• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 1985, 1987, 1990, 1998  The Open Group
3  * Copyright 2008  Dan Nicholson
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be included in
13  * all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18  * AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
19  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Except as contained in this notice, the names of the authors or their
23  * institutions shall not be used in advertising or otherwise to promote the
24  * sale, use or other dealings in this Software without prior written
25  * authorization from the authors.
26  */
27 
28 /************************************************************
29  * Copyright (c) 1993 by Silicon Graphics Computer Systems, Inc.
30  *
31  * Permission to use, copy, modify, and distribute this
32  * software and its documentation for any purpose and without
33  * fee is hereby granted, provided that the above copyright
34  * notice appear in all copies and that both that copyright
35  * notice and this permission notice appear in supporting
36  * documentation, and that the name of Silicon Graphics not be
37  * used in advertising or publicity pertaining to distribution
38  * of the software without specific prior written permission.
39  * Silicon Graphics makes no representation about the suitability
40  * of this software for any purpose. It is provided "as is"
41  * without any express or implied warranty.
42  *
43  * SILICON GRAPHICS DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
44  * SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
45  * AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
46  * GRAPHICS BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL
47  * DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
48  * DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
49  * OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION  WITH
50  * THE USE OR PERFORMANCE OF THIS SOFTWARE.
51  *
52  ********************************************************/
53 
54 /*
55  * Copyright © 2009-2012 Daniel Stone
56  * Copyright © 2012 Intel Corporation
57  * Copyright © 2012 Ran Benita
58  *
59  * Permission is hereby granted, free of charge, to any person obtaining a
60  * copy of this software and associated documentation files (the "Software"),
61  * to deal in the Software without restriction, including without limitation
62  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
63  * and/or sell copies of the Software, and to permit persons to whom the
64  * Software is furnished to do so, subject to the following conditions:
65  *
66  * The above copyright notice and this permission notice (including the next
67  * paragraph) shall be included in all copies or substantial portions of the
68  * Software.
69  *
70  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
71  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
72  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
73  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
74  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
75  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
76  * DEALINGS IN THE SOFTWARE.
77  *
78  * Author: Daniel Stone <daniel@fooishbar.org>
79  */
80 
81 #ifndef _XKBCOMMON_H_
82 #define _XKBCOMMON_H_
83 
84 #include <stdint.h>
85 #include <stdio.h>
86 #include <stdarg.h>
87 
88 #include <xkbcommon/xkbcommon-names.h>
89 #include <xkbcommon/xkbcommon-keysyms.h>
90 
91 #ifdef __cplusplus
92 extern "C" {
93 #endif
94 
95 /**
96  * @file
97  * Main libxkbcommon API.
98  */
99 
100 /**
101  * @struct xkb_context
102  * Opaque top level library context object.
103  *
104  * The context contains various general library data and state, like
105  * logging level and include paths.
106  *
107  * Objects are created in a specific context, and multiple contexts may
108  * coexist simultaneously.  Objects from different contexts are completely
109  * separated and do not share any memory or state.
110  */
111 struct xkb_context;
112 
113 /**
114  * @struct xkb_keymap
115  * Opaque compiled keymap object.
116  *
117  * The keymap object holds all of the static keyboard information obtained
118  * from compiling XKB files.
119  *
120  * A keymap is immutable after it is created (besides reference counts, etc.);
121  * if you need to change it, you must create a new one.
122  */
123 struct xkb_keymap;
124 
125 /**
126  * @struct xkb_state
127  * Opaque keyboard state object.
128  *
129  * State objects contain the active state of a keyboard (or keyboards), such
130  * as the currently effective layout and the active modifiers.  It acts as a
131  * simple state machine, wherein key presses and releases are the input, and
132  * key symbols (keysyms) are the output.
133  */
134 struct xkb_state;
135 
136 /**
137  * A number used to represent a physical key on a keyboard.
138  *
139  * A standard PC-compatible keyboard might have 102 keys.  An appropriate
140  * keymap would assign each of them a keycode, by which the user should
141  * refer to the key throughout the library.
142  *
143  * Historically, the X11 protocol, and consequentially the XKB protocol,
144  * assign only 8 bits for keycodes.  This limits the number of different
145  * keys that can be used simultaneously in a single keymap to 256
146  * (disregarding other limitations).  This library does not share this limit;
147  * keycodes beyond 255 ('extended keycodes') are not treated specially.
148  * Keymaps and applications which are compatible with X11 should not use
149  * these keycodes.
150  *
151  * The values of specific keycodes are determined by the keymap and the
152  * underlying input system.  For example, with an X11-compatible keymap
153  * and Linux evdev scan codes (see linux/input.h), a fixed offset is used:
154  *
155  * The keymap defines a canonical name for each key, plus possible aliases.
156  * Historically, the XKB protocol restricts these names to at most 4 (ASCII)
157  * characters, but this library does not share this limit.
158  *
159  * @code
160  * xkb_keycode_t keycode_A = KEY_A + 8;
161  * @endcode
162  *
163  * @sa xkb_keycode_is_legal_ext() xkb_keycode_is_legal_x11()
164  */
165 typedef uint32_t xkb_keycode_t;
166 
167 /**
168  * A number used to represent the symbols generated from a key on a keyboard.
169  *
170  * A key, represented by a keycode, may generate different symbols according
171  * to keyboard state.  For example, on a QWERTY keyboard, pressing the key
172  * labled \<A\> generates the symbol 'a'.  If the Shift key is held, it
173  * generates the symbol 'A'.  If a different layout is used, say Greek,
174  * it generates the symbol 'α'.  And so on.
175  *
176  * Each such symbol is represented by a keysym.  Note that keysyms are
177  * somewhat more general, in that they can also represent some "function",
178  * such as "Left" or "Right" for the arrow keys.  For more information,
179  * see:
180  * https://www.x.org/releases/current/doc/xproto/x11protocol.html#keysym_encoding
181  *
182  * Specifically named keysyms can be found in the
183  * xkbcommon/xkbcommon-keysyms.h header file.  Their name does not include
184  * the XKB_KEY_ prefix.
185  *
186  * Besides those, any Unicode/ISO 10646 character in the range U0100 to
187  * U10FFFF can be represented by a keysym value in the range 0x01000100 to
188  * 0x0110FFFF.  The name of Unicode keysyms is "U<codepoint>", e.g. "UA1B2".
189  *
190  * The name of other unnamed keysyms is the hexadecimal representation of
191  * their value, e.g. "0xabcd1234".
192  *
193  * Keysym names are case-sensitive.
194  */
195 typedef uint32_t xkb_keysym_t;
196 
197 /**
198  * Index of a keyboard layout.
199  *
200  * The layout index is a state component which detemines which <em>keyboard
201  * layout</em> is active.  These may be different alphabets, different key
202  * arrangements, etc.
203  *
204  * Layout indices are consecutive.  The first layout has index 0.
205  *
206  * Each layout is not required to have a name, and the names are not
207  * guaranteed to be unique (though they are usually provided and unique).
208  * Therefore, it is not safe to use the name as a unique identifier for a
209  * layout.  Layout names are case-sensitive.
210  *
211  * Layout names are specified in the layout's definition, for example
212  * "English (US)".  These are different from the (conventionally) short names
213  * which are used to locate the layout, for example "us" or "us(intl)".  These
214  * names are not present in a compiled keymap.
215  *
216  * If the user selects layouts from a list generated from the XKB registry
217  * (using libxkbregistry or directly), and this metadata is needed later on, it
218  * is recommended to store it along with the keymap.
219  *
220  * Layouts are also called "groups" by XKB.
221  *
222  * @sa xkb_keymap_num_layouts() xkb_keymap_num_layouts_for_key()
223  */
224 typedef uint32_t xkb_layout_index_t;
225 /** A mask of layout indices. */
226 typedef uint32_t xkb_layout_mask_t;
227 
228 /**
229  * Index of a shift level.
230  *
231  * Any key, in any layout, can have several <em>shift levels</em>.  Each
232  * shift level can assign different keysyms to the key.  The shift level
233  * to use is chosen according to the current keyboard state; for example,
234  * if no keys are pressed, the first level may be used; if the Left Shift
235  * key is pressed, the second; if Num Lock is pressed, the third; and
236  * many such combinations are possible (see xkb_mod_index_t).
237  *
238  * Level indices are consecutive.  The first level has index 0.
239  */
240 typedef uint32_t xkb_level_index_t;
241 
242 /**
243  * Index of a modifier.
244  *
245  * A @e modifier is a state component which changes the way keys are
246  * interpreted.  A keymap defines a set of modifiers, such as Alt, Shift,
247  * Num Lock or Meta, and specifies which keys may @e activate which
248  * modifiers (in a many-to-many relationship, i.e. a key can activate
249  * several modifiers, and a modifier may be activated by several keys.
250  * Different keymaps do this differently).
251  *
252  * When retrieving the keysyms for a key, the active modifier set is
253  * consulted; this detemines the correct shift level to use within the
254  * currently active layout (see xkb_level_index_t).
255  *
256  * Modifier indices are consecutive.  The first modifier has index 0.
257  *
258  * Each modifier must have a name, and the names are unique.  Therefore, it
259  * is safe to use the name as a unique identifier for a modifier.  The names
260  * of some common modifiers are provided in the xkbcommon/xkbcommon-names.h
261  * header file.  Modifier names are case-sensitive.
262  *
263  * @sa xkb_keymap_num_mods()
264  */
265 typedef uint32_t xkb_mod_index_t;
266 /** A mask of modifier indices. */
267 typedef uint32_t xkb_mod_mask_t;
268 
269 /**
270  * Index of a keyboard LED.
271  *
272  * LEDs are logical objects which may be @e active or @e inactive.  They
273  * typically correspond to the lights on the keyboard. Their state is
274  * determined by the current keyboard state.
275  *
276  * LED indices are non-consecutive.  The first LED has index 0.
277  *
278  * Each LED must have a name, and the names are unique. Therefore,
279  * it is safe to use the name as a unique identifier for a LED.  The names
280  * of some common LEDs are provided in the xkbcommon/xkbcommon-names.h
281  * header file.  LED names are case-sensitive.
282  *
283  * @warning A given keymap may specify an exact index for a given LED.
284  * Therefore, LED indexing is not necessarily sequential, as opposed to
285  * modifiers and layouts.  This means that when iterating over the LEDs
286  * in a keymap using e.g. xkb_keymap_num_leds(), some indices might be
287  * invalid.  Given such an index, functions like xkb_keymap_led_get_name()
288  * will return NULL, and xkb_state_led_index_is_active() will return -1.
289  *
290  * LEDs are also called "indicators" by XKB.
291  *
292  * @sa xkb_keymap_num_leds()
293  */
294 typedef uint32_t xkb_led_index_t;
295 /** A mask of LED indices. */
296 typedef uint32_t xkb_led_mask_t;
297 
298 #define XKB_KEYCODE_INVALID (0xffffffff)
299 #define XKB_LAYOUT_INVALID  (0xffffffff)
300 #define XKB_LEVEL_INVALID   (0xffffffff)
301 #define XKB_MOD_INVALID     (0xffffffff)
302 #define XKB_LED_INVALID     (0xffffffff)
303 
304 #define XKB_KEYCODE_MAX     (0xffffffff - 1)
305 
306 /**
307  * Test whether a value is a valid extended keycode.
308  * @sa xkb_keycode_t
309  **/
310 #define xkb_keycode_is_legal_ext(key) (key <= XKB_KEYCODE_MAX)
311 
312 /**
313  * Test whether a value is a valid X11 keycode.
314  * @sa xkb_keycode_t
315  */
316 #define xkb_keycode_is_legal_x11(key) (key >= 8 && key <= 255)
317 
318 /**
319  * Names to compile a keymap with, also known as RMLVO.
320  *
321  * The names are the common configuration values by which a user picks
322  * a keymap.
323  *
324  * If the entire struct is NULL, then each field is taken to be NULL.
325  * You should prefer passing NULL instead of choosing your own defaults.
326  */
327 struct xkb_rule_names {
328     /**
329      * The rules file to use. The rules file describes how to interpret
330      * the values of the model, layout, variant and options fields.
331      *
332      * If NULL or the empty string "", a default value is used.
333      * If the XKB_DEFAULT_RULES environment variable is set, it is used
334      * as the default.  Otherwise the system default is used.
335      */
336     const char *rules;
337     /**
338      * The keyboard model by which to interpret keycodes and LEDs.
339      *
340      * If NULL or the empty string "", a default value is used.
341      * If the XKB_DEFAULT_MODEL environment variable is set, it is used
342      * as the default.  Otherwise the system default is used.
343      */
344     const char *model;
345     /**
346      * A comma separated list of layouts (languages) to include in the
347      * keymap.
348      *
349      * If NULL or the empty string "", a default value is used.
350      * If the XKB_DEFAULT_LAYOUT environment variable is set, it is used
351      * as the default.  Otherwise the system default is used.
352      */
353     const char *layout;
354     /**
355      * A comma separated list of variants, one per layout, which may
356      * modify or augment the respective layout in various ways.
357      *
358      * Generally, should either be empty or have the same number of values
359      * as the number of layouts. You may use empty values as in "intl,,neo".
360      *
361      * If NULL or the empty string "", and a default value is also used
362      * for the layout, a default value is used.  Otherwise no variant is
363      * used.
364      * If the XKB_DEFAULT_VARIANT environment variable is set, it is used
365      * as the default.  Otherwise the system default is used.
366      */
367     const char *variant;
368     /**
369      * A comma separated list of options, through which the user specifies
370      * non-layout related preferences, like which key combinations are used
371      * for switching layouts, or which key is the Compose key.
372      *
373      * If NULL, a default value is used.  If the empty string "", no
374      * options are used.
375      * If the XKB_DEFAULT_OPTIONS environment variable is set, it is used
376      * as the default.  Otherwise the system default is used.
377      */
378     const char *options;
379 };
380 
381 /**
382  * @defgroup keysyms Keysyms
383  * Utility functions related to keysyms.
384  *
385  * @{
386  */
387 
388 /**
389  * @page keysym-transformations Keysym Transformations
390  *
391  * Keysym translation is subject to several "keysym transformations",
392  * as described in the XKB specification.  These are:
393  *
394  * - Capitalization transformation.  If the Caps Lock modifier is
395  *   active and was not consumed by the translation process, a single
396  *   keysym is transformed to its upper-case form (if applicable).
397  *   Similarly, the UTF-8/UTF-32 string produced is capitalized.
398  *
399  *   This is described in:
400  *   https://www.x.org/releases/current/doc/kbproto/xkbproto.html#Interpreting_the_Lock_Modifier
401  *
402  * - Control transformation.  If the Control modifier is active and
403  *   was not consumed by the translation process, the string produced
404  *   is transformed to its matching ASCII control character (if
405  *   applicable).  Keysyms are not affected.
406  *
407  *   This is described in:
408  *   https://www.x.org/releases/current/doc/kbproto/xkbproto.html#Interpreting_the_Control_Modifier
409  *
410  * Each relevant function discusses which transformations it performs.
411  *
412  * These transformations are not applicable when a key produces multiple
413  * keysyms.
414  */
415 
416 
417 /**
418  * Get the name of a keysym.
419  *
420  * For a description of how keysyms are named, see @ref xkb_keysym_t.
421  *
422  * @param[in]  keysym The keysym.
423  * @param[out] buffer A string buffer to write the name into.
424  * @param[in]  size   Size of the buffer.
425  *
426  * @warning If the buffer passed is too small, the string is truncated
427  * (though still NUL-terminated); a size of at least 64 bytes is recommended.
428  *
429  * @returns The number of bytes in the name, excluding the NUL byte. If
430  * the keysym is invalid, returns -1.
431  *
432  * You may check if truncation has occurred by comparing the return value
433  * with the length of buffer, similarly to the snprintf(3) function.
434  *
435  * @sa xkb_keysym_t
436  */
437 int
438 xkb_keysym_get_name(xkb_keysym_t keysym, char *buffer, size_t size);
439 
440 /** Flags for xkb_keysym_from_name(). */
441 enum xkb_keysym_flags {
442     /** Do not apply any flags. */
443     XKB_KEYSYM_NO_FLAGS = 0,
444     /** Find keysym by case-insensitive search. */
445     XKB_KEYSYM_CASE_INSENSITIVE = (1 << 0)
446 };
447 
448 /**
449  * Get a keysym from its name.
450  *
451  * @param name The name of a keysym. See remarks in xkb_keysym_get_name();
452  * this function will accept any name returned by that function.
453  * @param flags A set of flags controlling how the search is done. If
454  * invalid flags are passed, this will fail with XKB_KEY_NoSymbol.
455  *
456  * If you use the XKB_KEYSYM_CASE_INSENSITIVE flag and two keysym names
457  * differ only by case, then the lower-case keysym is returned.  For
458  * instance, for KEY_a and KEY_A, this function would return KEY_a for the
459  * case-insensitive search.  If this functionality is needed, it is
460  * recommended to first call this function without this flag; and if that
461  * fails, only then to try with this flag, while possibly warning the user
462  * he had misspelled the name, and might get wrong results.
463  *
464  * Case folding is done according to the C locale; the current locale is not
465  * consulted.
466  *
467  * @returns The keysym. If the name is invalid, returns XKB_KEY_NoSymbol.
468  *
469  * @sa xkb_keysym_t
470  */
471 xkb_keysym_t
472 xkb_keysym_from_name(const char *name, enum xkb_keysym_flags flags);
473 
474 /**
475  * Get the Unicode/UTF-8 representation of a keysym.
476  *
477  * @param[in]  keysym The keysym.
478  * @param[out] buffer A buffer to write the UTF-8 string into.
479  * @param[in]  size   The size of buffer.  Must be at least 7.
480  *
481  * @returns The number of bytes written to the buffer (including the
482  * terminating byte).  If the keysym does not have a Unicode
483  * representation, returns 0.  If the buffer is too small, returns -1.
484  *
485  * This function does not perform any @ref keysym-transformations.
486  * Therefore, prefer to use xkb_state_key_get_utf8() if possible.
487  *
488  * @sa xkb_state_key_get_utf8()
489  */
490 int
491 xkb_keysym_to_utf8(xkb_keysym_t keysym, char *buffer, size_t size);
492 
493 /**
494  * Get the Unicode/UTF-32 representation of a keysym.
495  *
496  * @returns The Unicode/UTF-32 representation of keysym, which is also
497  * compatible with UCS-4.  If the keysym does not have a Unicode
498  * representation, returns 0.
499  *
500  * This function does not perform any @ref keysym-transformations.
501  * Therefore, prefer to use xkb_state_key_get_utf32() if possible.
502  *
503  * @sa xkb_state_key_get_utf32()
504  */
505 uint32_t
506 xkb_keysym_to_utf32(xkb_keysym_t keysym);
507 
508 /**
509  * Get the keysym corresponding to a Unicode/UTF-32 codepoint.
510  *
511  * @returns The keysym corresponding to the specified Unicode
512  * codepoint, or XKB_KEY_NoSymbol if there is none.
513  *
514  * This function is the inverse of @ref xkb_keysym_to_utf32. In cases
515  * where a single codepoint corresponds to multiple keysyms, returns
516  * the keysym with the lowest value.
517  *
518  * Unicode codepoints which do not have a special (legacy) keysym
519  * encoding use a direct encoding scheme. These keysyms don't usually
520  * have an associated keysym constant (XKB_KEY_*).
521  *
522  * For noncharacter Unicode codepoints and codepoints outside of the
523  * defined Unicode planes this function returns XKB_KEY_NoSymbol.
524  *
525  * @sa xkb_keysym_to_utf32()
526  * @since 1.0.0
527  */
528 xkb_keysym_t
529 xkb_utf32_to_keysym(uint32_t ucs);
530 
531 /**
532  * Convert a keysym to its uppercase form.
533  *
534  * If there is no such form, the keysym is returned unchanged.
535  *
536  * The conversion rules may be incomplete; prefer to work with the Unicode
537  * representation instead, when possible.
538  */
539 xkb_keysym_t
540 xkb_keysym_to_upper(xkb_keysym_t ks);
541 
542 /**
543  * Convert a keysym to its lowercase form.
544  *
545  * The conversion rules may be incomplete; prefer to work with the Unicode
546  * representation instead, when possible.
547  */
548 xkb_keysym_t
549 xkb_keysym_to_lower(xkb_keysym_t ks);
550 
551 /** @} */
552 
553 /**
554  * @defgroup context Library Context
555  * Creating, destroying and using library contexts.
556  *
557  * Every keymap compilation request must have a context associated with
558  * it.  The context keeps around state such as the include path.
559  *
560  * @{
561  */
562 
563 /**
564  * @page envvars Environment Variables
565  *
566  * The user may set some environment variables which affect the library:
567  *
568  * - `XKB_CONFIG_ROOT`, `XKB_CONFIG_EXTRA_PATH`, `XDG_CONFIG_DIR`, `HOME` - see @ref include-path.
569  * - `XKB_LOG_LEVEL` - see xkb_context_set_log_level().
570  * - `XKB_LOG_VERBOSITY` - see xkb_context_set_log_verbosity().
571  * - `XKB_DEFAULT_RULES`, `XKB_DEFAULT_MODEL`, `XKB_DEFAULT_LAYOUT`,
572  *   `XKB_DEFAULT_VARIANT`, `XKB_DEFAULT_OPTIONS` - see xkb_rule_names.
573  */
574 
575 /** Flags for context creation. */
576 enum xkb_context_flags {
577     /** Do not apply any context flags. */
578     XKB_CONTEXT_NO_FLAGS = 0,
579     /** Create this context with an empty include path. */
580     XKB_CONTEXT_NO_DEFAULT_INCLUDES = (1 << 0),
581     /**
582      * Don't take RMLVO names from the environment.
583      * @since 0.3.0
584      */
585     XKB_CONTEXT_NO_ENVIRONMENT_NAMES = (1 << 1)
586 };
587 
588 /**
589  * Create a new context.
590  *
591  * @param flags Optional flags for the context, or 0.
592  *
593  * @returns A new context, or NULL on failure.
594  *
595  * @memberof xkb_context
596  */
597 struct xkb_context *
598 xkb_context_new(enum xkb_context_flags flags);
599 
600 /**
601  * Take a new reference on a context.
602  *
603  * @returns The passed in context.
604  *
605  * @memberof xkb_context
606  */
607 struct xkb_context *
608 xkb_context_ref(struct xkb_context *context);
609 
610 /**
611  * Release a reference on a context, and possibly free it.
612  *
613  * @param context The context.  If it is NULL, this function does nothing.
614  *
615  * @memberof xkb_context
616  */
617 void
618 xkb_context_unref(struct xkb_context *context);
619 
620 /**
621  * Store custom user data in the context.
622  *
623  * This may be useful in conjunction with xkb_context_set_log_fn() or other
624  * callbacks.
625  *
626  * @memberof xkb_context
627  */
628 void
629 xkb_context_set_user_data(struct xkb_context *context, void *user_data);
630 
631 /**
632  * Retrieves stored user data from the context.
633  *
634  * @returns The stored user data.  If the user data wasn't set, or the
635  * passed in context is NULL, returns NULL.
636  *
637  * This may be useful to access private user data from callbacks like a
638  * custom logging function.
639  *
640  * @memberof xkb_context
641  **/
642 void *
643 xkb_context_get_user_data(struct xkb_context *context);
644 
645 /** @} */
646 
647 /**
648  * @defgroup include-path Include Paths
649  * Manipulating the include paths in a context.
650  *
651  * The include paths are the file-system paths that are searched when an
652  * include statement is encountered during keymap compilation.
653  *
654  * The default include paths are, in that lookup order:
655  * - The path `$XDG_CONFIG_HOME/xkb`, with the usual `XDG_CONFIG_HOME`
656  *   fallback to `$HOME/.config/` if unset.
657  * - The path `$HOME/.xkb`, where $HOME is the value of the environment
658  *   variable `HOME`.
659  * - The `XKB_CONFIG_EXTRA_PATH` environment variable, if defined, otherwise the
660  *   system configuration directory, defined at library configuration time
661  *   (usually `/etc/xkb`).
662  * - The `XKB_CONFIG_ROOT` environment variable, if defined, otherwise
663  *   the system XKB root, defined at library configuration time.
664  *
665  * @{
666  */
667 
668 /**
669  * Append a new entry to the context's include path.
670  *
671  * @returns 1 on success, or 0 if the include path could not be added or is
672  * inaccessible.
673  *
674  * @memberof xkb_context
675  */
676 int
677 xkb_context_include_path_append(struct xkb_context *context, const char *path);
678 
679 /**
680  * Append the default include paths to the context's include path.
681  *
682  * @returns 1 on success, or 0 if the primary include path could not be added.
683  *
684  * @memberof xkb_context
685  */
686 int
687 xkb_context_include_path_append_default(struct xkb_context *context);
688 
689 /**
690  * Reset the context's include path to the default.
691  *
692  * Removes all entries from the context's include path, and inserts the
693  * default paths.
694  *
695  * @returns 1 on success, or 0 if the primary include path could not be added.
696  *
697  * @memberof xkb_context
698  */
699 int
700 xkb_context_include_path_reset_defaults(struct xkb_context *context);
701 
702 /**
703  * Remove all entries from the context's include path.
704  *
705  * @memberof xkb_context
706  */
707 void
708 xkb_context_include_path_clear(struct xkb_context *context);
709 
710 /**
711  * Get the number of paths in the context's include path.
712  *
713  * @memberof xkb_context
714  */
715 unsigned int
716 xkb_context_num_include_paths(struct xkb_context *context);
717 
718 /**
719  * Get a specific include path from the context's include path.
720  *
721  * @returns The include path at the specified index.  If the index is
722  * invalid, returns NULL.
723  *
724  * @memberof xkb_context
725  */
726 const char *
727 xkb_context_include_path_get(struct xkb_context *context, unsigned int index);
728 
729 /** @} */
730 
731 /**
732  * @defgroup logging Logging Handling
733  * Manipulating how logging from this library is handled.
734  *
735  * @{
736  */
737 
738 /** Specifies a logging level. */
739 enum xkb_log_level {
740     XKB_LOG_LEVEL_CRITICAL = 10, /**< Log critical internal errors only. */
741     XKB_LOG_LEVEL_ERROR = 20,    /**< Log all errors. */
742     XKB_LOG_LEVEL_WARNING = 30,  /**< Log warnings and errors. */
743     XKB_LOG_LEVEL_INFO = 40,     /**< Log information, warnings, and errors. */
744     XKB_LOG_LEVEL_DEBUG = 50     /**< Log everything. */
745 };
746 
747 /**
748  * Set the current logging level.
749  *
750  * @param context The context in which to set the logging level.
751  * @param level   The logging level to use.  Only messages from this level
752  * and below will be logged.
753  *
754  * The default level is XKB_LOG_LEVEL_ERROR.  The environment variable
755  * XKB_LOG_LEVEL, if set in the time the context was created, overrides the
756  * default value.  It may be specified as a level number or name.
757  *
758  * @memberof xkb_context
759  */
760 void
761 xkb_context_set_log_level(struct xkb_context *context,
762                           enum xkb_log_level level);
763 
764 /**
765  * Get the current logging level.
766  *
767  * @memberof xkb_context
768  */
769 enum xkb_log_level
770 xkb_context_get_log_level(struct xkb_context *context);
771 
772 /**
773  * Sets the current logging verbosity.
774  *
775  * The library can generate a number of warnings which are not helpful to
776  * ordinary users of the library.  The verbosity may be increased if more
777  * information is desired (e.g. when developing a new keymap).
778  *
779  * The default verbosity is 0.  The environment variable XKB_LOG_VERBOSITY,
780  * if set in the time the context was created, overrides the default value.
781  *
782  * @param context   The context in which to use the set verbosity.
783  * @param verbosity The verbosity to use.  Currently used values are
784  * 1 to 10, higher values being more verbose.  0 would result in no verbose
785  * messages being logged.
786  *
787  * Most verbose messages are of level XKB_LOG_LEVEL_WARNING or lower.
788  *
789  * @memberof xkb_context
790  */
791 void
792 xkb_context_set_log_verbosity(struct xkb_context *context, int verbosity);
793 
794 /**
795  * Get the current logging verbosity of the context.
796  *
797  * @memberof xkb_context
798  */
799 int
800 xkb_context_get_log_verbosity(struct xkb_context *context);
801 
802 /**
803  * Set a custom function to handle logging messages.
804  *
805  * @param context The context in which to use the set logging function.
806  * @param log_fn  The function that will be called for logging messages.
807  * Passing NULL restores the default function, which logs to stderr.
808  *
809  * By default, log messages from this library are printed to stderr.  This
810  * function allows you to replace the default behavior with a custom
811  * handler.  The handler is only called with messages which match the
812  * current logging level and verbosity settings for the context.
813  * level is the logging level of the message.  @a format and @a args are
814  * the same as in the vprintf(3) function.
815  *
816  * You may use xkb_context_set_user_data() on the context, and then call
817  * xkb_context_get_user_data() from within the logging function to provide
818  * it with additional private context.
819  *
820  * @memberof xkb_context
821  */
822 void
823 xkb_context_set_log_fn(struct xkb_context *context,
824                        void (*log_fn)(struct xkb_context *context,
825                                       enum xkb_log_level level,
826                                       const char *format, va_list args));
827 
828 /** @} */
829 
830 /**
831  * @defgroup keymap Keymap Creation
832  * Creating and destroying keymaps.
833  *
834  * @{
835  */
836 
837 /** Flags for keymap compilation. */
838 enum xkb_keymap_compile_flags {
839     /** Do not apply any flags. */
840     XKB_KEYMAP_COMPILE_NO_FLAGS = 0
841 };
842 
843 /**
844  * Create a keymap from RMLVO names.
845  *
846  * The primary keymap entry point: creates a new XKB keymap from a set of
847  * RMLVO (Rules + Model + Layouts + Variants + Options) names.
848  *
849  * @param context The context in which to create the keymap.
850  * @param names   The RMLVO names to use.  See xkb_rule_names.
851  * @param flags   Optional flags for the keymap, or 0.
852  *
853  * @returns A keymap compiled according to the RMLVO names, or NULL if
854  * the compilation failed.
855  *
856  * @sa xkb_rule_names
857  * @memberof xkb_keymap
858  */
859 struct xkb_keymap *
860 xkb_keymap_new_from_names(struct xkb_context *context,
861                           const struct xkb_rule_names *names,
862                           enum xkb_keymap_compile_flags flags);
863 
864 /** The possible keymap formats. */
865 enum xkb_keymap_format {
866     /** The current/classic XKB text format, as generated by xkbcomp -xkb. */
867     XKB_KEYMAP_FORMAT_TEXT_V1 = 1
868 };
869 
870 /**
871  * Create a keymap from a keymap file.
872  *
873  * @param context The context in which to create the keymap.
874  * @param file    The keymap file to compile.
875  * @param format  The text format of the keymap file to compile.
876  * @param flags   Optional flags for the keymap, or 0.
877  *
878  * @returns A keymap compiled from the given XKB keymap file, or NULL if
879  * the compilation failed.
880  *
881  * The file must contain a complete keymap.  For example, in the
882  * XKB_KEYMAP_FORMAT_TEXT_V1 format, this means the file must contain one
883  * top level '%xkb_keymap' section, which in turn contains other required
884  * sections.
885  *
886  * @memberof xkb_keymap
887  */
888 struct xkb_keymap *
889 xkb_keymap_new_from_file(struct xkb_context *context, FILE *file,
890                          enum xkb_keymap_format format,
891                          enum xkb_keymap_compile_flags flags);
892 
893 /**
894  * Create a keymap from a keymap string.
895  *
896  * This is just like xkb_keymap_new_from_file(), but instead of a file, gets
897  * the keymap as one enormous string.
898  *
899  * @see xkb_keymap_new_from_file()
900  * @memberof xkb_keymap
901  */
902 struct xkb_keymap *
903 xkb_keymap_new_from_string(struct xkb_context *context, const char *string,
904                            enum xkb_keymap_format format,
905                            enum xkb_keymap_compile_flags flags);
906 
907 /**
908  * Create a keymap from a memory buffer.
909  *
910  * This is just like xkb_keymap_new_from_string(), but takes a length argument
911  * so the input string does not have to be zero-terminated.
912  *
913  * @see xkb_keymap_new_from_string()
914  * @memberof xkb_keymap
915  * @since 0.3.0
916  */
917 struct xkb_keymap *
918 xkb_keymap_new_from_buffer(struct xkb_context *context, const char *buffer,
919                            size_t length, enum xkb_keymap_format format,
920                            enum xkb_keymap_compile_flags flags);
921 
922 /**
923  * Take a new reference on a keymap.
924  *
925  * @returns The passed in keymap.
926  *
927  * @memberof xkb_keymap
928  */
929 struct xkb_keymap *
930 xkb_keymap_ref(struct xkb_keymap *keymap);
931 
932 /**
933  * Release a reference on a keymap, and possibly free it.
934  *
935  * @param keymap The keymap.  If it is NULL, this function does nothing.
936  *
937  * @memberof xkb_keymap
938  */
939 void
940 xkb_keymap_unref(struct xkb_keymap *keymap);
941 
942 /**
943  * Get the keymap as a string in the format from which it was created.
944  * @sa xkb_keymap_get_as_string()
945  **/
946 #define XKB_KEYMAP_USE_ORIGINAL_FORMAT ((enum xkb_keymap_format) -1)
947 
948 /**
949  * Get the compiled keymap as a string.
950  *
951  * @param keymap The keymap to get as a string.
952  * @param format The keymap format to use for the string.  You can pass
953  * in the special value XKB_KEYMAP_USE_ORIGINAL_FORMAT to use the format
954  * from which the keymap was originally created.
955  *
956  * @returns The keymap as a NUL-terminated string, or NULL if unsuccessful.
957  *
958  * The returned string may be fed back into xkb_keymap_new_from_string() to get
959  * the exact same keymap (possibly in another process, etc.).
960  *
961  * The returned string is dynamically allocated and should be freed by the
962  * caller.
963  *
964  * @memberof xkb_keymap
965  */
966 char *
967 xkb_keymap_get_as_string(struct xkb_keymap *keymap,
968                          enum xkb_keymap_format format);
969 
970 /** @} */
971 
972 /**
973  * @defgroup components Keymap Components
974  * Enumeration of state components in a keymap.
975  *
976  * @{
977  */
978 
979 /**
980  * Get the minimum keycode in the keymap.
981  *
982  * @sa xkb_keycode_t
983  * @memberof xkb_keymap
984  * @since 0.3.1
985  */
986 xkb_keycode_t
987 xkb_keymap_min_keycode(struct xkb_keymap *keymap);
988 
989 /**
990  * Get the maximum keycode in the keymap.
991  *
992  * @sa xkb_keycode_t
993  * @memberof xkb_keymap
994  * @since 0.3.1
995  */
996 xkb_keycode_t
997 xkb_keymap_max_keycode(struct xkb_keymap *keymap);
998 
999 /**
1000  * The iterator used by xkb_keymap_key_for_each().
1001  *
1002  * @sa xkb_keymap_key_for_each
1003  * @memberof xkb_keymap
1004  * @since 0.3.1
1005  */
1006 typedef void
1007 (*xkb_keymap_key_iter_t)(struct xkb_keymap *keymap, xkb_keycode_t key,
1008                          void *data);
1009 
1010 /**
1011  * Run a specified function for every valid keycode in the keymap.  If a
1012  * keymap is sparse, this function may be called fewer than
1013  * (max_keycode - min_keycode + 1) times.
1014  *
1015  * @sa xkb_keymap_min_keycode() xkb_keymap_max_keycode() xkb_keycode_t
1016  * @memberof xkb_keymap
1017  * @since 0.3.1
1018  */
1019 void
1020 xkb_keymap_key_for_each(struct xkb_keymap *keymap, xkb_keymap_key_iter_t iter,
1021                         void *data);
1022 
1023 /**
1024  * Find the name of the key with the given keycode.
1025  *
1026  * This function always returns the canonical name of the key (see
1027  * description in xkb_keycode_t).
1028  *
1029  * @returns The key name. If no key with this keycode exists,
1030  * returns NULL.
1031  *
1032  * @sa xkb_keycode_t
1033  * @memberof xkb_keymap
1034  * @since 0.6.0
1035  */
1036 const char *
1037 xkb_keymap_key_get_name(struct xkb_keymap *keymap, xkb_keycode_t key);
1038 
1039 /**
1040  * Find the keycode of the key with the given name.
1041  *
1042  * The name can be either a canonical name or an alias.
1043  *
1044  * @returns The keycode. If no key with this name exists,
1045  * returns XKB_KEYCODE_INVALID.
1046  *
1047  * @sa xkb_keycode_t
1048  * @memberof xkb_keymap
1049  * @since 0.6.0
1050  */
1051 xkb_keycode_t
1052 xkb_keymap_key_by_name(struct xkb_keymap *keymap, const char *name);
1053 
1054 /**
1055  * Get the number of modifiers in the keymap.
1056  *
1057  * @sa xkb_mod_index_t
1058  * @memberof xkb_keymap
1059  */
1060 xkb_mod_index_t
1061 xkb_keymap_num_mods(struct xkb_keymap *keymap);
1062 
1063 /**
1064  * Get the name of a modifier by index.
1065  *
1066  * @returns The name.  If the index is invalid, returns NULL.
1067  *
1068  * @sa xkb_mod_index_t
1069  * @memberof xkb_keymap
1070  */
1071 const char *
1072 xkb_keymap_mod_get_name(struct xkb_keymap *keymap, xkb_mod_index_t idx);
1073 
1074 /**
1075  * Get the index of a modifier by name.
1076  *
1077  * @returns The index.  If no modifier with this name exists, returns
1078  * XKB_MOD_INVALID.
1079  *
1080  * @sa xkb_mod_index_t
1081  * @memberof xkb_keymap
1082  */
1083 xkb_mod_index_t
1084 xkb_keymap_mod_get_index(struct xkb_keymap *keymap, const char *name);
1085 
1086 /**
1087  * Get the number of layouts in the keymap.
1088  *
1089  * @sa xkb_layout_index_t xkb_rule_names xkb_keymap_num_layouts_for_key()
1090  * @memberof xkb_keymap
1091  */
1092 xkb_layout_index_t
1093 xkb_keymap_num_layouts(struct xkb_keymap *keymap);
1094 
1095 /**
1096  * Get the name of a layout by index.
1097  *
1098  * @returns The name.  If the index is invalid, or the layout does not have
1099  * a name, returns NULL.
1100  *
1101  * @sa xkb_layout_index_t
1102  *     For notes on layout names.
1103  * @memberof xkb_keymap
1104  */
1105 const char *
1106 xkb_keymap_layout_get_name(struct xkb_keymap *keymap, xkb_layout_index_t idx);
1107 
1108 /**
1109  * Get the index of a layout by name.
1110  *
1111  * @returns The index.  If no layout exists with this name, returns
1112  * XKB_LAYOUT_INVALID.  If more than one layout in the keymap has this name,
1113  * returns the lowest index among them.
1114  *
1115  * @sa xkb_layout_index_t
1116  *     For notes on layout names.
1117  * @memberof xkb_keymap
1118  */
1119 xkb_layout_index_t
1120 xkb_keymap_layout_get_index(struct xkb_keymap *keymap, const char *name);
1121 
1122 /**
1123  * Get the number of LEDs in the keymap.
1124  *
1125  * @warning The range [ 0...xkb_keymap_num_leds() ) includes all of the LEDs
1126  * in the keymap, but may also contain inactive LEDs.  When iterating over
1127  * this range, you need the handle this case when calling functions such as
1128  * xkb_keymap_led_get_name() or xkb_state_led_index_is_active().
1129  *
1130  * @sa xkb_led_index_t
1131  * @memberof xkb_keymap
1132  */
1133 xkb_led_index_t
1134 xkb_keymap_num_leds(struct xkb_keymap *keymap);
1135 
1136 /**
1137  * Get the name of a LED by index.
1138  *
1139  * @returns The name.  If the index is invalid, returns NULL.
1140  *
1141  * @memberof xkb_keymap
1142  */
1143 const char *
1144 xkb_keymap_led_get_name(struct xkb_keymap *keymap, xkb_led_index_t idx);
1145 
1146 /**
1147  * Get the index of a LED by name.
1148  *
1149  * @returns The index.  If no LED with this name exists, returns
1150  * XKB_LED_INVALID.
1151  *
1152  * @memberof xkb_keymap
1153  */
1154 xkb_led_index_t
1155 xkb_keymap_led_get_index(struct xkb_keymap *keymap, const char *name);
1156 
1157 /**
1158  * Get the number of layouts for a specific key.
1159  *
1160  * This number can be different from xkb_keymap_num_layouts(), but is always
1161  * smaller.  It is the appropriate value to use when iterating over the
1162  * layouts of a key.
1163  *
1164  * @sa xkb_layout_index_t
1165  * @memberof xkb_keymap
1166  */
1167 xkb_layout_index_t
1168 xkb_keymap_num_layouts_for_key(struct xkb_keymap *keymap, xkb_keycode_t key);
1169 
1170 /**
1171  * Get the number of shift levels for a specific key and layout.
1172  *
1173  * If @c layout is out of range for this key (that is, larger or equal to
1174  * the value returned by xkb_keymap_num_layouts_for_key()), it is brought
1175  * back into range in a manner consistent with xkb_state_key_get_layout().
1176  *
1177  * @sa xkb_level_index_t
1178  * @memberof xkb_keymap
1179  */
1180 xkb_level_index_t
1181 xkb_keymap_num_levels_for_key(struct xkb_keymap *keymap, xkb_keycode_t key,
1182                               xkb_layout_index_t layout);
1183 
1184 /**
1185  * Retrieves every possible modifier mask that produces the specified
1186  * shift level for a specific key and layout.
1187  *
1188  * This API is useful for inverse key transformation; i.e. finding out
1189  * which modifiers need to be active in order to be able to type the
1190  * keysym(s) corresponding to the specific key code, layout and level.
1191  *
1192  * @warning It returns only up to masks_size modifier masks. If the
1193  * buffer passed is too small, some of the possible modifier combinations
1194  * will not be returned.
1195  *
1196  * @param[in] keymap      The keymap.
1197  * @param[in] key         The keycode of the key.
1198  * @param[in] layout      The layout for which to get modifiers.
1199  * @param[in] level       The shift level in the layout for which to get the
1200  * modifiers. This should be smaller than:
1201  * @code xkb_keymap_num_levels_for_key(keymap, key) @endcode
1202  * @param[out] masks_out  A buffer in which the requested masks should be
1203  * stored.
1204  * @param[out] masks_size The size of the buffer pointed to by masks_out.
1205  *
1206  * If @c layout is out of range for this key (that is, larger or equal to
1207  * the value returned by xkb_keymap_num_layouts_for_key()), it is brought
1208  * back into range in a manner consistent with xkb_state_key_get_layout().
1209  *
1210  * @returns The number of modifier masks stored in the masks_out array.
1211  * If the key is not in the keymap or if the specified shift level cannot
1212  * be reached it returns 0 and does not modify the masks_out buffer.
1213  *
1214  * @sa xkb_level_index_t
1215  * @sa xkb_mod_mask_t
1216  * @memberof xkb_keymap
1217  * @since 1.0.0
1218  */
1219 size_t
1220 xkb_keymap_key_get_mods_for_level(struct xkb_keymap *keymap,
1221                                   xkb_keycode_t key,
1222                                   xkb_layout_index_t layout,
1223                                   xkb_level_index_t level,
1224                                   xkb_mod_mask_t *masks_out,
1225                                   size_t masks_size);
1226 
1227 /**
1228  * Get the keysyms obtained from pressing a key in a given layout and
1229  * shift level.
1230  *
1231  * This function is like xkb_state_key_get_syms(), only the layout and
1232  * shift level are not derived from the keyboard state but are instead
1233  * specified explicitly.
1234  *
1235  * @param[in] keymap    The keymap.
1236  * @param[in] key       The keycode of the key.
1237  * @param[in] layout    The layout for which to get the keysyms.
1238  * @param[in] level     The shift level in the layout for which to get the
1239  * keysyms. This should be smaller than:
1240  * @code xkb_keymap_num_levels_for_key(keymap, key) @endcode
1241  * @param[out] syms_out An immutable array of keysyms corresponding to the
1242  * key in the given layout and shift level.
1243  *
1244  * If @c layout is out of range for this key (that is, larger or equal to
1245  * the value returned by xkb_keymap_num_layouts_for_key()), it is brought
1246  * back into range in a manner consistent with xkb_state_key_get_layout().
1247  *
1248  * @returns The number of keysyms in the syms_out array.  If no keysyms
1249  * are produced by the key in the given layout and shift level, returns 0
1250  * and sets syms_out to NULL.
1251  *
1252  * @sa xkb_state_key_get_syms()
1253  * @memberof xkb_keymap
1254  */
1255 int
1256 xkb_keymap_key_get_syms_by_level(struct xkb_keymap *keymap,
1257                                  xkb_keycode_t key,
1258                                  xkb_layout_index_t layout,
1259                                  xkb_level_index_t level,
1260                                  const xkb_keysym_t **syms_out);
1261 
1262 /**
1263  * Determine whether a key should repeat or not.
1264  *
1265  * A keymap may specify different repeat behaviors for different keys.
1266  * Most keys should generally exhibit repeat behavior; for example, holding
1267  * the 'a' key down in a text editor should normally insert a single 'a'
1268  * character every few milliseconds, until the key is released.  However,
1269  * there are keys which should not or do not need to be repeated.  For
1270  * example, repeating modifier keys such as Left/Right Shift or Caps Lock
1271  * is not generally useful or desired.
1272  *
1273  * @returns 1 if the key should repeat, 0 otherwise.
1274  *
1275  * @memberof xkb_keymap
1276  */
1277 int
1278 xkb_keymap_key_repeats(struct xkb_keymap *keymap, xkb_keycode_t key);
1279 
1280 /** @} */
1281 
1282 /**
1283  * @defgroup state Keyboard State
1284  * Creating, destroying and manipulating keyboard state objects.
1285  *
1286  * @{
1287  */
1288 
1289 /**
1290  * Create a new keyboard state object.
1291  *
1292  * @param keymap The keymap which the state will use.
1293  *
1294  * @returns A new keyboard state object, or NULL on failure.
1295  *
1296  * @memberof xkb_state
1297  */
1298 struct xkb_state *
1299 xkb_state_new(struct xkb_keymap *keymap);
1300 
1301 /**
1302  * Take a new reference on a keyboard state object.
1303  *
1304  * @returns The passed in object.
1305  *
1306  * @memberof xkb_state
1307  */
1308 struct xkb_state *
1309 xkb_state_ref(struct xkb_state *state);
1310 
1311 /**
1312  * Release a reference on a keybaord state object, and possibly free it.
1313  *
1314  * @param state The state.  If it is NULL, this function does nothing.
1315  *
1316  * @memberof xkb_state
1317  */
1318 void
1319 xkb_state_unref(struct xkb_state *state);
1320 
1321 /**
1322  * Get the keymap which a keyboard state object is using.
1323  *
1324  * @returns The keymap which was passed to xkb_state_new() when creating
1325  * this state object.
1326  *
1327  * This function does not take a new reference on the keymap; you must
1328  * explicitly reference it yourself if you plan to use it beyond the
1329  * lifetime of the state.
1330  *
1331  * @memberof xkb_state
1332  */
1333 struct xkb_keymap *
1334 xkb_state_get_keymap(struct xkb_state *state);
1335 
1336 /** Specifies the direction of the key (press / release). */
1337 enum xkb_key_direction {
1338     XKB_KEY_UP,   /**< The key was released. */
1339     XKB_KEY_DOWN  /**< The key was pressed. */
1340 };
1341 
1342 /**
1343  * Modifier and layout types for state objects.  This enum is bitmaskable,
1344  * e.g. (XKB_STATE_MODS_DEPRESSED | XKB_STATE_MODS_LATCHED) is valid to
1345  * exclude locked modifiers.
1346  *
1347  * In XKB, the DEPRESSED components are also known as 'base'.
1348  */
1349 enum xkb_state_component {
1350     /** Depressed modifiers, i.e. a key is physically holding them. */
1351     XKB_STATE_MODS_DEPRESSED = (1 << 0),
1352     /** Latched modifiers, i.e. will be unset after the next non-modifier
1353      *  key press. */
1354     XKB_STATE_MODS_LATCHED = (1 << 1),
1355     /** Locked modifiers, i.e. will be unset after the key provoking the
1356      *  lock has been pressed again. */
1357     XKB_STATE_MODS_LOCKED = (1 << 2),
1358     /** Effective modifiers, i.e. currently active and affect key
1359      *  processing (derived from the other state components).
1360      *  Use this unless you explicitly care how the state came about. */
1361     XKB_STATE_MODS_EFFECTIVE = (1 << 3),
1362     /** Depressed layout, i.e. a key is physically holding it. */
1363     XKB_STATE_LAYOUT_DEPRESSED = (1 << 4),
1364     /** Latched layout, i.e. will be unset after the next non-modifier
1365      *  key press. */
1366     XKB_STATE_LAYOUT_LATCHED = (1 << 5),
1367     /** Locked layout, i.e. will be unset after the key provoking the lock
1368      *  has been pressed again. */
1369     XKB_STATE_LAYOUT_LOCKED = (1 << 6),
1370     /** Effective layout, i.e. currently active and affects key processing
1371      *  (derived from the other state components).
1372      *  Use this unless you explicitly care how the state came about. */
1373     XKB_STATE_LAYOUT_EFFECTIVE = (1 << 7),
1374     /** LEDs (derived from the other state components). */
1375     XKB_STATE_LEDS = (1 << 8)
1376 };
1377 
1378 /**
1379  * Update the keyboard state to reflect a given key being pressed or
1380  * released.
1381  *
1382  * This entry point is intended for programs which track the keyboard state
1383  * explicitly (like an evdev client).  If the state is serialized to you by
1384  * a master process (like a Wayland compositor) using functions like
1385  * xkb_state_serialize_mods(), you should use xkb_state_update_mask() instead.
1386  * The two functions should not generally be used together.
1387  *
1388  * A series of calls to this function should be consistent; that is, a call
1389  * with XKB_KEY_DOWN for a key should be matched by an XKB_KEY_UP; if a key
1390  * is pressed twice, it should be released twice; etc. Otherwise (e.g. due
1391  * to missed input events), situations like "stuck modifiers" may occur.
1392  *
1393  * This function is often used in conjunction with the function
1394  * xkb_state_key_get_syms() (or xkb_state_key_get_one_sym()), for example,
1395  * when handling a key event.  In this case, you should prefer to get the
1396  * keysyms *before* updating the key, such that the keysyms reported for
1397  * the key event are not affected by the event itself.  This is the
1398  * conventional behavior.
1399  *
1400  * @returns A mask of state components that have changed as a result of
1401  * the update.  If nothing in the state has changed, returns 0.
1402  *
1403  * @memberof xkb_state
1404  *
1405  * @sa xkb_state_update_mask()
1406  */
1407 enum xkb_state_component
1408 xkb_state_update_key(struct xkb_state *state, xkb_keycode_t key,
1409                      enum xkb_key_direction direction);
1410 
1411 /**
1412  * Update a keyboard state from a set of explicit masks.
1413  *
1414  * This entry point is intended for window systems and the like, where a
1415  * master process holds an xkb_state, then serializes it over a wire
1416  * protocol, and clients then use the serialization to feed in to their own
1417  * xkb_state.
1418  *
1419  * All parameters must always be passed, or the resulting state may be
1420  * incoherent.
1421  *
1422  * The serialization is lossy and will not survive round trips; it must only
1423  * be used to feed slave state objects, and must not be used to update the
1424  * master state.
1425  *
1426  * If you do not fit the description above, you should use
1427  * xkb_state_update_key() instead.  The two functions should not generally be
1428  * used together.
1429  *
1430  * @returns A mask of state components that have changed as a result of
1431  * the update.  If nothing in the state has changed, returns 0.
1432  *
1433  * @memberof xkb_state
1434  *
1435  * @sa xkb_state_component
1436  * @sa xkb_state_update_key
1437  */
1438 enum xkb_state_component
1439 xkb_state_update_mask(struct xkb_state *state,
1440                       xkb_mod_mask_t depressed_mods,
1441                       xkb_mod_mask_t latched_mods,
1442                       xkb_mod_mask_t locked_mods,
1443                       xkb_layout_index_t depressed_layout,
1444                       xkb_layout_index_t latched_layout,
1445                       xkb_layout_index_t locked_layout);
1446 
1447 /**
1448  * Get the keysyms obtained from pressing a particular key in a given
1449  * keyboard state.
1450  *
1451  * Get the keysyms for a key according to the current active layout,
1452  * modifiers and shift level for the key, as determined by a keyboard
1453  * state.
1454  *
1455  * @param[in]  state    The keyboard state object.
1456  * @param[in]  key      The keycode of the key.
1457  * @param[out] syms_out An immutable array of keysyms corresponding the
1458  * key in the given keyboard state.
1459  *
1460  * As an extension to XKB, this function can return more than one keysym.
1461  * If you do not want to handle this case, you can use
1462  * xkb_state_key_get_one_sym() for a simpler interface.
1463  *
1464  * This function does not perform any @ref keysym-transformations.
1465  * (This might change).
1466  *
1467  * @returns The number of keysyms in the syms_out array.  If no keysyms
1468  * are produced by the key in the given keyboard state, returns 0 and sets
1469  * syms_out to NULL.
1470  *
1471  * @memberof xkb_state
1472  */
1473 int
1474 xkb_state_key_get_syms(struct xkb_state *state, xkb_keycode_t key,
1475                        const xkb_keysym_t **syms_out);
1476 
1477 /**
1478  * Get the Unicode/UTF-8 string obtained from pressing a particular key
1479  * in a given keyboard state.
1480  *
1481  * @param[in]  state  The keyboard state object.
1482  * @param[in]  key    The keycode of the key.
1483  * @param[out] buffer A buffer to write the string into.
1484  * @param[in]  size   Size of the buffer.
1485  *
1486  * @warning If the buffer passed is too small, the string is truncated
1487  * (though still NUL-terminated).
1488  *
1489  * @returns The number of bytes required for the string, excluding the
1490  * NUL byte.  If there is nothing to write, returns 0.
1491  *
1492  * You may check if truncation has occurred by comparing the return value
1493  * with the size of @p buffer, similarly to the snprintf(3) function.
1494  * You may safely pass NULL and 0 to @p buffer and @p size to find the
1495  * required size (without the NUL-byte).
1496  *
1497  * This function performs Capitalization and Control @ref
1498  * keysym-transformations.
1499  *
1500  * @memberof xkb_state
1501  * @since 0.4.1
1502  */
1503 int
1504 xkb_state_key_get_utf8(struct xkb_state *state, xkb_keycode_t key,
1505                        char *buffer, size_t size);
1506 
1507 /**
1508  * Get the Unicode/UTF-32 codepoint obtained from pressing a particular
1509  * key in a a given keyboard state.
1510  *
1511  * @returns The UTF-32 representation for the key, if it consists of only
1512  * a single codepoint.  Otherwise, returns 0.
1513  *
1514  * This function performs Capitalization and Control @ref
1515  * keysym-transformations.
1516  *
1517  * @memberof xkb_state
1518  * @since 0.4.1
1519  */
1520 uint32_t
1521 xkb_state_key_get_utf32(struct xkb_state *state, xkb_keycode_t key);
1522 
1523 /**
1524  * Get the single keysym obtained from pressing a particular key in a
1525  * given keyboard state.
1526  *
1527  * This function is similar to xkb_state_key_get_syms(), but intended
1528  * for users which cannot or do not want to handle the case where
1529  * multiple keysyms are returned (in which case this function is
1530  * preferred).
1531  *
1532  * @returns The keysym.  If the key does not have exactly one keysym,
1533  * returns XKB_KEY_NoSymbol
1534  *
1535  * This function performs Capitalization @ref keysym-transformations.
1536  *
1537  * @sa xkb_state_key_get_syms()
1538  * @memberof xkb_state
1539  */
1540 xkb_keysym_t
1541 xkb_state_key_get_one_sym(struct xkb_state *state, xkb_keycode_t key);
1542 
1543 /**
1544  * Get the effective layout index for a key in a given keyboard state.
1545  *
1546  * @returns The layout index for the key in the given keyboard state.  If
1547  * the given keycode is invalid, or if the key is not included in any
1548  * layout at all, returns XKB_LAYOUT_INVALID.
1549  *
1550  * @invariant If the returned layout is valid, the following always holds:
1551  * @code
1552  * xkb_state_key_get_layout(state, key) < xkb_keymap_num_layouts_for_key(keymap, key)
1553  * @endcode
1554  *
1555  * @memberof xkb_state
1556  */
1557 xkb_layout_index_t
1558 xkb_state_key_get_layout(struct xkb_state *state, xkb_keycode_t key);
1559 
1560 /**
1561  * Get the effective shift level for a key in a given keyboard state and
1562  * layout.
1563  *
1564  * @param state The keyboard state.
1565  * @param key The keycode of the key.
1566  * @param layout The layout for which to get the shift level.  This must be
1567  * smaller than:
1568  * @code xkb_keymap_num_layouts_for_key(keymap, key) @endcode
1569  * usually it would be:
1570  * @code xkb_state_key_get_layout(state, key) @endcode
1571  *
1572  * @return The shift level index.  If the key or layout are invalid,
1573  * returns XKB_LEVEL_INVALID.
1574  *
1575  * @invariant If the returned level is valid, the following always holds:
1576  * @code
1577  * xkb_state_key_get_level(state, key, layout) < xkb_keymap_num_levels_for_key(keymap, key, layout)
1578  * @endcode
1579  *
1580  * @memberof xkb_state
1581  */
1582 xkb_level_index_t
1583 xkb_state_key_get_level(struct xkb_state *state, xkb_keycode_t key,
1584                         xkb_layout_index_t layout);
1585 
1586 /**
1587  * Match flags for xkb_state_mod_indices_are_active() and
1588  * xkb_state_mod_names_are_active(), specifying the conditions for a
1589  * successful match.  XKB_STATE_MATCH_NON_EXCLUSIVE is bitmaskable with
1590  * the other modes.
1591  */
1592 enum xkb_state_match {
1593     /** Returns true if any of the modifiers are active. */
1594     XKB_STATE_MATCH_ANY = (1 << 0),
1595     /** Returns true if all of the modifiers are active. */
1596     XKB_STATE_MATCH_ALL = (1 << 1),
1597     /** Makes matching non-exclusive, i.e. will not return false if a
1598      *  modifier not specified in the arguments is active. */
1599     XKB_STATE_MATCH_NON_EXCLUSIVE = (1 << 16)
1600 };
1601 
1602 /**
1603  * The counterpart to xkb_state_update_mask for modifiers, to be used on
1604  * the server side of serialization.
1605  *
1606  * @param state      The keyboard state.
1607  * @param components A mask of the modifier state components to serialize.
1608  * State components other than XKB_STATE_MODS_* are ignored.
1609  * If XKB_STATE_MODS_EFFECTIVE is included, all other state components are
1610  * ignored.
1611  *
1612  * @returns A xkb_mod_mask_t representing the given components of the
1613  * modifier state.
1614  *
1615  * This function should not be used in regular clients; please use the
1616  * xkb_state_mod_*_is_active API instead.
1617  *
1618  * @memberof xkb_state
1619  */
1620 xkb_mod_mask_t
1621 xkb_state_serialize_mods(struct xkb_state *state,
1622                          enum xkb_state_component components);
1623 
1624 /**
1625  * The counterpart to xkb_state_update_mask for layouts, to be used on
1626  * the server side of serialization.
1627  *
1628  * @param state      The keyboard state.
1629  * @param components A mask of the layout state components to serialize.
1630  * State components other than XKB_STATE_LAYOUT_* are ignored.
1631  * If XKB_STATE_LAYOUT_EFFECTIVE is included, all other state components are
1632  * ignored.
1633  *
1634  * @returns A layout index representing the given components of the
1635  * layout state.
1636  *
1637  * This function should not be used in regular clients; please use the
1638  * xkb_state_layout_*_is_active API instead.
1639  *
1640  * @memberof xkb_state
1641  */
1642 xkb_layout_index_t
1643 xkb_state_serialize_layout(struct xkb_state *state,
1644                            enum xkb_state_component components);
1645 
1646 /**
1647  * Test whether a modifier is active in a given keyboard state by name.
1648  *
1649  * @returns 1 if the modifier is active, 0 if it is not.  If the modifier
1650  * name does not exist in the keymap, returns -1.
1651  *
1652  * @memberof xkb_state
1653  */
1654 int
1655 xkb_state_mod_name_is_active(struct xkb_state *state, const char *name,
1656                              enum xkb_state_component type);
1657 
1658 /**
1659  * Test whether a set of modifiers are active in a given keyboard state by
1660  * name.
1661  *
1662  * @param state The keyboard state.
1663  * @param type  The component of the state against which to match the
1664  * given modifiers.
1665  * @param match The manner by which to match the state against the
1666  * given modifiers.
1667  * @param ...   The set of of modifier names to test, terminated by a NULL
1668  * argument (sentinel).
1669  *
1670  * @returns 1 if the modifiers are active, 0 if they are not.  If any of
1671  * the modifier names do not exist in the keymap, returns -1.
1672  *
1673  * @memberof xkb_state
1674  */
1675 int
1676 xkb_state_mod_names_are_active(struct xkb_state *state,
1677                                enum xkb_state_component type,
1678                                enum xkb_state_match match,
1679                                ...);
1680 
1681 /**
1682  * Test whether a modifier is active in a given keyboard state by index.
1683  *
1684  * @returns 1 if the modifier is active, 0 if it is not.  If the modifier
1685  * index is invalid in the keymap, returns -1.
1686  *
1687  * @memberof xkb_state
1688  */
1689 int
1690 xkb_state_mod_index_is_active(struct xkb_state *state, xkb_mod_index_t idx,
1691                               enum xkb_state_component type);
1692 
1693 /**
1694  * Test whether a set of modifiers are active in a given keyboard state by
1695  * index.
1696  *
1697  * @param state The keyboard state.
1698  * @param type  The component of the state against which to match the
1699  * given modifiers.
1700  * @param match The manner by which to match the state against the
1701  * given modifiers.
1702  * @param ...   The set of of modifier indices to test, terminated by a
1703  * XKB_MOD_INVALID argument (sentinel).
1704  *
1705  * @returns 1 if the modifiers are active, 0 if they are not.  If any of
1706  * the modifier indices are invalid in the keymap, returns -1.
1707  *
1708  * @memberof xkb_state
1709  */
1710 int
1711 xkb_state_mod_indices_are_active(struct xkb_state *state,
1712                                  enum xkb_state_component type,
1713                                  enum xkb_state_match match,
1714                                  ...);
1715 
1716 /**
1717  * @page consumed-modifiers Consumed Modifiers
1718  * @parblock
1719  *
1720  * Some functions, like xkb_state_key_get_syms(), look at the state of
1721  * the modifiers in the keymap and derive from it the correct shift level
1722  * to use for the key.  For example, in a US layout, pressing the key
1723  * labeled \<A\> while the Shift modifier is active, generates the keysym
1724  * 'A'.  In this case, the Shift modifier is said to be "consumed".
1725  * However, the Num Lock modifier does not affect this translation at all,
1726  * even if it is active, so it is not consumed by this translation.
1727  *
1728  * It may be desirable for some application to not reuse consumed modifiers
1729  * for further processing, e.g. for hotkeys or keyboard shortcuts.  To
1730  * understand why, consider some requirements from a standard shortcut
1731  * mechanism, and how they are implemented:
1732  *
1733  * 1. The shortcut's modifiers must match exactly to the state.  For
1734  *    example, it is possible to bind separate actions to \<Alt\>\<Tab\>
1735  *    and to \<Alt\>\<Shift\>\<Tab\>.  Further, if only \<Alt\>\<Tab\> is
1736  *    bound to an action, pressing \<Alt\>\<Shift\>\<Tab\> should not
1737  *    trigger the shortcut.
1738  *    Effectively, this means that the modifiers are compared using the
1739  *    equality operator (==).
1740  *
1741  * 2. Only relevant modifiers are considered for the matching.  For example,
1742  *    Caps Lock and Num Lock should not generally affect the matching, e.g.
1743  *    when matching \<Alt\>\<Tab\> against the state, it does not matter
1744  *    whether Num Lock is active or not.  These relevant, or "significant",
1745  *    modifiers usually include Alt, Control, Shift, Super and similar.
1746  *    Effectively, this means that non-significant modifiers are masked out,
1747  *    before doing the comparison as described above.
1748  *
1749  * 3. The matching must be independent of the layout/keymap.  For example,
1750  *    the \<Plus\> (+) symbol is found on the first level on some layouts,
1751  *    but requires holding Shift on others.  If you simply bind the action
1752  *    to the \<Plus\> keysym, it would work for the unshifted kind, but
1753  *    not for the others, because the match against Shift would fail.  If
1754  *    you bind the action to \<Shift\>\<Plus\>, only the shifted kind would
1755  *    work.  So what is needed is to recognize that Shift is used up in the
1756  *    translation of the keysym itself, and therefore should not be included
1757  *    in the matching.
1758  *    Effectively, this means that consumed modifiers (Shift in this example)
1759  *    are masked out as well, before doing the comparison.
1760  *
1761  * In summary, this is approximately how the matching would be performed:
1762  * @code
1763  *   (keysym == shortcut_keysym) &&
1764  *   ((state_mods & ~consumed_mods & significant_mods) == shortcut_mods)
1765  * @endcode
1766  *
1767  * @c state_mods are the modifiers reported by
1768  * xkb_state_mod_index_is_active() and similar functions.
1769  * @c consumed_mods are the modifiers reported by
1770  * xkb_state_mod_index_is_consumed() and similar functions.
1771  * @c significant_mods are decided upon by the application/toolkit/user;
1772  * it is up to them to decide whether these are configurable or hard-coded.
1773  *
1774  * @endparblock
1775  */
1776 
1777 /**
1778  * Consumed modifiers mode.
1779  *
1780  * There are several possible methods for deciding which modifiers are
1781  * consumed and which are not, each applicable for different systems or
1782  * situations. The mode selects the method to use.
1783  *
1784  * Keep in mind that in all methods, the keymap may decide to "preserve"
1785  * a modifier, meaning it is not reported as consumed even if it would
1786  * have otherwise.
1787  */
1788 enum xkb_consumed_mode {
1789     /**
1790      * This is the mode defined in the XKB specification and used by libX11.
1791      *
1792      * A modifier is consumed if and only if it *may affect* key translation.
1793      *
1794      * For example, if `Control+Alt+<Backspace>` produces some assigned keysym,
1795      * then when pressing just `<Backspace>`, `Control` and `Alt` are consumed,
1796      * even though they are not active, since if they *were* active they would
1797      * have affected key translation.
1798      */
1799     XKB_CONSUMED_MODE_XKB,
1800     /**
1801      * This is the mode used by the GTK+ toolkit.
1802      *
1803      * The mode consists of the following two independent heuristics:
1804      *
1805      * - The currently active set of modifiers, excluding modifiers which do
1806      *   not affect the key (as described for @ref XKB_CONSUMED_MODE_XKB), are
1807      *   considered consumed, if the keysyms produced when all of them are
1808      *   active are different from the keysyms produced when no modifiers are
1809      *   active.
1810      *
1811      * - A single modifier is considered consumed if the keysyms produced for
1812      *   the key when it is the only active modifier are different from the
1813      *   keysyms produced when no modifiers are active.
1814      */
1815     XKB_CONSUMED_MODE_GTK
1816 };
1817 
1818 /**
1819  * Get the mask of modifiers consumed by translating a given key.
1820  *
1821  * @param state The keyboard state.
1822  * @param key   The keycode of the key.
1823  * @param mode  The consumed modifiers mode to use; see enum description.
1824  *
1825  * @returns a mask of the consumed modifiers.
1826  *
1827  * @memberof xkb_state
1828  * @since 0.7.0
1829  */
1830 xkb_mod_mask_t
1831 xkb_state_key_get_consumed_mods2(struct xkb_state *state, xkb_keycode_t key,
1832                                  enum xkb_consumed_mode mode);
1833 
1834 /**
1835  * Same as xkb_state_key_get_consumed_mods2() with mode XKB_CONSUMED_MODE_XKB.
1836  *
1837  * @memberof xkb_state
1838  * @since 0.4.1
1839  */
1840 xkb_mod_mask_t
1841 xkb_state_key_get_consumed_mods(struct xkb_state *state, xkb_keycode_t key);
1842 
1843 /**
1844  * Test whether a modifier is consumed by keyboard state translation for
1845  * a key.
1846  *
1847  * @param state The keyboard state.
1848  * @param key   The keycode of the key.
1849  * @param idx   The index of the modifier to check.
1850  * @param mode  The consumed modifiers mode to use; see enum description.
1851  *
1852  * @returns 1 if the modifier is consumed, 0 if it is not.  If the modifier
1853  * index is not valid in the keymap, returns -1.
1854  *
1855  * @sa xkb_state_mod_mask_remove_consumed()
1856  * @sa xkb_state_key_get_consumed_mods()
1857  * @memberof xkb_state
1858  * @since 0.7.0
1859  */
1860 int
1861 xkb_state_mod_index_is_consumed2(struct xkb_state *state,
1862                                  xkb_keycode_t key,
1863                                  xkb_mod_index_t idx,
1864                                  enum xkb_consumed_mode mode);
1865 
1866 /**
1867  * Same as xkb_state_mod_index_is_consumed2() with mode XKB_CONSUMED_MOD_XKB.
1868  *
1869  * @memberof xkb_state
1870  * @since 0.4.1
1871  */
1872 int
1873 xkb_state_mod_index_is_consumed(struct xkb_state *state, xkb_keycode_t key,
1874                                 xkb_mod_index_t idx);
1875 
1876 /**
1877  * Remove consumed modifiers from a modifier mask for a key.
1878  *
1879  * @deprecated Use xkb_state_key_get_consumed_mods2() instead.
1880  *
1881  * Takes the given modifier mask, and removes all modifiers which are
1882  * consumed for that particular key (as in xkb_state_mod_index_is_consumed()).
1883  *
1884  * @sa xkb_state_mod_index_is_consumed()
1885  * @memberof xkb_state
1886  */
1887 xkb_mod_mask_t
1888 xkb_state_mod_mask_remove_consumed(struct xkb_state *state, xkb_keycode_t key,
1889                                    xkb_mod_mask_t mask);
1890 
1891 /**
1892  * Test whether a layout is active in a given keyboard state by name.
1893  *
1894  * @returns 1 if the layout is active, 0 if it is not.  If no layout with
1895  * this name exists in the keymap, return -1.
1896  *
1897  * If multiple layouts in the keymap have this name, the one with the lowest
1898  * index is tested.
1899  *
1900  * @sa xkb_layout_index_t
1901  * @memberof xkb_state
1902  */
1903 int
1904 xkb_state_layout_name_is_active(struct xkb_state *state, const char *name,
1905                                 enum xkb_state_component type);
1906 
1907 /**
1908  * Test whether a layout is active in a given keyboard state by index.
1909  *
1910  * @returns 1 if the layout is active, 0 if it is not.  If the layout index
1911  * is not valid in the keymap, returns -1.
1912  *
1913  * @sa xkb_layout_index_t
1914  * @memberof xkb_state
1915  */
1916 int
1917 xkb_state_layout_index_is_active(struct xkb_state *state,
1918                                  xkb_layout_index_t idx,
1919                                  enum xkb_state_component type);
1920 
1921 /**
1922  * Test whether a LED is active in a given keyboard state by name.
1923  *
1924  * @returns 1 if the LED is active, 0 if it not.  If no LED with this name
1925  * exists in the keymap, returns -1.
1926  *
1927  * @sa xkb_led_index_t
1928  * @memberof xkb_state
1929  */
1930 int
1931 xkb_state_led_name_is_active(struct xkb_state *state, const char *name);
1932 
1933 /**
1934  * Test whether a LED is active in a given keyboard state by index.
1935  *
1936  * @returns 1 if the LED is active, 0 if it not.  If the LED index is not
1937  * valid in the keymap, returns -1.
1938  *
1939  * @sa xkb_led_index_t
1940  * @memberof xkb_state
1941  */
1942 int
1943 xkb_state_led_index_is_active(struct xkb_state *state, xkb_led_index_t idx);
1944 
1945 /** @} */
1946 
1947 /* Leave this include last, so it can pick up our types, etc. */
1948 #include <xkbcommon/xkbcommon-compat.h>
1949 
1950 #ifdef __cplusplus
1951 } /* extern "C" */
1952 #endif
1953 
1954 #endif /* _XKBCOMMON_H_ */
1955