStyles;
563     incfs::map_ptr<void>                          mStrings;
564     char16_t mutable**                            mCache;
565     uint32_t                                      mStringPoolSize;    // number of uint16_t
566     incfs::map_ptr<uint32_t>                      mStyles;
567     uint32_t                                      mStylePoolSize;    // number of uint32_t
568 
569     base::expected<StringPiece, NullOrIOError> stringDecodeAt(
570         size_t idx, incfs::map_ptr<uint8_t> str, size_t encLen) const;
571 };
572 
573 /**
574  * Wrapper class that allows the caller to retrieve a string from
575  * a string pool without knowing which string pool to look.
576  */
577 class StringPoolRef {
578 public:
579  StringPoolRef() = default;
580  StringPoolRef(const ResStringPool* pool, uint32_t index);
581 
582  base::expected<StringPiece, NullOrIOError> string8() const;
583  base::expected<StringPiece16, NullOrIOError> string16() const;
584 
585 private:
586  const ResStringPool* mPool = nullptr;
587  uint32_t mIndex = 0u;
588 };
589 
590 /** ********************************************************************
591  *  XML Tree
592  *
593  *  Binary representation of an XML document.  This is designed to
594  *  express everything in an XML document, in a form that is much
595  *  easier to parse on the device.
596  *
597  *********************************************************************** */
598 
599 /**
600  * XML tree header.  This appears at the front of an XML tree,
601  * describing its content.  It is followed by a flat array of
602  * ResXMLTree_node structures; the hierarchy of the XML document
603  * is described by the occurrance of RES_XML_START_ELEMENT_TYPE
604  * and corresponding RES_XML_END_ELEMENT_TYPE nodes in the array.
605  */
606 struct ResXMLTree_header
607 {
608     struct ResChunk_header header;
609 };
610 
611 /**
612  * Basic XML tree node.  A single item in the XML document.  Extended info
613  * about the node can be found after header.headerSize.
614  */
615 struct ResXMLTree_node
616 {
617     struct ResChunk_header header;
618 
619     // Line number in original source file at which this element appeared.
620     uint32_t lineNumber;
621 
622     // Optional XML comment that was associated with this element; -1 if none.
623     struct ResStringPool_ref comment;
624 };
625 
626 /**
627  * Extended XML tree node for CDATA tags -- includes the CDATA string.
628  * Appears header.headerSize bytes after a ResXMLTree_node.
629  */
630 struct ResXMLTree_cdataExt
631 {
632     // The raw CDATA character data.
633     struct ResStringPool_ref data;
634 
635     // The typed value of the character data if this is a CDATA node.
636     struct Res_value typedData;
637 };
638 
639 /**
640  * Extended XML tree node for namespace start/end nodes.
641  * Appears header.headerSize bytes after a ResXMLTree_node.
642  */
643 struct ResXMLTree_namespaceExt
644 {
645     // The prefix of the namespace.
646     struct ResStringPool_ref prefix;
647 
648     // The URI of the namespace.
649     struct ResStringPool_ref uri;
650 };
651 
652 /**
653  * Extended XML tree node for element start/end nodes.
654  * Appears header.headerSize bytes after a ResXMLTree_node.
655  */
656 struct ResXMLTree_endElementExt
657 {
658     // String of the full namespace of this element.
659     struct ResStringPool_ref ns;
660 
661     // String name of this node if it is an ELEMENT; the raw
662     // character data if this is a CDATA node.
663     struct ResStringPool_ref name;
664 };
665 
666 /**
667  * Extended XML tree node for start tags -- includes attribute
668  * information.
669  * Appears header.headerSize bytes after a ResXMLTree_node.
670  */
671 struct ResXMLTree_attrExt
672 {
673     // String of the full namespace of this element.
674     struct ResStringPool_ref ns;
675 
676     // String name of this node if it is an ELEMENT; the raw
677     // character data if this is a CDATA node.
678     struct ResStringPool_ref name;
679 
680     // Byte offset from the start of this structure where the attributes start.
681     uint16_t attributeStart;
682 
683     // Size of the ResXMLTree_attribute structures that follow.
684     uint16_t attributeSize;
685 
686     // Number of attributes associated with an ELEMENT.  These are
687     // available as an array of ResXMLTree_attribute structures
688     // immediately following this node.
689     uint16_t attributeCount;
690 
691     // Index (1-based) of the "id" attribute. 0 if none.
692     uint16_t idIndex;
693 
694     // Index (1-based) of the "class" attribute. 0 if none.
695     uint16_t classIndex;
696 
697     // Index (1-based) of the "style" attribute. 0 if none.
698     uint16_t styleIndex;
699 };
700 
701 struct ResXMLTree_attribute
702 {
703     // Namespace of this attribute.
704     struct ResStringPool_ref ns;
705 
706     // Name of this attribute.
707     struct ResStringPool_ref name;
708 
709     // The original raw string value of this attribute.
710     struct ResStringPool_ref rawValue;
711 
712     // Processesd typed value of this attribute.
713     struct Res_value typedValue;
714 };
715 
716 class ResXMLTree;
717 
718 class ResXMLParser
719 {
720 public:
721     explicit ResXMLParser(const ResXMLTree& tree);
722 
723     enum event_code_t {
724         BAD_DOCUMENT = -1,
725         START_DOCUMENT = 0,
726         END_DOCUMENT = 1,
727 
728         FIRST_CHUNK_CODE = RES_XML_FIRST_CHUNK_TYPE,
729 
730         START_NAMESPACE = RES_XML_START_NAMESPACE_TYPE,
731         END_NAMESPACE = RES_XML_END_NAMESPACE_TYPE,
732         START_TAG = RES_XML_START_ELEMENT_TYPE,
733         END_TAG = RES_XML_END_ELEMENT_TYPE,
734         TEXT = RES_XML_CDATA_TYPE
735     };
736 
737     struct ResXMLPosition
738     {
739         event_code_t                eventCode;
740         const ResXMLTree_node*      curNode;
741         const void*                 curExt;
742     };
743 
744     void restart();
745 
746     const ResStringPool& getStrings() const;
747 
748     event_code_t getEventType() const;
749     // Note, unlike XmlPullParser, the first call to next() will return
750     // START_TAG of the first element.
751     event_code_t next();
752 
753     // These are available for all nodes:
754     int32_t getCommentID() const;
755     const char16_t* getComment(size_t* outLen) const;
756     uint32_t getLineNumber() const;
757 
758     // This is available for TEXT:
759     int32_t getTextID() const;
760     const char16_t* getText(size_t* outLen) const;
761     ssize_t getTextValue(Res_value* outValue) const;
762 
763     // These are available for START_NAMESPACE and END_NAMESPACE:
764     int32_t getNamespacePrefixID() const;
765     const char16_t* getNamespacePrefix(size_t* outLen) const;
766     int32_t getNamespaceUriID() const;
767     const char16_t* getNamespaceUri(size_t* outLen) const;
768 
769     // These are available for START_TAG and END_TAG:
770     int32_t getElementNamespaceID() const;
771     const char16_t* getElementNamespace(size_t* outLen) const;
772     int32_t getElementNameID() const;
773     const char16_t* getElementName(size_t* outLen) const;
774 
775     // Remaining methods are for retrieving information about attributes
776     // associated with a START_TAG:
777 
778     size_t getAttributeCount() const;
779 
780     // Returns -1 if no namespace, -2 if idx out of range.
781     int32_t getAttributeNamespaceID(size_t idx) const;
782     const char16_t* getAttributeNamespace(size_t idx, size_t* outLen) const;
783 
784     int32_t getAttributeNameID(size_t idx) const;
785     const char16_t* getAttributeName(size_t idx, size_t* outLen) const;
786     uint32_t getAttributeNameResID(size_t idx) const;
787 
788     // These will work only if the underlying string pool is UTF-8.
789     const char* getAttributeNamespace8(size_t idx, size_t* outLen) const;
790     const char* getAttributeName8(size_t idx, size_t* outLen) const;
791 
792     int32_t getAttributeValueStringID(size_t idx) const;
793     const char16_t* getAttributeStringValue(size_t idx, size_t* outLen) const;
794 
795     int32_t getAttributeDataType(size_t idx) const;
796     int32_t getAttributeData(size_t idx) const;
797     ssize_t getAttributeValue(size_t idx, Res_value* outValue) const;
798 
799     ssize_t indexOfAttribute(const char* ns, const char* attr) const;
800     ssize_t indexOfAttribute(const char16_t* ns, size_t nsLen,
801                              const char16_t* attr, size_t attrLen) const;
802 
803     ssize_t indexOfID() const;
804     ssize_t indexOfClass() const;
805     ssize_t indexOfStyle() const;
806 
807     void getPosition(ResXMLPosition* pos) const;
808     void setPosition(const ResXMLPosition& pos);
809 
810     void setSourceResourceId(const uint32_t resId);
811     uint32_t getSourceResourceId() const;
812 
813 private:
814     friend class ResXMLTree;
815 
816     event_code_t nextNode();
817 
818     const ResXMLTree&           mTree;
819     event_code_t                mEventCode;
820     const ResXMLTree_node*      mCurNode;
821     const void*                 mCurExt;
822     uint32_t                    mSourceResourceId;
823 };
824 
825 static inline bool operator==(const android::ResXMLParser::ResXMLPosition& lhs,
826                               const android::ResXMLParser::ResXMLPosition& rhs) {
827   return lhs.curNode == rhs.curNode;
828 }
829 
830 class DynamicRefTable;
831 
832 /**
833  * Convenience class for accessing data in a ResXMLTree resource.
834  */
835 class ResXMLTree : public ResXMLParser
836 {
837 public:
838     /**
839      * Creates a ResXMLTree with the specified DynamicRefTable for run-time package id translation.
840      * The tree stores a clone of the specified DynamicRefTable, so any changes to the original
841      * DynamicRefTable will not affect this tree after instantiation.
842      **/
843     explicit ResXMLTree(std::shared_ptr<const DynamicRefTable> dynamicRefTable);
844     ResXMLTree();
845     ~ResXMLTree();
846 
847     status_t setTo(const void* data, size_t size, bool copyData=false);
848 
849     status_t getError() const;
850 
851     void uninit();
852 
853 private:
854     friend class ResXMLParser;
855 
856     status_t validateNode(const ResXMLTree_node* node) const;
857 
858     std::shared_ptr<const DynamicRefTable> mDynamicRefTable;
859 
860     status_t                    mError;
861     void*                       mOwnedData;
862     const ResXMLTree_header*    mHeader;
863     size_t                      mSize;
864     const uint8_t*              mDataEnd;
865     ResStringPool               mStrings;
866     const uint32_t*             mResIds;
867     size_t                      mNumResIds;
868     const ResXMLTree_node*      mRootNode;
869     const void*                 mRootExt;
870     event_code_t                mRootCode;
871 };
872 
873 /** ********************************************************************
874  *  RESOURCE TABLE
875  *
876  *********************************************************************** */
877 
878 /**
879  * Header for a resource table.  Its data contains a series of
880  * additional chunks:
881  *   * A ResStringPool_header containing all table values.  This string pool
882  *     contains all of the string values in the entire resource table (not
883  *     the names of entries or type identifiers however).
884  *   * One or more ResTable_package chunks.
885  *
886  * Specific entries within a resource table can be uniquely identified
887  * with a single integer as defined by the ResTable_ref structure.
888  */
889 struct ResTable_header
890 {
891     struct ResChunk_header header;
892 
893     // The number of ResTable_package structures.
894     uint32_t packageCount;
895 };
896 
897 /**
898  * A collection of resource data types within a package.  Followed by
899  * one or more ResTable_type and ResTable_typeSpec structures containing the
900  * entry values for each resource type.
901  */
902 struct ResTable_package
903 {
904     struct ResChunk_header header;
905 
906     // If this is a base package, its ID.  Package IDs start
907     // at 1 (corresponding to the value of the package bits in a
908     // resource identifier).  0 means this is not a base package.
909     uint32_t id;
910 
911     // Actual name of this package, \0-terminated.
912     uint16_t name[128];
913 
914     // Offset to a ResStringPool_header defining the resource
915     // type symbol table.  If zero, this package is inheriting from
916     // another base package (overriding specific values in it).
917     uint32_t typeStrings;
918 
919     // Last index into typeStrings that is for public use by others.
920     uint32_t lastPublicType;
921 
922     // Offset to a ResStringPool_header defining the resource
923     // key symbol table.  If zero, this package is inheriting from
924     // another base package (overriding specific values in it).
925     uint32_t keyStrings;
926 
927     // Last index into keyStrings that is for public use by others.
928     uint32_t lastPublicKey;
929 
930     uint32_t typeIdOffset;
931 };
932 
933 // The most specific locale can consist of:
934 //
935 // - a 3 char language code
936 // - a 3 char region code prefixed by a 'r'
937 // - a 4 char script code prefixed by a 's'
938 // - a 8 char variant code prefixed by a 'v'
939 //
940 // each separated by a single char separator, which sums up to a total of 24
941 // chars, (25 include the string terminator). Numbering system specificator,
942 // if present, can add up to 14 bytes (-u-nu-xxxxxxxx), giving 39 bytes,
943 // or 40 bytes to make it 4 bytes aligned.
944 #define RESTABLE_MAX_LOCALE_LEN 40
945 
946 
947 /**
948  * Describes a particular resource configuration.
949  */
950 struct ResTable_config
951 {
952     // Number of bytes in this structure.
953     uint32_t size;
954 
955     union {
956         struct {
957             // Mobile country code (from SIM).  0 means "any".
958             uint16_t mcc;
959             // Mobile network code (from SIM).  0 means "any".
960             uint16_t mnc;
961         };
962         uint32_t imsi;
963     };
964 
965     union {
966         struct {
967             // This field can take three different forms:
968             // - \0\0 means "any".
969             //
970             // - Two 7 bit ascii values interpreted as ISO-639-1 language
971             //   codes ('fr', 'en' etc. etc.). The high bit for both bytes is
972             //   zero.
973             //
974             // - A single 16 bit little endian packed value representing an
975             //   ISO-639-2 3 letter language code. This will be of the form:
976             //
977             //   {1, t, t, t, t, t, s, s, s, s, s, f, f, f, f, f}
978             //
979             //   bit[0, 4] = first letter of the language code
980             //   bit[5, 9] = second letter of the language code
981             //   bit[10, 14] = third letter of the language code.
982             //   bit[15] = 1 always
983             //
984             // For backwards compatibility, languages that have unambiguous
985             // two letter codes are represented in that format.
986             //
987             // The layout is always bigendian irrespective of the runtime
988             // architecture.
989             char language[2];
990 
991             // This field can take three different forms:
992             // - \0\0 means "any".
993             //
994             // - Two 7 bit ascii values interpreted as 2 letter region
995             //   codes ('US', 'GB' etc.). The high bit for both bytes is zero.
996             //
997             // - An UN M.49 3 digit region code. For simplicity, these are packed
998             //   in the same manner as the language codes, though we should need
999             //   only 10 bits to represent them, instead of the 15.
1000             //
1001             // The layout is always bigendian irrespective of the runtime
1002             // architecture.
1003             char country[2];
1004         };
1005         uint32_t locale;
1006     };
1007 
1008     enum {
1009         ORIENTATION_ANY  = ACONFIGURATION_ORIENTATION_ANY,
1010         ORIENTATION_PORT = ACONFIGURATION_ORIENTATION_PORT,
1011         ORIENTATION_LAND = ACONFIGURATION_ORIENTATION_LAND,
1012         ORIENTATION_SQUARE = ACONFIGURATION_ORIENTATION_SQUARE,
1013     };
1014 
1015     enum {
1016         TOUCHSCREEN_ANY  = ACONFIGURATION_TOUCHSCREEN_ANY,
1017         TOUCHSCREEN_NOTOUCH  = ACONFIGURATION_TOUCHSCREEN_NOTOUCH,
1018         TOUCHSCREEN_STYLUS  = ACONFIGURATION_TOUCHSCREEN_STYLUS,
1019         TOUCHSCREEN_FINGER  = ACONFIGURATION_TOUCHSCREEN_FINGER,
1020     };
1021 
1022     enum {
1023         DENSITY_DEFAULT = ACONFIGURATION_DENSITY_DEFAULT,
1024         DENSITY_LOW = ACONFIGURATION_DENSITY_LOW,
1025         DENSITY_MEDIUM = ACONFIGURATION_DENSITY_MEDIUM,
1026         DENSITY_TV = ACONFIGURATION_DENSITY_TV,
1027         DENSITY_HIGH = ACONFIGURATION_DENSITY_HIGH,
1028         DENSITY_XHIGH = ACONFIGURATION_DENSITY_XHIGH,
1029         DENSITY_XXHIGH = ACONFIGURATION_DENSITY_XXHIGH,
1030         DENSITY_XXXHIGH = ACONFIGURATION_DENSITY_XXXHIGH,
1031         DENSITY_ANY = ACONFIGURATION_DENSITY_ANY,
1032         DENSITY_NONE = ACONFIGURATION_DENSITY_NONE
1033     };
1034 
1035     union {
1036         struct {
1037             uint8_t orientation;
1038             uint8_t touchscreen;
1039             uint16_t density;
1040         };
1041         uint32_t screenType;
1042     };
1043 
1044     enum {
1045         KEYBOARD_ANY  = ACONFIGURATION_KEYBOARD_ANY,
1046         KEYBOARD_NOKEYS  = ACONFIGURATION_KEYBOARD_NOKEYS,
1047         KEYBOARD_QWERTY  = ACONFIGURATION_KEYBOARD_QWERTY,
1048         KEYBOARD_12KEY  = ACONFIGURATION_KEYBOARD_12KEY,
1049     };
1050 
1051     enum {
1052         NAVIGATION_ANY  = ACONFIGURATION_NAVIGATION_ANY,
1053         NAVIGATION_NONAV  = ACONFIGURATION_NAVIGATION_NONAV,
1054         NAVIGATION_DPAD  = ACONFIGURATION_NAVIGATION_DPAD,
1055         NAVIGATION_TRACKBALL  = ACONFIGURATION_NAVIGATION_TRACKBALL,
1056         NAVIGATION_WHEEL  = ACONFIGURATION_NAVIGATION_WHEEL,
1057     };
1058 
1059     enum {
1060         MASK_KEYSHIDDEN = 0x0003,
1061         KEYSHIDDEN_ANY = ACONFIGURATION_KEYSHIDDEN_ANY,
1062         KEYSHIDDEN_NO = ACONFIGURATION_KEYSHIDDEN_NO,
1063         KEYSHIDDEN_YES = ACONFIGURATION_KEYSHIDDEN_YES,
1064         KEYSHIDDEN_SOFT = ACONFIGURATION_KEYSHIDDEN_SOFT,
1065     };
1066 
1067     enum {
1068         MASK_NAVHIDDEN = 0x000c,
1069         SHIFT_NAVHIDDEN = 2,
1070         NAVHIDDEN_ANY = ACONFIGURATION_NAVHIDDEN_ANY << SHIFT_NAVHIDDEN,
1071         NAVHIDDEN_NO = ACONFIGURATION_NAVHIDDEN_NO << SHIFT_NAVHIDDEN,
1072         NAVHIDDEN_YES = ACONFIGURATION_NAVHIDDEN_YES << SHIFT_NAVHIDDEN,
1073     };
1074 
1075     enum {
1076         GRAMMATICAL_GENDER_ANY = ACONFIGURATION_GRAMMATICAL_GENDER_ANY,
1077         GRAMMATICAL_GENDER_NEUTER = ACONFIGURATION_GRAMMATICAL_GENDER_NEUTER,
1078         GRAMMATICAL_GENDER_FEMININE = ACONFIGURATION_GRAMMATICAL_GENDER_FEMININE,
1079         GRAMMATICAL_GENDER_MASCULINE = ACONFIGURATION_GRAMMATICAL_GENDER_MASCULINE,
1080         GRAMMATICAL_INFLECTION_GENDER_MASK = 0b11,
1081     };
1082 
1083     struct {
1084         union {
1085             struct {
1086                 uint8_t keyboard;
1087                 uint8_t navigation;
1088                 uint8_t inputFlags;
1089                 uint8_t inputFieldPad0;
1090             };
1091             struct {
1092                 uint32_t input : 24;
1093                 uint32_t inputFullPad0 : 8;
1094             };
1095             struct {
1096                 uint8_t grammaticalInflectionPad0[3];
1097                 uint8_t grammaticalInflection;
1098             };
1099         };
1100     };
1101 
1102     enum {
1103         SCREENWIDTH_ANY = 0
1104     };
1105 
1106     enum {
1107         SCREENHEIGHT_ANY = 0
1108     };
1109 
1110     union {
1111         struct {
1112             uint16_t screenWidth;
1113             uint16_t screenHeight;
1114         };
1115         uint32_t screenSize;
1116     };
1117 
1118     enum {
1119         SDKVERSION_ANY = 0
1120     };
1121 
1122     enum {
1123         MINORVERSION_ANY = 0
1124     };
1125 
1126     union {
1127         struct {
1128             uint16_t sdkVersion;
1129             // For now minorVersion must always be 0!!!  Its meaning
1130             // is currently undefined.
1131             uint16_t minorVersion;
1132         };
1133         uint32_t version;
1134     };
1135 
1136     enum {
1137         // screenLayout bits for screen size class.
1138         MASK_SCREENSIZE = 0x0f,
1139         SCREENSIZE_ANY = ACONFIGURATION_SCREENSIZE_ANY,
1140         SCREENSIZE_SMALL = ACONFIGURATION_SCREENSIZE_SMALL,
1141         SCREENSIZE_NORMAL = ACONFIGURATION_SCREENSIZE_NORMAL,
1142         SCREENSIZE_LARGE = ACONFIGURATION_SCREENSIZE_LARGE,
1143         SCREENSIZE_XLARGE = ACONFIGURATION_SCREENSIZE_XLARGE,
1144 
1145         // screenLayout bits for wide/long screen variation.
1146         MASK_SCREENLONG = 0x30,
1147         SHIFT_SCREENLONG = 4,
1148         SCREENLONG_ANY = ACONFIGURATION_SCREENLONG_ANY << SHIFT_SCREENLONG,
1149         SCREENLONG_NO = ACONFIGURATION_SCREENLONG_NO << SHIFT_SCREENLONG,
1150         SCREENLONG_YES = ACONFIGURATION_SCREENLONG_YES << SHIFT_SCREENLONG,
1151 
1152         // screenLayout bits for layout direction.
1153         MASK_LAYOUTDIR = 0xC0,
1154         SHIFT_LAYOUTDIR = 6,
1155         LAYOUTDIR_ANY = ACONFIGURATION_LAYOUTDIR_ANY << SHIFT_LAYOUTDIR,
1156         LAYOUTDIR_LTR = ACONFIGURATION_LAYOUTDIR_LTR << SHIFT_LAYOUTDIR,
1157         LAYOUTDIR_RTL = ACONFIGURATION_LAYOUTDIR_RTL << SHIFT_LAYOUTDIR,
1158     };
1159 
1160     enum {
1161         // uiMode bits for the mode type.
1162         MASK_UI_MODE_TYPE = 0x0f,
1163         UI_MODE_TYPE_ANY = ACONFIGURATION_UI_MODE_TYPE_ANY,
1164         UI_MODE_TYPE_NORMAL = ACONFIGURATION_UI_MODE_TYPE_NORMAL,
1165         UI_MODE_TYPE_DESK = ACONFIGURATION_UI_MODE_TYPE_DESK,
1166         UI_MODE_TYPE_CAR = ACONFIGURATION_UI_MODE_TYPE_CAR,
1167         UI_MODE_TYPE_TELEVISION = ACONFIGURATION_UI_MODE_TYPE_TELEVISION,
1168         UI_MODE_TYPE_APPLIANCE = ACONFIGURATION_UI_MODE_TYPE_APPLIANCE,
1169         UI_MODE_TYPE_WATCH = ACONFIGURATION_UI_MODE_TYPE_WATCH,
1170         UI_MODE_TYPE_VR_HEADSET = ACONFIGURATION_UI_MODE_TYPE_VR_HEADSET,
1171 
1172         // uiMode bits for the night switch.
1173         MASK_UI_MODE_NIGHT = 0x30,
1174         SHIFT_UI_MODE_NIGHT = 4,
1175         UI_MODE_NIGHT_ANY = ACONFIGURATION_UI_MODE_NIGHT_ANY << SHIFT_UI_MODE_NIGHT,
1176         UI_MODE_NIGHT_NO = ACONFIGURATION_UI_MODE_NIGHT_NO << SHIFT_UI_MODE_NIGHT,
1177         UI_MODE_NIGHT_YES = ACONFIGURATION_UI_MODE_NIGHT_YES << SHIFT_UI_MODE_NIGHT,
1178     };
1179 
1180     union {
1181         struct {
1182             uint8_t screenLayout;
1183             uint8_t uiMode;
1184             uint16_t smallestScreenWidthDp;
1185         };
1186         uint32_t screenConfig;
1187     };
1188 
1189     union {
1190         struct {
1191             uint16_t screenWidthDp;
1192             uint16_t screenHeightDp;
1193         };
1194         uint32_t screenSizeDp;
1195     };
1196 
1197     // The ISO-15924 short name for the script corresponding to this
1198     // configuration. (eg. Hant, Latn, etc.). Interpreted in conjunction with
1199     // the locale field.
1200     char localeScript[4];
1201 
1202     // A single BCP-47 variant subtag. Will vary in length between 4 and 8
1203     // chars. Interpreted in conjunction with the locale field.
1204     char localeVariant[8];
1205 
1206     enum {
1207         // screenLayout2 bits for round/notround.
1208         MASK_SCREENROUND = 0x03,
1209         SCREENROUND_ANY = ACONFIGURATION_SCREENROUND_ANY,
1210         SCREENROUND_NO = ACONFIGURATION_SCREENROUND_NO,
1211         SCREENROUND_YES = ACONFIGURATION_SCREENROUND_YES,
1212     };
1213 
1214     enum {
1215         // colorMode bits for wide-color gamut/narrow-color gamut.
1216         MASK_WIDE_COLOR_GAMUT = 0x03,
1217         WIDE_COLOR_GAMUT_ANY = ACONFIGURATION_WIDE_COLOR_GAMUT_ANY,
1218         WIDE_COLOR_GAMUT_NO = ACONFIGURATION_WIDE_COLOR_GAMUT_NO,
1219         WIDE_COLOR_GAMUT_YES = ACONFIGURATION_WIDE_COLOR_GAMUT_YES,
1220 
1221         // colorMode bits for HDR/LDR.
1222         MASK_HDR = 0x0c,
1223         SHIFT_COLOR_MODE_HDR = 2,
1224         HDR_ANY = ACONFIGURATION_HDR_ANY << SHIFT_COLOR_MODE_HDR,
1225         HDR_NO = ACONFIGURATION_HDR_NO << SHIFT_COLOR_MODE_HDR,
1226         HDR_YES = ACONFIGURATION_HDR_YES << SHIFT_COLOR_MODE_HDR,
1227     };
1228 
1229     // An extension of screenConfig.
1230     union {
1231         struct {
1232             uint8_t screenLayout2;      // Contains round/notround qualifier.
1233             uint8_t colorMode;          // Wide-gamut, HDR, etc.
1234             uint16_t screenConfigPad2;  // Reserved padding.
1235         };
1236         uint32_t screenConfig2;
1237     };
1238 
1239     // If false and localeScript is set, it means that the script of the locale
1240     // was explicitly provided.
1241     //
1242     // If true, it means that localeScript was automatically computed.
1243     // localeScript may still not be set in this case, which means that we
1244     // tried but could not compute a script.
1245     bool localeScriptWasComputed;
1246 
1247     // The value of BCP 47 Unicode extension for key 'nu' (numbering system).
1248     // Varies in length from 3 to 8 chars. Zero-filled value.
1249     char localeNumberingSystem[8];
1250 
1251     void copyFromDeviceNoSwap(const ResTable_config& o);
1252 
1253     void copyFromDtoH(const ResTable_config& o);
1254 
1255     void swapHtoD();
1256 
1257     int compare(const ResTable_config& o) const;
1258     int compareLogical(const ResTable_config& o) const;
1259 
1260     inline bool operator<(const ResTable_config& o) const { return compare(o) < 0; }
1261 
1262     // Flags indicating a set of config values.  These flag constants must
1263     // match the corresponding ones in android.content.pm.ActivityInfo and
1264     // attrs_manifest.xml.
1265     enum {
1266         CONFIG_MCC = ACONFIGURATION_MCC,
1267         CONFIG_MNC = ACONFIGURATION_MNC,
1268         CONFIG_LOCALE = ACONFIGURATION_LOCALE,
1269         CONFIG_TOUCHSCREEN = ACONFIGURATION_TOUCHSCREEN,
1270         CONFIG_KEYBOARD = ACONFIGURATION_KEYBOARD,
1271         CONFIG_KEYBOARD_HIDDEN = ACONFIGURATION_KEYBOARD_HIDDEN,
1272         CONFIG_NAVIGATION = ACONFIGURATION_NAVIGATION,
1273         CONFIG_ORIENTATION = ACONFIGURATION_ORIENTATION,
1274         CONFIG_DENSITY = ACONFIGURATION_DENSITY,
1275         CONFIG_SCREEN_SIZE = ACONFIGURATION_SCREEN_SIZE,
1276         CONFIG_SMALLEST_SCREEN_SIZE = ACONFIGURATION_SMALLEST_SCREEN_SIZE,
1277         CONFIG_VERSION = ACONFIGURATION_VERSION,
1278         CONFIG_SCREEN_LAYOUT = ACONFIGURATION_SCREEN_LAYOUT,
1279         CONFIG_UI_MODE = ACONFIGURATION_UI_MODE,
1280         CONFIG_LAYOUTDIR = ACONFIGURATION_LAYOUTDIR,
1281         CONFIG_SCREEN_ROUND = ACONFIGURATION_SCREEN_ROUND,
1282         CONFIG_COLOR_MODE = ACONFIGURATION_COLOR_MODE,
1283         CONFIG_GRAMMATICAL_GENDER = ACONFIGURATION_GRAMMATICAL_GENDER,
1284     };
1285 
1286     // Compare two configuration, returning CONFIG_* flags set for each value
1287     // that is different.
1288     int diff(const ResTable_config& o) const;
1289 
1290     // Return true if 'this' is more specific than 'o'.
1291     bool isMoreSpecificThan(const ResTable_config& o) const;
1292 
1293     // Return true if 'this' is a better match than 'o' for the 'requested'
1294     // configuration.  This assumes that match() has already been used to
1295     // remove any configurations that don't match the requested configuration
1296     // at all; if they are not first filtered, non-matching results can be
1297     // considered better than matching ones.
1298     // The general rule per attribute: if the request cares about an attribute
1299     // (it normally does), if the two (this and o) are equal it's a tie.  If
1300     // they are not equal then one must be generic because only generic and
1301     // '==requested' will pass the match() call.  So if this is not generic,
1302     // it wins.  If this IS generic, o wins (return false).
1303     bool isBetterThan(const ResTable_config& o, const ResTable_config* requested) const;
1304 
1305     // Return true if 'this' can be considered a match for the parameters in
1306     // 'settings'.
1307     // Note this is asymetric.  A default piece of data will match every request
1308     // but a request for the default should not match odd specifics
1309     // (ie, request with no mcc should not match a particular mcc's data)
1310     // settings is the requested settings
1311     bool match(const ResTable_config& settings) const;
1312 
1313     // Get the string representation of the locale component of this
1314     // Config. The maximum size of this representation will be
1315     // |RESTABLE_MAX_LOCALE_LEN| (including a terminating '\0').
1316     //
1317     // Example: en-US, en-Latn-US, en-POSIX.
1318     //
1319     // If canonicalize is set, Tagalog (tl) locales get converted
1320     // to Filipino (fil).
1321     void getBcp47Locale(char* out, bool canonicalize=false) const;
1322 
1323     // Append to str the resource-qualifer string representation of the
1324     // locale component of this Config. If the locale is only country
1325     // and language, it will look like en-rUS. If it has scripts and
1326     // variants, it will be a modified bcp47 tag: b+en+Latn+US.
1327     void appendDirLocale(String8& str) const;
1328 
1329     // Sets the values of language, region, script, variant and numbering
1330     // system to the well formed BCP 47 locale contained in |in|.
1331     // The input locale is assumed to be valid and no validation is performed.
1332     void setBcp47Locale(const char* in);
1333 
clearLocaleResTable_config1334     inline void clearLocale() {
1335         locale = 0;
1336         localeScriptWasComputed = false;
1337         memset(localeScript, 0, sizeof(localeScript));
1338         memset(localeVariant, 0, sizeof(localeVariant));
1339         memset(localeNumberingSystem, 0, sizeof(localeNumberingSystem));
1340     }
1341 
computeScriptResTable_config1342     inline void computeScript() {
1343         localeDataComputeScript(localeScript, language, country);
1344     }
1345 
1346     // Get the 2 or 3 letter language code of this configuration. Trailing
1347     // bytes are set to '\0'.
1348     size_t unpackLanguage(char language[4]) const;
1349     // Get the 2 or 3 letter language code of this configuration. Trailing
1350     // bytes are set to '\0'.
1351     size_t unpackRegion(char region[4]) const;
1352 
1353     // Sets the language code of this configuration to the first three
1354     // chars at |language|.
1355     //
1356     // If |language| is a 2 letter code, the trailing byte must be '\0' or
1357     // the BCP-47 separator '-'.
1358     void packLanguage(const char* language);
1359     // Sets the region code of this configuration to the first three bytes
1360     // at |region|. If |region| is a 2 letter code, the trailing byte must be '\0'
1361     // or the BCP-47 separator '-'.
1362     void packRegion(const char* region);
1363 
1364     // Returns a positive integer if this config is more specific than |o|
1365     // with respect to their locales, a negative integer if |o| is more specific
1366     // and 0 if they're equally specific.
1367     int isLocaleMoreSpecificThan(const ResTable_config &o) const;
1368 
1369     // Returns an integer representng the imporance score of the configuration locale.
1370     int getImportanceScoreOfLocale() const;
1371 
1372     // Return true if 'this' is a better locale match than 'o' for the
1373     // 'requested' configuration. Similar to isBetterThan(), this assumes that
1374     // match() has already been used to remove any configurations that don't
1375     // match the requested configuration at all.
1376     bool isLocaleBetterThan(const ResTable_config& o, const ResTable_config* requested) const;
1377 
1378     String8 toString() const;
1379 };
1380 
1381 /**
1382  * A specification of the resources defined by a particular type.
1383  *
1384  * There should be one of these chunks for each resource type.
1385  *
1386  * This structure is followed by an array of integers providing the set of
1387  * configuration change flags (ResTable_config::CONFIG_*) that have multiple
1388  * resources for that configuration.  In addition, the high bit is set if that
1389  * resource has been made public.
1390  */
1391 struct ResTable_typeSpec
1392 {
1393     struct ResChunk_header header;
1394 
1395     // The type identifier this chunk is holding.  Type IDs start
1396     // at 1 (corresponding to the value of the type bits in a
1397     // resource identifier).  0 is invalid.
1398     uint8_t id;
1399 
1400     // Must be 0.
1401     uint8_t res0;
1402     // Must be 0.
1403     uint16_t res1;
1404 
1405     // Number of uint32_t entry configuration masks that follow.
1406     uint32_t entryCount;
1407 
1408     enum : uint32_t {
1409         // Additional flag indicating an entry is public.
1410         SPEC_PUBLIC = 0x40000000u,
1411 
1412         // Additional flag indicating the resource id for this resource may change in a future
1413         // build. If this flag is set, the SPEC_PUBLIC flag is also set since the resource must be
1414         // public to be exposed as an API to other applications.
1415         SPEC_STAGED_API = 0x20000000u,
1416     };
1417 };
1418 
1419 /**
1420  * A collection of resource entries for a particular resource data
1421  * type.
1422  *
1423  * If the flag FLAG_SPARSE is not set in `flags`, then this struct is
1424  * followed by an array of uint32_t defining the resource
1425  * values, corresponding to the array of type strings in the
1426  * ResTable_package::typeStrings string block. Each of these hold an
1427  * index from entriesStart; a value of NO_ENTRY means that entry is
1428  * not defined.
1429  *
1430  * If the flag FLAG_SPARSE is set in `flags`, then this struct is followed
1431  * by an array of ResTable_sparseTypeEntry defining only the entries that
1432  * have values for this type. Each entry is sorted by their entry ID such
1433  * that a binary search can be performed over the entries. The ID and offset
1434  * are encoded in a uint32_t. See ResTabe_sparseTypeEntry.
1435  *
1436  * There may be multiple of these chunks for a particular resource type,
1437  * supply different configuration variations for the resource values of
1438  * that type.
1439  *
1440  * It would be nice to have an additional ordered index of entries, so
1441  * we can do a binary search if trying to find a resource by string name.
1442  */
1443 struct ResTable_type
1444 {
1445     struct ResChunk_header header;
1446 
1447     enum {
1448         NO_ENTRY = 0xFFFFFFFF
1449     };
1450 
1451     // The type identifier this chunk is holding.  Type IDs start
1452     // at 1 (corresponding to the value of the type bits in a
1453     // resource identifier).  0 is invalid.
1454     uint8_t id;
1455 
1456     enum {
1457         // If set, the entry is sparse, and encodes both the entry ID and offset into each entry,
1458         // and a binary search is used to find the key. Only available on platforms >= O.
1459         // Mark any types that use this with a v26 qualifier to prevent runtime issues on older
1460         // platforms.
1461         FLAG_SPARSE = 0x01,
1462 
1463         // If set, the offsets to the entries are encoded in 16-bit, real_offset = offset * 4u
1464         // An 16-bit offset of 0xffffu means a NO_ENTRY
1465         FLAG_OFFSET16 = 0x02,
1466     };
1467     uint8_t flags;
1468 
1469     // Must be 0.
1470     uint16_t reserved;
1471 
1472     // Number of uint32_t entry indices that follow.
1473     uint32_t entryCount;
1474 
1475     // Offset from header where ResTable_entry data starts.
1476     uint32_t entriesStart;
1477 
1478     // Configuration this collection of entries is designed for. This must always be last.
1479     ResTable_config config;
1480 };
1481 
1482 // Convert a 16-bit offset to 32-bit if FLAG_OFFSET16 is set
offset_from16(uint16_t off16)1483 static inline uint32_t offset_from16(uint16_t off16) {
1484     return dtohs(off16) == 0xffffu ? ResTable_type::NO_ENTRY : dtohs(off16) * 4u;
1485 }
1486 
1487 // The minimum size required to read any version of ResTable_type.
1488 constexpr size_t kResTableTypeMinSize =
1489     sizeof(ResTable_type) - sizeof(ResTable_config) + sizeof(ResTable_config::size);
1490 
1491 // Assert that the ResTable_config is always the last field. This poses a problem for extending
1492 // ResTable_type in the future, as ResTable_config is variable (over different releases).
1493 static_assert(sizeof(ResTable_type) == offsetof(ResTable_type, config) + sizeof(ResTable_config),
1494               "ResTable_config must be last field in ResTable_type");
1495 
1496 /**
1497  * An entry in a ResTable_type with the flag `FLAG_SPARSE` set.
1498  */
1499 union ResTable_sparseTypeEntry {
1500     // Holds the raw uint32_t encoded value. Do not read this.
1501     uint32_t entry;
1502     struct {
1503         // The index of the entry.
1504         uint16_t idx;
1505 
1506         // The offset from ResTable_type::entriesStart, divided by 4.
1507         uint16_t offset;
1508     };
1509 };
1510 
1511 static_assert(sizeof(ResTable_sparseTypeEntry) == sizeof(uint32_t),
1512         "ResTable_sparseTypeEntry must be 4 bytes in size");
1513 
1514 struct ResTable_map_entry;
1515 
1516 /**
1517  * This is the beginning of information about an entry in the resource
1518  * table.  It holds the reference to the name of this entry, and is
1519  * immediately followed by one of:
1520  *   * A Res_value structure, if FLAG_COMPLEX is -not- set.
1521  *   * An array of ResTable_map structures, if FLAG_COMPLEX is set.
1522  *     These supply a set of name/value mappings of data.
1523  *   * If FLAG_COMPACT is set, this entry is a compact entry for
1524  *     simple values only
1525  */
1526 union ResTable_entry
1527 {
1528     enum {
1529         // If set, this is a complex entry, holding a set of name/value
1530         // mappings.  It is followed by an array of ResTable_map structures.
1531         FLAG_COMPLEX = 0x0001,
1532         // If set, this resource has been declared public, so libraries
1533         // are allowed to reference it.
1534         FLAG_PUBLIC = 0x0002,
1535         // If set, this is a weak resource and may be overriden by strong
1536         // resources of the same name/type. This is only useful during
1537         // linking with other resource tables.
1538         FLAG_WEAK = 0x0004,
1539         // If set, this is a compact entry with data type and value directly
1540         // encoded in the this entry, see ResTable_entry::compact
1541         FLAG_COMPACT = 0x0008,
1542     };
1543 
1544     struct Full {
1545         // Number of bytes in this structure.
1546         uint16_t size;
1547 
1548         uint16_t flags;
1549 
1550         // Reference into ResTable_package::keyStrings identifying this entry.
1551         struct ResStringPool_ref key;
1552     } full;
1553 
1554     /* A compact entry is indicated by FLAG_COMPACT, with flags at the same
1555      * offset as a normal entry. This is only for simple data values where
1556      *
1557      * - size for entry or value can be inferred (both being 8 bytes).
1558      * - key index is encoded in 16-bit
1559      * - dataType is encoded as the higher 8-bit of flags
1560      * - data is encoded directly in this entry
1561      */
1562     struct Compact {
1563         uint16_t key;
1564         uint16_t flags;
1565         uint32_t data;
1566     } compact;
1567 
flags()1568     uint16_t flags()  const { return dtohs(full.flags); };
is_compact()1569     bool is_compact() const { return flags() & FLAG_COMPACT; }
is_complex()1570     bool is_complex() const { return flags() & FLAG_COMPLEX; }
1571 
size()1572     size_t size() const {
1573         return is_compact() ? sizeof(ResTable_entry) : dtohs(this->full.size);
1574     }
1575 
key()1576     uint32_t key() const {
1577         return is_compact() ? dtohs(this->compact.key) : dtohl(this->full.key.index);
1578     }
1579 
1580     /* Always verify the memory associated with this entry and its value
1581      * before calling value() or map_entry()
1582      */
value()1583     Res_value value() const {
1584         Res_value v;
1585         if (is_compact()) {
1586             v.size = sizeof(Res_value);
1587             v.res0 = 0;
1588             v.data = dtohl(this->compact.data);
1589             v.dataType = dtohs(compact.flags) >> 8;
1590         } else {
1591             auto vaddr = reinterpret_cast<const uint8_t*>(this) + dtohs(this->full.size);
1592             auto value = reinterpret_cast<const Res_value*>(vaddr);
1593             v.size = dtohs(value->size);
1594             v.res0 = value->res0;
1595             v.data = dtohl(value->data);
1596             v.dataType = value->dataType;
1597         }
1598         return v;
1599     }
1600 
map_entry()1601     const ResTable_map_entry* map_entry() const {
1602         return is_complex() && !is_compact() ?
1603             reinterpret_cast<const ResTable_map_entry*>(this) : nullptr;
1604     }
1605 };
1606 
1607 /* Make sure size of ResTable_entry::Full and ResTable_entry::Compact
1608  * be the same as ResTable_entry. This is to allow iteration of entries
1609  * to work in either cases.
1610  *
1611  * The offset of flags must be at the same place for both structures,
1612  * to ensure the correct reading to decide whether this is a full entry
1613  * or a compact entry.
1614  */
1615 static_assert(sizeof(ResTable_entry) == sizeof(ResTable_entry::Full));
1616 static_assert(sizeof(ResTable_entry) == sizeof(ResTable_entry::Compact));
1617 static_assert(offsetof(ResTable_entry, full.flags) == offsetof(ResTable_entry, compact.flags));
1618 
1619 /**
1620  * Extended form of a ResTable_entry for map entries, defining a parent map
1621  * resource from which to inherit values.
1622  */
1623 struct ResTable_map_entry : public ResTable_entry::Full
1624 {
1625     // Resource identifier of the parent mapping, or 0 if there is none.
1626     // This is always treated as a TYPE_DYNAMIC_REFERENCE.
1627     ResTable_ref parent;
1628     // Number of name/value pairs that follow for FLAG_COMPLEX.
1629     uint32_t count;
1630 };
1631 
1632 /**
1633  * A single name/value mapping that is part of a complex resource
1634  * entry.
1635  */
1636 struct ResTable_map
1637 {
1638     // The resource identifier defining this mapping's name.  For attribute
1639     // resources, 'name' can be one of the following special resource types
1640     // to supply meta-data about the attribute; for all other resource types
1641     // it must be an attribute resource.
1642     ResTable_ref name;
1643 
1644     // Special values for 'name' when defining attribute resources.
1645     enum {
1646         // This entry holds the attribute's type code.
1647         ATTR_TYPE = Res_MAKEINTERNAL(0),
1648 
1649         // For integral attributes, this is the minimum value it can hold.
1650         ATTR_MIN = Res_MAKEINTERNAL(1),
1651 
1652         // For integral attributes, this is the maximum value it can hold.
1653         ATTR_MAX = Res_MAKEINTERNAL(2),
1654 
1655         // Localization of this resource is can be encouraged or required with
1656         // an aapt flag if this is set
1657         ATTR_L10N = Res_MAKEINTERNAL(3),
1658 
1659         // for plural support, see android.content.res.PluralRules#attrForQuantity(int)
1660         ATTR_OTHER = Res_MAKEINTERNAL(4),
1661         ATTR_ZERO = Res_MAKEINTERNAL(5),
1662         ATTR_ONE = Res_MAKEINTERNAL(6),
1663         ATTR_TWO = Res_MAKEINTERNAL(7),
1664         ATTR_FEW = Res_MAKEINTERNAL(8),
1665         ATTR_MANY = Res_MAKEINTERNAL(9)
1666 
1667     };
1668 
1669     // Bit mask of allowed types, for use with ATTR_TYPE.
1670     enum {
1671         // No type has been defined for this attribute, use generic
1672         // type handling.  The low 16 bits are for types that can be
1673         // handled generically; the upper 16 require additional information
1674         // in the bag so can not be handled generically for TYPE_ANY.
1675         TYPE_ANY = 0x0000FFFF,
1676 
1677         // Attribute holds a references to another resource.
1678         TYPE_REFERENCE = 1<<0,
1679 
1680         // Attribute holds a generic string.
1681         TYPE_STRING = 1<<1,
1682 
1683         // Attribute holds an integer value.  ATTR_MIN and ATTR_MIN can
1684         // optionally specify a constrained range of possible integer values.
1685         TYPE_INTEGER = 1<<2,
1686 
1687         // Attribute holds a boolean integer.
1688         TYPE_BOOLEAN = 1<<3,
1689 
1690         // Attribute holds a color value.
1691         TYPE_COLOR = 1<<4,
1692 
1693         // Attribute holds a floating point value.
1694         TYPE_FLOAT = 1<<5,
1695 
1696         // Attribute holds a dimension value, such as "20px".
1697         TYPE_DIMENSION = 1<<6,
1698 
1699         // Attribute holds a fraction value, such as "20%".
1700         TYPE_FRACTION = 1<<7,
1701 
1702         // Attribute holds an enumeration.  The enumeration values are
1703         // supplied as additional entries in the map.
1704         TYPE_ENUM = 1<<16,
1705 
1706         // Attribute holds a bitmaks of flags.  The flag bit values are
1707         // supplied as additional entries in the map.
1708         TYPE_FLAGS = 1<<17
1709     };
1710 
1711     // Enum of localization modes, for use with ATTR_L10N.
1712     enum {
1713         L10N_NOT_REQUIRED = 0,
1714         L10N_SUGGESTED    = 1
1715     };
1716 
1717     // This mapping's value.
1718     Res_value value;
1719 };
1720 
1721 /**
1722  * A package-id to package name mapping for any shared libraries used
1723  * in this resource table. The package-id's encoded in this resource
1724  * table may be different than the id's assigned at runtime. We must
1725  * be able to translate the package-id's based on the package name.
1726  */
1727 struct ResTable_lib_header
1728 {
1729     struct ResChunk_header header;
1730 
1731     // The number of shared libraries linked in this resource table.
1732     uint32_t count;
1733 };
1734 
1735 /**
1736  * A shared library package-id to package name entry.
1737  */
1738 struct ResTable_lib_entry
1739 {
1740     // The package-id this shared library was assigned at build time.
1741     // We use a uint32 to keep the structure aligned on a uint32 boundary.
1742     uint32_t packageId;
1743 
1744     // The package name of the shared library. \0 terminated.
1745     uint16_t packageName[128];
1746 };
1747 
1748 /**
1749  * A map that allows rewriting staged (non-finalized) resource ids to their finalized counterparts.
1750  */
1751 struct ResTable_staged_alias_header
1752 {
1753     struct ResChunk_header header;
1754 
1755     // The number of ResTable_staged_alias_entry that follow this header.
1756     uint32_t count;
1757 };
1758 
1759 /**
1760  * Maps the staged (non-finalized) resource id to its finalized resource id.
1761  */
1762 struct ResTable_staged_alias_entry
1763 {
1764   // The compile-time staged resource id to rewrite.
1765   uint32_t stagedResId;
1766 
1767   // The compile-time finalized resource id to which the staged resource id should be rewritten.
1768   uint32_t finalizedResId;
1769 };
1770 
1771 /**
1772  * Specifies the set of resources that are explicitly allowed to be overlaid by RROs.
1773  */
1774 struct ResTable_overlayable_header
1775 {
1776   struct ResChunk_header header;
1777 
1778   // The name of the overlayable set of resources that overlays target.
1779   uint16_t name[256];
1780 
1781  // The component responsible for enabling and disabling overlays targeting this chunk.
1782   uint16_t actor[256];
1783 };
1784 
1785 /**
1786  * Holds a list of resource ids that are protected from being overlaid by a set of policies. If
1787  * the overlay fulfils at least one of the policies, then the overlay can overlay the list of
1788  * resources.
1789  */
1790 struct ResTable_overlayable_policy_header
1791 {
1792   /**
1793    * Flags for a bitmask for all possible overlayable policy options.
1794    *
1795    * Any changes to this set should also update aidl/android/os/OverlayablePolicy.aidl
1796    */
1797   enum PolicyFlags : uint32_t {
1798     // Base
1799     NONE = 0x00000000,
1800 
1801     // Any overlay can overlay these resources.
1802     PUBLIC = 0x00000001,
1803 
1804     // The overlay must reside of the system partition or must have existed on the system partition
1805     // before an upgrade to overlay these resources.
1806     SYSTEM_PARTITION = 0x00000002,
1807 
1808     // The overlay must reside of the vendor partition or must have existed on the vendor partition
1809     // before an upgrade to overlay these resources.
1810     VENDOR_PARTITION = 0x00000004,
1811 
1812     // The overlay must reside of the product partition or must have existed on the product
1813     // partition before an upgrade to overlay these resources.
1814     PRODUCT_PARTITION = 0x00000008,
1815 
1816     // The overlay must be signed with the same signature as the package containing the target
1817     // resource
1818     SIGNATURE = 0x00000010,
1819 
1820     // The overlay must reside of the odm partition or must have existed on the odm
1821     // partition before an upgrade to overlay these resources.
1822     ODM_PARTITION = 0x00000020,
1823 
1824     // The overlay must reside of the oem partition or must have existed on the oem
1825     // partition before an upgrade to overlay these resources.
1826     OEM_PARTITION = 0x00000040,
1827 
1828     // The overlay must be signed with the same signature as the actor declared for the target
1829     // resource
1830     ACTOR_SIGNATURE = 0x00000080,
1831 
1832     // The overlay must be signed with the same signature as the reference package declared
1833     // in the SystemConfig
1834     CONFIG_SIGNATURE = 0x00000100,
1835   };
1836 
1837   using PolicyBitmask = uint32_t;
1838 
1839   struct ResChunk_header header;
1840 
1841   PolicyFlags policy_flags;
1842 
1843   // The number of ResTable_ref that follow this header.
1844   uint32_t entry_count;
1845 };
1846 
1847 inline ResTable_overlayable_policy_header::PolicyFlags& operator |=(
1848     ResTable_overlayable_policy_header::PolicyFlags& first,
1849     ResTable_overlayable_policy_header::PolicyFlags second) {
1850   first = static_cast<ResTable_overlayable_policy_header::PolicyFlags>(first | second);
1851   return first;
1852 }
1853 
1854 using ResourceId = uint32_t;  // 0xpptteeee
1855 
1856 using DataType = uint8_t;    // Res_value::dataType
1857 using DataValue = uint32_t;  // Res_value::data
1858 
1859 struct OverlayManifestInfo {
1860   std::string package_name;     // NOLINT(misc-non-private-member-variables-in-classes)
1861   std::string name;             // NOLINT(misc-non-private-member-variables-in-classes)
1862   std::string target_package;   // NOLINT(misc-non-private-member-variables-in-classes)
1863   std::string target_name;      // NOLINT(misc-non-private-member-variables-in-classes)
1864   ResourceId resource_mapping;  // NOLINT(misc-non-private-member-variables-in-classes)
1865 };
1866 
1867 struct FabricatedOverlayEntryParameters {
1868   std::string resource_name;
1869   DataType data_type;
1870   DataValue data_value;
1871   std::string data_string_value;
1872   std::optional<android::base::borrowed_fd> data_binary_value;
1873   std::string configuration;
1874 };
1875 
1876 class AssetManager2;
1877 
1878 /**
1879  * Holds the shared library ID table. Shared libraries are assigned package IDs at
1880  * build time, but they may be loaded in a different order, so we need to maintain
1881  * a mapping of build-time package ID to run-time assigned package ID.
1882  *
1883  * Dynamic references are not currently supported in overlays. Only the base package
1884  * may have dynamic references.
1885  */
1886 class DynamicRefTable
1887 {
1888     friend class AssetManager2;
1889 public:
1890     DynamicRefTable();
1891     DynamicRefTable(uint8_t packageId, bool appAsLib);
1892     virtual ~DynamicRefTable() = default;
1893 
1894     // Loads an unmapped reference table from the package.
1895     status_t load(const ResTable_lib_header* const header);
1896 
1897     // Adds mappings from the other DynamicRefTable
1898     status_t addMappings(const DynamicRefTable& other);
1899 
1900     // Creates a mapping from build-time package ID to run-time package ID for
1901     // the given package.
1902     status_t addMapping(const String16& packageName, uint8_t packageId);
1903 
1904     void addMapping(uint8_t buildPackageId, uint8_t runtimePackageId);
1905 
1906     using AliasMap = std::vector<std::pair<uint32_t, uint32_t>>;
setAliases(AliasMap aliases)1907     void setAliases(AliasMap aliases) {
1908         mAliasId = std::move(aliases);
1909     }
1910 
1911     // Returns whether or not the value must be looked up.
1912     bool requiresLookup(const Res_value* value) const;
1913 
1914     // Performs the actual conversion of build-time resource ID to run-time
1915     // resource ID.
1916     virtual status_t lookupResourceId(uint32_t* resId) const;
1917     status_t lookupResourceValue(Res_value* value) const;
1918 
entries()1919     inline const KeyedVector<String16, uint8_t>& entries() const {
1920         return mEntries;
1921     }
1922 
1923    private:
1924     uint8_t mLookupTable[256];
1925     uint8_t mAssignedPackageId;
1926     bool mAppAsLib;
1927     KeyedVector<String16, uint8_t> mEntries;
1928     AliasMap mAliasId;
1929 };
1930 
1931 bool U16StringToInt(const char16_t* s, size_t len, Res_value* outValue);
1932 
1933 template<typename TChar, typename E>
UnpackOptionalString(base::expected<BasicStringPiece<TChar>,E> && result,size_t * outLen)1934 static const TChar* UnpackOptionalString(base::expected<BasicStringPiece<TChar>, E>&& result,
1935                                          size_t* outLen) {
1936   if (result.has_value()) {
1937     *outLen = result->size();
1938     return result->data();
1939   }
1940   return NULL;
1941 }
1942 
1943 /**
1944  * Convenience class for accessing data in a ResTable resource.
1945  */
1946 class ResTable
1947 {
1948 public:
1949     ResTable();
1950     ResTable(const void* data, size_t size, const int32_t cookie,
1951              bool copyData=false);
1952     ~ResTable();
1953 
1954     status_t add(const void* data, size_t size, const int32_t cookie=-1, bool copyData=false);
1955     status_t add(const void* data, size_t size, const void* idmapData, size_t idmapDataSize,
1956             const int32_t cookie=-1, bool copyData=false, bool appAsLib=false);
1957 
1958     status_t add(Asset* asset, const int32_t cookie=-1, bool copyData=false);
1959     status_t add(Asset* asset, Asset* idmapAsset, const int32_t cookie=-1, bool copyData=false,
1960             bool appAsLib=false, bool isSystemAsset=false);
1961 
1962     status_t add(ResTable* src, bool isSystemAsset=false);
1963     status_t addEmpty(const int32_t cookie);
1964 
1965     status_t getError() const;
1966 
1967     void uninit();
1968 
1969     struct resource_name
1970     {
1971         const char16_t* package = NULL;
1972         size_t packageLen;
1973         const char16_t* type = NULL;
1974         const char* type8 = NULL;
1975         size_t typeLen;
1976         const char16_t* name = NULL;
1977         const char* name8 = NULL;
1978         size_t nameLen;
1979     };
1980 
1981     bool getResourceName(uint32_t resID, bool allowUtf8, resource_name* outName) const;
1982 
1983     bool getResourceFlags(uint32_t resID, uint32_t* outFlags) const;
1984 
1985     /**
1986      * Returns whether or not the package for the given resource has been dynamically assigned.
1987      * If the resource can't be found, returns 'false'.
1988      */
1989     bool isResourceDynamic(uint32_t resID) const;
1990 
1991     /**
1992      * Returns whether or not the given package has been dynamically assigned.
1993      * If the package can't be found, returns 'false'.
1994      */
1995     bool isPackageDynamic(uint8_t packageID) const;
1996 
1997     /**
1998      * Retrieve the value of a resource.  If the resource is found, returns a
1999      * value >= 0 indicating the table it is in (for use with
2000      * getTableStringBlock() and getTableCookie()) and fills in 'outValue'.  If
2001      * not found, returns a negative error code.
2002      *
2003      * Note that this function does not do reference traversal.  If you want
2004      * to follow references to other resources to get the "real" value to
2005      * use, you need to call resolveReference() after this function.
2006      *
2007      * @param resID The desired resoruce identifier.
2008      * @param outValue Filled in with the resource data that was found.
2009      *
2010      * @return ssize_t Either a >= 0 table index or a negative error code.
2011      */
2012     ssize_t getResource(uint32_t resID, Res_value* outValue, bool mayBeBag = false,
2013                     uint16_t density = 0,
2014                     uint32_t* outSpecFlags = NULL,
2015                     ResTable_config* outConfig = NULL) const;
2016 
2017     inline ssize_t getResource(const ResTable_ref& res, Res_value* outValue,
2018             uint32_t* outSpecFlags=NULL) const {
2019         return getResource(res.ident, outValue, false, 0, outSpecFlags, NULL);
2020     }
2021 
2022     ssize_t resolveReference(Res_value* inOutValue,
2023                              ssize_t blockIndex,
2024                              uint32_t* outLastRef = NULL,
2025                              uint32_t* inoutTypeSpecFlags = NULL,
2026                              ResTable_config* outConfig = NULL) const;
2027 
2028     enum {
2029         TMP_BUFFER_SIZE = 16
2030     };
2031     const char16_t* valueToString(const Res_value* value, size_t stringBlock,
2032                                   char16_t tmpBuffer[TMP_BUFFER_SIZE],
2033                                   size_t* outLen) const;
2034 
2035     struct bag_entry {
2036         ssize_t stringBlock;
2037         ResTable_map map;
2038     };
2039 
2040     /**
2041      * Retrieve the bag of a resource.  If the resoruce is found, returns the
2042      * number of bags it contains and 'outBag' points to an array of their
2043      * values.  If not found, a negative error code is returned.
2044      *
2045      * Note that this function -does- do reference traversal of the bag data.
2046      *
2047      * @param resID The desired resource identifier.
2048      * @param outBag Filled inm with a pointer to the bag mappings.
2049      *
2050      * @return ssize_t Either a >= 0 bag count of negative error code.
2051      */
2052     ssize_t lockBag(uint32_t resID, const bag_entry** outBag) const;
2053 
2054     void unlockBag(const bag_entry* bag) const;
2055 
2056     void lock() const;
2057 
2058     ssize_t getBagLocked(uint32_t resID, const bag_entry** outBag,
2059             uint32_t* outTypeSpecFlags=NULL) const;
2060 
2061     void unlock() const;
2062 
2063     class Theme {
2064     public:
2065         explicit Theme(const ResTable& table);
2066         ~Theme();
2067 
getResTable()2068         inline const ResTable& getResTable() const { return mTable; }
2069 
2070         status_t applyStyle(uint32_t resID, bool force=false);
2071         status_t setTo(const Theme& other);
2072         status_t clear();
2073 
2074         /**
2075          * Retrieve a value in the theme.  If the theme defines this
2076          * value, returns a value >= 0 indicating the table it is in
2077          * (for use with getTableStringBlock() and getTableCookie) and
2078          * fills in 'outValue'.  If not found, returns a negative error
2079          * code.
2080          *
2081          * Note that this function does not do reference traversal.  If you want
2082          * to follow references to other resources to get the "real" value to
2083          * use, you need to call resolveReference() after this function.
2084          *
2085          * @param resID A resource identifier naming the desired theme
2086          *              attribute.
2087          * @param outValue Filled in with the theme value that was
2088          *                 found.
2089          *
2090          * @return ssize_t Either a >= 0 table index or a negative error code.
2091          */
2092         ssize_t getAttribute(uint32_t resID, Res_value* outValue,
2093                 uint32_t* outTypeSpecFlags = NULL) const;
2094 
2095         /**
2096          * This is like ResTable::resolveReference(), but also takes
2097          * care of resolving attribute references to the theme.
2098          */
2099         ssize_t resolveAttributeReference(Res_value* inOutValue,
2100                 ssize_t blockIndex, uint32_t* outLastRef = NULL,
2101                 uint32_t* inoutTypeSpecFlags = NULL,
2102                 ResTable_config* inoutConfig = NULL) const;
2103 
2104         /**
2105          * Returns a bit mask of configuration changes that will impact this
2106          * theme (and thus require completely reloading it).
2107          */
2108         uint32_t getChangingConfigurations() const;
2109 
2110         void dumpToLog() const;
2111 
2112     private:
2113         Theme(const Theme&);
2114         Theme& operator=(const Theme&);
2115 
2116         struct theme_entry {
2117             ssize_t stringBlock;
2118             uint32_t typeSpecFlags;
2119             Res_value value;
2120         };
2121 
2122         struct type_info {
2123             size_t numEntries;
2124             theme_entry* entries;
2125         };
2126 
2127         struct package_info {
2128             type_info types[Res_MAXTYPE + 1];
2129         };
2130 
2131         void free_package(package_info* pi);
2132         package_info* copy_package(package_info* pi);
2133 
2134         const ResTable& mTable;
2135         package_info*   mPackages[Res_MAXPACKAGE];
2136         uint32_t        mTypeSpecFlags;
2137     };
2138 
2139     void setParameters(const ResTable_config* params);
2140     void getParameters(ResTable_config* params) const;
2141 
2142     // Retrieve an identifier (which can be passed to getResource)
2143     // for a given resource name.  The 'name' can be fully qualified
2144     // (<package>:<type>.<basename>) or the package or type components
2145     // can be dropped if default values are supplied here.
2146     //
2147     // Returns 0 if no such resource was found, else a valid resource ID.
2148     uint32_t identifierForName(const char16_t* name, size_t nameLen,
2149                                const char16_t* type = 0, size_t typeLen = 0,
2150                                const char16_t* defPackage = 0,
2151                                size_t defPackageLen = 0,
2152                                uint32_t* outTypeSpecFlags = NULL) const;
2153 
2154     static bool expandResourceRef(const char16_t* refStr, size_t refLen,
2155                                   String16* outPackage,
2156                                   String16* outType,
2157                                   String16* outName,
2158                                   const String16* defType = NULL,
2159                                   const String16* defPackage = NULL,
2160                                   const char** outErrorMsg = NULL,
2161                                   bool* outPublicOnly = NULL);
2162 
2163     static bool stringToInt(const char16_t* s, size_t len, Res_value* outValue);
2164     static bool stringToFloat(const char16_t* s, size_t len, Res_value* outValue);
2165 
2166     // Used with stringToValue.
2167     class Accessor
2168     {
2169     public:
~Accessor()2170         inline virtual ~Accessor() { }
2171 
2172         virtual const String16& getAssetsPackage() const = 0;
2173 
2174         virtual uint32_t getCustomResource(const String16& package,
2175                                            const String16& type,
2176                                            const String16& name) const = 0;
2177         virtual uint32_t getCustomResourceWithCreation(const String16& package,
2178                                                        const String16& type,
2179                                                        const String16& name,
2180                                                        const bool createIfNeeded = false) = 0;
2181         virtual uint32_t getRemappedPackage(uint32_t origPackage) const = 0;
2182         virtual bool getAttributeType(uint32_t attrID, uint32_t* outType) = 0;
2183         virtual bool getAttributeMin(uint32_t attrID, uint32_t* outMin) = 0;
2184         virtual bool getAttributeMax(uint32_t attrID, uint32_t* outMax) = 0;
2185         virtual bool getAttributeEnum(uint32_t attrID,
2186                                       const char16_t* name, size_t nameLen,
2187                                       Res_value* outValue) = 0;
2188         virtual bool getAttributeFlags(uint32_t attrID,
2189                                        const char16_t* name, size_t nameLen,
2190                                        Res_value* outValue) = 0;
2191         virtual uint32_t getAttributeL10N(uint32_t attrID) = 0;
2192         virtual bool getLocalizationSetting() = 0;
2193         virtual void reportError(void* accessorCookie, const char* fmt, ...) = 0;
2194     };
2195 
2196     // Convert a string to a resource value.  Handles standard "@res",
2197     // "#color", "123", and "0x1bd" types; performs escaping of strings.
2198     // The resulting value is placed in 'outValue'; if it is a string type,
2199     // 'outString' receives the string.  If 'attrID' is supplied, the value is
2200     // type checked against this attribute and it is used to perform enum
2201     // evaluation.  If 'acccessor' is supplied, it will be used to attempt to
2202     // resolve resources that do not exist in this ResTable.  If 'attrType' is
2203     // supplied, the value will be type checked for this format if 'attrID'
2204     // is not supplied or found.
2205     bool stringToValue(Res_value* outValue, String16* outString,
2206                        const char16_t* s, size_t len,
2207                        bool preserveSpaces, bool coerceType,
2208                        uint32_t attrID = 0,
2209                        const String16* defType = NULL,
2210                        const String16* defPackage = NULL,
2211                        Accessor* accessor = NULL,
2212                        void* accessorCookie = NULL,
2213                        uint32_t attrType = ResTable_map::TYPE_ANY,
2214                        bool enforcePrivate = true) const;
2215 
2216     // Perform processing of escapes and quotes in a string.
2217     static bool collectString(String16* outString,
2218                               const char16_t* s, size_t len,
2219                               bool preserveSpaces,
2220                               const char** outErrorMsg = NULL,
2221                               bool append = false);
2222 
2223     size_t getBasePackageCount() const;
2224     const String16 getBasePackageName(size_t idx) const;
2225     uint32_t getBasePackageId(size_t idx) const;
2226     uint32_t getLastTypeIdForPackage(size_t idx) const;
2227 
2228     // Return the number of resource tables that the object contains.
2229     size_t getTableCount() const;
2230     // Return the values string pool for the resource table at the given
2231     // index.  This string pool contains all of the strings for values
2232     // contained in the resource table -- that is the item values themselves,
2233     // but not the names their entries or types.
2234     const ResStringPool* getTableStringBlock(size_t index) const;
2235     // Return unique cookie identifier for the given resource table.
2236     int32_t getTableCookie(size_t index) const;
2237 
2238     const DynamicRefTable* getDynamicRefTableForCookie(int32_t cookie) const;
2239 
2240     // Return the configurations (ResTable_config) that we know about
2241     void getConfigurations(Vector<ResTable_config>* configs, bool ignoreMipmap=false,
2242             bool ignoreAndroidPackage=false, bool includeSystemConfigs=true) const;
2243 
2244     void getLocales(Vector<String8>* locales, bool includeSystemLocales=true,
2245             bool mergeEquivalentLangs=false) const;
2246 
2247     // Generate an idmap.
2248     //
2249     // Return value: on success: NO_ERROR; caller is responsible for free-ing
2250     // outData (using free(3)). On failure, any status_t value other than
2251     // NO_ERROR; the caller should not free outData.
2252     status_t createIdmap(const ResTable& targetResTable,
2253             uint32_t targetCrc, uint32_t overlayCrc,
2254             const char* targetPath, const char* overlayPath,
2255             void** outData, size_t* outSize) const;
2256 
2257     static const size_t IDMAP_HEADER_SIZE_BYTES = 4 * sizeof(uint32_t) + 2 * 256;
2258     static const uint32_t IDMAP_CURRENT_VERSION = 0x00000001;
2259 
2260     // Retrieve idmap meta-data.
2261     //
2262     // This function only requires the idmap header (the first
2263     // IDMAP_HEADER_SIZE_BYTES) bytes of an idmap file.
2264     static bool getIdmapInfo(const void* idmap, size_t size,
2265             uint32_t* pVersion,
2266             uint32_t* pTargetCrc, uint32_t* pOverlayCrc,
2267             String8* pTargetPath, String8* pOverlayPath);
2268 
2269     void print(bool inclValues) const;
2270     static String8 normalizeForOutput(const char* input);
2271 
2272 private:
2273     struct Header;
2274     struct Type;
2275     struct Entry;
2276     struct Package;
2277     struct PackageGroup;
2278     typedef Vector<Type*> TypeList;
2279 
2280     struct bag_set {
2281         size_t numAttrs;    // number in array
2282         size_t availAttrs;  // total space in array
2283         uint32_t typeSpecFlags;
2284         // Followed by 'numAttr' bag_entry structures.
2285     };
2286 
2287     /**
2288      * Configuration dependent cached data. This must be cleared when the configuration is
2289      * changed (setParameters).
2290      */
2291     struct TypeCacheEntry {
TypeCacheEntryTypeCacheEntry2292         TypeCacheEntry() : cachedBags(NULL) {}
2293 
2294         // Computed attribute bags for this type.
2295         bag_set** cachedBags;
2296 
2297         // Pre-filtered list of configurations (per asset path) that match the parameters set on this
2298         // ResTable.
2299         Vector<std::shared_ptr<Vector<const ResTable_type*>>> filteredConfigs;
2300     };
2301 
2302     status_t addInternal(const void* data, size_t size, const void* idmapData, size_t idmapDataSize,
2303             bool appAsLib, const int32_t cookie, bool copyData, bool isSystemAsset=false);
2304 
2305     ssize_t getResourcePackageIndex(uint32_t resID) const;
2306     ssize_t getResourcePackageIndexFromPackage(uint8_t packageID) const;
2307 
2308     status_t getEntry(
2309         const PackageGroup* packageGroup, int typeIndex, int entryIndex,
2310         const ResTable_config* config,
2311         Entry* outEntry) const;
2312 
2313     uint32_t findEntry(const PackageGroup* group, ssize_t typeIndex, const char16_t* name,
2314             size_t nameLen, uint32_t* outTypeSpecFlags) const;
2315 
2316     status_t parsePackage(
2317         const ResTable_package* const pkg, const Header* const header,
2318         bool appAsLib, bool isSystemAsset);
2319 
2320     void print_value(const Package* pkg, const Res_value& value) const;
2321 
2322     template <typename Func>
2323     void forEachConfiguration(bool ignoreMipmap, bool ignoreAndroidPackage,
2324                               bool includeSystemConfigs, const Func& f) const;
2325 
2326     mutable Mutex               mLock;
2327 
2328     // Mutex that controls access to the list of pre-filtered configurations
2329     // to check when looking up entries.
2330     // When iterating over a bag, the mLock mutex is locked. While mLock is locked,
2331     // we do resource lookups.
2332     // Mutex is not reentrant, so we must use a different lock than mLock.
2333     mutable Mutex               mFilteredConfigLock;
2334 
2335     status_t                    mError;
2336 
2337     ResTable_config             mParams;
2338 
2339     // Array of all resource tables.
2340     Vector<Header*>             mHeaders;
2341 
2342     // Array of packages in all resource tables.
2343     Vector<PackageGroup*>       mPackageGroups;
2344 
2345     // Mapping from resource package IDs to indices into the internal
2346     // package array.
2347     uint8_t                     mPackageMap[256];
2348 
2349     uint8_t                     mNextPackageId;
2350 };
2351 
2352 }   // namespace android
2353 
2354 #endif // _LIBS_UTILS_RESOURCE_TYPES_H
2355