• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (c) 2016, Alliance for Open Media. All rights reserved
3  *
4  * This source code is subject to the terms of the BSD 2 Clause License and
5  * the Alliance for Open Media Patent License 1.0. If the BSD 2 Clause License
6  * was not distributed with this source code in the LICENSE file, you can
7  * obtain it at www.aomedia.org/license/software. If the Alliance for Open
8  * Media Patent License 1.0 was not distributed with this source code in the
9  * PATENTS file, you can obtain it at www.aomedia.org/license/patent.
10  */
11 
12 #ifndef AOM_AV1_COMMON_BLOCKD_H_
13 #define AOM_AV1_COMMON_BLOCKD_H_
14 
15 #include "config/aom_config.h"
16 
17 #include "aom_dsp/aom_dsp_common.h"
18 #include "aom_ports/mem.h"
19 #include "aom_scale/yv12config.h"
20 
21 #include "av1/common/common_data.h"
22 #include "av1/common/quant_common.h"
23 #include "av1/common/entropy.h"
24 #include "av1/common/entropymode.h"
25 #include "av1/common/mv.h"
26 #include "av1/common/scale.h"
27 #include "av1/common/seg_common.h"
28 #include "av1/common/tile_common.h"
29 
30 #ifdef __cplusplus
31 extern "C" {
32 #endif
33 
34 #define USE_B_QUANT_NO_TRELLIS 1
35 
36 #define MAX_MB_PLANE 3
37 
38 #define MAX_DIFFWTD_MASK_BITS 1
39 
40 #define INTERINTRA_WEDGE_SIGN 0
41 
42 #define DEFAULT_INTER_TX_TYPE DCT_DCT
43 
44 #define MAX_PALETTE_BLOCK_WIDTH 64
45 
46 #define MAX_PALETTE_BLOCK_HEIGHT 64
47 
48 /*!\cond */
49 
50 // DIFFWTD_MASK_TYPES should not surpass 1 << MAX_DIFFWTD_MASK_BITS
51 enum {
52   DIFFWTD_38 = 0,
53   DIFFWTD_38_INV,
54   DIFFWTD_MASK_TYPES,
55 } UENUM1BYTE(DIFFWTD_MASK_TYPE);
56 
57 enum {
58   KEY_FRAME = 0,
59   INTER_FRAME = 1,
60   INTRA_ONLY_FRAME = 2,  // replaces intra-only
61   S_FRAME = 3,
62   FRAME_TYPES,
63 } UENUM1BYTE(FRAME_TYPE);
64 
is_comp_ref_allowed(BLOCK_SIZE bsize)65 static INLINE int is_comp_ref_allowed(BLOCK_SIZE bsize) {
66   return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
67 }
68 
is_inter_mode(PREDICTION_MODE mode)69 static INLINE int is_inter_mode(PREDICTION_MODE mode) {
70   return mode >= INTER_MODE_START && mode < INTER_MODE_END;
71 }
72 
73 typedef struct {
74   uint8_t *plane[MAX_MB_PLANE];
75   int stride[MAX_MB_PLANE];
76 } BUFFER_SET;
77 
is_inter_singleref_mode(PREDICTION_MODE mode)78 static INLINE int is_inter_singleref_mode(PREDICTION_MODE mode) {
79   return mode >= SINGLE_INTER_MODE_START && mode < SINGLE_INTER_MODE_END;
80 }
is_inter_compound_mode(PREDICTION_MODE mode)81 static INLINE int is_inter_compound_mode(PREDICTION_MODE mode) {
82   return mode >= COMP_INTER_MODE_START && mode < COMP_INTER_MODE_END;
83 }
84 
compound_ref0_mode(PREDICTION_MODE mode)85 static INLINE PREDICTION_MODE compound_ref0_mode(PREDICTION_MODE mode) {
86   static const PREDICTION_MODE lut[] = {
87     DC_PRED,        // DC_PRED
88     V_PRED,         // V_PRED
89     H_PRED,         // H_PRED
90     D45_PRED,       // D45_PRED
91     D135_PRED,      // D135_PRED
92     D113_PRED,      // D113_PRED
93     D157_PRED,      // D157_PRED
94     D203_PRED,      // D203_PRED
95     D67_PRED,       // D67_PRED
96     SMOOTH_PRED,    // SMOOTH_PRED
97     SMOOTH_V_PRED,  // SMOOTH_V_PRED
98     SMOOTH_H_PRED,  // SMOOTH_H_PRED
99     PAETH_PRED,     // PAETH_PRED
100     NEARESTMV,      // NEARESTMV
101     NEARMV,         // NEARMV
102     GLOBALMV,       // GLOBALMV
103     NEWMV,          // NEWMV
104     NEARESTMV,      // NEAREST_NEARESTMV
105     NEARMV,         // NEAR_NEARMV
106     NEARESTMV,      // NEAREST_NEWMV
107     NEWMV,          // NEW_NEARESTMV
108     NEARMV,         // NEAR_NEWMV
109     NEWMV,          // NEW_NEARMV
110     GLOBALMV,       // GLOBAL_GLOBALMV
111     NEWMV,          // NEW_NEWMV
112   };
113   assert(NELEMENTS(lut) == MB_MODE_COUNT);
114   assert(is_inter_compound_mode(mode) || is_inter_singleref_mode(mode));
115   return lut[mode];
116 }
117 
compound_ref1_mode(PREDICTION_MODE mode)118 static INLINE PREDICTION_MODE compound_ref1_mode(PREDICTION_MODE mode) {
119   static const PREDICTION_MODE lut[] = {
120     MB_MODE_COUNT,  // DC_PRED
121     MB_MODE_COUNT,  // V_PRED
122     MB_MODE_COUNT,  // H_PRED
123     MB_MODE_COUNT,  // D45_PRED
124     MB_MODE_COUNT,  // D135_PRED
125     MB_MODE_COUNT,  // D113_PRED
126     MB_MODE_COUNT,  // D157_PRED
127     MB_MODE_COUNT,  // D203_PRED
128     MB_MODE_COUNT,  // D67_PRED
129     MB_MODE_COUNT,  // SMOOTH_PRED
130     MB_MODE_COUNT,  // SMOOTH_V_PRED
131     MB_MODE_COUNT,  // SMOOTH_H_PRED
132     MB_MODE_COUNT,  // PAETH_PRED
133     MB_MODE_COUNT,  // NEARESTMV
134     MB_MODE_COUNT,  // NEARMV
135     MB_MODE_COUNT,  // GLOBALMV
136     MB_MODE_COUNT,  // NEWMV
137     NEARESTMV,      // NEAREST_NEARESTMV
138     NEARMV,         // NEAR_NEARMV
139     NEWMV,          // NEAREST_NEWMV
140     NEARESTMV,      // NEW_NEARESTMV
141     NEWMV,          // NEAR_NEWMV
142     NEARMV,         // NEW_NEARMV
143     GLOBALMV,       // GLOBAL_GLOBALMV
144     NEWMV,          // NEW_NEWMV
145   };
146   assert(NELEMENTS(lut) == MB_MODE_COUNT);
147   assert(is_inter_compound_mode(mode));
148   return lut[mode];
149 }
150 
have_nearmv_in_inter_mode(PREDICTION_MODE mode)151 static INLINE int have_nearmv_in_inter_mode(PREDICTION_MODE mode) {
152   return (mode == NEARMV || mode == NEAR_NEARMV || mode == NEAR_NEWMV ||
153           mode == NEW_NEARMV);
154 }
155 
have_newmv_in_inter_mode(PREDICTION_MODE mode)156 static INLINE int have_newmv_in_inter_mode(PREDICTION_MODE mode) {
157   return (mode == NEWMV || mode == NEW_NEWMV || mode == NEAREST_NEWMV ||
158           mode == NEW_NEARESTMV || mode == NEAR_NEWMV || mode == NEW_NEARMV);
159 }
160 
is_masked_compound_type(COMPOUND_TYPE type)161 static INLINE int is_masked_compound_type(COMPOUND_TYPE type) {
162   return (type == COMPOUND_WEDGE || type == COMPOUND_DIFFWTD);
163 }
164 
165 /* For keyframes, intra block modes are predicted by the (already decoded)
166    modes for the Y blocks to the left and above us; for interframes, there
167    is a single probability table. */
168 
169 typedef struct {
170   // Value of base colors for Y, U, and V
171   uint16_t palette_colors[3 * PALETTE_MAX_SIZE];
172   // Number of base colors for Y (0) and UV (1)
173   uint8_t palette_size[2];
174 } PALETTE_MODE_INFO;
175 
176 typedef struct {
177   FILTER_INTRA_MODE filter_intra_mode;
178   uint8_t use_filter_intra;
179 } FILTER_INTRA_MODE_INFO;
180 
181 static const PREDICTION_MODE fimode_to_intradir[FILTER_INTRA_MODES] = {
182   DC_PRED, V_PRED, H_PRED, D157_PRED, DC_PRED
183 };
184 
185 #if CONFIG_RD_DEBUG
186 #define TXB_COEFF_COST_MAP_SIZE (MAX_MIB_SIZE)
187 #endif
188 
189 typedef struct RD_STATS {
190   int rate;
191   int zero_rate;
192   int64_t dist;
193   // Please be careful of using rdcost, it's not guaranteed to be set all the
194   // time.
195   // TODO(angiebird): Create a set of functions to manipulate the RD_STATS. In
196   // these functions, make sure rdcost is always up-to-date according to
197   // rate/dist.
198   int64_t rdcost;
199   int64_t sse;
200   uint8_t skip_txfm;  // sse should equal to dist when skip_txfm == 1
201 #if CONFIG_RD_DEBUG
202   int txb_coeff_cost[MAX_MB_PLANE];
203 #endif  // CONFIG_RD_DEBUG
204 } RD_STATS;
205 
206 // This struct is used to group function args that are commonly
207 // sent together in functions related to interinter compound modes
208 typedef struct {
209   uint8_t *seg_mask;
210   int8_t wedge_index;
211   int8_t wedge_sign;
212   DIFFWTD_MASK_TYPE mask_type;
213   COMPOUND_TYPE type;
214 } INTERINTER_COMPOUND_DATA;
215 
216 #define INTER_TX_SIZE_BUF_LEN 16
217 #define TXK_TYPE_BUF_LEN 64
218 /*!\endcond */
219 
220 /*! \brief Stores the prediction/txfm mode of the current coding block
221  */
222 typedef struct MB_MODE_INFO {
223   /*****************************************************************************
224    * \name General Info of the Coding Block
225    ****************************************************************************/
226   /**@{*/
227   /*! \brief The block size of the current coding block */
228   BLOCK_SIZE bsize;
229   /*! \brief The partition type of the current coding block. */
230   PARTITION_TYPE partition;
231   /*! \brief The prediction mode used */
232   PREDICTION_MODE mode;
233   /*! \brief The UV mode when intra is used */
234   UV_PREDICTION_MODE uv_mode;
235   /*! \brief The q index for the current coding block. */
236   int current_qindex;
237   /**@}*/
238 
239   /*****************************************************************************
240    * \name Inter Mode Info
241    ****************************************************************************/
242   /**@{*/
243   /*! \brief The motion vectors used by the current inter mode */
244   int_mv mv[2];
245   /*! \brief The reference frames for the MV */
246   MV_REFERENCE_FRAME ref_frame[2];
247   /*! \brief Filter used in subpel interpolation. */
248   int_interpfilters interp_filters;
249   /*! \brief The motion mode used by the inter prediction. */
250   MOTION_MODE motion_mode;
251   /*! \brief Number of samples used by warp causal */
252   uint8_t num_proj_ref;
253   /*! \brief The number of overlapped neighbors above/left for obmc/warp motion
254    * mode. */
255   uint8_t overlappable_neighbors;
256   /*! \brief The parameters used in warp motion mode. */
257   WarpedMotionParams wm_params;
258   /*! \brief The type of intra mode used by inter-intra */
259   INTERINTRA_MODE interintra_mode;
260   /*! \brief The type of wedge used in interintra mode. */
261   int8_t interintra_wedge_index;
262   /*! \brief Struct that stores the data used in interinter compound mode. */
263   INTERINTER_COMPOUND_DATA interinter_comp;
264   /**@}*/
265 
266   /*****************************************************************************
267    * \name Intra Mode Info
268    ****************************************************************************/
269   /**@{*/
270   /*! \brief Directional mode delta: the angle is base angle + (angle_delta *
271    * step). */
272   int8_t angle_delta[PLANE_TYPES];
273   /*! \brief The type of filter intra mode used (if applicable). */
274   FILTER_INTRA_MODE_INFO filter_intra_mode_info;
275   /*! \brief Chroma from Luma: Joint sign of alpha Cb and alpha Cr */
276   int8_t cfl_alpha_signs;
277   /*! \brief Chroma from Luma: Index of the alpha Cb and alpha Cr combination */
278   uint8_t cfl_alpha_idx;
279   /*! \brief Stores the size and colors of palette mode */
280   PALETTE_MODE_INFO palette_mode_info;
281   /**@}*/
282 
283   /*****************************************************************************
284    * \name Transform Info
285    ****************************************************************************/
286   /**@{*/
287   /*! \brief Whether to skip transforming and sending. */
288   uint8_t skip_txfm;
289   /*! \brief Transform size when fixed size txfm is used (e.g. intra modes). */
290   TX_SIZE tx_size;
291   /*! \brief Transform size when recursive txfm tree is on. */
292   TX_SIZE inter_tx_size[INTER_TX_SIZE_BUF_LEN];
293   /**@}*/
294 
295   /*****************************************************************************
296    * \name Loop Filter Info
297    ****************************************************************************/
298   /**@{*/
299   /*! \copydoc MACROBLOCKD::delta_lf_from_base */
300   int8_t delta_lf_from_base;
301   /*! \copydoc MACROBLOCKD::delta_lf */
302   int8_t delta_lf[FRAME_LF_COUNT];
303   /**@}*/
304 
305   /*****************************************************************************
306    * \name Bitfield for Memory Reduction
307    ****************************************************************************/
308   /**@{*/
309   /*! \brief The segment id */
310   uint8_t segment_id : 3;
311   /*! \brief Only valid when temporal update if off. */
312   uint8_t seg_id_predicted : 1;
313   /*! \brief Which ref_mv to use */
314   uint8_t ref_mv_idx : 2;
315   /*! \brief Inter skip mode */
316   uint8_t skip_mode : 1;
317   /*! \brief Whether intrabc is used. */
318   uint8_t use_intrabc : 1;
319   /*! \brief Indicates if masked compound is used(1) or not (0). */
320   uint8_t comp_group_idx : 1;
321   /*! \brief Indicates whether dist_wtd_comp(0) is used or not (0). */
322   uint8_t compound_idx : 1;
323   /*! \brief Whether to use interintra wedge */
324   uint8_t use_wedge_interintra : 1;
325   /*! \brief CDEF strength per BLOCK_64X64 */
326   int8_t cdef_strength : 4;
327   /**@}*/
328 
329 #if CONFIG_RD_DEBUG
330   /*! \brief RD info used for debugging */
331   RD_STATS rd_stats;
332   /*! \brief The current row in unit of 4x4 blocks for debugging */
333   int mi_row;
334   /*! \brief The current col in unit of 4x4 blocks for debugging */
335   int mi_col;
336 #endif
337 #if CONFIG_INSPECTION
338   /*! \brief Whether we are skipping the current rows or columns. */
339   int16_t tx_skip[TXK_TYPE_BUF_LEN];
340 #endif
341 } MB_MODE_INFO;
342 
343 /*!\cond */
344 
is_intrabc_block(const MB_MODE_INFO * mbmi)345 static INLINE int is_intrabc_block(const MB_MODE_INFO *mbmi) {
346   return mbmi->use_intrabc;
347 }
348 
get_uv_mode(UV_PREDICTION_MODE mode)349 static INLINE PREDICTION_MODE get_uv_mode(UV_PREDICTION_MODE mode) {
350   assert(mode < UV_INTRA_MODES);
351   static const PREDICTION_MODE uv2y[] = {
352     DC_PRED,        // UV_DC_PRED
353     V_PRED,         // UV_V_PRED
354     H_PRED,         // UV_H_PRED
355     D45_PRED,       // UV_D45_PRED
356     D135_PRED,      // UV_D135_PRED
357     D113_PRED,      // UV_D113_PRED
358     D157_PRED,      // UV_D157_PRED
359     D203_PRED,      // UV_D203_PRED
360     D67_PRED,       // UV_D67_PRED
361     SMOOTH_PRED,    // UV_SMOOTH_PRED
362     SMOOTH_V_PRED,  // UV_SMOOTH_V_PRED
363     SMOOTH_H_PRED,  // UV_SMOOTH_H_PRED
364     PAETH_PRED,     // UV_PAETH_PRED
365     DC_PRED,        // UV_CFL_PRED
366     INTRA_INVALID,  // UV_INTRA_MODES
367     INTRA_INVALID,  // UV_MODE_INVALID
368   };
369   return uv2y[mode];
370 }
371 
is_inter_block(const MB_MODE_INFO * mbmi)372 static INLINE int is_inter_block(const MB_MODE_INFO *mbmi) {
373   return is_intrabc_block(mbmi) || mbmi->ref_frame[0] > INTRA_FRAME;
374 }
375 
has_second_ref(const MB_MODE_INFO * mbmi)376 static INLINE int has_second_ref(const MB_MODE_INFO *mbmi) {
377   return mbmi->ref_frame[1] > INTRA_FRAME;
378 }
379 
has_uni_comp_refs(const MB_MODE_INFO * mbmi)380 static INLINE int has_uni_comp_refs(const MB_MODE_INFO *mbmi) {
381   return has_second_ref(mbmi) && (!((mbmi->ref_frame[0] >= BWDREF_FRAME) ^
382                                     (mbmi->ref_frame[1] >= BWDREF_FRAME)));
383 }
384 
comp_ref0(int ref_idx)385 static INLINE MV_REFERENCE_FRAME comp_ref0(int ref_idx) {
386   static const MV_REFERENCE_FRAME lut[] = {
387     LAST_FRAME,     // LAST_LAST2_FRAMES,
388     LAST_FRAME,     // LAST_LAST3_FRAMES,
389     LAST_FRAME,     // LAST_GOLDEN_FRAMES,
390     BWDREF_FRAME,   // BWDREF_ALTREF_FRAMES,
391     LAST2_FRAME,    // LAST2_LAST3_FRAMES
392     LAST2_FRAME,    // LAST2_GOLDEN_FRAMES,
393     LAST3_FRAME,    // LAST3_GOLDEN_FRAMES,
394     BWDREF_FRAME,   // BWDREF_ALTREF2_FRAMES,
395     ALTREF2_FRAME,  // ALTREF2_ALTREF_FRAMES,
396   };
397   assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
398   return lut[ref_idx];
399 }
400 
comp_ref1(int ref_idx)401 static INLINE MV_REFERENCE_FRAME comp_ref1(int ref_idx) {
402   static const MV_REFERENCE_FRAME lut[] = {
403     LAST2_FRAME,    // LAST_LAST2_FRAMES,
404     LAST3_FRAME,    // LAST_LAST3_FRAMES,
405     GOLDEN_FRAME,   // LAST_GOLDEN_FRAMES,
406     ALTREF_FRAME,   // BWDREF_ALTREF_FRAMES,
407     LAST3_FRAME,    // LAST2_LAST3_FRAMES
408     GOLDEN_FRAME,   // LAST2_GOLDEN_FRAMES,
409     GOLDEN_FRAME,   // LAST3_GOLDEN_FRAMES,
410     ALTREF2_FRAME,  // BWDREF_ALTREF2_FRAMES,
411     ALTREF_FRAME,   // ALTREF2_ALTREF_FRAMES,
412   };
413   assert(NELEMENTS(lut) == TOTAL_UNIDIR_COMP_REFS);
414   return lut[ref_idx];
415 }
416 
417 PREDICTION_MODE av1_left_block_mode(const MB_MODE_INFO *left_mi);
418 
419 PREDICTION_MODE av1_above_block_mode(const MB_MODE_INFO *above_mi);
420 
is_global_mv_block(const MB_MODE_INFO * const mbmi,TransformationType type)421 static INLINE int is_global_mv_block(const MB_MODE_INFO *const mbmi,
422                                      TransformationType type) {
423   const PREDICTION_MODE mode = mbmi->mode;
424   const BLOCK_SIZE bsize = mbmi->bsize;
425   const int block_size_allowed =
426       AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
427   return (mode == GLOBALMV || mode == GLOBAL_GLOBALMV) && type > TRANSLATION &&
428          block_size_allowed;
429 }
430 
431 #if CONFIG_MISMATCH_DEBUG
mi_to_pixel_loc(int * pixel_c,int * pixel_r,int mi_col,int mi_row,int tx_blk_col,int tx_blk_row,int subsampling_x,int subsampling_y)432 static INLINE void mi_to_pixel_loc(int *pixel_c, int *pixel_r, int mi_col,
433                                    int mi_row, int tx_blk_col, int tx_blk_row,
434                                    int subsampling_x, int subsampling_y) {
435   *pixel_c = ((mi_col >> subsampling_x) << MI_SIZE_LOG2) +
436              (tx_blk_col << MI_SIZE_LOG2);
437   *pixel_r = ((mi_row >> subsampling_y) << MI_SIZE_LOG2) +
438              (tx_blk_row << MI_SIZE_LOG2);
439 }
440 #endif
441 
442 enum { MV_PRECISION_Q3, MV_PRECISION_Q4 } UENUM1BYTE(mv_precision);
443 
444 struct buf_2d {
445   uint8_t *buf;
446   uint8_t *buf0;
447   int width;
448   int height;
449   int stride;
450 };
451 
452 typedef struct eob_info {
453   uint16_t eob;
454   uint16_t max_scan_line;
455 } eob_info;
456 
457 typedef struct {
458   DECLARE_ALIGNED(32, tran_low_t, dqcoeff[MAX_MB_PLANE][MAX_SB_SQUARE]);
459   eob_info eob_data[MAX_MB_PLANE]
460                    [MAX_SB_SQUARE / (TX_SIZE_W_MIN * TX_SIZE_H_MIN)];
461   DECLARE_ALIGNED(16, uint8_t, color_index_map[2][MAX_SB_SQUARE]);
462 } CB_BUFFER;
463 
464 typedef struct macroblockd_plane {
465   PLANE_TYPE plane_type;
466   int subsampling_x;
467   int subsampling_y;
468   struct buf_2d dst;
469   struct buf_2d pre[2];
470   ENTROPY_CONTEXT *above_entropy_context;
471   ENTROPY_CONTEXT *left_entropy_context;
472 
473   // The dequantizers below are true dequantizers used only in the
474   // dequantization process.  They have the same coefficient
475   // shift/scale as TX.
476   int16_t seg_dequant_QTX[MAX_SEGMENTS][2];
477   // Pointer to color index map of:
478   // - Current coding block, on encoder side.
479   // - Current superblock, on decoder side.
480   uint8_t *color_index_map;
481 
482   // block size in pixels
483   uint8_t width, height;
484 
485   qm_val_t *seg_iqmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
486   qm_val_t *seg_qmatrix[MAX_SEGMENTS][TX_SIZES_ALL];
487 } MACROBLOCKD_PLANE;
488 
489 #define BLOCK_OFFSET(i) ((i) << 4)
490 
491 /*!\endcond */
492 
493 /*!\brief Parameters related to Wiener Filter */
494 typedef struct {
495   /*!
496    * Vertical filter kernel.
497    */
498   DECLARE_ALIGNED(16, InterpKernel, vfilter);
499 
500   /*!
501    * Horizontal filter kernel.
502    */
503   DECLARE_ALIGNED(16, InterpKernel, hfilter);
504 } WienerInfo;
505 
506 /*!\brief Parameters related to Sgrproj Filter */
507 typedef struct {
508   /*!
509    * Parameter index.
510    */
511   int ep;
512 
513   /*!
514    * Weights for linear combination of filtered versions
515    */
516   int xqd[2];
517 } SgrprojInfo;
518 
519 /*!\cond */
520 
521 #if CONFIG_DEBUG
522 #define CFL_SUB8X8_VAL_MI_SIZE (4)
523 #define CFL_SUB8X8_VAL_MI_SQUARE \
524   (CFL_SUB8X8_VAL_MI_SIZE * CFL_SUB8X8_VAL_MI_SIZE)
525 #endif  // CONFIG_DEBUG
526 #define CFL_MAX_BLOCK_SIZE (BLOCK_32X32)
527 #define CFL_BUF_LINE (32)
528 #define CFL_BUF_LINE_I128 (CFL_BUF_LINE >> 3)
529 #define CFL_BUF_LINE_I256 (CFL_BUF_LINE >> 4)
530 #define CFL_BUF_SQUARE (CFL_BUF_LINE * CFL_BUF_LINE)
531 typedef struct cfl_ctx {
532   // Q3 reconstructed luma pixels (only Q2 is required, but Q3 is used to avoid
533   // shifts)
534   uint16_t recon_buf_q3[CFL_BUF_SQUARE];
535   // Q3 AC contributions (reconstructed luma pixels - tx block avg)
536   int16_t ac_buf_q3[CFL_BUF_SQUARE];
537 
538   // Cache the DC_PRED when performing RDO, so it does not have to be recomputed
539   // for every scaling parameter
540   int dc_pred_is_cached[CFL_PRED_PLANES];
541   // The DC_PRED cache is disable when decoding
542   int use_dc_pred_cache;
543   // Only cache the first row of the DC_PRED
544   int16_t dc_pred_cache[CFL_PRED_PLANES][CFL_BUF_LINE];
545 
546   // Height and width currently used in the CfL prediction buffer.
547   int buf_height, buf_width;
548 
549   int are_parameters_computed;
550 
551   // Chroma subsampling
552   int subsampling_x, subsampling_y;
553 
554   // Whether the reconstructed luma pixels need to be stored
555   int store_y;
556 } CFL_CTX;
557 
558 typedef struct dist_wtd_comp_params {
559   int use_dist_wtd_comp_avg;
560   int fwd_offset;
561   int bck_offset;
562 } DIST_WTD_COMP_PARAMS;
563 
564 struct scale_factors;
565 
566 /*!\endcond */
567 
568 /*! \brief Variables related to current coding block.
569  *
570  * This is a common set of variables used by both encoder and decoder.
571  * Most/all of the pointers are mere pointers to actual arrays are allocated
572  * elsewhere. This is mostly for coding convenience.
573  */
574 typedef struct macroblockd {
575   /**
576    * \name Position of current macroblock in mi units
577    */
578   /**@{*/
579   int mi_row; /*!< Row position in mi units. */
580   int mi_col; /*!< Column position in mi units. */
581   /**@}*/
582 
583   /*!
584    * Same as cm->mi_params.mi_stride, copied here for convenience.
585    */
586   int mi_stride;
587 
588   /*!
589    * True if current block transmits chroma information.
590    * More detail:
591    * Smallest supported block size for both luma and chroma plane is 4x4. Hence,
592    * in case of subsampled chroma plane (YUV 4:2:0 or YUV 4:2:2), multiple luma
593    * blocks smaller than 8x8 maybe combined into one chroma block.
594    * For example, for YUV 4:2:0, let's say an 8x8 area is split into four 4x4
595    * luma blocks. Then, a single chroma block of size 4x4 will cover the area of
596    * these four luma blocks. This is implemented in bitstream as follows:
597    * - There are four MB_MODE_INFO structs for the four luma blocks.
598    * - First 3 MB_MODE_INFO have is_chroma_ref = false, and so do not transmit
599    * any information for chroma planes.
600    * - Last block will have is_chroma_ref = true and transmits chroma
601    * information for the 4x4 chroma block that covers whole 8x8 area covered by
602    * four luma blocks.
603    * Similar logic applies for chroma blocks that cover 2 or 3 luma blocks.
604    */
605   bool is_chroma_ref;
606 
607   /*!
608    * Info specific to each plane.
609    */
610   struct macroblockd_plane plane[MAX_MB_PLANE];
611 
612   /*!
613    * Tile related info.
614    */
615   TileInfo tile;
616 
617   /*!
618    * Appropriate offset inside cm->mi_params.mi_grid_base based on current
619    * mi_row and mi_col.
620    */
621   MB_MODE_INFO **mi;
622 
623   /*!
624    * True if 4x4 block above the current block is available.
625    */
626   bool up_available;
627   /*!
628    * True if 4x4 block to the left of the current block is available.
629    */
630   bool left_available;
631   /*!
632    * True if the above chrome reference block is available.
633    */
634   bool chroma_up_available;
635   /*!
636    * True if the left chrome reference block is available.
637    */
638   bool chroma_left_available;
639 
640   /*!
641    * MB_MODE_INFO for 4x4 block to the left of the current block, if
642    * left_available == true; otherwise NULL.
643    */
644   MB_MODE_INFO *left_mbmi;
645   /*!
646    * MB_MODE_INFO for 4x4 block above the current block, if
647    * up_available == true; otherwise NULL.
648    */
649   MB_MODE_INFO *above_mbmi;
650   /*!
651    * Above chroma reference block if is_chroma_ref == true for the current block
652    * and chroma_up_available == true; otherwise NULL.
653    * See also: the special case logic when current chroma block covers more than
654    * one luma blocks in set_mi_row_col().
655    */
656   MB_MODE_INFO *chroma_left_mbmi;
657   /*!
658    * Left chroma reference block if is_chroma_ref == true for the current block
659    * and chroma_left_available == true; otherwise NULL.
660    * See also: the special case logic when current chroma block covers more than
661    * one luma blocks in set_mi_row_col().
662    */
663   MB_MODE_INFO *chroma_above_mbmi;
664 
665   /*!
666    * Appropriate offset based on current 'mi_row' and 'mi_col', inside
667    * 'tx_type_map' in one of 'CommonModeInfoParams', 'PICK_MODE_CONTEXT' or
668    * 'MACROBLOCK' structs.
669    */
670   uint8_t *tx_type_map;
671   /*!
672    * Stride for 'tx_type_map'. Note that this may / may not be same as
673    * 'mi_stride', depending on which actual array 'tx_type_map' points to.
674    */
675   int tx_type_map_stride;
676 
677   /**
678    * \name Distance of this macroblock from frame edges in 1/8th pixel units.
679    */
680   /**@{*/
681   int mb_to_left_edge;   /*!< Distance from left edge */
682   int mb_to_right_edge;  /*!< Distance from right edge */
683   int mb_to_top_edge;    /*!< Distance from top edge */
684   int mb_to_bottom_edge; /*!< Distance from bottom edge */
685   /**@}*/
686 
687   /*!
688    * Scale factors for reference frames of the current block.
689    * These are pointers into 'cm->ref_scale_factors'.
690    */
691   const struct scale_factors *block_ref_scale_factors[2];
692 
693   /*!
694    * - On encoder side: points to cpi->source, which is the buffer containing
695    * the current *source* frame (maybe filtered).
696    * - On decoder side: points to cm->cur_frame->buf, which is the buffer into
697    * which current frame is being *decoded*.
698    */
699   const YV12_BUFFER_CONFIG *cur_buf;
700 
701   /*!
702    * Entropy contexts for the above blocks.
703    * above_entropy_context[i][j] corresponds to above entropy context for ith
704    * plane and jth mi column of this *frame*, wrt current 'mi_row'.
705    * These are pointers into 'cm->above_contexts.entropy'.
706    */
707   ENTROPY_CONTEXT *above_entropy_context[MAX_MB_PLANE];
708   /*!
709    * Entropy contexts for the left blocks.
710    * left_entropy_context[i][j] corresponds to left entropy context for ith
711    * plane and jth mi row of this *superblock*, wrt current 'mi_col'.
712    * Note: These contain actual data, NOT pointers.
713    */
714   ENTROPY_CONTEXT left_entropy_context[MAX_MB_PLANE][MAX_MIB_SIZE];
715 
716   /*!
717    * Partition contexts for the above blocks.
718    * above_partition_context[i] corresponds to above partition context for ith
719    * mi column of this *frame*, wrt current 'mi_row'.
720    * This is a pointer into 'cm->above_contexts.partition'.
721    */
722   PARTITION_CONTEXT *above_partition_context;
723   /*!
724    * Partition contexts for the left blocks.
725    * left_partition_context[i] corresponds to left partition context for ith
726    * mi row of this *superblock*, wrt current 'mi_col'.
727    * Note: These contain actual data, NOT pointers.
728    */
729   PARTITION_CONTEXT left_partition_context[MAX_MIB_SIZE];
730 
731   /*!
732    * Transform contexts for the above blocks.
733    * above_txfm_context[i] corresponds to above transform context for ith mi col
734    * from the current position (mi row and mi column) for this *frame*.
735    * This is a pointer into 'cm->above_contexts.txfm'.
736    */
737   TXFM_CONTEXT *above_txfm_context;
738   /*!
739    * Transform contexts for the left blocks.
740    * left_txfm_context[i] corresponds to left transform context for ith mi row
741    * from the current position (mi_row and mi_col) for this *superblock*.
742    * This is a pointer into 'left_txfm_context_buffer'.
743    */
744   TXFM_CONTEXT *left_txfm_context;
745   /*!
746    * left_txfm_context_buffer[i] is the left transform context for ith mi_row
747    * in this *superblock*.
748    * Behaves like an internal actual buffer which 'left_txt_context' points to,
749    * and never accessed directly except to fill in initial default values.
750    */
751   TXFM_CONTEXT left_txfm_context_buffer[MAX_MIB_SIZE];
752 
753   /**
754    * \name Default values for the two restoration filters for each plane.
755    * Default values for the two restoration filters for each plane.
756    * These values are used as reference values when writing the bitstream. That
757    * is, we transmit the delta between the actual values in
758    * cm->rst_info[plane].unit_info[unit_idx] and these reference values.
759    */
760   /**@{*/
761   WienerInfo wiener_info[MAX_MB_PLANE];   /*!< Defaults for Wiener filter*/
762   SgrprojInfo sgrproj_info[MAX_MB_PLANE]; /*!< Defaults for SGR filter */
763   /**@}*/
764 
765   /**
766    * \name Block dimensions in MB_MODE_INFO units.
767    */
768   /**@{*/
769   uint8_t width;  /*!< Block width in MB_MODE_INFO units */
770   uint8_t height; /*!< Block height in MB_MODE_INFO units */
771   /**@}*/
772 
773   /*!
774    * Contains the motion vector candidates found during motion vector prediction
775    * process. ref_mv_stack[i] contains the candidates for ith type of
776    * reference frame (single/compound). The actual number of candidates found in
777    * ref_mv_stack[i] is stored in either dcb->ref_mv_count[i] (decoder side)
778    * or mbmi_ext->ref_mv_count[i] (encoder side).
779    */
780   CANDIDATE_MV ref_mv_stack[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
781   /*!
782    * weight[i][j] is the weight for ref_mv_stack[i][j] and used to compute the
783    * DRL (dynamic reference list) mode contexts.
784    */
785   uint16_t weight[MODE_CTX_REF_FRAMES][MAX_REF_MV_STACK_SIZE];
786 
787   /*!
788    * True if this is the last vertical rectangular block in a VERTICAL or
789    * VERTICAL_4 partition.
790    */
791   bool is_last_vertical_rect;
792   /*!
793    * True if this is the 1st horizontal rectangular block in a HORIZONTAL or
794    * HORIZONTAL_4 partition.
795    */
796   bool is_first_horizontal_rect;
797 
798   /*!
799    * Counts of each reference frame in the above and left neighboring blocks.
800    * NOTE: Take into account both single and comp references.
801    */
802   uint8_t neighbors_ref_counts[REF_FRAMES];
803 
804   /*!
805    * Current CDFs of all the symbols for the current tile.
806    */
807   FRAME_CONTEXT *tile_ctx;
808 
809   /*!
810    * Bit depth: copied from cm->seq_params->bit_depth for convenience.
811    */
812   int bd;
813 
814   /*!
815    * Quantizer index for each segment (base qindex + delta for each segment).
816    */
817   int qindex[MAX_SEGMENTS];
818   /*!
819    * lossless[s] is true if segment 's' is coded losslessly.
820    */
821   int lossless[MAX_SEGMENTS];
822   /*!
823    * Q index for the coding blocks in this superblock will be stored in
824    * mbmi->current_qindex. Now, when cm->delta_q_info.delta_q_present_flag is
825    * true, mbmi->current_qindex is computed by taking 'current_base_qindex' as
826    * the base, and adding any transmitted delta qindex on top of it.
827    * Precisely, this is the latest qindex used by the first coding block of a
828    * non-skip superblock in the current tile; OR
829    * same as cm->quant_params.base_qindex (if not explicitly set yet).
830    * Note: This is 'CurrentQIndex' in the AV1 spec.
831    */
832   int current_base_qindex;
833 
834   /*!
835    * Same as cm->features.cur_frame_force_integer_mv.
836    */
837   int cur_frame_force_integer_mv;
838 
839   /*!
840    * Pointer to cm->error.
841    */
842   struct aom_internal_error_info *error_info;
843 
844   /*!
845    * Same as cm->global_motion.
846    */
847   const WarpedMotionParams *global_motion;
848 
849   /*!
850    * Since actual frame level loop filtering level value is not available
851    * at the beginning of the tile (only available during actual filtering)
852    * at encoder side.we record the delta_lf (against the frame level loop
853    * filtering level) and code the delta between previous superblock's delta
854    * lf and current delta lf. It is equivalent to the delta between previous
855    * superblock's actual lf and current lf.
856    */
857   int8_t delta_lf_from_base;
858   /*!
859    * We have four frame filter levels for different plane and direction. So, to
860    * support the per superblock update, we need to add a few more params:
861    * 0. delta loop filter level for y plane vertical
862    * 1. delta loop filter level for y plane horizontal
863    * 2. delta loop filter level for u plane
864    * 3. delta loop filter level for v plane
865    * To make it consistent with the reference to each filter level in segment,
866    * we need to -1, since
867    * - SEG_LVL_ALT_LF_Y_V = 1;
868    * - SEG_LVL_ALT_LF_Y_H = 2;
869    * - SEG_LVL_ALT_LF_U   = 3;
870    * - SEG_LVL_ALT_LF_V   = 4;
871    */
872   int8_t delta_lf[FRAME_LF_COUNT];
873   /*!
874    * cdef_transmitted[i] is true if CDEF strength for ith CDEF unit in the
875    * current superblock has already been read from (decoder) / written to
876    * (encoder) the bitstream; and false otherwise.
877    * More detail:
878    * 1. CDEF strength is transmitted only once per CDEF unit, in the 1st
879    * non-skip coding block. So, we need this array to keep track of whether CDEF
880    * strengths for the given CDEF units have been transmitted yet or not.
881    * 2. Superblock size can be either 128x128 or 64x64, but CDEF unit size is
882    * fixed to be 64x64. So, there may be 4 CDEF units within a superblock (if
883    * superblock size is 128x128). Hence the array size is 4.
884    * 3. In the current implementation, CDEF strength for this CDEF unit is
885    * stored in the MB_MODE_INFO of the 1st block in this CDEF unit (inside
886    * cm->mi_params.mi_grid_base).
887    */
888   bool cdef_transmitted[4];
889 
890   /*!
891    * Mask for this block used for compound prediction.
892    */
893   uint8_t *seg_mask;
894 
895   /*!
896    * CFL (chroma from luma) related parameters.
897    */
898   CFL_CTX cfl;
899 
900   /*!
901    * Offset to plane[p].color_index_map.
902    * Currently:
903    * - On encoder side, this is always 0 as 'color_index_map' is allocated per
904    * *coding block* there.
905    * - On decoder side, this may be non-zero, as 'color_index_map' is a (static)
906    * memory pointing to the base of a *superblock* there, and we need an offset
907    * to it to get the color index map for current coding block.
908    */
909   uint16_t color_index_map_offset[2];
910 
911   /*!
912    * Temporary buffer used for convolution in case of compound reference only
913    * for (weighted or uniform) averaging operation.
914    * There are pointers to actual buffers allocated elsewhere: e.g.
915    * - In decoder, 'pbi->td.tmp_conv_dst' or
916    * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
917    * - In encoder, 'x->tmp_conv_dst' or
918    * 'cpi->tile_thr_data[t].td->mb.tmp_conv_dst'.
919    */
920   CONV_BUF_TYPE *tmp_conv_dst;
921   /*!
922    * Temporary buffers used to build OBMC prediction by above (index 0) and left
923    * (index 1) predictors respectively.
924    * tmp_obmc_bufs[i][p * MAX_SB_SQUARE] is the buffer used for plane 'p'.
925    * There are pointers to actual buffers allocated elsewhere: e.g.
926    * - In decoder, 'pbi->td.tmp_obmc_bufs' or
927    * 'pbi->thread_data[t].td->xd.tmp_conv_dst' and
928    * -In encoder, 'x->tmp_pred_bufs' or
929    * 'cpi->tile_thr_data[t].td->mb.tmp_pred_bufs'.
930    */
931   uint8_t *tmp_obmc_bufs[2];
932 } MACROBLOCKD;
933 
934 /*!\cond */
935 
is_cur_buf_hbd(const MACROBLOCKD * xd)936 static INLINE int is_cur_buf_hbd(const MACROBLOCKD *xd) {
937 #if CONFIG_AV1_HIGHBITDEPTH
938   return xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH ? 1 : 0;
939 #else
940   (void)xd;
941   return 0;
942 #endif
943 }
944 
get_buf_by_bd(const MACROBLOCKD * xd,uint8_t * buf16)945 static INLINE uint8_t *get_buf_by_bd(const MACROBLOCKD *xd, uint8_t *buf16) {
946 #if CONFIG_AV1_HIGHBITDEPTH
947   return (xd->cur_buf->flags & YV12_FLAG_HIGHBITDEPTH)
948              ? CONVERT_TO_BYTEPTR(buf16)
949              : buf16;
950 #else
951   (void)xd;
952   return buf16;
953 #endif
954 }
955 
956 typedef struct BitDepthInfo {
957   int bit_depth;
958   /*! Is the image buffer high bit depth?
959    * Low bit depth buffer uses uint8_t.
960    * High bit depth buffer uses uint16_t.
961    * Equivalent to cm->seq_params->use_highbitdepth
962    */
963   int use_highbitdepth_buf;
964 } BitDepthInfo;
965 
get_bit_depth_info(const MACROBLOCKD * xd)966 static INLINE BitDepthInfo get_bit_depth_info(const MACROBLOCKD *xd) {
967   BitDepthInfo bit_depth_info;
968   bit_depth_info.bit_depth = xd->bd;
969   bit_depth_info.use_highbitdepth_buf = is_cur_buf_hbd(xd);
970   assert(IMPLIES(!bit_depth_info.use_highbitdepth_buf,
971                  bit_depth_info.bit_depth == 8));
972   return bit_depth_info;
973 }
974 
get_sqr_bsize_idx(BLOCK_SIZE bsize)975 static INLINE int get_sqr_bsize_idx(BLOCK_SIZE bsize) {
976   switch (bsize) {
977     case BLOCK_4X4: return 0;
978     case BLOCK_8X8: return 1;
979     case BLOCK_16X16: return 2;
980     case BLOCK_32X32: return 3;
981     case BLOCK_64X64: return 4;
982     case BLOCK_128X128: return 5;
983     default: return SQR_BLOCK_SIZES;
984   }
985 }
986 
987 // For a square block size 'bsize', returns the size of the sub-blocks used by
988 // the given partition type. If the partition produces sub-blocks of different
989 // sizes, then the function returns the largest sub-block size.
990 // Implements the Partition_Subsize lookup table in the spec (Section 9.3.
991 // Conversion tables).
992 // Note: the input block size should be square.
993 // Otherwise it's considered invalid.
get_partition_subsize(BLOCK_SIZE bsize,PARTITION_TYPE partition)994 static INLINE BLOCK_SIZE get_partition_subsize(BLOCK_SIZE bsize,
995                                                PARTITION_TYPE partition) {
996   if (partition == PARTITION_INVALID) {
997     return BLOCK_INVALID;
998   } else {
999     const int sqr_bsize_idx = get_sqr_bsize_idx(bsize);
1000     return sqr_bsize_idx >= SQR_BLOCK_SIZES
1001                ? BLOCK_INVALID
1002                : subsize_lookup[partition][sqr_bsize_idx];
1003   }
1004 }
1005 
intra_mode_to_tx_type(const MB_MODE_INFO * mbmi,PLANE_TYPE plane_type)1006 static TX_TYPE intra_mode_to_tx_type(const MB_MODE_INFO *mbmi,
1007                                      PLANE_TYPE plane_type) {
1008   static const TX_TYPE _intra_mode_to_tx_type[INTRA_MODES] = {
1009     DCT_DCT,    // DC_PRED
1010     ADST_DCT,   // V_PRED
1011     DCT_ADST,   // H_PRED
1012     DCT_DCT,    // D45_PRED
1013     ADST_ADST,  // D135_PRED
1014     ADST_DCT,   // D113_PRED
1015     DCT_ADST,   // D157_PRED
1016     DCT_ADST,   // D203_PRED
1017     ADST_DCT,   // D67_PRED
1018     ADST_ADST,  // SMOOTH_PRED
1019     ADST_DCT,   // SMOOTH_V_PRED
1020     DCT_ADST,   // SMOOTH_H_PRED
1021     ADST_ADST,  // PAETH_PRED
1022   };
1023   const PREDICTION_MODE mode =
1024       (plane_type == PLANE_TYPE_Y) ? mbmi->mode : get_uv_mode(mbmi->uv_mode);
1025   assert(mode < INTRA_MODES);
1026   return _intra_mode_to_tx_type[mode];
1027 }
1028 
is_rect_tx(TX_SIZE tx_size)1029 static INLINE int is_rect_tx(TX_SIZE tx_size) { return tx_size >= TX_SIZES; }
1030 
block_signals_txsize(BLOCK_SIZE bsize)1031 static INLINE int block_signals_txsize(BLOCK_SIZE bsize) {
1032   return bsize > BLOCK_4X4;
1033 }
1034 
1035 // Number of transform types in each set type
1036 static const int av1_num_ext_tx_set[EXT_TX_SET_TYPES] = {
1037   1, 2, 5, 7, 12, 16,
1038 };
1039 
1040 static const int av1_ext_tx_used[EXT_TX_SET_TYPES][TX_TYPES] = {
1041   { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
1042   { 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1043   { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0 },
1044   { 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0 },
1045   { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0 },
1046   { 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 },
1047 };
1048 
1049 // The bitmask corresponds to the transform types as defined in
1050 // enums.h TX_TYPE enumeration type. Setting the bit 0 means to disable
1051 // the use of the corresponding transform type in that table.
1052 // The av1_derived_intra_tx_used_flag table is used when
1053 // use_reduced_intra_txset is set to 2, where one only searches
1054 // the transform types derived from residual statistics.
1055 static const uint16_t av1_derived_intra_tx_used_flag[INTRA_MODES] = {
1056   0x0209,  // DC_PRED:       0000 0010 0000 1001
1057   0x0403,  // V_PRED:        0000 0100 0000 0011
1058   0x0805,  // H_PRED:        0000 1000 0000 0101
1059   0x020F,  // D45_PRED:      0000 0010 0000 1111
1060   0x0009,  // D135_PRED:     0000 0000 0000 1001
1061   0x0009,  // D113_PRED:     0000 0000 0000 1001
1062   0x0009,  // D157_PRED:     0000 0000 0000 1001
1063   0x0805,  // D203_PRED:     0000 1000 0000 0101
1064   0x0403,  // D67_PRED:      0000 0100 0000 0011
1065   0x0205,  // SMOOTH_PRED:   0000 0010 0000 1001
1066   0x0403,  // SMOOTH_V_PRED: 0000 0100 0000 0011
1067   0x0805,  // SMOOTH_H_PRED: 0000 1000 0000 0101
1068   0x0209,  // PAETH_PRED:    0000 0010 0000 1001
1069 };
1070 
1071 static const uint16_t av1_reduced_intra_tx_used_flag[INTRA_MODES] = {
1072   0x080F,  // DC_PRED:       0000 1000 0000 1111
1073   0x040F,  // V_PRED:        0000 0100 0000 1111
1074   0x080F,  // H_PRED:        0000 1000 0000 1111
1075   0x020F,  // D45_PRED:      0000 0010 0000 1111
1076   0x080F,  // D135_PRED:     0000 1000 0000 1111
1077   0x040F,  // D113_PRED:     0000 0100 0000 1111
1078   0x080F,  // D157_PRED:     0000 1000 0000 1111
1079   0x080F,  // D203_PRED:     0000 1000 0000 1111
1080   0x040F,  // D67_PRED:      0000 0100 0000 1111
1081   0x080F,  // SMOOTH_PRED:   0000 1000 0000 1111
1082   0x040F,  // SMOOTH_V_PRED: 0000 0100 0000 1111
1083   0x080F,  // SMOOTH_H_PRED: 0000 1000 0000 1111
1084   0x0C0E,  // PAETH_PRED:    0000 1100 0000 1110
1085 };
1086 
1087 static const uint16_t av1_ext_tx_used_flag[EXT_TX_SET_TYPES] = {
1088   0x0001,  // 0000 0000 0000 0001
1089   0x0201,  // 0000 0010 0000 0001
1090   0x020F,  // 0000 0010 0000 1111
1091   0x0E0F,  // 0000 1110 0000 1111
1092   0x0FFF,  // 0000 1111 1111 1111
1093   0xFFFF,  // 1111 1111 1111 1111
1094 };
1095 
1096 static const TxSetType av1_ext_tx_set_lookup[2][2] = {
1097   { EXT_TX_SET_DTT4_IDTX_1DDCT, EXT_TX_SET_DTT4_IDTX },
1098   { EXT_TX_SET_ALL16, EXT_TX_SET_DTT9_IDTX_1DDCT },
1099 };
1100 
av1_get_ext_tx_set_type(TX_SIZE tx_size,int is_inter,int use_reduced_set)1101 static INLINE TxSetType av1_get_ext_tx_set_type(TX_SIZE tx_size, int is_inter,
1102                                                 int use_reduced_set) {
1103   const TX_SIZE tx_size_sqr_up = txsize_sqr_up_map[tx_size];
1104   if (tx_size_sqr_up > TX_32X32) return EXT_TX_SET_DCTONLY;
1105   if (tx_size_sqr_up == TX_32X32)
1106     return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DCTONLY;
1107   if (use_reduced_set)
1108     return is_inter ? EXT_TX_SET_DCT_IDTX : EXT_TX_SET_DTT4_IDTX;
1109   const TX_SIZE tx_size_sqr = txsize_sqr_map[tx_size];
1110   return av1_ext_tx_set_lookup[is_inter][tx_size_sqr == TX_16X16];
1111 }
1112 
1113 // Maps tx set types to the indices.
1114 static const int ext_tx_set_index[2][EXT_TX_SET_TYPES] = {
1115   { // Intra
1116     0, -1, 2, 1, -1, -1 },
1117   { // Inter
1118     0, 3, -1, -1, 2, 1 },
1119 };
1120 
get_ext_tx_set(TX_SIZE tx_size,int is_inter,int use_reduced_set)1121 static INLINE int get_ext_tx_set(TX_SIZE tx_size, int is_inter,
1122                                  int use_reduced_set) {
1123   const TxSetType set_type =
1124       av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1125   return ext_tx_set_index[is_inter][set_type];
1126 }
1127 
get_ext_tx_types(TX_SIZE tx_size,int is_inter,int use_reduced_set)1128 static INLINE int get_ext_tx_types(TX_SIZE tx_size, int is_inter,
1129                                    int use_reduced_set) {
1130   const int set_type =
1131       av1_get_ext_tx_set_type(tx_size, is_inter, use_reduced_set);
1132   return av1_num_ext_tx_set[set_type];
1133 }
1134 
1135 #define TXSIZEMAX(t1, t2) (tx_size_2d[(t1)] >= tx_size_2d[(t2)] ? (t1) : (t2))
1136 #define TXSIZEMIN(t1, t2) (tx_size_2d[(t1)] <= tx_size_2d[(t2)] ? (t1) : (t2))
1137 
tx_size_from_tx_mode(BLOCK_SIZE bsize,TX_MODE tx_mode)1138 static INLINE TX_SIZE tx_size_from_tx_mode(BLOCK_SIZE bsize, TX_MODE tx_mode) {
1139   const TX_SIZE largest_tx_size = tx_mode_to_biggest_tx_size[tx_mode];
1140   const TX_SIZE max_rect_tx_size = max_txsize_rect_lookup[bsize];
1141   if (bsize == BLOCK_4X4)
1142     return AOMMIN(max_txsize_lookup[bsize], largest_tx_size);
1143   if (txsize_sqr_map[max_rect_tx_size] <= largest_tx_size)
1144     return max_rect_tx_size;
1145   else
1146     return largest_tx_size;
1147 }
1148 
1149 static const uint8_t mode_to_angle_map[] = {
1150   0, 90, 180, 45, 135, 113, 157, 203, 67, 0, 0, 0, 0,
1151 };
1152 
1153 // Converts block_index for given transform size to index of the block in raster
1154 // order.
av1_block_index_to_raster_order(TX_SIZE tx_size,int block_idx)1155 static INLINE int av1_block_index_to_raster_order(TX_SIZE tx_size,
1156                                                   int block_idx) {
1157   // For transform size 4x8, the possible block_idx values are 0 & 2, because
1158   // block_idx values are incremented in steps of size 'tx_width_unit x
1159   // tx_height_unit'. But, for this transform size, block_idx = 2 corresponds to
1160   // block number 1 in raster order, inside an 8x8 MI block.
1161   // For any other transform size, the two indices are equivalent.
1162   return (tx_size == TX_4X8 && block_idx == 2) ? 1 : block_idx;
1163 }
1164 
1165 // Inverse of above function.
1166 // Note: only implemented for transform sizes 4x4, 4x8 and 8x4 right now.
av1_raster_order_to_block_index(TX_SIZE tx_size,int raster_order)1167 static INLINE int av1_raster_order_to_block_index(TX_SIZE tx_size,
1168                                                   int raster_order) {
1169   assert(tx_size == TX_4X4 || tx_size == TX_4X8 || tx_size == TX_8X4);
1170   // We ensure that block indices are 0 & 2 if tx size is 4x8 or 8x4.
1171   return (tx_size == TX_4X4) ? raster_order : (raster_order > 0) ? 2 : 0;
1172 }
1173 
get_default_tx_type(PLANE_TYPE plane_type,const MACROBLOCKD * xd,TX_SIZE tx_size,int use_screen_content_tools)1174 static INLINE TX_TYPE get_default_tx_type(PLANE_TYPE plane_type,
1175                                           const MACROBLOCKD *xd,
1176                                           TX_SIZE tx_size,
1177                                           int use_screen_content_tools) {
1178   const MB_MODE_INFO *const mbmi = xd->mi[0];
1179 
1180   if (is_inter_block(mbmi) || plane_type != PLANE_TYPE_Y ||
1181       xd->lossless[mbmi->segment_id] || tx_size >= TX_32X32 ||
1182       use_screen_content_tools)
1183     return DEFAULT_INTER_TX_TYPE;
1184 
1185   return intra_mode_to_tx_type(mbmi, plane_type);
1186 }
1187 
1188 // Implements the get_plane_residual_size() function in the spec (Section
1189 // 5.11.38. Get plane residual size function).
get_plane_block_size(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1190 static INLINE BLOCK_SIZE get_plane_block_size(BLOCK_SIZE bsize,
1191                                               int subsampling_x,
1192                                               int subsampling_y) {
1193   assert(bsize < BLOCK_SIZES_ALL);
1194   assert(subsampling_x >= 0 && subsampling_x < 2);
1195   assert(subsampling_y >= 0 && subsampling_y < 2);
1196   return av1_ss_size_lookup[bsize][subsampling_x][subsampling_y];
1197 }
1198 
1199 /*
1200  * Logic to generate the lookup tables:
1201  *
1202  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1203  * for (int level = 0; level < MAX_VARTX_DEPTH - 1; ++level)
1204  *   txs = sub_tx_size_map[txs];
1205  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1206  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1207  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1208  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1209  */
av1_get_txb_size_index(BLOCK_SIZE bsize,int blk_row,int blk_col)1210 static INLINE int av1_get_txb_size_index(BLOCK_SIZE bsize, int blk_row,
1211                                          int blk_col) {
1212   static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1213     0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 0, 1, 1, 2, 2, 3,
1214   };
1215   static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1216     0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 1, 0, 2, 1, 3, 2,
1217   };
1218   static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1219     0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 0, 1, 0, 1, 0, 1,
1220   };
1221   const int index =
1222       ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1223       (blk_col >> tw_w_log2_table[bsize]);
1224   assert(index < INTER_TX_SIZE_BUF_LEN);
1225   return index;
1226 }
1227 
1228 #if CONFIG_INSPECTION
1229 /*
1230  * Here is the logic to generate the lookup tables:
1231  *
1232  * TX_SIZE txs = max_txsize_rect_lookup[bsize];
1233  * for (int level = 0; level < MAX_VARTX_DEPTH; ++level)
1234  *   txs = sub_tx_size_map[txs];
1235  * const int tx_w_log2 = tx_size_wide_log2[txs] - MI_SIZE_LOG2;
1236  * const int tx_h_log2 = tx_size_high_log2[txs] - MI_SIZE_LOG2;
1237  * const int bw_uint_log2 = mi_size_wide_log2[bsize];
1238  * const int stride_log2 = bw_uint_log2 - tx_w_log2;
1239  */
av1_get_txk_type_index(BLOCK_SIZE bsize,int blk_row,int blk_col)1240 static INLINE int av1_get_txk_type_index(BLOCK_SIZE bsize, int blk_row,
1241                                          int blk_col) {
1242   static const uint8_t tw_w_log2_table[BLOCK_SIZES_ALL] = {
1243     0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1244   };
1245   static const uint8_t tw_h_log2_table[BLOCK_SIZES_ALL] = {
1246     0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 0, 0, 1, 1, 2, 2,
1247   };
1248   static const uint8_t stride_log2_table[BLOCK_SIZES_ALL] = {
1249     0, 0, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 0, 2, 0, 2, 0, 2,
1250   };
1251   const int index =
1252       ((blk_row >> tw_h_log2_table[bsize]) << stride_log2_table[bsize]) +
1253       (blk_col >> tw_w_log2_table[bsize]);
1254   assert(index < TXK_TYPE_BUF_LEN);
1255   return index;
1256 }
1257 #endif  // CONFIG_INSPECTION
1258 
update_txk_array(MACROBLOCKD * const xd,int blk_row,int blk_col,TX_SIZE tx_size,TX_TYPE tx_type)1259 static INLINE void update_txk_array(MACROBLOCKD *const xd, int blk_row,
1260                                     int blk_col, TX_SIZE tx_size,
1261                                     TX_TYPE tx_type) {
1262   const int stride = xd->tx_type_map_stride;
1263   xd->tx_type_map[blk_row * stride + blk_col] = tx_type;
1264 
1265   const int txw = tx_size_wide_unit[tx_size];
1266   const int txh = tx_size_high_unit[tx_size];
1267   // The 16x16 unit is due to the constraint from tx_64x64 which sets the
1268   // maximum tx size for chroma as 32x32. Coupled with 4x1 transform block
1269   // size, the constraint takes effect in 32x16 / 16x32 size too. To solve
1270   // the intricacy, cover all the 16x16 units inside a 64 level transform.
1271   if (txw == tx_size_wide_unit[TX_64X64] ||
1272       txh == tx_size_high_unit[TX_64X64]) {
1273     const int tx_unit = tx_size_wide_unit[TX_16X16];
1274     for (int idy = 0; idy < txh; idy += tx_unit) {
1275       for (int idx = 0; idx < txw; idx += tx_unit) {
1276         xd->tx_type_map[(blk_row + idy) * stride + blk_col + idx] = tx_type;
1277       }
1278     }
1279   }
1280 }
1281 
av1_get_tx_type(const MACROBLOCKD * xd,PLANE_TYPE plane_type,int blk_row,int blk_col,TX_SIZE tx_size,int reduced_tx_set)1282 static INLINE TX_TYPE av1_get_tx_type(const MACROBLOCKD *xd,
1283                                       PLANE_TYPE plane_type, int blk_row,
1284                                       int blk_col, TX_SIZE tx_size,
1285                                       int reduced_tx_set) {
1286   const MB_MODE_INFO *const mbmi = xd->mi[0];
1287   if (xd->lossless[mbmi->segment_id] || txsize_sqr_up_map[tx_size] > TX_32X32) {
1288     return DCT_DCT;
1289   }
1290 
1291   TX_TYPE tx_type;
1292   if (plane_type == PLANE_TYPE_Y) {
1293     tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1294   } else {
1295     if (is_inter_block(mbmi)) {
1296       // scale back to y plane's coordinate
1297       const struct macroblockd_plane *const pd = &xd->plane[plane_type];
1298       blk_row <<= pd->subsampling_y;
1299       blk_col <<= pd->subsampling_x;
1300       tx_type = xd->tx_type_map[blk_row * xd->tx_type_map_stride + blk_col];
1301     } else {
1302       // In intra mode, uv planes don't share the same prediction mode as y
1303       // plane, so the tx_type should not be shared
1304       tx_type = intra_mode_to_tx_type(mbmi, PLANE_TYPE_UV);
1305     }
1306     const TxSetType tx_set_type =
1307         av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi), reduced_tx_set);
1308     if (!av1_ext_tx_used[tx_set_type][tx_type]) tx_type = DCT_DCT;
1309   }
1310   assert(tx_type < TX_TYPES);
1311   assert(av1_ext_tx_used[av1_get_ext_tx_set_type(tx_size, is_inter_block(mbmi),
1312                                                  reduced_tx_set)][tx_type]);
1313   return tx_type;
1314 }
1315 
1316 void av1_setup_block_planes(MACROBLOCKD *xd, int ss_x, int ss_y,
1317                             const int num_planes);
1318 
1319 /*
1320  * Logic to generate the lookup table:
1321  *
1322  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1323  * int depth = 0;
1324  * while (depth < MAX_TX_DEPTH && tx_size != TX_4X4) {
1325  *   depth++;
1326  *   tx_size = sub_tx_size_map[tx_size];
1327  * }
1328  */
bsize_to_max_depth(BLOCK_SIZE bsize)1329 static INLINE int bsize_to_max_depth(BLOCK_SIZE bsize) {
1330   static const uint8_t bsize_to_max_depth_table[BLOCK_SIZES_ALL] = {
1331     0, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
1332   };
1333   return bsize_to_max_depth_table[bsize];
1334 }
1335 
1336 /*
1337  * Logic to generate the lookup table:
1338  *
1339  * TX_SIZE tx_size = max_txsize_rect_lookup[bsize];
1340  * assert(tx_size != TX_4X4);
1341  * int depth = 0;
1342  * while (tx_size != TX_4X4) {
1343  *   depth++;
1344  *   tx_size = sub_tx_size_map[tx_size];
1345  * }
1346  * assert(depth < 10);
1347  */
bsize_to_tx_size_cat(BLOCK_SIZE bsize)1348 static INLINE int bsize_to_tx_size_cat(BLOCK_SIZE bsize) {
1349   assert(bsize < BLOCK_SIZES_ALL);
1350   static const uint8_t bsize_to_tx_size_depth_table[BLOCK_SIZES_ALL] = {
1351     0, 1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4,
1352   };
1353   const int depth = bsize_to_tx_size_depth_table[bsize];
1354   assert(depth <= MAX_TX_CATS);
1355   return depth - 1;
1356 }
1357 
depth_to_tx_size(int depth,BLOCK_SIZE bsize)1358 static INLINE TX_SIZE depth_to_tx_size(int depth, BLOCK_SIZE bsize) {
1359   TX_SIZE max_tx_size = max_txsize_rect_lookup[bsize];
1360   TX_SIZE tx_size = max_tx_size;
1361   for (int d = 0; d < depth; ++d) tx_size = sub_tx_size_map[tx_size];
1362   return tx_size;
1363 }
1364 
av1_get_adjusted_tx_size(TX_SIZE tx_size)1365 static INLINE TX_SIZE av1_get_adjusted_tx_size(TX_SIZE tx_size) {
1366   switch (tx_size) {
1367     case TX_64X64:
1368     case TX_64X32:
1369     case TX_32X64: return TX_32X32;
1370     case TX_64X16: return TX_32X16;
1371     case TX_16X64: return TX_16X32;
1372     default: return tx_size;
1373   }
1374 }
1375 
av1_get_max_uv_txsize(BLOCK_SIZE bsize,int subsampling_x,int subsampling_y)1376 static INLINE TX_SIZE av1_get_max_uv_txsize(BLOCK_SIZE bsize, int subsampling_x,
1377                                             int subsampling_y) {
1378   const BLOCK_SIZE plane_bsize =
1379       get_plane_block_size(bsize, subsampling_x, subsampling_y);
1380   assert(plane_bsize < BLOCK_SIZES_ALL);
1381   const TX_SIZE uv_tx = max_txsize_rect_lookup[plane_bsize];
1382   return av1_get_adjusted_tx_size(uv_tx);
1383 }
1384 
av1_get_tx_size(int plane,const MACROBLOCKD * xd)1385 static INLINE TX_SIZE av1_get_tx_size(int plane, const MACROBLOCKD *xd) {
1386   const MB_MODE_INFO *mbmi = xd->mi[0];
1387   if (xd->lossless[mbmi->segment_id]) return TX_4X4;
1388   if (plane == 0) return mbmi->tx_size;
1389   const MACROBLOCKD_PLANE *pd = &xd->plane[plane];
1390   return av1_get_max_uv_txsize(mbmi->bsize, pd->subsampling_x,
1391                                pd->subsampling_y);
1392 }
1393 
1394 void av1_reset_entropy_context(MACROBLOCKD *xd, BLOCK_SIZE bsize,
1395                                const int num_planes);
1396 
1397 void av1_reset_loop_filter_delta(MACROBLOCKD *xd, int num_planes);
1398 
1399 void av1_reset_loop_restoration(MACROBLOCKD *xd, const int num_planes);
1400 
1401 typedef void (*foreach_transformed_block_visitor)(int plane, int block,
1402                                                   int blk_row, int blk_col,
1403                                                   BLOCK_SIZE plane_bsize,
1404                                                   TX_SIZE tx_size, void *arg);
1405 
1406 void av1_set_entropy_contexts(const MACROBLOCKD *xd,
1407                               struct macroblockd_plane *pd, int plane,
1408                               BLOCK_SIZE plane_bsize, TX_SIZE tx_size,
1409                               int has_eob, int aoff, int loff);
1410 
1411 #define MAX_INTERINTRA_SB_SQUARE 32 * 32
is_interintra_mode(const MB_MODE_INFO * mbmi)1412 static INLINE int is_interintra_mode(const MB_MODE_INFO *mbmi) {
1413   return (mbmi->ref_frame[0] > INTRA_FRAME &&
1414           mbmi->ref_frame[1] == INTRA_FRAME);
1415 }
1416 
is_interintra_allowed_bsize(const BLOCK_SIZE bsize)1417 static INLINE int is_interintra_allowed_bsize(const BLOCK_SIZE bsize) {
1418   return (bsize >= BLOCK_8X8) && (bsize <= BLOCK_32X32);
1419 }
1420 
is_interintra_allowed_mode(const PREDICTION_MODE mode)1421 static INLINE int is_interintra_allowed_mode(const PREDICTION_MODE mode) {
1422   return (mode >= SINGLE_INTER_MODE_START) && (mode < SINGLE_INTER_MODE_END);
1423 }
1424 
is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2])1425 static INLINE int is_interintra_allowed_ref(const MV_REFERENCE_FRAME rf[2]) {
1426   return (rf[0] > INTRA_FRAME) && (rf[1] <= INTRA_FRAME);
1427 }
1428 
is_interintra_allowed(const MB_MODE_INFO * mbmi)1429 static INLINE int is_interintra_allowed(const MB_MODE_INFO *mbmi) {
1430   return is_interintra_allowed_bsize(mbmi->bsize) &&
1431          is_interintra_allowed_mode(mbmi->mode) &&
1432          is_interintra_allowed_ref(mbmi->ref_frame);
1433 }
1434 
is_interintra_allowed_bsize_group(int group)1435 static INLINE int is_interintra_allowed_bsize_group(int group) {
1436   int i;
1437   for (i = 0; i < BLOCK_SIZES_ALL; i++) {
1438     if (size_group_lookup[i] == group &&
1439         is_interintra_allowed_bsize((BLOCK_SIZE)i)) {
1440       return 1;
1441     }
1442   }
1443   return 0;
1444 }
1445 
is_interintra_pred(const MB_MODE_INFO * mbmi)1446 static INLINE int is_interintra_pred(const MB_MODE_INFO *mbmi) {
1447   return mbmi->ref_frame[0] > INTRA_FRAME &&
1448          mbmi->ref_frame[1] == INTRA_FRAME && is_interintra_allowed(mbmi);
1449 }
1450 
get_vartx_max_txsize(const MACROBLOCKD * xd,BLOCK_SIZE bsize,int plane)1451 static INLINE int get_vartx_max_txsize(const MACROBLOCKD *xd, BLOCK_SIZE bsize,
1452                                        int plane) {
1453   if (xd->lossless[xd->mi[0]->segment_id]) return TX_4X4;
1454   const TX_SIZE max_txsize = max_txsize_rect_lookup[bsize];
1455   if (plane == 0) return max_txsize;            // luma
1456   return av1_get_adjusted_tx_size(max_txsize);  // chroma
1457 }
1458 
is_motion_variation_allowed_bsize(BLOCK_SIZE bsize)1459 static INLINE int is_motion_variation_allowed_bsize(BLOCK_SIZE bsize) {
1460   assert(bsize < BLOCK_SIZES_ALL);
1461   return AOMMIN(block_size_wide[bsize], block_size_high[bsize]) >= 8;
1462 }
1463 
is_motion_variation_allowed_compound(const MB_MODE_INFO * mbmi)1464 static INLINE int is_motion_variation_allowed_compound(
1465     const MB_MODE_INFO *mbmi) {
1466   return !has_second_ref(mbmi);
1467 }
1468 
1469 // input: log2 of length, 0(4), 1(8), ...
1470 static const int max_neighbor_obmc[6] = { 0, 1, 2, 3, 4, 4 };
1471 
check_num_overlappable_neighbors(const MB_MODE_INFO * mbmi)1472 static INLINE int check_num_overlappable_neighbors(const MB_MODE_INFO *mbmi) {
1473   return mbmi->overlappable_neighbors != 0;
1474 }
1475 
1476 static INLINE MOTION_MODE
motion_mode_allowed(const WarpedMotionParams * gm_params,const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi,int allow_warped_motion)1477 motion_mode_allowed(const WarpedMotionParams *gm_params, const MACROBLOCKD *xd,
1478                     const MB_MODE_INFO *mbmi, int allow_warped_motion) {
1479   if (!check_num_overlappable_neighbors(mbmi)) return SIMPLE_TRANSLATION;
1480   if (xd->cur_frame_force_integer_mv == 0) {
1481     const TransformationType gm_type = gm_params[mbmi->ref_frame[0]].wmtype;
1482     if (is_global_mv_block(mbmi, gm_type)) return SIMPLE_TRANSLATION;
1483   }
1484   if (is_motion_variation_allowed_bsize(mbmi->bsize) &&
1485       is_inter_mode(mbmi->mode) && mbmi->ref_frame[1] != INTRA_FRAME &&
1486       is_motion_variation_allowed_compound(mbmi)) {
1487     assert(!has_second_ref(mbmi));
1488     if (mbmi->num_proj_ref >= 1 && allow_warped_motion &&
1489         !xd->cur_frame_force_integer_mv &&
1490         !av1_is_scaled(xd->block_ref_scale_factors[0])) {
1491       return WARPED_CAUSAL;
1492     }
1493     return OBMC_CAUSAL;
1494   }
1495   return SIMPLE_TRANSLATION;
1496 }
1497 
is_neighbor_overlappable(const MB_MODE_INFO * mbmi)1498 static INLINE int is_neighbor_overlappable(const MB_MODE_INFO *mbmi) {
1499   return (is_inter_block(mbmi));
1500 }
1501 
av1_allow_palette(int allow_screen_content_tools,BLOCK_SIZE sb_type)1502 static INLINE int av1_allow_palette(int allow_screen_content_tools,
1503                                     BLOCK_SIZE sb_type) {
1504   assert(sb_type < BLOCK_SIZES_ALL);
1505   return allow_screen_content_tools &&
1506          block_size_wide[sb_type] <= MAX_PALETTE_BLOCK_WIDTH &&
1507          block_size_high[sb_type] <= MAX_PALETTE_BLOCK_HEIGHT &&
1508          sb_type >= BLOCK_8X8;
1509 }
1510 
1511 // Returns sub-sampled dimensions of the given block.
1512 // The output values for 'rows_within_bounds' and 'cols_within_bounds' will
1513 // differ from 'height' and 'width' when part of the block is outside the
1514 // right
1515 // and/or bottom image boundary.
av1_get_block_dimensions(BLOCK_SIZE bsize,int plane,const MACROBLOCKD * xd,int * width,int * height,int * rows_within_bounds,int * cols_within_bounds)1516 static INLINE void av1_get_block_dimensions(BLOCK_SIZE bsize, int plane,
1517                                             const MACROBLOCKD *xd, int *width,
1518                                             int *height,
1519                                             int *rows_within_bounds,
1520                                             int *cols_within_bounds) {
1521   const int block_height = block_size_high[bsize];
1522   const int block_width = block_size_wide[bsize];
1523   const int block_rows = (xd->mb_to_bottom_edge >= 0)
1524                              ? block_height
1525                              : (xd->mb_to_bottom_edge >> 3) + block_height;
1526   const int block_cols = (xd->mb_to_right_edge >= 0)
1527                              ? block_width
1528                              : (xd->mb_to_right_edge >> 3) + block_width;
1529   const struct macroblockd_plane *const pd = &xd->plane[plane];
1530   assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_x == 0));
1531   assert(IMPLIES(plane == PLANE_TYPE_Y, pd->subsampling_y == 0));
1532   assert(block_width >= block_cols);
1533   assert(block_height >= block_rows);
1534   const int plane_block_width = block_width >> pd->subsampling_x;
1535   const int plane_block_height = block_height >> pd->subsampling_y;
1536   // Special handling for chroma sub8x8.
1537   const int is_chroma_sub8_x = plane > 0 && plane_block_width < 4;
1538   const int is_chroma_sub8_y = plane > 0 && plane_block_height < 4;
1539   if (width) {
1540     *width = plane_block_width + 2 * is_chroma_sub8_x;
1541     assert(*width >= 0);
1542   }
1543   if (height) {
1544     *height = plane_block_height + 2 * is_chroma_sub8_y;
1545     assert(*height >= 0);
1546   }
1547   if (rows_within_bounds) {
1548     *rows_within_bounds =
1549         (block_rows >> pd->subsampling_y) + 2 * is_chroma_sub8_y;
1550     assert(*rows_within_bounds >= 0);
1551   }
1552   if (cols_within_bounds) {
1553     *cols_within_bounds =
1554         (block_cols >> pd->subsampling_x) + 2 * is_chroma_sub8_x;
1555     assert(*cols_within_bounds >= 0);
1556   }
1557 }
1558 
1559 /* clang-format off */
1560 // Pointer to a three-dimensional array whose first dimension is PALETTE_SIZES.
1561 typedef aom_cdf_prob (*MapCdf)[PALETTE_COLOR_INDEX_CONTEXTS]
1562                               [CDF_SIZE(PALETTE_COLORS)];
1563 // Pointer to a const three-dimensional array whose first dimension is
1564 // PALETTE_SIZES.
1565 typedef const int (*ColorCost)[PALETTE_COLOR_INDEX_CONTEXTS][PALETTE_COLORS];
1566 /* clang-format on */
1567 
1568 typedef struct {
1569   int rows;
1570   int cols;
1571   int n_colors;
1572   int plane_width;
1573   int plane_height;
1574   uint8_t *color_map;
1575   MapCdf map_cdf;
1576   ColorCost color_cost;
1577 } Av1ColorMapParam;
1578 
is_nontrans_global_motion(const MACROBLOCKD * xd,const MB_MODE_INFO * mbmi)1579 static INLINE int is_nontrans_global_motion(const MACROBLOCKD *xd,
1580                                             const MB_MODE_INFO *mbmi) {
1581   int ref;
1582 
1583   // First check if all modes are GLOBALMV
1584   if (mbmi->mode != GLOBALMV && mbmi->mode != GLOBAL_GLOBALMV) return 0;
1585 
1586   if (AOMMIN(mi_size_wide[mbmi->bsize], mi_size_high[mbmi->bsize]) < 2)
1587     return 0;
1588 
1589   // Now check if all global motion is non translational
1590   for (ref = 0; ref < 1 + has_second_ref(mbmi); ++ref) {
1591     if (xd->global_motion[mbmi->ref_frame[ref]].wmtype == TRANSLATION) return 0;
1592   }
1593   return 1;
1594 }
1595 
get_plane_type(int plane)1596 static INLINE PLANE_TYPE get_plane_type(int plane) {
1597   return (plane == 0) ? PLANE_TYPE_Y : PLANE_TYPE_UV;
1598 }
1599 
av1_get_max_eob(TX_SIZE tx_size)1600 static INLINE int av1_get_max_eob(TX_SIZE tx_size) {
1601   if (tx_size == TX_64X64 || tx_size == TX_64X32 || tx_size == TX_32X64) {
1602     return 1024;
1603   }
1604   if (tx_size == TX_16X64 || tx_size == TX_64X16) {
1605     return 512;
1606   }
1607   return tx_size_2d[tx_size];
1608 }
1609 
1610 /*!\endcond */
1611 
1612 #ifdef __cplusplus
1613 }  // extern "C"
1614 #endif
1615 
1616 #endif  // AOM_AV1_COMMON_BLOCKD_H_
1617