1 /*
2 * Copyright (c) 2016 The WebRTC project authors. All Rights Reserved.
3 *
4 * Use of this source code is governed by a BSD-style license
5 * that can be found in the LICENSE file in the root of the source
6 * tree. An additional intellectual property rights grant can be found
7 * in the file PATENTS. All contributing project authors may
8 * be found in the AUTHORS file in the root of the source tree.
9 */
10
11 #include "modules/congestion_controller/goog_cc/trendline_estimator.h"
12
13 #include <math.h>
14
15 #include <algorithm>
16 #include <string>
17
18 #include "absl/strings/match.h"
19 #include "absl/types/optional.h"
20 #include "api/network_state_predictor.h"
21 #include "modules/remote_bitrate_estimator/test/bwe_test_logging.h"
22 #include "rtc_base/checks.h"
23 #include "rtc_base/experiments/struct_parameters_parser.h"
24 #include "rtc_base/logging.h"
25 #include "rtc_base/numerics/safe_minmax.h"
26
27 namespace webrtc {
28
29 namespace {
30
31 // Parameters for linear least squares fit of regression line to noisy data.
32 constexpr double kDefaultTrendlineSmoothingCoeff = 0.9;
33 constexpr double kDefaultTrendlineThresholdGain = 4.0;
34 const char kBweWindowSizeInPacketsExperiment[] =
35 "WebRTC-BweWindowSizeInPackets";
36
ReadTrendlineFilterWindowSize(const FieldTrialsView * key_value_config)37 size_t ReadTrendlineFilterWindowSize(const FieldTrialsView* key_value_config) {
38 std::string experiment_string =
39 key_value_config->Lookup(kBweWindowSizeInPacketsExperiment);
40 size_t window_size;
41 int parsed_values =
42 sscanf(experiment_string.c_str(), "Enabled-%zu", &window_size);
43 if (parsed_values == 1) {
44 if (window_size > 1)
45 return window_size;
46 RTC_LOG(LS_WARNING) << "Window size must be greater than 1.";
47 }
48 RTC_LOG(LS_WARNING) << "Failed to parse parameters for BweWindowSizeInPackets"
49 " experiment from field trial string. Using default.";
50 return TrendlineEstimatorSettings::kDefaultTrendlineWindowSize;
51 }
52
LinearFitSlope(const std::deque<TrendlineEstimator::PacketTiming> & packets)53 absl::optional<double> LinearFitSlope(
54 const std::deque<TrendlineEstimator::PacketTiming>& packets) {
55 RTC_DCHECK(packets.size() >= 2);
56 // Compute the "center of mass".
57 double sum_x = 0;
58 double sum_y = 0;
59 for (const auto& packet : packets) {
60 sum_x += packet.arrival_time_ms;
61 sum_y += packet.smoothed_delay_ms;
62 }
63 double x_avg = sum_x / packets.size();
64 double y_avg = sum_y / packets.size();
65 // Compute the slope k = \sum (x_i-x_avg)(y_i-y_avg) / \sum (x_i-x_avg)^2
66 double numerator = 0;
67 double denominator = 0;
68 for (const auto& packet : packets) {
69 double x = packet.arrival_time_ms;
70 double y = packet.smoothed_delay_ms;
71 numerator += (x - x_avg) * (y - y_avg);
72 denominator += (x - x_avg) * (x - x_avg);
73 }
74 if (denominator == 0)
75 return absl::nullopt;
76 return numerator / denominator;
77 }
78
ComputeSlopeCap(const std::deque<TrendlineEstimator::PacketTiming> & packets,const TrendlineEstimatorSettings & settings)79 absl::optional<double> ComputeSlopeCap(
80 const std::deque<TrendlineEstimator::PacketTiming>& packets,
81 const TrendlineEstimatorSettings& settings) {
82 RTC_DCHECK(1 <= settings.beginning_packets &&
83 settings.beginning_packets < packets.size());
84 RTC_DCHECK(1 <= settings.end_packets &&
85 settings.end_packets < packets.size());
86 RTC_DCHECK(settings.beginning_packets + settings.end_packets <=
87 packets.size());
88 TrendlineEstimator::PacketTiming early = packets[0];
89 for (size_t i = 1; i < settings.beginning_packets; ++i) {
90 if (packets[i].raw_delay_ms < early.raw_delay_ms)
91 early = packets[i];
92 }
93 size_t late_start = packets.size() - settings.end_packets;
94 TrendlineEstimator::PacketTiming late = packets[late_start];
95 for (size_t i = late_start + 1; i < packets.size(); ++i) {
96 if (packets[i].raw_delay_ms < late.raw_delay_ms)
97 late = packets[i];
98 }
99 if (late.arrival_time_ms - early.arrival_time_ms < 1) {
100 return absl::nullopt;
101 }
102 return (late.raw_delay_ms - early.raw_delay_ms) /
103 (late.arrival_time_ms - early.arrival_time_ms) +
104 settings.cap_uncertainty;
105 }
106
107 constexpr double kMaxAdaptOffsetMs = 15.0;
108 constexpr double kOverUsingTimeThreshold = 10;
109 constexpr int kMinNumDeltas = 60;
110 constexpr int kDeltaCounterMax = 1000;
111
112 } // namespace
113
114 constexpr char TrendlineEstimatorSettings::kKey[];
115
TrendlineEstimatorSettings(const FieldTrialsView * key_value_config)116 TrendlineEstimatorSettings::TrendlineEstimatorSettings(
117 const FieldTrialsView* key_value_config) {
118 if (absl::StartsWith(
119 key_value_config->Lookup(kBweWindowSizeInPacketsExperiment),
120 "Enabled")) {
121 window_size = ReadTrendlineFilterWindowSize(key_value_config);
122 }
123 Parser()->Parse(key_value_config->Lookup(TrendlineEstimatorSettings::kKey));
124 if (window_size < 10 || 200 < window_size) {
125 RTC_LOG(LS_WARNING) << "Window size must be between 10 and 200 packets";
126 window_size = kDefaultTrendlineWindowSize;
127 }
128 if (enable_cap) {
129 if (beginning_packets < 1 || end_packets < 1 ||
130 beginning_packets > window_size || end_packets > window_size) {
131 RTC_LOG(LS_WARNING) << "Size of beginning and end must be between 1 and "
132 << window_size;
133 enable_cap = false;
134 beginning_packets = end_packets = 0;
135 cap_uncertainty = 0.0;
136 }
137 if (beginning_packets + end_packets > window_size) {
138 RTC_LOG(LS_WARNING)
139 << "Size of beginning plus end can't exceed the window size";
140 enable_cap = false;
141 beginning_packets = end_packets = 0;
142 cap_uncertainty = 0.0;
143 }
144 if (cap_uncertainty < 0.0 || 0.025 < cap_uncertainty) {
145 RTC_LOG(LS_WARNING) << "Cap uncertainty must be between 0 and 0.025";
146 cap_uncertainty = 0.0;
147 }
148 }
149 }
150
Parser()151 std::unique_ptr<StructParametersParser> TrendlineEstimatorSettings::Parser() {
152 return StructParametersParser::Create("sort", &enable_sort, //
153 "cap", &enable_cap, //
154 "beginning_packets",
155 &beginning_packets, //
156 "end_packets", &end_packets, //
157 "cap_uncertainty", &cap_uncertainty, //
158 "window_size", &window_size);
159 }
160
TrendlineEstimator(const FieldTrialsView * key_value_config,NetworkStatePredictor * network_state_predictor)161 TrendlineEstimator::TrendlineEstimator(
162 const FieldTrialsView* key_value_config,
163 NetworkStatePredictor* network_state_predictor)
164 : settings_(key_value_config),
165 smoothing_coef_(kDefaultTrendlineSmoothingCoeff),
166 threshold_gain_(kDefaultTrendlineThresholdGain),
167 num_of_deltas_(0),
168 first_arrival_time_ms_(-1),
169 accumulated_delay_(0),
170 smoothed_delay_(0),
171 delay_hist_(),
172 k_up_(0.0087),
173 k_down_(0.039),
174 overusing_time_threshold_(kOverUsingTimeThreshold),
175 threshold_(12.5),
176 prev_modified_trend_(NAN),
177 last_update_ms_(-1),
178 prev_trend_(0.0),
179 time_over_using_(-1),
180 overuse_counter_(0),
181 hypothesis_(BandwidthUsage::kBwNormal),
182 hypothesis_predicted_(BandwidthUsage::kBwNormal),
183 network_state_predictor_(network_state_predictor) {
184 RTC_LOG(LS_INFO)
185 << "Using Trendline filter for delay change estimation with settings "
186 << settings_.Parser()->Encode() << " and "
187 << (network_state_predictor_ ? "injected" : "no")
188 << " network state predictor";
189 }
190
~TrendlineEstimator()191 TrendlineEstimator::~TrendlineEstimator() {}
192
UpdateTrendline(double recv_delta_ms,double send_delta_ms,int64_t send_time_ms,int64_t arrival_time_ms,size_t packet_size)193 void TrendlineEstimator::UpdateTrendline(double recv_delta_ms,
194 double send_delta_ms,
195 int64_t send_time_ms,
196 int64_t arrival_time_ms,
197 size_t packet_size) {
198 const double delta_ms = recv_delta_ms - send_delta_ms;
199 ++num_of_deltas_;
200 num_of_deltas_ = std::min(num_of_deltas_, kDeltaCounterMax);
201 if (first_arrival_time_ms_ == -1)
202 first_arrival_time_ms_ = arrival_time_ms;
203
204 // Exponential backoff filter.
205 accumulated_delay_ += delta_ms;
206 BWE_TEST_LOGGING_PLOT(1, "accumulated_delay_ms", arrival_time_ms,
207 accumulated_delay_);
208 smoothed_delay_ = smoothing_coef_ * smoothed_delay_ +
209 (1 - smoothing_coef_) * accumulated_delay_;
210 BWE_TEST_LOGGING_PLOT(1, "smoothed_delay_ms", arrival_time_ms,
211 smoothed_delay_);
212
213 // Maintain packet window
214 delay_hist_.emplace_back(
215 static_cast<double>(arrival_time_ms - first_arrival_time_ms_),
216 smoothed_delay_, accumulated_delay_);
217 if (settings_.enable_sort) {
218 for (size_t i = delay_hist_.size() - 1;
219 i > 0 &&
220 delay_hist_[i].arrival_time_ms < delay_hist_[i - 1].arrival_time_ms;
221 --i) {
222 std::swap(delay_hist_[i], delay_hist_[i - 1]);
223 }
224 }
225 if (delay_hist_.size() > settings_.window_size)
226 delay_hist_.pop_front();
227
228 // Simple linear regression.
229 double trend = prev_trend_;
230 if (delay_hist_.size() == settings_.window_size) {
231 // Update trend_ if it is possible to fit a line to the data. The delay
232 // trend can be seen as an estimate of (send_rate - capacity)/capacity.
233 // 0 < trend < 1 -> the delay increases, queues are filling up
234 // trend == 0 -> the delay does not change
235 // trend < 0 -> the delay decreases, queues are being emptied
236 trend = LinearFitSlope(delay_hist_).value_or(trend);
237 if (settings_.enable_cap) {
238 absl::optional<double> cap = ComputeSlopeCap(delay_hist_, settings_);
239 // We only use the cap to filter out overuse detections, not
240 // to detect additional underuses.
241 if (trend >= 0 && cap.has_value() && trend > cap.value()) {
242 trend = cap.value();
243 }
244 }
245 }
246 BWE_TEST_LOGGING_PLOT(1, "trendline_slope", arrival_time_ms, trend);
247
248 Detect(trend, send_delta_ms, arrival_time_ms);
249 }
250
Update(double recv_delta_ms,double send_delta_ms,int64_t send_time_ms,int64_t arrival_time_ms,size_t packet_size,bool calculated_deltas)251 void TrendlineEstimator::Update(double recv_delta_ms,
252 double send_delta_ms,
253 int64_t send_time_ms,
254 int64_t arrival_time_ms,
255 size_t packet_size,
256 bool calculated_deltas) {
257 if (calculated_deltas) {
258 UpdateTrendline(recv_delta_ms, send_delta_ms, send_time_ms, arrival_time_ms,
259 packet_size);
260 }
261 if (network_state_predictor_) {
262 hypothesis_predicted_ = network_state_predictor_->Update(
263 send_time_ms, arrival_time_ms, hypothesis_);
264 }
265 }
266
State() const267 BandwidthUsage TrendlineEstimator::State() const {
268 return network_state_predictor_ ? hypothesis_predicted_ : hypothesis_;
269 }
270
Detect(double trend,double ts_delta,int64_t now_ms)271 void TrendlineEstimator::Detect(double trend, double ts_delta, int64_t now_ms) {
272 if (num_of_deltas_ < 2) {
273 hypothesis_ = BandwidthUsage::kBwNormal;
274 return;
275 }
276 const double modified_trend =
277 std::min(num_of_deltas_, kMinNumDeltas) * trend * threshold_gain_;
278 prev_modified_trend_ = modified_trend;
279 BWE_TEST_LOGGING_PLOT(1, "T", now_ms, modified_trend);
280 BWE_TEST_LOGGING_PLOT(1, "threshold", now_ms, threshold_);
281 if (modified_trend > threshold_) {
282 if (time_over_using_ == -1) {
283 // Initialize the timer. Assume that we've been
284 // over-using half of the time since the previous
285 // sample.
286 time_over_using_ = ts_delta / 2;
287 } else {
288 // Increment timer
289 time_over_using_ += ts_delta;
290 }
291 overuse_counter_++;
292 if (time_over_using_ > overusing_time_threshold_ && overuse_counter_ > 1) {
293 if (trend >= prev_trend_) {
294 time_over_using_ = 0;
295 overuse_counter_ = 0;
296 hypothesis_ = BandwidthUsage::kBwOverusing;
297 }
298 }
299 } else if (modified_trend < -threshold_) {
300 time_over_using_ = -1;
301 overuse_counter_ = 0;
302 hypothesis_ = BandwidthUsage::kBwUnderusing;
303 } else {
304 time_over_using_ = -1;
305 overuse_counter_ = 0;
306 hypothesis_ = BandwidthUsage::kBwNormal;
307 }
308 prev_trend_ = trend;
309 UpdateThreshold(modified_trend, now_ms);
310 }
311
UpdateThreshold(double modified_trend,int64_t now_ms)312 void TrendlineEstimator::UpdateThreshold(double modified_trend,
313 int64_t now_ms) {
314 if (last_update_ms_ == -1)
315 last_update_ms_ = now_ms;
316
317 if (fabs(modified_trend) > threshold_ + kMaxAdaptOffsetMs) {
318 // Avoid adapting the threshold to big latency spikes, caused e.g.,
319 // by a sudden capacity drop.
320 last_update_ms_ = now_ms;
321 return;
322 }
323
324 const double k = fabs(modified_trend) < threshold_ ? k_down_ : k_up_;
325 const int64_t kMaxTimeDeltaMs = 100;
326 int64_t time_delta_ms = std::min(now_ms - last_update_ms_, kMaxTimeDeltaMs);
327 threshold_ += k * (fabs(modified_trend) - threshold_) * time_delta_ms;
328 threshold_ = rtc::SafeClamp(threshold_, 6.f, 600.f);
329 last_update_ms_ = now_ms;
330 }
331
332 } // namespace webrtc
333