• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 Google Inc. All Rights Reserved.
2 //
3 // Use of this source code is governed by a BSD-style license
4 // that can be found in the COPYING file in the root of the source
5 // tree. An additional intellectual property rights grant can be found
6 // in the file PATENTS. All contributing project authors may
7 // be found in the AUTHORS file in the root of the source tree.
8 // -----------------------------------------------------------------------------
9 //
10 // main entry for the lossless encoder.
11 //
12 // Author: Vikas Arora (vikaas.arora@gmail.com)
13 //
14 
15 #include <assert.h>
16 #include <stdlib.h>
17 
18 #include "src/dsp/lossless.h"
19 #include "src/dsp/lossless_common.h"
20 #include "src/enc/backward_references_enc.h"
21 #include "src/enc/histogram_enc.h"
22 #include "src/enc/vp8i_enc.h"
23 #include "src/enc/vp8li_enc.h"
24 #include "src/utils/bit_writer_utils.h"
25 #include "src/utils/huffman_encode_utils.h"
26 #include "src/utils/utils.h"
27 #include "src/webp/encode.h"
28 #include "src/webp/format_constants.h"
29 
30 // Maximum number of histogram images (sub-blocks).
31 #define MAX_HUFF_IMAGE_SIZE       2600
32 
33 // Palette reordering for smaller sum of deltas (and for smaller storage).
34 
PaletteCompareColorsForQsort(const void * p1,const void * p2)35 static int PaletteCompareColorsForQsort(const void* p1, const void* p2) {
36   const uint32_t a = WebPMemToUint32((uint8_t*)p1);
37   const uint32_t b = WebPMemToUint32((uint8_t*)p2);
38   assert(a != b);
39   return (a < b) ? -1 : 1;
40 }
41 
PaletteComponentDistance(uint32_t v)42 static WEBP_INLINE uint32_t PaletteComponentDistance(uint32_t v) {
43   return (v <= 128) ? v : (256 - v);
44 }
45 
46 // Computes a value that is related to the entropy created by the
47 // palette entry diff.
48 //
49 // Note that the last & 0xff is a no-operation in the next statement, but
50 // removed by most compilers and is here only for regularity of the code.
PaletteColorDistance(uint32_t col1,uint32_t col2)51 static WEBP_INLINE uint32_t PaletteColorDistance(uint32_t col1, uint32_t col2) {
52   const uint32_t diff = VP8LSubPixels(col1, col2);
53   const int kMoreWeightForRGBThanForAlpha = 9;
54   uint32_t score;
55   score =  PaletteComponentDistance((diff >>  0) & 0xff);
56   score += PaletteComponentDistance((diff >>  8) & 0xff);
57   score += PaletteComponentDistance((diff >> 16) & 0xff);
58   score *= kMoreWeightForRGBThanForAlpha;
59   score += PaletteComponentDistance((diff >> 24) & 0xff);
60   return score;
61 }
62 
SwapColor(uint32_t * const col1,uint32_t * const col2)63 static WEBP_INLINE void SwapColor(uint32_t* const col1, uint32_t* const col2) {
64   const uint32_t tmp = *col1;
65   *col1 = *col2;
66   *col2 = tmp;
67 }
68 
SearchColorNoIdx(const uint32_t sorted[],uint32_t color,int num_colors)69 static WEBP_INLINE int SearchColorNoIdx(const uint32_t sorted[], uint32_t color,
70                                         int num_colors) {
71   int low = 0, hi = num_colors;
72   if (sorted[low] == color) return low;  // loop invariant: sorted[low] != color
73   while (1) {
74     const int mid = (low + hi) >> 1;
75     if (sorted[mid] == color) {
76       return mid;
77     } else if (sorted[mid] < color) {
78       low = mid;
79     } else {
80       hi = mid;
81     }
82   }
83   assert(0);
84   return 0;
85 }
86 
87 // The palette has been sorted by alpha. This function checks if the other
88 // components of the palette have a monotonic development with regards to
89 // position in the palette. If all have monotonic development, there is
90 // no benefit to re-organize them greedily. A monotonic development
91 // would be spotted in green-only situations (like lossy alpha) or gray-scale
92 // images.
PaletteHasNonMonotonousDeltas(const uint32_t * const palette,int num_colors)93 static int PaletteHasNonMonotonousDeltas(const uint32_t* const palette,
94                                          int num_colors) {
95   uint32_t predict = 0x000000;
96   int i;
97   uint8_t sign_found = 0x00;
98   for (i = 0; i < num_colors; ++i) {
99     const uint32_t diff = VP8LSubPixels(palette[i], predict);
100     const uint8_t rd = (diff >> 16) & 0xff;
101     const uint8_t gd = (diff >>  8) & 0xff;
102     const uint8_t bd = (diff >>  0) & 0xff;
103     if (rd != 0x00) {
104       sign_found |= (rd < 0x80) ? 1 : 2;
105     }
106     if (gd != 0x00) {
107       sign_found |= (gd < 0x80) ? 8 : 16;
108     }
109     if (bd != 0x00) {
110       sign_found |= (bd < 0x80) ? 64 : 128;
111     }
112     predict = palette[i];
113   }
114   return (sign_found & (sign_found << 1)) != 0;  // two consequent signs.
115 }
116 
PaletteSortMinimizeDeltas(const uint32_t * const palette_sorted,int num_colors,uint32_t * const palette)117 static void PaletteSortMinimizeDeltas(const uint32_t* const palette_sorted,
118                                       int num_colors, uint32_t* const palette) {
119   uint32_t predict = 0x00000000;
120   int i, k;
121   memcpy(palette, palette_sorted, num_colors * sizeof(*palette));
122   if (!PaletteHasNonMonotonousDeltas(palette_sorted, num_colors)) return;
123   // Find greedily always the closest color of the predicted color to minimize
124   // deltas in the palette. This reduces storage needs since the
125   // palette is stored with delta encoding.
126   for (i = 0; i < num_colors; ++i) {
127     int best_ix = i;
128     uint32_t best_score = ~0U;
129     for (k = i; k < num_colors; ++k) {
130       const uint32_t cur_score = PaletteColorDistance(palette[k], predict);
131       if (best_score > cur_score) {
132         best_score = cur_score;
133         best_ix = k;
134       }
135     }
136     SwapColor(&palette[best_ix], &palette[i]);
137     predict = palette[i];
138   }
139 }
140 
141 // Sort palette in increasing order and prepare an inverse mapping array.
PrepareMapToPalette(const uint32_t palette[],uint32_t num_colors,uint32_t sorted[],uint32_t idx_map[])142 static void PrepareMapToPalette(const uint32_t palette[], uint32_t num_colors,
143                                 uint32_t sorted[], uint32_t idx_map[]) {
144   uint32_t i;
145   memcpy(sorted, palette, num_colors * sizeof(*sorted));
146   qsort(sorted, num_colors, sizeof(*sorted), PaletteCompareColorsForQsort);
147   for (i = 0; i < num_colors; ++i) {
148     idx_map[SearchColorNoIdx(sorted, palette[i], num_colors)] = i;
149   }
150 }
151 
152 // -----------------------------------------------------------------------------
153 // Modified Zeng method from "A Survey on Palette Reordering
154 // Methods for Improving the Compression of Color-Indexed Images" by Armando J.
155 // Pinho and Antonio J. R. Neves.
156 
157 // Finds the biggest cooccurrence in the matrix.
CoOccurrenceFindMax(const uint32_t * const cooccurrence,uint32_t num_colors,uint8_t * const c1,uint8_t * const c2)158 static void CoOccurrenceFindMax(const uint32_t* const cooccurrence,
159                                 uint32_t num_colors, uint8_t* const c1,
160                                 uint8_t* const c2) {
161   // Find the index that is most frequently located adjacent to other
162   // (different) indexes.
163   uint32_t best_sum = 0u;
164   uint32_t i, j, best_cooccurrence;
165   *c1 = 0u;
166   for (i = 0; i < num_colors; ++i) {
167     uint32_t sum = 0;
168     for (j = 0; j < num_colors; ++j) sum += cooccurrence[i * num_colors + j];
169     if (sum > best_sum) {
170       best_sum = sum;
171       *c1 = i;
172     }
173   }
174   // Find the index that is most frequently found adjacent to *c1.
175   *c2 = 0u;
176   best_cooccurrence = 0u;
177   for (i = 0; i < num_colors; ++i) {
178     if (cooccurrence[*c1 * num_colors + i] > best_cooccurrence) {
179       best_cooccurrence = cooccurrence[*c1 * num_colors + i];
180       *c2 = i;
181     }
182   }
183   assert(*c1 != *c2);
184 }
185 
186 // Builds the cooccurrence matrix
CoOccurrenceBuild(const WebPPicture * const pic,const uint32_t * const palette,uint32_t num_colors,uint32_t * cooccurrence)187 static int CoOccurrenceBuild(const WebPPicture* const pic,
188                              const uint32_t* const palette, uint32_t num_colors,
189                              uint32_t* cooccurrence) {
190   uint32_t *lines, *line_top, *line_current, *line_tmp;
191   int x, y;
192   const uint32_t* src = pic->argb;
193   uint32_t prev_pix = ~src[0];
194   uint32_t prev_idx = 0u;
195   uint32_t idx_map[MAX_PALETTE_SIZE] = {0};
196   uint32_t palette_sorted[MAX_PALETTE_SIZE];
197   lines = (uint32_t*)WebPSafeMalloc(2 * pic->width, sizeof(*lines));
198   if (lines == NULL) {
199     WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
200     return 0;
201   }
202   line_top = &lines[0];
203   line_current = &lines[pic->width];
204   PrepareMapToPalette(palette, num_colors, palette_sorted, idx_map);
205   for (y = 0; y < pic->height; ++y) {
206     for (x = 0; x < pic->width; ++x) {
207       const uint32_t pix = src[x];
208       if (pix != prev_pix) {
209         prev_idx = idx_map[SearchColorNoIdx(palette_sorted, pix, num_colors)];
210         prev_pix = pix;
211       }
212       line_current[x] = prev_idx;
213       // 4-connectivity is what works best as mentioned in "On the relation
214       // between Memon's and the modified Zeng's palette reordering methods".
215       if (x > 0 && prev_idx != line_current[x - 1]) {
216         const uint32_t left_idx = line_current[x - 1];
217         ++cooccurrence[prev_idx * num_colors + left_idx];
218         ++cooccurrence[left_idx * num_colors + prev_idx];
219       }
220       if (y > 0 && prev_idx != line_top[x]) {
221         const uint32_t top_idx = line_top[x];
222         ++cooccurrence[prev_idx * num_colors + top_idx];
223         ++cooccurrence[top_idx * num_colors + prev_idx];
224       }
225     }
226     line_tmp = line_top;
227     line_top = line_current;
228     line_current = line_tmp;
229     src += pic->argb_stride;
230   }
231   WebPSafeFree(lines);
232   return 1;
233 }
234 
235 struct Sum {
236   uint8_t index;
237   uint32_t sum;
238 };
239 
240 // Implements the modified Zeng method from "A Survey on Palette Reordering
241 // Methods for Improving the Compression of Color-Indexed Images" by Armando J.
242 // Pinho and Antonio J. R. Neves.
PaletteSortModifiedZeng(const WebPPicture * const pic,const uint32_t * const palette_sorted,uint32_t num_colors,uint32_t * const palette)243 static int PaletteSortModifiedZeng(
244     const WebPPicture* const pic, const uint32_t* const palette_sorted,
245     uint32_t num_colors, uint32_t* const palette) {
246   uint32_t i, j, ind;
247   uint8_t remapping[MAX_PALETTE_SIZE];
248   uint32_t* cooccurrence;
249   struct Sum sums[MAX_PALETTE_SIZE];
250   uint32_t first, last;
251   uint32_t num_sums;
252   // TODO(vrabaud) check whether one color images should use palette or not.
253   if (num_colors <= 1) return 1;
254   // Build the co-occurrence matrix.
255   cooccurrence =
256       (uint32_t*)WebPSafeCalloc(num_colors * num_colors, sizeof(*cooccurrence));
257   if (cooccurrence == NULL) {
258     WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
259     return 0;
260   }
261   if (!CoOccurrenceBuild(pic, palette_sorted, num_colors, cooccurrence)) {
262     WebPSafeFree(cooccurrence);
263     return 0;
264   }
265 
266   // Initialize the mapping list with the two best indices.
267   CoOccurrenceFindMax(cooccurrence, num_colors, &remapping[0], &remapping[1]);
268 
269   // We need to append and prepend to the list of remapping. To this end, we
270   // actually define the next start/end of the list as indices in a vector (with
271   // a wrap around when the end is reached).
272   first = 0;
273   last = 1;
274   num_sums = num_colors - 2;  // -2 because we know the first two values
275   if (num_sums > 0) {
276     // Initialize the sums with the first two remappings and find the best one
277     struct Sum* best_sum = &sums[0];
278     best_sum->index = 0u;
279     best_sum->sum = 0u;
280     for (i = 0, j = 0; i < num_colors; ++i) {
281       if (i == remapping[0] || i == remapping[1]) continue;
282       sums[j].index = i;
283       sums[j].sum = cooccurrence[i * num_colors + remapping[0]] +
284                     cooccurrence[i * num_colors + remapping[1]];
285       if (sums[j].sum > best_sum->sum) best_sum = &sums[j];
286       ++j;
287     }
288 
289     while (num_sums > 0) {
290       const uint8_t best_index = best_sum->index;
291       // Compute delta to know if we need to prepend or append the best index.
292       int32_t delta = 0;
293       const int32_t n = num_colors - num_sums;
294       for (ind = first, j = 0; (ind + j) % num_colors != last + 1; ++j) {
295         const uint16_t l_j = remapping[(ind + j) % num_colors];
296         delta += (n - 1 - 2 * (int32_t)j) *
297                  (int32_t)cooccurrence[best_index * num_colors + l_j];
298       }
299       if (delta > 0) {
300         first = (first == 0) ? num_colors - 1 : first - 1;
301         remapping[first] = best_index;
302       } else {
303         ++last;
304         remapping[last] = best_index;
305       }
306       // Remove best_sum from sums.
307       *best_sum = sums[num_sums - 1];
308       --num_sums;
309       // Update all the sums and find the best one.
310       best_sum = &sums[0];
311       for (i = 0; i < num_sums; ++i) {
312         sums[i].sum += cooccurrence[best_index * num_colors + sums[i].index];
313         if (sums[i].sum > best_sum->sum) best_sum = &sums[i];
314       }
315     }
316   }
317   assert((last + 1) % num_colors == first);
318   WebPSafeFree(cooccurrence);
319 
320   // Re-map the palette.
321   for (i = 0; i < num_colors; ++i) {
322     palette[i] = palette_sorted[remapping[(first + i) % num_colors]];
323   }
324   return 1;
325 }
326 
327 // -----------------------------------------------------------------------------
328 // Palette
329 
330 // These five modes are evaluated and their respective entropy is computed.
331 typedef enum {
332   kDirect = 0,
333   kSpatial = 1,
334   kSubGreen = 2,
335   kSpatialSubGreen = 3,
336   kPalette = 4,
337   kPaletteAndSpatial = 5,
338   kNumEntropyIx = 6
339 } EntropyIx;
340 
341 typedef enum {
342   kSortedDefault = 0,
343   kMinimizeDelta = 1,
344   kModifiedZeng = 2,
345   kUnusedPalette = 3,
346 } PaletteSorting;
347 
348 typedef enum {
349   kHistoAlpha = 0,
350   kHistoAlphaPred,
351   kHistoGreen,
352   kHistoGreenPred,
353   kHistoRed,
354   kHistoRedPred,
355   kHistoBlue,
356   kHistoBluePred,
357   kHistoRedSubGreen,
358   kHistoRedPredSubGreen,
359   kHistoBlueSubGreen,
360   kHistoBluePredSubGreen,
361   kHistoPalette,
362   kHistoTotal  // Must be last.
363 } HistoIx;
364 
AddSingleSubGreen(uint32_t p,uint32_t * const r,uint32_t * const b)365 static void AddSingleSubGreen(uint32_t p,
366                               uint32_t* const r, uint32_t* const b) {
367   const int green = (int)p >> 8;  // The upper bits are masked away later.
368   ++r[(((int)p >> 16) - green) & 0xff];
369   ++b[(((int)p >>  0) - green) & 0xff];
370 }
371 
AddSingle(uint32_t p,uint32_t * const a,uint32_t * const r,uint32_t * const g,uint32_t * const b)372 static void AddSingle(uint32_t p,
373                       uint32_t* const a, uint32_t* const r,
374                       uint32_t* const g, uint32_t* const b) {
375   ++a[(p >> 24) & 0xff];
376   ++r[(p >> 16) & 0xff];
377   ++g[(p >>  8) & 0xff];
378   ++b[(p >>  0) & 0xff];
379 }
380 
HashPix(uint32_t pix)381 static WEBP_INLINE uint32_t HashPix(uint32_t pix) {
382   // Note that masking with 0xffffffffu is for preventing an
383   // 'unsigned int overflow' warning. Doesn't impact the compiled code.
384   return ((((uint64_t)pix + (pix >> 19)) * 0x39c5fba7ull) & 0xffffffffu) >> 24;
385 }
386 
AnalyzeEntropy(const uint32_t * argb,int width,int height,int argb_stride,int use_palette,int palette_size,int transform_bits,EntropyIx * const min_entropy_ix,int * const red_and_blue_always_zero)387 static int AnalyzeEntropy(const uint32_t* argb,
388                           int width, int height, int argb_stride,
389                           int use_palette,
390                           int palette_size, int transform_bits,
391                           EntropyIx* const min_entropy_ix,
392                           int* const red_and_blue_always_zero) {
393   // Allocate histogram set with cache_bits = 0.
394   uint32_t* histo;
395 
396   if (use_palette && palette_size <= 16) {
397     // In the case of small palettes, we pack 2, 4 or 8 pixels together. In
398     // practice, small palettes are better than any other transform.
399     *min_entropy_ix = kPalette;
400     *red_and_blue_always_zero = 1;
401     return 1;
402   }
403   histo = (uint32_t*)WebPSafeCalloc(kHistoTotal, sizeof(*histo) * 256);
404   if (histo != NULL) {
405     int i, x, y;
406     const uint32_t* prev_row = NULL;
407     const uint32_t* curr_row = argb;
408     uint32_t pix_prev = argb[0];  // Skip the first pixel.
409     for (y = 0; y < height; ++y) {
410       for (x = 0; x < width; ++x) {
411         const uint32_t pix = curr_row[x];
412         const uint32_t pix_diff = VP8LSubPixels(pix, pix_prev);
413         pix_prev = pix;
414         if ((pix_diff == 0) || (prev_row != NULL && pix == prev_row[x])) {
415           continue;
416         }
417         AddSingle(pix,
418                   &histo[kHistoAlpha * 256],
419                   &histo[kHistoRed * 256],
420                   &histo[kHistoGreen * 256],
421                   &histo[kHistoBlue * 256]);
422         AddSingle(pix_diff,
423                   &histo[kHistoAlphaPred * 256],
424                   &histo[kHistoRedPred * 256],
425                   &histo[kHistoGreenPred * 256],
426                   &histo[kHistoBluePred * 256]);
427         AddSingleSubGreen(pix,
428                           &histo[kHistoRedSubGreen * 256],
429                           &histo[kHistoBlueSubGreen * 256]);
430         AddSingleSubGreen(pix_diff,
431                           &histo[kHistoRedPredSubGreen * 256],
432                           &histo[kHistoBluePredSubGreen * 256]);
433         {
434           // Approximate the palette by the entropy of the multiplicative hash.
435           const uint32_t hash = HashPix(pix);
436           ++histo[kHistoPalette * 256 + hash];
437         }
438       }
439       prev_row = curr_row;
440       curr_row += argb_stride;
441     }
442     {
443       float entropy_comp[kHistoTotal];
444       float entropy[kNumEntropyIx];
445       int k;
446       int last_mode_to_analyze = use_palette ? kPalette : kSpatialSubGreen;
447       int j;
448       // Let's add one zero to the predicted histograms. The zeros are removed
449       // too efficiently by the pix_diff == 0 comparison, at least one of the
450       // zeros is likely to exist.
451       ++histo[kHistoRedPredSubGreen * 256];
452       ++histo[kHistoBluePredSubGreen * 256];
453       ++histo[kHistoRedPred * 256];
454       ++histo[kHistoGreenPred * 256];
455       ++histo[kHistoBluePred * 256];
456       ++histo[kHistoAlphaPred * 256];
457 
458       for (j = 0; j < kHistoTotal; ++j) {
459         entropy_comp[j] = VP8LBitsEntropy(&histo[j * 256], 256);
460       }
461       entropy[kDirect] = entropy_comp[kHistoAlpha] +
462           entropy_comp[kHistoRed] +
463           entropy_comp[kHistoGreen] +
464           entropy_comp[kHistoBlue];
465       entropy[kSpatial] = entropy_comp[kHistoAlphaPred] +
466           entropy_comp[kHistoRedPred] +
467           entropy_comp[kHistoGreenPred] +
468           entropy_comp[kHistoBluePred];
469       entropy[kSubGreen] = entropy_comp[kHistoAlpha] +
470           entropy_comp[kHistoRedSubGreen] +
471           entropy_comp[kHistoGreen] +
472           entropy_comp[kHistoBlueSubGreen];
473       entropy[kSpatialSubGreen] = entropy_comp[kHistoAlphaPred] +
474           entropy_comp[kHistoRedPredSubGreen] +
475           entropy_comp[kHistoGreenPred] +
476           entropy_comp[kHistoBluePredSubGreen];
477       entropy[kPalette] = entropy_comp[kHistoPalette];
478 
479       // When including transforms, there is an overhead in bits from
480       // storing them. This overhead is small but matters for small images.
481       // For spatial, there are 14 transformations.
482       entropy[kSpatial] += VP8LSubSampleSize(width, transform_bits) *
483                            VP8LSubSampleSize(height, transform_bits) *
484                            VP8LFastLog2(14);
485       // For color transforms: 24 as only 3 channels are considered in a
486       // ColorTransformElement.
487       entropy[kSpatialSubGreen] += VP8LSubSampleSize(width, transform_bits) *
488                                    VP8LSubSampleSize(height, transform_bits) *
489                                    VP8LFastLog2(24);
490       // For palettes, add the cost of storing the palette.
491       // We empirically estimate the cost of a compressed entry as 8 bits.
492       // The palette is differential-coded when compressed hence a much
493       // lower cost than sizeof(uint32_t)*8.
494       entropy[kPalette] += palette_size * 8;
495 
496       *min_entropy_ix = kDirect;
497       for (k = kDirect + 1; k <= last_mode_to_analyze; ++k) {
498         if (entropy[*min_entropy_ix] > entropy[k]) {
499           *min_entropy_ix = (EntropyIx)k;
500         }
501       }
502       assert((int)*min_entropy_ix <= last_mode_to_analyze);
503       *red_and_blue_always_zero = 1;
504       // Let's check if the histogram of the chosen entropy mode has
505       // non-zero red and blue values. If all are zero, we can later skip
506       // the cross color optimization.
507       {
508         static const uint8_t kHistoPairs[5][2] = {
509           { kHistoRed, kHistoBlue },
510           { kHistoRedPred, kHistoBluePred },
511           { kHistoRedSubGreen, kHistoBlueSubGreen },
512           { kHistoRedPredSubGreen, kHistoBluePredSubGreen },
513           { kHistoRed, kHistoBlue }
514         };
515         const uint32_t* const red_histo =
516             &histo[256 * kHistoPairs[*min_entropy_ix][0]];
517         const uint32_t* const blue_histo =
518             &histo[256 * kHistoPairs[*min_entropy_ix][1]];
519         for (i = 1; i < 256; ++i) {
520           if ((red_histo[i] | blue_histo[i]) != 0) {
521             *red_and_blue_always_zero = 0;
522             break;
523           }
524         }
525       }
526     }
527     WebPSafeFree(histo);
528     return 1;
529   } else {
530     return 0;
531   }
532 }
533 
GetHistoBits(int method,int use_palette,int width,int height)534 static int GetHistoBits(int method, int use_palette, int width, int height) {
535   // Make tile size a function of encoding method (Range: 0 to 6).
536   int histo_bits = (use_palette ? 9 : 7) - method;
537   while (1) {
538     const int huff_image_size = VP8LSubSampleSize(width, histo_bits) *
539                                 VP8LSubSampleSize(height, histo_bits);
540     if (huff_image_size <= MAX_HUFF_IMAGE_SIZE) break;
541     ++histo_bits;
542   }
543   return (histo_bits < MIN_HUFFMAN_BITS) ? MIN_HUFFMAN_BITS :
544          (histo_bits > MAX_HUFFMAN_BITS) ? MAX_HUFFMAN_BITS : histo_bits;
545 }
546 
GetTransformBits(int method,int histo_bits)547 static int GetTransformBits(int method, int histo_bits) {
548   const int max_transform_bits = (method < 4) ? 6 : (method > 4) ? 4 : 5;
549   const int res =
550       (histo_bits > max_transform_bits) ? max_transform_bits : histo_bits;
551   assert(res <= MAX_TRANSFORM_BITS);
552   return res;
553 }
554 
555 // Set of parameters to be used in each iteration of the cruncher.
556 #define CRUNCH_SUBCONFIGS_MAX 2
557 typedef struct {
558   int lz77_;
559   int do_no_cache_;
560 } CrunchSubConfig;
561 typedef struct {
562   int entropy_idx_;
563   PaletteSorting palette_sorting_type_;
564   CrunchSubConfig sub_configs_[CRUNCH_SUBCONFIGS_MAX];
565   int sub_configs_size_;
566 } CrunchConfig;
567 
568 // +2 because we add a palette sorting configuration for kPalette and
569 // kPaletteAndSpatial.
570 #define CRUNCH_CONFIGS_MAX (kNumEntropyIx + 2)
571 
EncoderAnalyze(VP8LEncoder * const enc,CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX],int * const crunch_configs_size,int * const red_and_blue_always_zero)572 static int EncoderAnalyze(VP8LEncoder* const enc,
573                           CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX],
574                           int* const crunch_configs_size,
575                           int* const red_and_blue_always_zero) {
576   const WebPPicture* const pic = enc->pic_;
577   const int width = pic->width;
578   const int height = pic->height;
579   const WebPConfig* const config = enc->config_;
580   const int method = config->method;
581   const int low_effort = (config->method == 0);
582   int i;
583   int use_palette;
584   int n_lz77s;
585   // If set to 0, analyze the cache with the computed cache value. If 1, also
586   // analyze with no-cache.
587   int do_no_cache = 0;
588   assert(pic != NULL && pic->argb != NULL);
589 
590   // Check whether a palette is possible.
591   enc->palette_size_ = WebPGetColorPalette(pic, enc->palette_sorted_);
592   use_palette = (enc->palette_size_ <= MAX_PALETTE_SIZE);
593   if (!use_palette) {
594     enc->palette_size_ = 0;
595   } else {
596     qsort(enc->palette_sorted_, enc->palette_size_,
597           sizeof(*enc->palette_sorted_), PaletteCompareColorsForQsort);
598   }
599 
600   // Empirical bit sizes.
601   enc->histo_bits_ = GetHistoBits(method, use_palette,
602                                   pic->width, pic->height);
603   enc->transform_bits_ = GetTransformBits(method, enc->histo_bits_);
604 
605   if (low_effort) {
606     // AnalyzeEntropy is somewhat slow.
607     crunch_configs[0].entropy_idx_ = use_palette ? kPalette : kSpatialSubGreen;
608     crunch_configs[0].palette_sorting_type_ =
609         use_palette ? kSortedDefault : kUnusedPalette;
610     n_lz77s = 1;
611     *crunch_configs_size = 1;
612   } else {
613     EntropyIx min_entropy_ix;
614     // Try out multiple LZ77 on images with few colors.
615     n_lz77s = (enc->palette_size_ > 0 && enc->palette_size_ <= 16) ? 2 : 1;
616     if (!AnalyzeEntropy(pic->argb, width, height, pic->argb_stride, use_palette,
617                         enc->palette_size_, enc->transform_bits_,
618                         &min_entropy_ix, red_and_blue_always_zero)) {
619       return 0;
620     }
621     if (method == 6 && config->quality == 100) {
622       do_no_cache = 1;
623       // Go brute force on all transforms.
624       *crunch_configs_size = 0;
625       for (i = 0; i < kNumEntropyIx; ++i) {
626         // We can only apply kPalette or kPaletteAndSpatial if we can indeed use
627         // a palette.
628         if ((i != kPalette && i != kPaletteAndSpatial) || use_palette) {
629           assert(*crunch_configs_size < CRUNCH_CONFIGS_MAX);
630           crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
631           if (use_palette && (i == kPalette || i == kPaletteAndSpatial)) {
632             crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
633                 kMinimizeDelta;
634             ++*crunch_configs_size;
635             // Also add modified Zeng's method.
636             crunch_configs[(*crunch_configs_size)].entropy_idx_ = i;
637             crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
638                 kModifiedZeng;
639           } else {
640             crunch_configs[(*crunch_configs_size)].palette_sorting_type_ =
641                 kUnusedPalette;
642           }
643           ++*crunch_configs_size;
644         }
645       }
646     } else {
647       // Only choose the guessed best transform.
648       *crunch_configs_size = 1;
649       crunch_configs[0].entropy_idx_ = min_entropy_ix;
650       crunch_configs[0].palette_sorting_type_ =
651           use_palette ? kMinimizeDelta : kUnusedPalette;
652       if (config->quality >= 75 && method == 5) {
653         // Test with and without color cache.
654         do_no_cache = 1;
655         // If we have a palette, also check in combination with spatial.
656         if (min_entropy_ix == kPalette) {
657           *crunch_configs_size = 2;
658           crunch_configs[1].entropy_idx_ = kPaletteAndSpatial;
659           crunch_configs[1].palette_sorting_type_ = kMinimizeDelta;
660         }
661       }
662     }
663   }
664   // Fill in the different LZ77s.
665   assert(n_lz77s <= CRUNCH_SUBCONFIGS_MAX);
666   for (i = 0; i < *crunch_configs_size; ++i) {
667     int j;
668     for (j = 0; j < n_lz77s; ++j) {
669       assert(j < CRUNCH_SUBCONFIGS_MAX);
670       crunch_configs[i].sub_configs_[j].lz77_ =
671           (j == 0) ? kLZ77Standard | kLZ77RLE : kLZ77Box;
672       crunch_configs[i].sub_configs_[j].do_no_cache_ = do_no_cache;
673     }
674     crunch_configs[i].sub_configs_size_ = n_lz77s;
675   }
676   return 1;
677 }
678 
EncoderInit(VP8LEncoder * const enc)679 static int EncoderInit(VP8LEncoder* const enc) {
680   const WebPPicture* const pic = enc->pic_;
681   const int width = pic->width;
682   const int height = pic->height;
683   const int pix_cnt = width * height;
684   // we round the block size up, so we're guaranteed to have
685   // at most MAX_REFS_BLOCK_PER_IMAGE blocks used:
686   const int refs_block_size = (pix_cnt - 1) / MAX_REFS_BLOCK_PER_IMAGE + 1;
687   int i;
688   if (!VP8LHashChainInit(&enc->hash_chain_, pix_cnt)) return 0;
689 
690   for (i = 0; i < 4; ++i) VP8LBackwardRefsInit(&enc->refs_[i], refs_block_size);
691 
692   return 1;
693 }
694 
695 // Returns false in case of memory error.
GetHuffBitLengthsAndCodes(const VP8LHistogramSet * const histogram_image,HuffmanTreeCode * const huffman_codes)696 static int GetHuffBitLengthsAndCodes(
697     const VP8LHistogramSet* const histogram_image,
698     HuffmanTreeCode* const huffman_codes) {
699   int i, k;
700   int ok = 0;
701   uint64_t total_length_size = 0;
702   uint8_t* mem_buf = NULL;
703   const int histogram_image_size = histogram_image->size;
704   int max_num_symbols = 0;
705   uint8_t* buf_rle = NULL;
706   HuffmanTree* huff_tree = NULL;
707 
708   // Iterate over all histograms and get the aggregate number of codes used.
709   for (i = 0; i < histogram_image_size; ++i) {
710     const VP8LHistogram* const histo = histogram_image->histograms[i];
711     HuffmanTreeCode* const codes = &huffman_codes[5 * i];
712     assert(histo != NULL);
713     for (k = 0; k < 5; ++k) {
714       const int num_symbols =
715           (k == 0) ? VP8LHistogramNumCodes(histo->palette_code_bits_) :
716           (k == 4) ? NUM_DISTANCE_CODES : 256;
717       codes[k].num_symbols = num_symbols;
718       total_length_size += num_symbols;
719     }
720   }
721 
722   // Allocate and Set Huffman codes.
723   {
724     uint16_t* codes;
725     uint8_t* lengths;
726     mem_buf = (uint8_t*)WebPSafeCalloc(total_length_size,
727                                        sizeof(*lengths) + sizeof(*codes));
728     if (mem_buf == NULL) goto End;
729 
730     codes = (uint16_t*)mem_buf;
731     lengths = (uint8_t*)&codes[total_length_size];
732     for (i = 0; i < 5 * histogram_image_size; ++i) {
733       const int bit_length = huffman_codes[i].num_symbols;
734       huffman_codes[i].codes = codes;
735       huffman_codes[i].code_lengths = lengths;
736       codes += bit_length;
737       lengths += bit_length;
738       if (max_num_symbols < bit_length) {
739         max_num_symbols = bit_length;
740       }
741     }
742   }
743 
744   buf_rle = (uint8_t*)WebPSafeMalloc(1ULL, max_num_symbols);
745   huff_tree = (HuffmanTree*)WebPSafeMalloc(3ULL * max_num_symbols,
746                                            sizeof(*huff_tree));
747   if (buf_rle == NULL || huff_tree == NULL) goto End;
748 
749   // Create Huffman trees.
750   for (i = 0; i < histogram_image_size; ++i) {
751     HuffmanTreeCode* const codes = &huffman_codes[5 * i];
752     VP8LHistogram* const histo = histogram_image->histograms[i];
753     VP8LCreateHuffmanTree(histo->literal_, 15, buf_rle, huff_tree, codes + 0);
754     VP8LCreateHuffmanTree(histo->red_, 15, buf_rle, huff_tree, codes + 1);
755     VP8LCreateHuffmanTree(histo->blue_, 15, buf_rle, huff_tree, codes + 2);
756     VP8LCreateHuffmanTree(histo->alpha_, 15, buf_rle, huff_tree, codes + 3);
757     VP8LCreateHuffmanTree(histo->distance_, 15, buf_rle, huff_tree, codes + 4);
758   }
759   ok = 1;
760  End:
761   WebPSafeFree(huff_tree);
762   WebPSafeFree(buf_rle);
763   if (!ok) {
764     WebPSafeFree(mem_buf);
765     memset(huffman_codes, 0, 5 * histogram_image_size * sizeof(*huffman_codes));
766   }
767   return ok;
768 }
769 
StoreHuffmanTreeOfHuffmanTreeToBitMask(VP8LBitWriter * const bw,const uint8_t * code_length_bitdepth)770 static void StoreHuffmanTreeOfHuffmanTreeToBitMask(
771     VP8LBitWriter* const bw, const uint8_t* code_length_bitdepth) {
772   // RFC 1951 will calm you down if you are worried about this funny sequence.
773   // This sequence is tuned from that, but more weighted for lower symbol count,
774   // and more spiking histograms.
775   static const uint8_t kStorageOrder[CODE_LENGTH_CODES] = {
776     17, 18, 0, 1, 2, 3, 4, 5, 16, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15
777   };
778   int i;
779   // Throw away trailing zeros:
780   int codes_to_store = CODE_LENGTH_CODES;
781   for (; codes_to_store > 4; --codes_to_store) {
782     if (code_length_bitdepth[kStorageOrder[codes_to_store - 1]] != 0) {
783       break;
784     }
785   }
786   VP8LPutBits(bw, codes_to_store - 4, 4);
787   for (i = 0; i < codes_to_store; ++i) {
788     VP8LPutBits(bw, code_length_bitdepth[kStorageOrder[i]], 3);
789   }
790 }
791 
ClearHuffmanTreeIfOnlyOneSymbol(HuffmanTreeCode * const huffman_code)792 static void ClearHuffmanTreeIfOnlyOneSymbol(
793     HuffmanTreeCode* const huffman_code) {
794   int k;
795   int count = 0;
796   for (k = 0; k < huffman_code->num_symbols; ++k) {
797     if (huffman_code->code_lengths[k] != 0) {
798       ++count;
799       if (count > 1) return;
800     }
801   }
802   for (k = 0; k < huffman_code->num_symbols; ++k) {
803     huffman_code->code_lengths[k] = 0;
804     huffman_code->codes[k] = 0;
805   }
806 }
807 
StoreHuffmanTreeToBitMask(VP8LBitWriter * const bw,const HuffmanTreeToken * const tokens,const int num_tokens,const HuffmanTreeCode * const huffman_code)808 static void StoreHuffmanTreeToBitMask(
809     VP8LBitWriter* const bw,
810     const HuffmanTreeToken* const tokens, const int num_tokens,
811     const HuffmanTreeCode* const huffman_code) {
812   int i;
813   for (i = 0; i < num_tokens; ++i) {
814     const int ix = tokens[i].code;
815     const int extra_bits = tokens[i].extra_bits;
816     VP8LPutBits(bw, huffman_code->codes[ix], huffman_code->code_lengths[ix]);
817     switch (ix) {
818       case 16:
819         VP8LPutBits(bw, extra_bits, 2);
820         break;
821       case 17:
822         VP8LPutBits(bw, extra_bits, 3);
823         break;
824       case 18:
825         VP8LPutBits(bw, extra_bits, 7);
826         break;
827     }
828   }
829 }
830 
831 // 'huff_tree' and 'tokens' are pre-alloacted buffers.
StoreFullHuffmanCode(VP8LBitWriter * const bw,HuffmanTree * const huff_tree,HuffmanTreeToken * const tokens,const HuffmanTreeCode * const tree)832 static void StoreFullHuffmanCode(VP8LBitWriter* const bw,
833                                  HuffmanTree* const huff_tree,
834                                  HuffmanTreeToken* const tokens,
835                                  const HuffmanTreeCode* const tree) {
836   uint8_t code_length_bitdepth[CODE_LENGTH_CODES] = { 0 };
837   uint16_t code_length_bitdepth_symbols[CODE_LENGTH_CODES] = { 0 };
838   const int max_tokens = tree->num_symbols;
839   int num_tokens;
840   HuffmanTreeCode huffman_code;
841   huffman_code.num_symbols = CODE_LENGTH_CODES;
842   huffman_code.code_lengths = code_length_bitdepth;
843   huffman_code.codes = code_length_bitdepth_symbols;
844 
845   VP8LPutBits(bw, 0, 1);
846   num_tokens = VP8LCreateCompressedHuffmanTree(tree, tokens, max_tokens);
847   {
848     uint32_t histogram[CODE_LENGTH_CODES] = { 0 };
849     uint8_t buf_rle[CODE_LENGTH_CODES] = { 0 };
850     int i;
851     for (i = 0; i < num_tokens; ++i) {
852       ++histogram[tokens[i].code];
853     }
854 
855     VP8LCreateHuffmanTree(histogram, 7, buf_rle, huff_tree, &huffman_code);
856   }
857 
858   StoreHuffmanTreeOfHuffmanTreeToBitMask(bw, code_length_bitdepth);
859   ClearHuffmanTreeIfOnlyOneSymbol(&huffman_code);
860   {
861     int trailing_zero_bits = 0;
862     int trimmed_length = num_tokens;
863     int write_trimmed_length;
864     int length;
865     int i = num_tokens;
866     while (i-- > 0) {
867       const int ix = tokens[i].code;
868       if (ix == 0 || ix == 17 || ix == 18) {
869         --trimmed_length;   // discount trailing zeros
870         trailing_zero_bits += code_length_bitdepth[ix];
871         if (ix == 17) {
872           trailing_zero_bits += 3;
873         } else if (ix == 18) {
874           trailing_zero_bits += 7;
875         }
876       } else {
877         break;
878       }
879     }
880     write_trimmed_length = (trimmed_length > 1 && trailing_zero_bits > 12);
881     length = write_trimmed_length ? trimmed_length : num_tokens;
882     VP8LPutBits(bw, write_trimmed_length, 1);
883     if (write_trimmed_length) {
884       if (trimmed_length == 2) {
885         VP8LPutBits(bw, 0, 3 + 2);     // nbitpairs=1, trimmed_length=2
886       } else {
887         const int nbits = BitsLog2Floor(trimmed_length - 2);
888         const int nbitpairs = nbits / 2 + 1;
889         assert(trimmed_length > 2);
890         assert(nbitpairs - 1 < 8);
891         VP8LPutBits(bw, nbitpairs - 1, 3);
892         VP8LPutBits(bw, trimmed_length - 2, nbitpairs * 2);
893       }
894     }
895     StoreHuffmanTreeToBitMask(bw, tokens, length, &huffman_code);
896   }
897 }
898 
899 // 'huff_tree' and 'tokens' are pre-alloacted buffers.
StoreHuffmanCode(VP8LBitWriter * const bw,HuffmanTree * const huff_tree,HuffmanTreeToken * const tokens,const HuffmanTreeCode * const huffman_code)900 static void StoreHuffmanCode(VP8LBitWriter* const bw,
901                              HuffmanTree* const huff_tree,
902                              HuffmanTreeToken* const tokens,
903                              const HuffmanTreeCode* const huffman_code) {
904   int i;
905   int count = 0;
906   int symbols[2] = { 0, 0 };
907   const int kMaxBits = 8;
908   const int kMaxSymbol = 1 << kMaxBits;
909 
910   // Check whether it's a small tree.
911   for (i = 0; i < huffman_code->num_symbols && count < 3; ++i) {
912     if (huffman_code->code_lengths[i] != 0) {
913       if (count < 2) symbols[count] = i;
914       ++count;
915     }
916   }
917 
918   if (count == 0) {   // emit minimal tree for empty cases
919     // bits: small tree marker: 1, count-1: 0, large 8-bit code: 0, code: 0
920     VP8LPutBits(bw, 0x01, 4);
921   } else if (count <= 2 && symbols[0] < kMaxSymbol && symbols[1] < kMaxSymbol) {
922     VP8LPutBits(bw, 1, 1);  // Small tree marker to encode 1 or 2 symbols.
923     VP8LPutBits(bw, count - 1, 1);
924     if (symbols[0] <= 1) {
925       VP8LPutBits(bw, 0, 1);  // Code bit for small (1 bit) symbol value.
926       VP8LPutBits(bw, symbols[0], 1);
927     } else {
928       VP8LPutBits(bw, 1, 1);
929       VP8LPutBits(bw, symbols[0], 8);
930     }
931     if (count == 2) {
932       VP8LPutBits(bw, symbols[1], 8);
933     }
934   } else {
935     StoreFullHuffmanCode(bw, huff_tree, tokens, huffman_code);
936   }
937 }
938 
WriteHuffmanCode(VP8LBitWriter * const bw,const HuffmanTreeCode * const code,int code_index)939 static WEBP_INLINE void WriteHuffmanCode(VP8LBitWriter* const bw,
940                              const HuffmanTreeCode* const code,
941                              int code_index) {
942   const int depth = code->code_lengths[code_index];
943   const int symbol = code->codes[code_index];
944   VP8LPutBits(bw, symbol, depth);
945 }
946 
WriteHuffmanCodeWithExtraBits(VP8LBitWriter * const bw,const HuffmanTreeCode * const code,int code_index,int bits,int n_bits)947 static WEBP_INLINE void WriteHuffmanCodeWithExtraBits(
948     VP8LBitWriter* const bw,
949     const HuffmanTreeCode* const code,
950     int code_index,
951     int bits,
952     int n_bits) {
953   const int depth = code->code_lengths[code_index];
954   const int symbol = code->codes[code_index];
955   VP8LPutBits(bw, (bits << depth) | symbol, depth + n_bits);
956 }
957 
StoreImageToBitMask(VP8LBitWriter * const bw,int width,int histo_bits,const VP8LBackwardRefs * const refs,const uint16_t * histogram_symbols,const HuffmanTreeCode * const huffman_codes,const WebPPicture * const pic)958 static int StoreImageToBitMask(
959     VP8LBitWriter* const bw, int width, int histo_bits,
960     const VP8LBackwardRefs* const refs,
961     const uint16_t* histogram_symbols,
962     const HuffmanTreeCode* const huffman_codes, const WebPPicture* const pic) {
963   const int histo_xsize = histo_bits ? VP8LSubSampleSize(width, histo_bits) : 1;
964   const int tile_mask = (histo_bits == 0) ? 0 : -(1 << histo_bits);
965   // x and y trace the position in the image.
966   int x = 0;
967   int y = 0;
968   int tile_x = x & tile_mask;
969   int tile_y = y & tile_mask;
970   int histogram_ix = histogram_symbols[0];
971   const HuffmanTreeCode* codes = huffman_codes + 5 * histogram_ix;
972   VP8LRefsCursor c = VP8LRefsCursorInit(refs);
973   while (VP8LRefsCursorOk(&c)) {
974     const PixOrCopy* const v = c.cur_pos;
975     if ((tile_x != (x & tile_mask)) || (tile_y != (y & tile_mask))) {
976       tile_x = x & tile_mask;
977       tile_y = y & tile_mask;
978       histogram_ix = histogram_symbols[(y >> histo_bits) * histo_xsize +
979                                        (x >> histo_bits)];
980       codes = huffman_codes + 5 * histogram_ix;
981     }
982     if (PixOrCopyIsLiteral(v)) {
983       static const uint8_t order[] = { 1, 2, 0, 3 };
984       int k;
985       for (k = 0; k < 4; ++k) {
986         const int code = PixOrCopyLiteral(v, order[k]);
987         WriteHuffmanCode(bw, codes + k, code);
988       }
989     } else if (PixOrCopyIsCacheIdx(v)) {
990       const int code = PixOrCopyCacheIdx(v);
991       const int literal_ix = 256 + NUM_LENGTH_CODES + code;
992       WriteHuffmanCode(bw, codes, literal_ix);
993     } else {
994       int bits, n_bits;
995       int code;
996 
997       const int distance = PixOrCopyDistance(v);
998       VP8LPrefixEncode(v->len, &code, &n_bits, &bits);
999       WriteHuffmanCodeWithExtraBits(bw, codes, 256 + code, bits, n_bits);
1000 
1001       // Don't write the distance with the extra bits code since
1002       // the distance can be up to 18 bits of extra bits, and the prefix
1003       // 15 bits, totaling to 33, and our PutBits only supports up to 32 bits.
1004       VP8LPrefixEncode(distance, &code, &n_bits, &bits);
1005       WriteHuffmanCode(bw, codes + 4, code);
1006       VP8LPutBits(bw, bits, n_bits);
1007     }
1008     x += PixOrCopyLength(v);
1009     while (x >= width) {
1010       x -= width;
1011       ++y;
1012     }
1013     VP8LRefsCursorNext(&c);
1014   }
1015   if (bw->error_) {
1016     WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1017     return 0;
1018   }
1019   return 1;
1020 }
1021 
1022 // Special case of EncodeImageInternal() for cache-bits=0, histo_bits=31.
1023 // pic and percent are for progress.
EncodeImageNoHuffman(VP8LBitWriter * const bw,const uint32_t * const argb,VP8LHashChain * const hash_chain,VP8LBackwardRefs * const refs_array,int width,int height,int quality,int low_effort,const WebPPicture * const pic,int percent_range,int * const percent)1024 static int EncodeImageNoHuffman(VP8LBitWriter* const bw,
1025                                 const uint32_t* const argb,
1026                                 VP8LHashChain* const hash_chain,
1027                                 VP8LBackwardRefs* const refs_array, int width,
1028                                 int height, int quality, int low_effort,
1029                                 const WebPPicture* const pic, int percent_range,
1030                                 int* const percent) {
1031   int i;
1032   int max_tokens = 0;
1033   VP8LBackwardRefs* refs;
1034   HuffmanTreeToken* tokens = NULL;
1035   HuffmanTreeCode huffman_codes[5] = {{0, NULL, NULL}};
1036   const uint16_t histogram_symbols[1] = {0};  // only one tree, one symbol
1037   int cache_bits = 0;
1038   VP8LHistogramSet* histogram_image = NULL;
1039   HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
1040       3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
1041   if (huff_tree == NULL) {
1042     WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1043     goto Error;
1044   }
1045 
1046   // Calculate backward references from ARGB image.
1047   if (!VP8LHashChainFill(hash_chain, quality, argb, width, height, low_effort,
1048                          pic, percent_range / 2, percent)) {
1049     goto Error;
1050   }
1051   if (!VP8LGetBackwardReferences(width, height, argb, quality, /*low_effort=*/0,
1052                                  kLZ77Standard | kLZ77RLE, cache_bits,
1053                                  /*do_no_cache=*/0, hash_chain, refs_array,
1054                                  &cache_bits, pic,
1055                                  percent_range - percent_range / 2, percent)) {
1056     goto Error;
1057   }
1058   refs = &refs_array[0];
1059   histogram_image = VP8LAllocateHistogramSet(1, cache_bits);
1060   if (histogram_image == NULL) {
1061     WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1062     goto Error;
1063   }
1064   VP8LHistogramSetClear(histogram_image);
1065 
1066   // Build histogram image and symbols from backward references.
1067   VP8LHistogramStoreRefs(refs, histogram_image->histograms[0]);
1068 
1069   // Create Huffman bit lengths and codes for each histogram image.
1070   assert(histogram_image->size == 1);
1071   if (!GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
1072     WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1073     goto Error;
1074   }
1075 
1076   // No color cache, no Huffman image.
1077   VP8LPutBits(bw, 0, 1);
1078 
1079   // Find maximum number of symbols for the huffman tree-set.
1080   for (i = 0; i < 5; ++i) {
1081     HuffmanTreeCode* const codes = &huffman_codes[i];
1082     if (max_tokens < codes->num_symbols) {
1083       max_tokens = codes->num_symbols;
1084     }
1085   }
1086 
1087   tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
1088   if (tokens == NULL) {
1089     WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1090     goto Error;
1091   }
1092 
1093   // Store Huffman codes.
1094   for (i = 0; i < 5; ++i) {
1095     HuffmanTreeCode* const codes = &huffman_codes[i];
1096     StoreHuffmanCode(bw, huff_tree, tokens, codes);
1097     ClearHuffmanTreeIfOnlyOneSymbol(codes);
1098   }
1099 
1100   // Store actual literals.
1101   if (!StoreImageToBitMask(bw, width, 0, refs, histogram_symbols, huffman_codes,
1102                            pic)) {
1103     goto Error;
1104   }
1105 
1106  Error:
1107   WebPSafeFree(tokens);
1108   WebPSafeFree(huff_tree);
1109   VP8LFreeHistogramSet(histogram_image);
1110   WebPSafeFree(huffman_codes[0].codes);
1111   return (pic->error_code == VP8_ENC_OK);
1112 }
1113 
1114 // pic and percent are for progress.
EncodeImageInternal(VP8LBitWriter * const bw,const uint32_t * const argb,VP8LHashChain * const hash_chain,VP8LBackwardRefs refs_array[4],int width,int height,int quality,int low_effort,int use_cache,const CrunchConfig * const config,int * cache_bits,int histogram_bits,size_t init_byte_position,int * const hdr_size,int * const data_size,const WebPPicture * const pic,int percent_range,int * const percent)1115 static int EncodeImageInternal(
1116     VP8LBitWriter* const bw, const uint32_t* const argb,
1117     VP8LHashChain* const hash_chain, VP8LBackwardRefs refs_array[4], int width,
1118     int height, int quality, int low_effort, int use_cache,
1119     const CrunchConfig* const config, int* cache_bits, int histogram_bits,
1120     size_t init_byte_position, int* const hdr_size, int* const data_size,
1121     const WebPPicture* const pic, int percent_range, int* const percent) {
1122   const uint32_t histogram_image_xysize =
1123       VP8LSubSampleSize(width, histogram_bits) *
1124       VP8LSubSampleSize(height, histogram_bits);
1125   int remaining_percent = percent_range;
1126   int percent_start = *percent;
1127   VP8LHistogramSet* histogram_image = NULL;
1128   VP8LHistogram* tmp_histo = NULL;
1129   int histogram_image_size = 0;
1130   size_t bit_array_size = 0;
1131   HuffmanTree* const huff_tree = (HuffmanTree*)WebPSafeMalloc(
1132       3ULL * CODE_LENGTH_CODES, sizeof(*huff_tree));
1133   HuffmanTreeToken* tokens = NULL;
1134   HuffmanTreeCode* huffman_codes = NULL;
1135   uint16_t* const histogram_symbols = (uint16_t*)WebPSafeMalloc(
1136       histogram_image_xysize, sizeof(*histogram_symbols));
1137   int sub_configs_idx;
1138   int cache_bits_init, write_histogram_image;
1139   VP8LBitWriter bw_init = *bw, bw_best;
1140   int hdr_size_tmp;
1141   VP8LHashChain hash_chain_histogram;  // histogram image hash chain
1142   size_t bw_size_best = ~(size_t)0;
1143   assert(histogram_bits >= MIN_HUFFMAN_BITS);
1144   assert(histogram_bits <= MAX_HUFFMAN_BITS);
1145   assert(hdr_size != NULL);
1146   assert(data_size != NULL);
1147 
1148   memset(&hash_chain_histogram, 0, sizeof(hash_chain_histogram));
1149   if (!VP8LBitWriterInit(&bw_best, 0)) {
1150     WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1151     goto Error;
1152   }
1153 
1154   // Make sure we can allocate the different objects.
1155   if (huff_tree == NULL || histogram_symbols == NULL ||
1156       !VP8LHashChainInit(&hash_chain_histogram, histogram_image_xysize)) {
1157     WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1158     goto Error;
1159   }
1160 
1161   percent_range = remaining_percent / 5;
1162   if (!VP8LHashChainFill(hash_chain, quality, argb, width, height,
1163                          low_effort, pic, percent_range, percent)) {
1164     goto Error;
1165   }
1166   percent_start += percent_range;
1167   remaining_percent -= percent_range;
1168 
1169   if (use_cache) {
1170     // If the value is different from zero, it has been set during the
1171     // palette analysis.
1172     cache_bits_init = (*cache_bits == 0) ? MAX_COLOR_CACHE_BITS : *cache_bits;
1173   } else {
1174     cache_bits_init = 0;
1175   }
1176   // If several iterations will happen, clone into bw_best.
1177   if ((config->sub_configs_size_ > 1 || config->sub_configs_[0].do_no_cache_) &&
1178       !VP8LBitWriterClone(bw, &bw_best)) {
1179     WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1180     goto Error;
1181   }
1182 
1183   for (sub_configs_idx = 0; sub_configs_idx < config->sub_configs_size_;
1184        ++sub_configs_idx) {
1185     const CrunchSubConfig* const sub_config =
1186         &config->sub_configs_[sub_configs_idx];
1187     int cache_bits_best, i_cache;
1188     int i_remaining_percent = remaining_percent / config->sub_configs_size_;
1189     int i_percent_range = i_remaining_percent / 4;
1190     i_remaining_percent -= i_percent_range;
1191 
1192     if (!VP8LGetBackwardReferences(
1193             width, height, argb, quality, low_effort, sub_config->lz77_,
1194             cache_bits_init, sub_config->do_no_cache_, hash_chain,
1195             &refs_array[0], &cache_bits_best, pic, i_percent_range, percent)) {
1196       goto Error;
1197     }
1198 
1199     for (i_cache = 0; i_cache < (sub_config->do_no_cache_ ? 2 : 1); ++i_cache) {
1200       const int cache_bits_tmp = (i_cache == 0) ? cache_bits_best : 0;
1201       // Speed-up: no need to study the no-cache case if it was already studied
1202       // in i_cache == 0.
1203       if (i_cache == 1 && cache_bits_best == 0) break;
1204 
1205       // Reset the bit writer for this iteration.
1206       VP8LBitWriterReset(&bw_init, bw);
1207 
1208       // Build histogram image and symbols from backward references.
1209       histogram_image =
1210           VP8LAllocateHistogramSet(histogram_image_xysize, cache_bits_tmp);
1211       tmp_histo = VP8LAllocateHistogram(cache_bits_tmp);
1212       if (histogram_image == NULL || tmp_histo == NULL) {
1213         WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1214         goto Error;
1215       }
1216 
1217       i_percent_range = i_remaining_percent / 3;
1218       i_remaining_percent -= i_percent_range;
1219       if (!VP8LGetHistoImageSymbols(
1220               width, height, &refs_array[i_cache], quality, low_effort,
1221               histogram_bits, cache_bits_tmp, histogram_image, tmp_histo,
1222               histogram_symbols, pic, i_percent_range, percent)) {
1223         goto Error;
1224       }
1225       // Create Huffman bit lengths and codes for each histogram image.
1226       histogram_image_size = histogram_image->size;
1227       bit_array_size = 5 * histogram_image_size;
1228       huffman_codes = (HuffmanTreeCode*)WebPSafeCalloc(bit_array_size,
1229                                                        sizeof(*huffman_codes));
1230       // Note: some histogram_image entries may point to tmp_histos[], so the
1231       // latter need to outlive the following call to
1232       // GetHuffBitLengthsAndCodes().
1233       if (huffman_codes == NULL ||
1234           !GetHuffBitLengthsAndCodes(histogram_image, huffman_codes)) {
1235         WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1236         goto Error;
1237       }
1238       // Free combined histograms.
1239       VP8LFreeHistogramSet(histogram_image);
1240       histogram_image = NULL;
1241 
1242       // Free scratch histograms.
1243       VP8LFreeHistogram(tmp_histo);
1244       tmp_histo = NULL;
1245 
1246       // Color Cache parameters.
1247       if (cache_bits_tmp > 0) {
1248         VP8LPutBits(bw, 1, 1);
1249         VP8LPutBits(bw, cache_bits_tmp, 4);
1250       } else {
1251         VP8LPutBits(bw, 0, 1);
1252       }
1253 
1254       // Huffman image + meta huffman.
1255       write_histogram_image = (histogram_image_size > 1);
1256       VP8LPutBits(bw, write_histogram_image, 1);
1257       if (write_histogram_image) {
1258         uint32_t* const histogram_argb = (uint32_t*)WebPSafeMalloc(
1259             histogram_image_xysize, sizeof(*histogram_argb));
1260         int max_index = 0;
1261         uint32_t i;
1262         if (histogram_argb == NULL) {
1263           WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1264           goto Error;
1265         }
1266         for (i = 0; i < histogram_image_xysize; ++i) {
1267           const int symbol_index = histogram_symbols[i] & 0xffff;
1268           histogram_argb[i] = (symbol_index << 8);
1269           if (symbol_index >= max_index) {
1270             max_index = symbol_index + 1;
1271           }
1272         }
1273         histogram_image_size = max_index;
1274 
1275         VP8LPutBits(bw, histogram_bits - 2, 3);
1276         i_percent_range = i_remaining_percent / 2;
1277         i_remaining_percent -= i_percent_range;
1278         if (!EncodeImageNoHuffman(
1279                 bw, histogram_argb, &hash_chain_histogram, &refs_array[2],
1280                 VP8LSubSampleSize(width, histogram_bits),
1281                 VP8LSubSampleSize(height, histogram_bits), quality, low_effort,
1282                 pic, i_percent_range, percent)) {
1283           WebPSafeFree(histogram_argb);
1284           goto Error;
1285         }
1286         WebPSafeFree(histogram_argb);
1287       }
1288 
1289       // Store Huffman codes.
1290       {
1291         int i;
1292         int max_tokens = 0;
1293         // Find maximum number of symbols for the huffman tree-set.
1294         for (i = 0; i < 5 * histogram_image_size; ++i) {
1295           HuffmanTreeCode* const codes = &huffman_codes[i];
1296           if (max_tokens < codes->num_symbols) {
1297             max_tokens = codes->num_symbols;
1298           }
1299         }
1300         tokens = (HuffmanTreeToken*)WebPSafeMalloc(max_tokens, sizeof(*tokens));
1301         if (tokens == NULL) goto Error;
1302         for (i = 0; i < 5 * histogram_image_size; ++i) {
1303           HuffmanTreeCode* const codes = &huffman_codes[i];
1304           StoreHuffmanCode(bw, huff_tree, tokens, codes);
1305           ClearHuffmanTreeIfOnlyOneSymbol(codes);
1306         }
1307       }
1308       // Store actual literals.
1309       hdr_size_tmp = (int)(VP8LBitWriterNumBytes(bw) - init_byte_position);
1310       if (!StoreImageToBitMask(bw, width, histogram_bits, &refs_array[i_cache],
1311                                histogram_symbols, huffman_codes, pic)) {
1312         goto Error;
1313       }
1314       // Keep track of the smallest image so far.
1315       if (VP8LBitWriterNumBytes(bw) < bw_size_best) {
1316         bw_size_best = VP8LBitWriterNumBytes(bw);
1317         *cache_bits = cache_bits_tmp;
1318         *hdr_size = hdr_size_tmp;
1319         *data_size =
1320             (int)(VP8LBitWriterNumBytes(bw) - init_byte_position - *hdr_size);
1321         VP8LBitWriterSwap(bw, &bw_best);
1322       }
1323       WebPSafeFree(tokens);
1324       tokens = NULL;
1325       if (huffman_codes != NULL) {
1326         WebPSafeFree(huffman_codes->codes);
1327         WebPSafeFree(huffman_codes);
1328         huffman_codes = NULL;
1329       }
1330     }
1331   }
1332   VP8LBitWriterSwap(bw, &bw_best);
1333 
1334   if (!WebPReportProgress(pic, percent_start + remaining_percent, percent)) {
1335     goto Error;
1336   }
1337 
1338  Error:
1339   WebPSafeFree(tokens);
1340   WebPSafeFree(huff_tree);
1341   VP8LFreeHistogramSet(histogram_image);
1342   VP8LFreeHistogram(tmp_histo);
1343   VP8LHashChainClear(&hash_chain_histogram);
1344   if (huffman_codes != NULL) {
1345     WebPSafeFree(huffman_codes->codes);
1346     WebPSafeFree(huffman_codes);
1347   }
1348   WebPSafeFree(histogram_symbols);
1349   VP8LBitWriterWipeOut(&bw_best);
1350   return (pic->error_code == VP8_ENC_OK);
1351 }
1352 
1353 // -----------------------------------------------------------------------------
1354 // Transforms
1355 
ApplySubtractGreen(VP8LEncoder * const enc,int width,int height,VP8LBitWriter * const bw)1356 static void ApplySubtractGreen(VP8LEncoder* const enc, int width, int height,
1357                                VP8LBitWriter* const bw) {
1358   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1359   VP8LPutBits(bw, SUBTRACT_GREEN_TRANSFORM, 2);
1360   VP8LSubtractGreenFromBlueAndRed(enc->argb_, width * height);
1361 }
1362 
ApplyPredictFilter(const VP8LEncoder * const enc,int width,int height,int quality,int low_effort,int used_subtract_green,VP8LBitWriter * const bw,int percent_range,int * const percent)1363 static int ApplyPredictFilter(const VP8LEncoder* const enc, int width,
1364                               int height, int quality, int low_effort,
1365                               int used_subtract_green, VP8LBitWriter* const bw,
1366                               int percent_range, int* const percent) {
1367   const int pred_bits = enc->transform_bits_;
1368   const int transform_width = VP8LSubSampleSize(width, pred_bits);
1369   const int transform_height = VP8LSubSampleSize(height, pred_bits);
1370   // we disable near-lossless quantization if palette is used.
1371   const int near_lossless_strength =
1372       enc->use_palette_ ? 100 : enc->config_->near_lossless;
1373 
1374   if (!VP8LResidualImage(
1375           width, height, pred_bits, low_effort, enc->argb_, enc->argb_scratch_,
1376           enc->transform_data_, near_lossless_strength, enc->config_->exact,
1377           used_subtract_green, enc->pic_, percent_range / 2, percent)) {
1378     return 0;
1379   }
1380   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1381   VP8LPutBits(bw, PREDICTOR_TRANSFORM, 2);
1382   assert(pred_bits >= 2);
1383   VP8LPutBits(bw, pred_bits - 2, 3);
1384   return EncodeImageNoHuffman(
1385       bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_,
1386       (VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height,
1387       quality, low_effort, enc->pic_, percent_range - percent_range / 2,
1388       percent);
1389 }
1390 
ApplyCrossColorFilter(const VP8LEncoder * const enc,int width,int height,int quality,int low_effort,VP8LBitWriter * const bw,int percent_range,int * const percent)1391 static int ApplyCrossColorFilter(const VP8LEncoder* const enc, int width,
1392                                  int height, int quality, int low_effort,
1393                                  VP8LBitWriter* const bw, int percent_range,
1394                                  int* const percent) {
1395   const int ccolor_transform_bits = enc->transform_bits_;
1396   const int transform_width = VP8LSubSampleSize(width, ccolor_transform_bits);
1397   const int transform_height = VP8LSubSampleSize(height, ccolor_transform_bits);
1398 
1399   if (!VP8LColorSpaceTransform(width, height, ccolor_transform_bits, quality,
1400                                enc->argb_, enc->transform_data_, enc->pic_,
1401                                percent_range / 2, percent)) {
1402     return 0;
1403   }
1404   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1405   VP8LPutBits(bw, CROSS_COLOR_TRANSFORM, 2);
1406   assert(ccolor_transform_bits >= 2);
1407   VP8LPutBits(bw, ccolor_transform_bits - 2, 3);
1408   return EncodeImageNoHuffman(
1409       bw, enc->transform_data_, (VP8LHashChain*)&enc->hash_chain_,
1410       (VP8LBackwardRefs*)&enc->refs_[0], transform_width, transform_height,
1411       quality, low_effort, enc->pic_, percent_range - percent_range / 2,
1412       percent);
1413 }
1414 
1415 // -----------------------------------------------------------------------------
1416 
WriteRiffHeader(const WebPPicture * const pic,size_t riff_size,size_t vp8l_size)1417 static int WriteRiffHeader(const WebPPicture* const pic, size_t riff_size,
1418                            size_t vp8l_size) {
1419   uint8_t riff[RIFF_HEADER_SIZE + CHUNK_HEADER_SIZE + VP8L_SIGNATURE_SIZE] = {
1420     'R', 'I', 'F', 'F', 0, 0, 0, 0, 'W', 'E', 'B', 'P',
1421     'V', 'P', '8', 'L', 0, 0, 0, 0, VP8L_MAGIC_BYTE,
1422   };
1423   PutLE32(riff + TAG_SIZE, (uint32_t)riff_size);
1424   PutLE32(riff + RIFF_HEADER_SIZE + TAG_SIZE, (uint32_t)vp8l_size);
1425   return pic->writer(riff, sizeof(riff), pic);
1426 }
1427 
WriteImageSize(const WebPPicture * const pic,VP8LBitWriter * const bw)1428 static int WriteImageSize(const WebPPicture* const pic,
1429                           VP8LBitWriter* const bw) {
1430   const int width = pic->width - 1;
1431   const int height = pic->height - 1;
1432   assert(width < WEBP_MAX_DIMENSION && height < WEBP_MAX_DIMENSION);
1433 
1434   VP8LPutBits(bw, width, VP8L_IMAGE_SIZE_BITS);
1435   VP8LPutBits(bw, height, VP8L_IMAGE_SIZE_BITS);
1436   return !bw->error_;
1437 }
1438 
WriteRealAlphaAndVersion(VP8LBitWriter * const bw,int has_alpha)1439 static int WriteRealAlphaAndVersion(VP8LBitWriter* const bw, int has_alpha) {
1440   VP8LPutBits(bw, has_alpha, 1);
1441   VP8LPutBits(bw, VP8L_VERSION, VP8L_VERSION_BITS);
1442   return !bw->error_;
1443 }
1444 
WriteImage(const WebPPicture * const pic,VP8LBitWriter * const bw,size_t * const coded_size)1445 static int WriteImage(const WebPPicture* const pic, VP8LBitWriter* const bw,
1446                       size_t* const coded_size) {
1447   const uint8_t* const webpll_data = VP8LBitWriterFinish(bw);
1448   const size_t webpll_size = VP8LBitWriterNumBytes(bw);
1449   const size_t vp8l_size = VP8L_SIGNATURE_SIZE + webpll_size;
1450   const size_t pad = vp8l_size & 1;
1451   const size_t riff_size = TAG_SIZE + CHUNK_HEADER_SIZE + vp8l_size + pad;
1452 
1453   if (!WriteRiffHeader(pic, riff_size, vp8l_size) ||
1454       !pic->writer(webpll_data, webpll_size, pic)) {
1455     WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE);
1456     return 0;
1457   }
1458 
1459   if (pad) {
1460     const uint8_t pad_byte[1] = { 0 };
1461     if (!pic->writer(pad_byte, 1, pic)) {
1462       WebPEncodingSetError(pic, VP8_ENC_ERROR_BAD_WRITE);
1463       return 0;
1464     }
1465   }
1466   *coded_size = CHUNK_HEADER_SIZE + riff_size;
1467   return 1;
1468 }
1469 
1470 // -----------------------------------------------------------------------------
1471 
ClearTransformBuffer(VP8LEncoder * const enc)1472 static void ClearTransformBuffer(VP8LEncoder* const enc) {
1473   WebPSafeFree(enc->transform_mem_);
1474   enc->transform_mem_ = NULL;
1475   enc->transform_mem_size_ = 0;
1476 }
1477 
1478 // Allocates the memory for argb (W x H) buffer, 2 rows of context for
1479 // prediction and transform data.
1480 // Flags influencing the memory allocated:
1481 //  enc->transform_bits_
1482 //  enc->use_predict_, enc->use_cross_color_
AllocateTransformBuffer(VP8LEncoder * const enc,int width,int height)1483 static int AllocateTransformBuffer(VP8LEncoder* const enc, int width,
1484                                    int height) {
1485   const uint64_t image_size = width * height;
1486   // VP8LResidualImage needs room for 2 scanlines of uint32 pixels with an extra
1487   // pixel in each, plus 2 regular scanlines of bytes.
1488   // TODO(skal): Clean up by using arithmetic in bytes instead of words.
1489   const uint64_t argb_scratch_size =
1490       enc->use_predict_ ? (width + 1) * 2 + (width * 2 + sizeof(uint32_t) - 1) /
1491                                                 sizeof(uint32_t)
1492                         : 0;
1493   const uint64_t transform_data_size =
1494       (enc->use_predict_ || enc->use_cross_color_)
1495           ? VP8LSubSampleSize(width, enc->transform_bits_) *
1496                 VP8LSubSampleSize(height, enc->transform_bits_)
1497           : 0;
1498   const uint64_t max_alignment_in_words =
1499       (WEBP_ALIGN_CST + sizeof(uint32_t) - 1) / sizeof(uint32_t);
1500   const uint64_t mem_size = image_size + max_alignment_in_words +
1501                             argb_scratch_size + max_alignment_in_words +
1502                             transform_data_size;
1503   uint32_t* mem = enc->transform_mem_;
1504   if (mem == NULL || mem_size > enc->transform_mem_size_) {
1505     ClearTransformBuffer(enc);
1506     mem = (uint32_t*)WebPSafeMalloc(mem_size, sizeof(*mem));
1507     if (mem == NULL) {
1508       WebPEncodingSetError(enc->pic_, VP8_ENC_ERROR_OUT_OF_MEMORY);
1509       return 0;
1510     }
1511     enc->transform_mem_ = mem;
1512     enc->transform_mem_size_ = (size_t)mem_size;
1513     enc->argb_content_ = kEncoderNone;
1514   }
1515   enc->argb_ = mem;
1516   mem = (uint32_t*)WEBP_ALIGN(mem + image_size);
1517   enc->argb_scratch_ = mem;
1518   mem = (uint32_t*)WEBP_ALIGN(mem + argb_scratch_size);
1519   enc->transform_data_ = mem;
1520 
1521   enc->current_width_ = width;
1522   return 1;
1523 }
1524 
MakeInputImageCopy(VP8LEncoder * const enc)1525 static int MakeInputImageCopy(VP8LEncoder* const enc) {
1526   const WebPPicture* const picture = enc->pic_;
1527   const int width = picture->width;
1528   const int height = picture->height;
1529 
1530   if (!AllocateTransformBuffer(enc, width, height)) return 0;
1531   if (enc->argb_content_ == kEncoderARGB) return 1;
1532 
1533   {
1534     uint32_t* dst = enc->argb_;
1535     const uint32_t* src = picture->argb;
1536     int y;
1537     for (y = 0; y < height; ++y) {
1538       memcpy(dst, src, width * sizeof(*dst));
1539       dst += width;
1540       src += picture->argb_stride;
1541     }
1542   }
1543   enc->argb_content_ = kEncoderARGB;
1544   assert(enc->current_width_ == width);
1545   return 1;
1546 }
1547 
1548 // -----------------------------------------------------------------------------
1549 
1550 #define APPLY_PALETTE_GREEDY_MAX 4
1551 
SearchColorGreedy(const uint32_t palette[],int palette_size,uint32_t color)1552 static WEBP_INLINE uint32_t SearchColorGreedy(const uint32_t palette[],
1553                                               int palette_size,
1554                                               uint32_t color) {
1555   (void)palette_size;
1556   assert(palette_size < APPLY_PALETTE_GREEDY_MAX);
1557   assert(3 == APPLY_PALETTE_GREEDY_MAX - 1);
1558   if (color == palette[0]) return 0;
1559   if (color == palette[1]) return 1;
1560   if (color == palette[2]) return 2;
1561   return 3;
1562 }
1563 
ApplyPaletteHash0(uint32_t color)1564 static WEBP_INLINE uint32_t ApplyPaletteHash0(uint32_t color) {
1565   // Focus on the green color.
1566   return (color >> 8) & 0xff;
1567 }
1568 
1569 #define PALETTE_INV_SIZE_BITS 11
1570 #define PALETTE_INV_SIZE (1 << PALETTE_INV_SIZE_BITS)
1571 
ApplyPaletteHash1(uint32_t color)1572 static WEBP_INLINE uint32_t ApplyPaletteHash1(uint32_t color) {
1573   // Forget about alpha.
1574   return ((uint32_t)((color & 0x00ffffffu) * 4222244071ull)) >>
1575          (32 - PALETTE_INV_SIZE_BITS);
1576 }
1577 
ApplyPaletteHash2(uint32_t color)1578 static WEBP_INLINE uint32_t ApplyPaletteHash2(uint32_t color) {
1579   // Forget about alpha.
1580   return ((uint32_t)((color & 0x00ffffffu) * ((1ull << 31) - 1))) >>
1581          (32 - PALETTE_INV_SIZE_BITS);
1582 }
1583 
1584 // Use 1 pixel cache for ARGB pixels.
1585 #define APPLY_PALETTE_FOR(COLOR_INDEX) do {         \
1586   uint32_t prev_pix = palette[0];                   \
1587   uint32_t prev_idx = 0;                            \
1588   for (y = 0; y < height; ++y) {                    \
1589     for (x = 0; x < width; ++x) {                   \
1590       const uint32_t pix = src[x];                  \
1591       if (pix != prev_pix) {                        \
1592         prev_idx = COLOR_INDEX;                     \
1593         prev_pix = pix;                             \
1594       }                                             \
1595       tmp_row[x] = prev_idx;                        \
1596     }                                               \
1597     VP8LBundleColorMap(tmp_row, width, xbits, dst); \
1598     src += src_stride;                              \
1599     dst += dst_stride;                              \
1600   }                                                 \
1601 } while (0)
1602 
1603 // Remap argb values in src[] to packed palettes entries in dst[]
1604 // using 'row' as a temporary buffer of size 'width'.
1605 // We assume that all src[] values have a corresponding entry in the palette.
1606 // Note: src[] can be the same as dst[]
ApplyPalette(const uint32_t * src,uint32_t src_stride,uint32_t * dst,uint32_t dst_stride,const uint32_t * palette,int palette_size,int width,int height,int xbits,const WebPPicture * const pic)1607 static int ApplyPalette(const uint32_t* src, uint32_t src_stride, uint32_t* dst,
1608                         uint32_t dst_stride, const uint32_t* palette,
1609                         int palette_size, int width, int height, int xbits,
1610                         const WebPPicture* const pic) {
1611   // TODO(skal): this tmp buffer is not needed if VP8LBundleColorMap() can be
1612   // made to work in-place.
1613   uint8_t* const tmp_row = (uint8_t*)WebPSafeMalloc(width, sizeof(*tmp_row));
1614   int x, y;
1615 
1616   if (tmp_row == NULL) {
1617     WebPEncodingSetError(pic, VP8_ENC_ERROR_OUT_OF_MEMORY);
1618     return 0;
1619   }
1620 
1621   if (palette_size < APPLY_PALETTE_GREEDY_MAX) {
1622     APPLY_PALETTE_FOR(SearchColorGreedy(palette, palette_size, pix));
1623   } else {
1624     int i, j;
1625     uint16_t buffer[PALETTE_INV_SIZE];
1626     uint32_t (*const hash_functions[])(uint32_t) = {
1627         ApplyPaletteHash0, ApplyPaletteHash1, ApplyPaletteHash2
1628     };
1629 
1630     // Try to find a perfect hash function able to go from a color to an index
1631     // within 1 << PALETTE_INV_SIZE_BITS in order to build a hash map to go
1632     // from color to index in palette.
1633     for (i = 0; i < 3; ++i) {
1634       int use_LUT = 1;
1635       // Set each element in buffer to max uint16_t.
1636       memset(buffer, 0xff, sizeof(buffer));
1637       for (j = 0; j < palette_size; ++j) {
1638         const uint32_t ind = hash_functions[i](palette[j]);
1639         if (buffer[ind] != 0xffffu) {
1640           use_LUT = 0;
1641           break;
1642         } else {
1643           buffer[ind] = j;
1644         }
1645       }
1646       if (use_LUT) break;
1647     }
1648 
1649     if (i == 0) {
1650       APPLY_PALETTE_FOR(buffer[ApplyPaletteHash0(pix)]);
1651     } else if (i == 1) {
1652       APPLY_PALETTE_FOR(buffer[ApplyPaletteHash1(pix)]);
1653     } else if (i == 2) {
1654       APPLY_PALETTE_FOR(buffer[ApplyPaletteHash2(pix)]);
1655     } else {
1656       uint32_t idx_map[MAX_PALETTE_SIZE];
1657       uint32_t palette_sorted[MAX_PALETTE_SIZE];
1658       PrepareMapToPalette(palette, palette_size, palette_sorted, idx_map);
1659       APPLY_PALETTE_FOR(
1660           idx_map[SearchColorNoIdx(palette_sorted, pix, palette_size)]);
1661     }
1662   }
1663   WebPSafeFree(tmp_row);
1664   return 1;
1665 }
1666 #undef APPLY_PALETTE_FOR
1667 #undef PALETTE_INV_SIZE_BITS
1668 #undef PALETTE_INV_SIZE
1669 #undef APPLY_PALETTE_GREEDY_MAX
1670 
1671 // Note: Expects "enc->palette_" to be set properly.
MapImageFromPalette(VP8LEncoder * const enc,int in_place)1672 static int MapImageFromPalette(VP8LEncoder* const enc, int in_place) {
1673   const WebPPicture* const pic = enc->pic_;
1674   const int width = pic->width;
1675   const int height = pic->height;
1676   const uint32_t* const palette = enc->palette_;
1677   const uint32_t* src = in_place ? enc->argb_ : pic->argb;
1678   const int src_stride = in_place ? enc->current_width_ : pic->argb_stride;
1679   const int palette_size = enc->palette_size_;
1680   int xbits;
1681 
1682   // Replace each input pixel by corresponding palette index.
1683   // This is done line by line.
1684   if (palette_size <= 4) {
1685     xbits = (palette_size <= 2) ? 3 : 2;
1686   } else {
1687     xbits = (palette_size <= 16) ? 1 : 0;
1688   }
1689 
1690   if (!AllocateTransformBuffer(enc, VP8LSubSampleSize(width, xbits), height)) {
1691     return 0;
1692   }
1693   if (!ApplyPalette(src, src_stride,
1694                      enc->argb_, enc->current_width_,
1695                      palette, palette_size, width, height, xbits, pic)) {
1696     return 0;
1697   }
1698   enc->argb_content_ = kEncoderPalette;
1699   return 1;
1700 }
1701 
1702 // Save palette_[] to bitstream.
EncodePalette(VP8LBitWriter * const bw,int low_effort,VP8LEncoder * const enc,int percent_range,int * const percent)1703 static WebPEncodingError EncodePalette(VP8LBitWriter* const bw, int low_effort,
1704                                        VP8LEncoder* const enc,
1705                                        int percent_range, int* const percent) {
1706   int i;
1707   uint32_t tmp_palette[MAX_PALETTE_SIZE];
1708   const int palette_size = enc->palette_size_;
1709   const uint32_t* const palette = enc->palette_;
1710   VP8LPutBits(bw, TRANSFORM_PRESENT, 1);
1711   VP8LPutBits(bw, COLOR_INDEXING_TRANSFORM, 2);
1712   assert(palette_size >= 1 && palette_size <= MAX_PALETTE_SIZE);
1713   VP8LPutBits(bw, palette_size - 1, 8);
1714   for (i = palette_size - 1; i >= 1; --i) {
1715     tmp_palette[i] = VP8LSubPixels(palette[i], palette[i - 1]);
1716   }
1717   tmp_palette[0] = palette[0];
1718   return EncodeImageNoHuffman(bw, tmp_palette, &enc->hash_chain_,
1719                               &enc->refs_[0], palette_size, 1, /*quality=*/20,
1720                               low_effort, enc->pic_, percent_range, percent);
1721 }
1722 
1723 // -----------------------------------------------------------------------------
1724 // VP8LEncoder
1725 
VP8LEncoderNew(const WebPConfig * const config,const WebPPicture * const picture)1726 static VP8LEncoder* VP8LEncoderNew(const WebPConfig* const config,
1727                                    const WebPPicture* const picture) {
1728   VP8LEncoder* const enc = (VP8LEncoder*)WebPSafeCalloc(1ULL, sizeof(*enc));
1729   if (enc == NULL) {
1730     WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1731     return NULL;
1732   }
1733   enc->config_ = config;
1734   enc->pic_ = picture;
1735   enc->argb_content_ = kEncoderNone;
1736 
1737   VP8LEncDspInit();
1738 
1739   return enc;
1740 }
1741 
VP8LEncoderDelete(VP8LEncoder * enc)1742 static void VP8LEncoderDelete(VP8LEncoder* enc) {
1743   if (enc != NULL) {
1744     int i;
1745     VP8LHashChainClear(&enc->hash_chain_);
1746     for (i = 0; i < 4; ++i) VP8LBackwardRefsClear(&enc->refs_[i]);
1747     ClearTransformBuffer(enc);
1748     WebPSafeFree(enc);
1749   }
1750 }
1751 
1752 // -----------------------------------------------------------------------------
1753 // Main call
1754 
1755 typedef struct {
1756   const WebPConfig* config_;
1757   const WebPPicture* picture_;
1758   VP8LBitWriter* bw_;
1759   VP8LEncoder* enc_;
1760   int use_cache_;
1761   CrunchConfig crunch_configs_[CRUNCH_CONFIGS_MAX];
1762   int num_crunch_configs_;
1763   int red_and_blue_always_zero_;
1764   WebPAuxStats* stats_;
1765 } StreamEncodeContext;
1766 
EncodeStreamHook(void * input,void * data2)1767 static int EncodeStreamHook(void* input, void* data2) {
1768   StreamEncodeContext* const params = (StreamEncodeContext*)input;
1769   const WebPConfig* const config = params->config_;
1770   const WebPPicture* const picture = params->picture_;
1771   VP8LBitWriter* const bw = params->bw_;
1772   VP8LEncoder* const enc = params->enc_;
1773   const int use_cache = params->use_cache_;
1774   const CrunchConfig* const crunch_configs = params->crunch_configs_;
1775   const int num_crunch_configs = params->num_crunch_configs_;
1776   const int red_and_blue_always_zero = params->red_and_blue_always_zero_;
1777 #if !defined(WEBP_DISABLE_STATS)
1778   WebPAuxStats* const stats = params->stats_;
1779 #endif
1780   const int quality = (int)config->quality;
1781   const int low_effort = (config->method == 0);
1782 #if (WEBP_NEAR_LOSSLESS == 1)
1783   const int width = picture->width;
1784 #endif
1785   const int height = picture->height;
1786   const size_t byte_position = VP8LBitWriterNumBytes(bw);
1787   int percent = 2;  // for WebPProgressHook
1788 #if (WEBP_NEAR_LOSSLESS == 1)
1789   int use_near_lossless = 0;
1790 #endif
1791   int hdr_size = 0;
1792   int data_size = 0;
1793   int use_delta_palette = 0;
1794   int idx;
1795   size_t best_size = ~(size_t)0;
1796   VP8LBitWriter bw_init = *bw, bw_best;
1797   (void)data2;
1798 
1799   if (!VP8LBitWriterInit(&bw_best, 0) ||
1800       (num_crunch_configs > 1 && !VP8LBitWriterClone(bw, &bw_best))) {
1801     WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1802     goto Error;
1803   }
1804 
1805   for (idx = 0; idx < num_crunch_configs; ++idx) {
1806     const int entropy_idx = crunch_configs[idx].entropy_idx_;
1807     int remaining_percent = 97 / num_crunch_configs, percent_range;
1808     enc->use_palette_ =
1809         (entropy_idx == kPalette) || (entropy_idx == kPaletteAndSpatial);
1810     enc->use_subtract_green_ =
1811         (entropy_idx == kSubGreen) || (entropy_idx == kSpatialSubGreen);
1812     enc->use_predict_ = (entropy_idx == kSpatial) ||
1813                         (entropy_idx == kSpatialSubGreen) ||
1814                         (entropy_idx == kPaletteAndSpatial);
1815     // When using a palette, R/B==0, hence no need to test for cross-color.
1816     if (low_effort || enc->use_palette_) {
1817       enc->use_cross_color_ = 0;
1818     } else {
1819       enc->use_cross_color_ = red_and_blue_always_zero ? 0 : enc->use_predict_;
1820     }
1821     // Reset any parameter in the encoder that is set in the previous iteration.
1822     enc->cache_bits_ = 0;
1823     VP8LBackwardRefsClear(&enc->refs_[0]);
1824     VP8LBackwardRefsClear(&enc->refs_[1]);
1825 
1826 #if (WEBP_NEAR_LOSSLESS == 1)
1827     // Apply near-lossless preprocessing.
1828     use_near_lossless = (config->near_lossless < 100) && !enc->use_palette_ &&
1829                         !enc->use_predict_;
1830     if (use_near_lossless) {
1831       if (!AllocateTransformBuffer(enc, width, height)) goto Error;
1832       if ((enc->argb_content_ != kEncoderNearLossless) &&
1833           !VP8ApplyNearLossless(picture, config->near_lossless, enc->argb_)) {
1834         WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1835         goto Error;
1836       }
1837       enc->argb_content_ = kEncoderNearLossless;
1838     } else {
1839       enc->argb_content_ = kEncoderNone;
1840     }
1841 #else
1842     enc->argb_content_ = kEncoderNone;
1843 #endif
1844 
1845     // Encode palette
1846     if (enc->use_palette_) {
1847       if (crunch_configs[idx].palette_sorting_type_ == kSortedDefault) {
1848         // Nothing to do, we have already sorted the palette.
1849         memcpy(enc->palette_, enc->palette_sorted_,
1850                enc->palette_size_ * sizeof(*enc->palette_));
1851       } else if (crunch_configs[idx].palette_sorting_type_ == kMinimizeDelta) {
1852         PaletteSortMinimizeDeltas(enc->palette_sorted_, enc->palette_size_,
1853                                   enc->palette_);
1854       } else {
1855         assert(crunch_configs[idx].palette_sorting_type_ == kModifiedZeng);
1856         if (!PaletteSortModifiedZeng(enc->pic_, enc->palette_sorted_,
1857                                       enc->palette_size_, enc->palette_)) {
1858           goto Error;
1859         }
1860       }
1861       percent_range = remaining_percent / 4;
1862       if (!EncodePalette(bw, low_effort, enc, percent_range, &percent)) {
1863         goto Error;
1864       }
1865       remaining_percent -= percent_range;
1866       if (!MapImageFromPalette(enc, use_delta_palette)) goto Error;
1867       // If using a color cache, do not have it bigger than the number of
1868       // colors.
1869       if (use_cache && enc->palette_size_ < (1 << MAX_COLOR_CACHE_BITS)) {
1870         enc->cache_bits_ = BitsLog2Floor(enc->palette_size_) + 1;
1871       }
1872     }
1873     if (!use_delta_palette) {
1874       // In case image is not packed.
1875       if (enc->argb_content_ != kEncoderNearLossless &&
1876           enc->argb_content_ != kEncoderPalette) {
1877         if (!MakeInputImageCopy(enc)) goto Error;
1878       }
1879 
1880       // -----------------------------------------------------------------------
1881       // Apply transforms and write transform data.
1882 
1883       if (enc->use_subtract_green_) {
1884         ApplySubtractGreen(enc, enc->current_width_, height, bw);
1885       }
1886 
1887       if (enc->use_predict_) {
1888         percent_range = remaining_percent / 3;
1889         if (!ApplyPredictFilter(enc, enc->current_width_, height, quality,
1890                                 low_effort, enc->use_subtract_green_, bw,
1891                                 percent_range, &percent)) {
1892           goto Error;
1893         }
1894         remaining_percent -= percent_range;
1895       }
1896 
1897       if (enc->use_cross_color_) {
1898         percent_range = remaining_percent / 2;
1899         if (!ApplyCrossColorFilter(enc, enc->current_width_, height, quality,
1900                                    low_effort, bw, percent_range, &percent)) {
1901           goto Error;
1902         }
1903         remaining_percent -= percent_range;
1904       }
1905     }
1906 
1907     VP8LPutBits(bw, !TRANSFORM_PRESENT, 1);  // No more transforms.
1908 
1909     // -------------------------------------------------------------------------
1910     // Encode and write the transformed image.
1911     if (!EncodeImageInternal(
1912             bw, enc->argb_, &enc->hash_chain_, enc->refs_, enc->current_width_,
1913             height, quality, low_effort, use_cache, &crunch_configs[idx],
1914             &enc->cache_bits_, enc->histo_bits_, byte_position, &hdr_size,
1915             &data_size, picture, remaining_percent, &percent)) {
1916       goto Error;
1917     }
1918 
1919     // If we are better than what we already have.
1920     if (VP8LBitWriterNumBytes(bw) < best_size) {
1921       best_size = VP8LBitWriterNumBytes(bw);
1922       // Store the BitWriter.
1923       VP8LBitWriterSwap(bw, &bw_best);
1924 #if !defined(WEBP_DISABLE_STATS)
1925       // Update the stats.
1926       if (stats != NULL) {
1927         stats->lossless_features = 0;
1928         if (enc->use_predict_) stats->lossless_features |= 1;
1929         if (enc->use_cross_color_) stats->lossless_features |= 2;
1930         if (enc->use_subtract_green_) stats->lossless_features |= 4;
1931         if (enc->use_palette_) stats->lossless_features |= 8;
1932         stats->histogram_bits = enc->histo_bits_;
1933         stats->transform_bits = enc->transform_bits_;
1934         stats->cache_bits = enc->cache_bits_;
1935         stats->palette_size = enc->palette_size_;
1936         stats->lossless_size = (int)(best_size - byte_position);
1937         stats->lossless_hdr_size = hdr_size;
1938         stats->lossless_data_size = data_size;
1939       }
1940 #endif
1941     }
1942     // Reset the bit writer for the following iteration if any.
1943     if (num_crunch_configs > 1) VP8LBitWriterReset(&bw_init, bw);
1944   }
1945   VP8LBitWriterSwap(&bw_best, bw);
1946 
1947  Error:
1948   VP8LBitWriterWipeOut(&bw_best);
1949   // The hook should return false in case of error.
1950   return (params->picture_->error_code == VP8_ENC_OK);
1951 }
1952 
VP8LEncodeStream(const WebPConfig * const config,const WebPPicture * const picture,VP8LBitWriter * const bw_main,int use_cache)1953 int VP8LEncodeStream(const WebPConfig* const config,
1954                      const WebPPicture* const picture,
1955                      VP8LBitWriter* const bw_main, int use_cache) {
1956   VP8LEncoder* const enc_main = VP8LEncoderNew(config, picture);
1957   VP8LEncoder* enc_side = NULL;
1958   CrunchConfig crunch_configs[CRUNCH_CONFIGS_MAX];
1959   int num_crunch_configs_main, num_crunch_configs_side = 0;
1960   int idx;
1961   int red_and_blue_always_zero = 0;
1962   WebPWorker worker_main, worker_side;
1963   StreamEncodeContext params_main, params_side;
1964   // The main thread uses picture->stats, the side thread uses stats_side.
1965   WebPAuxStats stats_side;
1966   VP8LBitWriter bw_side;
1967   WebPPicture picture_side;
1968   const WebPWorkerInterface* const worker_interface = WebPGetWorkerInterface();
1969   int ok_main;
1970 
1971   if (enc_main == NULL || !VP8LBitWriterInit(&bw_side, 0)) {
1972     WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1973     VP8LEncoderDelete(enc_main);
1974     return 0;
1975   }
1976 
1977   // Avoid "garbage value" error from Clang's static analysis tool.
1978   WebPPictureInit(&picture_side);
1979 
1980   // Analyze image (entropy, num_palettes etc)
1981   if (!EncoderAnalyze(enc_main, crunch_configs, &num_crunch_configs_main,
1982                       &red_and_blue_always_zero) ||
1983       !EncoderInit(enc_main)) {
1984     WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
1985     goto Error;
1986   }
1987 
1988   // Split the configs between the main and side threads (if any).
1989   if (config->thread_level > 0) {
1990     num_crunch_configs_side = num_crunch_configs_main / 2;
1991     for (idx = 0; idx < num_crunch_configs_side; ++idx) {
1992       params_side.crunch_configs_[idx] =
1993           crunch_configs[num_crunch_configs_main - num_crunch_configs_side +
1994                          idx];
1995     }
1996     params_side.num_crunch_configs_ = num_crunch_configs_side;
1997   }
1998   num_crunch_configs_main -= num_crunch_configs_side;
1999   for (idx = 0; idx < num_crunch_configs_main; ++idx) {
2000     params_main.crunch_configs_[idx] = crunch_configs[idx];
2001   }
2002   params_main.num_crunch_configs_ = num_crunch_configs_main;
2003 
2004   // Fill in the parameters for the thread workers.
2005   {
2006     const int params_size = (num_crunch_configs_side > 0) ? 2 : 1;
2007     for (idx = 0; idx < params_size; ++idx) {
2008       // Create the parameters for each worker.
2009       WebPWorker* const worker = (idx == 0) ? &worker_main : &worker_side;
2010       StreamEncodeContext* const param =
2011           (idx == 0) ? &params_main : &params_side;
2012       param->config_ = config;
2013       param->use_cache_ = use_cache;
2014       param->red_and_blue_always_zero_ = red_and_blue_always_zero;
2015       if (idx == 0) {
2016         param->picture_ = picture;
2017         param->stats_ = picture->stats;
2018         param->bw_ = bw_main;
2019         param->enc_ = enc_main;
2020       } else {
2021         // Create a side picture (error_code is not thread-safe).
2022         if (!WebPPictureView(picture, /*left=*/0, /*top=*/0, picture->width,
2023                              picture->height, &picture_side)) {
2024           assert(0);
2025         }
2026         picture_side.progress_hook = NULL;  // Progress hook is not thread-safe.
2027         param->picture_ = &picture_side;  // No need to free a view afterwards.
2028         param->stats_ = (picture->stats == NULL) ? NULL : &stats_side;
2029         // Create a side bit writer.
2030         if (!VP8LBitWriterClone(bw_main, &bw_side)) {
2031           WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
2032           goto Error;
2033         }
2034         param->bw_ = &bw_side;
2035         // Create a side encoder.
2036         enc_side = VP8LEncoderNew(config, &picture_side);
2037         if (enc_side == NULL || !EncoderInit(enc_side)) {
2038           WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
2039           goto Error;
2040         }
2041         // Copy the values that were computed for the main encoder.
2042         enc_side->histo_bits_ = enc_main->histo_bits_;
2043         enc_side->transform_bits_ = enc_main->transform_bits_;
2044         enc_side->palette_size_ = enc_main->palette_size_;
2045         memcpy(enc_side->palette_, enc_main->palette_,
2046                sizeof(enc_main->palette_));
2047         memcpy(enc_side->palette_sorted_, enc_main->palette_sorted_,
2048                sizeof(enc_main->palette_sorted_));
2049         param->enc_ = enc_side;
2050       }
2051       // Create the workers.
2052       worker_interface->Init(worker);
2053       worker->data1 = param;
2054       worker->data2 = NULL;
2055       worker->hook = EncodeStreamHook;
2056     }
2057   }
2058 
2059   // Start the second thread if needed.
2060   if (num_crunch_configs_side != 0) {
2061     if (!worker_interface->Reset(&worker_side)) {
2062       WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
2063       goto Error;
2064     }
2065 #if !defined(WEBP_DISABLE_STATS)
2066     // This line is here and not in the param initialization above to remove a
2067     // Clang static analyzer warning.
2068     if (picture->stats != NULL) {
2069       memcpy(&stats_side, picture->stats, sizeof(stats_side));
2070     }
2071 #endif
2072     worker_interface->Launch(&worker_side);
2073   }
2074   // Execute the main thread.
2075   worker_interface->Execute(&worker_main);
2076   ok_main = worker_interface->Sync(&worker_main);
2077   worker_interface->End(&worker_main);
2078   if (num_crunch_configs_side != 0) {
2079     // Wait for the second thread.
2080     const int ok_side = worker_interface->Sync(&worker_side);
2081     worker_interface->End(&worker_side);
2082     if (!ok_main || !ok_side) {
2083       if (picture->error_code == VP8_ENC_OK) {
2084         assert(picture_side.error_code != VP8_ENC_OK);
2085         WebPEncodingSetError(picture, picture_side.error_code);
2086       }
2087       goto Error;
2088     }
2089     if (VP8LBitWriterNumBytes(&bw_side) < VP8LBitWriterNumBytes(bw_main)) {
2090       VP8LBitWriterSwap(bw_main, &bw_side);
2091 #if !defined(WEBP_DISABLE_STATS)
2092       if (picture->stats != NULL) {
2093         memcpy(picture->stats, &stats_side, sizeof(*picture->stats));
2094       }
2095 #endif
2096     }
2097   }
2098 
2099  Error:
2100   VP8LBitWriterWipeOut(&bw_side);
2101   VP8LEncoderDelete(enc_main);
2102   VP8LEncoderDelete(enc_side);
2103   return (picture->error_code == VP8_ENC_OK);
2104 }
2105 
2106 #undef CRUNCH_CONFIGS_MAX
2107 #undef CRUNCH_SUBCONFIGS_MAX
2108 
VP8LEncodeImage(const WebPConfig * const config,const WebPPicture * const picture)2109 int VP8LEncodeImage(const WebPConfig* const config,
2110                     const WebPPicture* const picture) {
2111   int width, height;
2112   int has_alpha;
2113   size_t coded_size;
2114   int percent = 0;
2115   int initial_size;
2116   VP8LBitWriter bw;
2117 
2118   if (picture == NULL) return 0;
2119 
2120   if (config == NULL || picture->argb == NULL) {
2121     WebPEncodingSetError(picture, VP8_ENC_ERROR_NULL_PARAMETER);
2122     return 0;
2123   }
2124 
2125   width = picture->width;
2126   height = picture->height;
2127   // Initialize BitWriter with size corresponding to 16 bpp to photo images and
2128   // 8 bpp for graphical images.
2129   initial_size = (config->image_hint == WEBP_HINT_GRAPH) ?
2130       width * height : width * height * 2;
2131   if (!VP8LBitWriterInit(&bw, initial_size)) {
2132     WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
2133     goto Error;
2134   }
2135 
2136   if (!WebPReportProgress(picture, 1, &percent)) {
2137  UserAbort:
2138     WebPEncodingSetError(picture, VP8_ENC_ERROR_USER_ABORT);
2139     goto Error;
2140   }
2141   // Reset stats (for pure lossless coding)
2142   if (picture->stats != NULL) {
2143     WebPAuxStats* const stats = picture->stats;
2144     memset(stats, 0, sizeof(*stats));
2145     stats->PSNR[0] = 99.f;
2146     stats->PSNR[1] = 99.f;
2147     stats->PSNR[2] = 99.f;
2148     stats->PSNR[3] = 99.f;
2149     stats->PSNR[4] = 99.f;
2150   }
2151 
2152   // Write image size.
2153   if (!WriteImageSize(picture, &bw)) {
2154     WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
2155     goto Error;
2156   }
2157 
2158   has_alpha = WebPPictureHasTransparency(picture);
2159   // Write the non-trivial Alpha flag and lossless version.
2160   if (!WriteRealAlphaAndVersion(&bw, has_alpha)) {
2161     WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
2162     goto Error;
2163   }
2164 
2165   if (!WebPReportProgress(picture, 2, &percent)) goto UserAbort;
2166 
2167   // Encode main image stream.
2168   if (!VP8LEncodeStream(config, picture, &bw, 1 /*use_cache*/)) goto Error;
2169 
2170   if (!WebPReportProgress(picture, 99, &percent)) goto UserAbort;
2171 
2172   // Finish the RIFF chunk.
2173   if (!WriteImage(picture, &bw, &coded_size)) goto Error;
2174 
2175   if (!WebPReportProgress(picture, 100, &percent)) goto UserAbort;
2176 
2177 #if !defined(WEBP_DISABLE_STATS)
2178   // Save size.
2179   if (picture->stats != NULL) {
2180     picture->stats->coded_size += (int)coded_size;
2181     picture->stats->lossless_size = (int)coded_size;
2182   }
2183 #endif
2184 
2185   if (picture->extra_info != NULL) {
2186     const int mb_w = (width + 15) >> 4;
2187     const int mb_h = (height + 15) >> 4;
2188     memset(picture->extra_info, 0, mb_w * mb_h * sizeof(*picture->extra_info));
2189   }
2190 
2191  Error:
2192   if (bw.error_) {
2193     WebPEncodingSetError(picture, VP8_ENC_ERROR_OUT_OF_MEMORY);
2194   }
2195   VP8LBitWriterWipeOut(&bw);
2196   return (picture->error_code == VP8_ENC_OK);
2197 }
2198 
2199 //------------------------------------------------------------------------------
2200